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ABSTRACT

The recent outbreak of the novel coronavirus known as the COVID-19 pandemic
has harmed the lives of millions of people across the globe and has imposed a sig-
nificant threat to global healthcare due to its severe transmission capacity. It’s of
utmost importance to be able to accurately forecast the COVID-19 pandemic and
to provide the necessary precautionary measures to protect the health of individu-
als and prevent the spread of this deadly widespread virus. In this paper, we pro-
pose to forecast the upcoming newly infected patients that are likely to be affected
by COVID-19 in prior using a novel deep learning framework, Spatio-Temporal
Attention Based Graph Convolution Networks (STAGCN) to effectively make use
of spatial and temporal relationships. Instead of using traditional time-series fore-
casting techniques at a single city using raw data, we model the problem using
graphs and aim at taking into account the dependency that an infection in one city
has on its neighbors. Our experiments show that STAGCN effectively captures
this dependency and consistently outperforms the other conventional methods.

1 INTRODUCTION

The recent COVID-19 pandemic more elaborately also known as coronavirus disease is a severe
acute respiratory syndrome caused by the SARS-CoV-2 virus, the disease was first identified in a
hospital in Wuhan, China in December 2019, since then it has spread widely transforming from a
local epidemic to a major global pandemic across the whole world1. This virus can stay without
causing any symptoms for a period of 14 days this is called a pre-symptomatic and asymptomatic
transmission. COVID-19 primarily spreads through respiratory droplets when an infected person
talks, coughs, or sneezes and is within 6 feet of distance, the virus can survive on surfaces for
different intervals of time depending on the type of surface and the conditions prevalent. Early
forecasting of the number of COVID-19 cases will help to control the incubation and prevent the
spread of cases in the respective city accordingly.

Lately, artificial intelligence and machine learning techniques are widely used in numerous sectors
including healthcare to predict the patient’s health status beforehand and to replace the lack of expe-
rienced doctors. Using time series with AI mutually involves analyses of health records over time. It
majorly aims in using time series data and build models that can provide early warnings of possible
potential health issues, the most appropriate treatment planning, and population health management.
Time-series forecasting has always been useful in epidemic and pandemic management (Xu et al.,
2020). Further, the multi-head attention mechanism (Cordonnier et al., 2020), provides a technique
for tokens at different positions in the sequence to interact with each other and compute weights
that quantify the relative importance of the tokens and focus on specific parts of the time series data
when making predictions eventually aiding in improving accuracy.

∗Correspondence to: Nevasini Sasikumar <nevasini24@gmail.com>
1https://covid19.who.int/
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The graph is a universal language for describing complex systems and the relations between
them (Riaz & Ali, 2011). Graphs are fundamental data structures, the various factors and their
interactions that are responsible for COVID-19 spread can be modeled as graph entities. However,
the pandemic monitoring bodies do not record these interactions and only record the count of in-
fectious cases, recoveries, and deaths2. We propose a novel method to model the data inspired by
STGCN (Yu et al., 2018).

Our main contributions can be summarized as follows3

1. Modeling graph entities for COVID-19: A novel way to model COVID-19 stats pertain-
ing to the number of cases across various connected cities into graphs by computing the
physical distance between cities.

2. Spatio-Temporal Multi-Head Attention: A multi-head attention-based graph represen-
tation convolution learning framework to capture the spatial and temporal dependencies
present among the graph entities.

2 PRELIMINARIES

2.1 COVID-19 INFECTION FORECASTING FOR MULTIPLE CITIES

Disease forecasting is a typical time-series prediction problem in which we try to predict the num-
ber of infections for the next Q days given the information available from the previous P days.
Mathematically,

v̂t+1, · · · , v̂t+Q = argmax
vt+1,··· ,vt+Q

logP
(
vt+1, · · · , vt+Q | vt−P+1, · · · , vt

)
(1)

where vt ∈ RN is an observation vector of N cities at time step t and records the daily COVID-19
infections data.

2.2 MODELING DATA INTO A GRAPH STRUCTURE

In this paper, we argue that the daily new infections are dependent not only on a single city but
also on neighboring cities because of the disease spread dynamics. Hence, instead of predicting the
infections for each city separately, we model all the cities on a graph where each node denotes the
city and each edge denotes the connection between the cities based on a pruned weighted adjacency
matrix.

Mathematically, we denote a COVID-19 spread network as a weighted undirected graph G =
(V,E,W ). Where V denotes a set of N cities which are represented as nodes, E denotes the
set of edges, and W represents the weighted adjacency matrix which is calculated as follows:

wij =

{
exp(− d2

ij

σ2 ) , if exp(− d2
ij

σ2 ) ≥ ϵ

0 , otherwise
(2)

Here, dij denotes the actual physical distance between the cities i and j, and σ, ϵ are thresholds to
control the sparsity of the weighted adjacency matrix. Therefore, the data point vt can be considered
as a graph signal that is defined on an undirected graph G with weights W .

2.3 CONVOLUTIONS ON GRAPHS

The convolution operation is generalized to the graph structure in both spatial and spectral do-
mains (Balcilar et al., 2020). However, for time series forecasting, we discuss the spectral convo-
lution that uses the graph Laplacian. Denote x ∈ Rn, a kernel Θ, and L = In − D− 1

2 LD
1
2 the

normalized graph Laplacian with Fourier basis U ∈ Rn×n, Λ the diagonal matrix of eigen values of
L. We define the spectral graph convolution as follows:

Θ ∗G x = Θ(L)x = Θ(UΛU⊤)x = UΘ(Λ)U⊤x (3)
2https://covid19.who.int/data
3You can find our code here
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3 PROPOSED METHOD

Figure 1: Proposed STAGCN Architecture. We stack mutiple STAConv layers. Here v̂ denotes
the final predictions. The output layer is the same as that in STGCN (Yu et al., 2018)

3.1 NETWORK ARCHITECTURE

In this section, we propose the architecture for STAGCN. As shown in the figure 1, STAGCN con-
sists of multiple spatio-temporal attention convolutional (STAConv) blocks. Each of these blocks
has two temporal gated convolutional layers and one spatial graph convolutional layer sandwiched
between them. The outputs of these three layers are concatenated and combined using an attention
mechanism across the channels of these layers. Denoting P as the length of the history of temporal
data in the train set and the input to each block as {vt−P+1, · · · , vt}

3.2 GCNS FOR SPATIAL EMBEDDINGS

We use the 1st-order approximation of graph Laplacian for the graph convolutional layers (Kipf &
Welling, 2016) to reduce the computational complexity and also the number of parameters of the
model.

We can extend the graph convolutional operation defined in equation (3) to multi-channel graph
signals. Denoting a signal X ∈ Rn×Ci with Ci channels, the generalized graph convolution is given
by

yj =

Ci∑
i=1

Θi,j(L)xi , 1 ≤ j ≤ C0 (4)

where Ci and C0 are input and output embedding with Θ ∈ R(K×Ci)

3.3 GATED CNNS FOR TEMPORAL EMBEDDING

This is composed of the temporal convolutional layer that contains 1-D casual convolutional fol-
lowed by GLU for non-linearity (Gehring et al., 2017).

Γ ∗T Y = P ⊙ σ(Q) ∈ R(M−Kt+1)×C0 (5)

3.4 STACONV BLOCK

Taking inspiration from Vaswani et al. (2017) and Cordonnier et al. (2020), we propose to combine
the outputs of each of the spatial and temporal using multi-head attention. For the input vl of block
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l, the output vl+1 is computed by

v
(l+1)
i =

∥∥∥∥M
m=1

[ ∑
vk∈vl\{vi}

α
(m)
i,k c

(l)
k

]
(6)

c(l) =

∥∥∥∥[Γl
0 ∗T vl, Θl ∗G

(
Γl
0 ∗T vl

)
, Γl

1 ∗T ReLU
(
Θl ∗G

(
Γl
0 ∗T vl

))]
(7)

where
∥∥∥∥ denotes the concatenation operation, M is the number of attention heads and f

(m)
1 , f

(m)
2

are some neural networks used to compute the score function s
(m)
i,k , ak indicates the kth coordinate

of the vector a, and α
(m)
i,k denote the attention weights. Refer to appendix A.2 for detailed equations.

4 EXPERIMENTS AND RESULTS

4.1 DATASET INFORMATION

California COVID-19 Dataset The raw data from California State Government’s Open Data Por-
tal (California Open Data Portal, 2020) was taken pre-processed using the Z-Score method, for the
period 1st Feb 2020 to 17th Jan 2023. More information about data pre-processing can be found in
appendix A.3.

4.2 EXPERIMENTAL SETUP

We use a historical time window of 30 days to forecast the new cases for the next 10 days.

Metrics To measure and evaluate the performance of different methods, we use Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), Weighted
Mean Absolute Percentage Error (WMAPE).

Baselines We compare STAGCN with the following baselines methods (1) STGCN with ChebConv
(2) STGCN with GraphConv (3) STAGCN with ChebConv (4) STAGCN with GraphConv.

4.3 EXPERIMENTAL RESULTS

The table 1 demonstrates the results of our experiments. It can be seen that STAGCN out-performs
STGCN with by a significant margin, which demonstrate that our proposal of modelling the COVID-
19 forecasting on a graph and using multi-head attention is valid.

Method Test Loss ↓ MAE ↓ RMSE ↓ WMAPE ↓ MAPE ↓
STGCN (GraphConv) 0.065590 58.798785 297.323978 0.70136494 0.107144
STGCN (ChebConv) 0.057346 45.506019 195.012181 0.54280588 0.070275

STAGCN (GraphConv) 0.043253 34.245379 109.544507 0.40848647 0.039475
STAGCN (ChebConv) 0.050865 38.478212 132.962695 0.45897664 0.047914

Table 1: Comparison of performances of STAGCN and STGCN

5 CONCLUSION

We propose a STAGCN network to predict the number of COVID-19 cases for time steps ahead by
taking into account the proximity linked to the reported cases. We model a graph architecture further
supplementing it with multi-head attention to attain early forecasting results about the number of
cases that are likely to spread among the residents of the neighbourhood. Our experiments show that
we outperform the baselines by a significant margin which validates the assumption behind using
the attention mechanism.
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A APPENDIX

A.1 RELATED WORK

Deep learning-based approaches: These work revolve around using deep learning algorithms to
analyze time series data. Time series data is often complex and non-linear, making it difficult to
analyze using traditional methods. All the previous methods typically involve using recurrent neu-
ral networks (RNNs) and long short-term memory-less (Dudek et al., 2022), these can perform
effectively well with sequential time-series data. However, they suffer from the problem of error
accumulation during iterative training. More recent works propose the use of convolutional neural
networks (CNNs) (Wu & Tan, 2016) based architectures to take advantage of spatial structure along
with an RNN for the time domain. One of the key advantages of using CNNs for time series fore-
casting is that they can handle variable-length time series data. The other advancements over this
include convolutional LSTM (Shi et al., 2015). Despite them being the first attempts at mutually
combining spatial and temporal modalities, these can be applied to only grid-like structures and take
into consideration only the local patterns in the data.

Graph Neural Network (GNNs): Graph Neural networks treat every data point as nodes in the
graph taking into account the relationship between data points instead of modeling them individu-
ally. Graph Convolutional Neural Networks (GCNs) (Kipf & Welling, 2016) operate on the graph’s
adjacency matrix and apply convolutional operations to extract features from the graph, one of the
significances of using GCNs for time series forecasting is that they can handle missing data in the
time series, which is a common issue in time series forecasting. Many GCN-based methods were
proposed for spatiotemporal analysis by Deng et al. (2020), Kapoor et al. (2020) and Gao et al.
(2020). Other works combining recurrent networks and GNNs include GConvGRU and GConvL-
STM (Seo et al., 2016), GC-LSTM (Seo et al., 2016), LRGCN (Li et al., 2019) etc.,

A.2 STACONV DETAILS

For the input vl of block l, the output vl+1 is computed by

v
(l+1)
i =

∥∥∥∥M
m=1

[ ∑
vk∈vl\{vi}

α
(m)
i,k c

(l)
k

]
(8)

s
(m)
i,k =

〈
f
(m)
1 (c

(l)
i ), f

(m)
2 (c

(l)
k )

〉
(9)

α
(m)
i,k =

exp(s
(m)
i,k )∑

j

exp(s
(m)
i,j )

(10)

c(l) =

∥∥∥∥[Γl
0 ∗T vl, Θl ∗G

(
Γl
0 ∗T vl

)
, Γl

1 ∗T ReLU
(
Θl ∗G

(
Γl
0 ∗T vl

))]
(11)

The STAConv block can jointly process the outputs from both the spatial and temporal domains.
This layer is flexible and can dynamically stack any number of blocks and can be set accordingly by
the user. Our major work lies in this block we bring in a multi-head-based attention mechanism that
can parallelly respond to the outputs of multiple spatio-temporal blocks.
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A.3 DATASET PREPROCESSING

This dataset contains daily new infections count for every county in California, apart from cumula-
tive cases, deaths, tests, etc. We then construct a complete graph with nodes as these counties and
edge weights as the average geodesic distance between every pair of counties. We further alter the
weighted adjacency matrix as indicated in section 2.2. We used σ = 100 and ϵ = 0.5.

A.4 TRAINING SETTINGS

We train our STAGCN-ChebConv using the spectral graph convolution layers with 1st-order Cheby-
shev polynomials approximation. For every model in the experiments, mean squared error is used
as the loss function with RMSProp optimizer, trained using early stopping with the patience of 30
and batch size of 32. Both the graph convolution kernel Ks and temporal convolution kernel Kt are
set to 3. Learning rate decay is used with initial value 10−3 with decay rate of 0.7 after. We divided
the dataset of size 1083 samples in the ratio 70 : 15 : 15 for the train, validation and test split. We
used 3 STGCN blocks in our experiments and found to be giving us the best results.

A.5 PREDICTIONS

We plot the average predictions for each of the 58 counties of California for STAGCN and STGCN.
They are as follows:

Figure 2: STAGCN with ChebConv, trained using early stopping with of patience 10 epochs
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Figure 3: STAGCN with GraphConv, trained using early stopping with of patience 20 epochs

Figure 4: STGCN with ChebConv, trained using early stopping with of patience 20 epochs
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Figure 5: STGCN with GraphConv, trained using early stopping with of patience 10 epochs
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