
Under review at Workshop on Language and Robot Learning at CoRL 2023

CREATIVE ROBOT TOOL USE WITH LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool use is a hallmark of advanced intelligence, exemplified in both animal be-
havior and robotic capabilities. This paper investigates the feasibility of imbuing
robots with the ability to creatively use tools in tasks that involve implicit physical
constraints and long-term planning. Leveraging Large Language Models (LLMs),
we develop RoboTool, a system that accepts natural language instructions and
outputs executable code for controlling robots in both simulated and real-world
environments. RoboTool incorporates four pivotal components: (i) an “Analyzer”
that interprets natural language to discern key task-related concepts, (ii) a “Plan-
ner” that generates comprehensive strategies based on the language input and key
concepts, (iii) a “Calculator” that computes parameters for each skill, and (iv) a
“Coder” that translates these plans into executable Python code. Our results show
that RoboTool can not only comprehend implicit physical constraints and environ-
mental factors but also demonstrate creative tool use. Unlike traditional Task and
Motion Planning (TAMP) methods that rely on explicit optimization and are con-
fined to formal logic, our LLM-based system offers a more flexible, efficient, and
user-friendly solution for complex robotics tasks. Through extensive experiments,
we validate that RoboTool is proficient in handling tasks that would otherwise be
infeasible without the creative use of tools, thereby expanding the capabilities of
robotic systems. Demos are available on our project page.1

1 INTRODUCTION

Tool use is an important hallmark of advanced intelligence. Some animals can use tools to achieve
goals that are infeasible without tools. For example, Koehler’s apes stacked crates together to reach
a high-hanging banana bunch (Kohler, 2018), or the crab-eating macaques used stone tools to open
nuts and bivalves (Gumert et al., 2009). Beyond using tools for their intended purpose and follow-
ing established procedures, using tools in creative and unconventional ways provides more flexible
solutions, albeit presents far more challenges in cognitive ability. In robotics, creative tool use
(Fitzgerald et al., 2021) is also a crucial yet very demanding capability because it necessitates the
all-around ability to predict the outcome of an action, reason what tools to use, and plan how to use
them. In this work, we want to explore the question, can we enable such creative tool-use capability
in robots? We identify that creative robot tool use solves a complex long-horizon planning task with
implicit constraints of environment and robot capacity. For example, “grasping a milk carton” while
the milk carton’s location is out of the robotic arm’s workspace or “walking to the other sofa” while
there exists a gap in the way that exceeds the quadrupedal robot’s walking capability.

Task and motion planning (TAMP) is a common framework for solving such long-horizon planning
tasks. It combines low-level continuous motion planning in classic robotics and high-level discrete
task planning to solve complex planning tasks that are difficult to address by any of these domains
alone. Existing literature shows that it can handle tool use in a static environment with optimization-
based approaches such as logic-geometric programming (Toussaint et al., 2018). However, this
optimization approach generally requires a long computation time for tasks with many objects and
task planning steps due to the increasing search space (Garrett et al., 2021). In addition, classical
TAMP methods are limited to the family of tasks that can be expressed in formal logic and symbolic
representation, making them not user-friendly for non-experts (Chen et al., 2023; Lin et al., 2023b).

1Project Page: https://creative-robotool.github.io/.

1

https://creative-robotool.github.io/

Under review at Workshop on Language and Robot Learning at CoRL 2023

[Scene Description: Objects,
Positions, Sizes, Shapes]
[Constraints to Follow]
[Task to Finish]

RoboTool

Executable Code: Use
hammer to drag mill inwards.

Grasp the milk carton.

(a) RoboTool Overview

Tool Selection Sequential Tool Use Tool Manufacturing

Sofa-Traversing

Milk-Reaching

Sofa-Climbing

Can-Grasping

Cube-Lifting

Button-Pressing

(b) Creative Tool Use Benchmark
Figure 1: (a) Creative robot tool use with Large Language Models (RoboTool). RoboTool takes natural
language descriptions as input, including the scene descriptions, environment- and embodiment-related con-
straints, and tasks. (b) We design a creative tool-use benchmark based on a quadrupedal robot and a robotic
arm, including 6 challenging tasks that symbols three types of creative tool-use behaviors.

Recently, large language models (LLMs) have been shown to encode vast knowledge beneficial
to robotics tasks in reasoning, planning, and acting (Brohan et al., 2023; Huang et al., 2023b; Yu
et al., 2023). TAMP methods with LLMs are able to bypass the computation burden of the explicit
optimization process in classical TAMP. Prior works show that LLMs can adeptly dissect tasks given
either clear or ambiguous language descriptions and instructions. Robots powered by LLMs also
demonstrate notable compositional generalization in TAMP (Huang et al., 2022a; Ahn et al., 2022).
However, it is still unclear how to use LLMs to solve more complex tasks that require reasoning
with implicit constraints imposed by the robot’s embodiment and its surrounding physical world.

In this work, we are interested in solving language-instructed long-horizon robotics tasks with im-
plicitly activated physical constraints (Fig. 1). By providing LLMs with adequate numerical seman-
tic information in natural language, we observe that LLMs can identify the activated constraints
induced by the spatial layout of objects in the scene and the robot’s embodiment limits, suggesting
that LLMs may maintain knowledge and reasoning capability about the 3D physical world. For
example, in the Sofa-Traversing example, the LLM can identify that the key concept affecting the
plan’s feasibility is the gap width between two sofas, although there is no prior information about the
existence of the “gap” concept in the provided language instruction. Furthermore, our comprehen-
sive tests reveal that LLMs are not only adept at employing tools to transform otherwise unfeasible
tasks into feasible ones but also display creativity in using tools beyond their conventional functions,
based on their material, shape, and geometric features. Again, in the Sofa-Traversing example, the
LLM could use the surfboard next to the quadrupedal robot as a bridge to walk across the gap.

To solve the aforementioned problem, we introduce RoboTool, a creative robot tool user built on
LLMs, which uses tools beyond their standard affordances. RoboTool accepts natural language in-
structions comprising textual and numerical information about the environment, robot embodiments,
and constraints to follow. RoboTool produces code that invokes robot’s parameterized low-level
skills to control both simulated and physical robots. RoboTool consists of four central components,
with each handling one functionality, as depicted in Fig. 2: (i) Analyzer, which processes the natural
language input to identify key concepts that could impact the task’s feasibility, (ii) Planner, which
receives both the original language input and the identified key concepts to formulate a compre-
hensive strategy for completing the task, (iii) Calculator, which is responsible for determining the
parameters, such as the target positions required for each parameterized skill, and (iv) Coder, which
converts the comprehensive plan and parameters into executable code. All of these components are
constructed using GPT-4.

Our key contributions are in three folds:

• We introduce RoboTool, a creative robot tool user based on pretrained LLMs, that can
solve long-horizon hybrid discrete-continuous planning problems with environment- and
embodiment-related constraints in a zero-shot manner.

• We provide an evaluation benchmark (Fig. 1b) to test various aspects of creative tool-use capa-
bility, including tool selection, sequential tool use, and tool manufacturing, across two widely
used embodiments: the robotic arm and the quadrupedal robot.

• Simulation and real-world experiments demonstrate that RoboTool solves tasks unachievable
without creative tool use and outperforms baselines by a large margin in terms of success rates.

2

Under review at Workshop on Language and Robot Learning at CoRL 2023

2 RELATED WORKS

Language Models for Task and Motion Planning (TAMP). TAMP (Garrett et al., 2021) has been
integrated with LLMs for building intelligent robots. Most of the literature built upon hierarchical
planning (Garrett et al., 2020; 2021; Kaelbling & Lozano-Pérez, 2011), where LLMs only provide
a high-level plan that invokes human-engineered control primitives or motion planners (Ahn et al.,
2022; Huang et al., 2022a;b; Ren et al., 2023a; Chen et al., 2023; Ding et al., 2023; Silver et al.,
2023; Liu et al., 2023; Xie et al., 2023). In this work, we follow the hierarchical planning setting
and aim to develop an LLM-based planner to solve tasks with constraints that require creative tool-
use behaviors. One challenge of using LLMs as a planner is to ground it with real-world interactions.
SayCan (Ahn et al., 2022), Grounded Decoding (Huang et al., 2023c) and Text2Motion (Lin et al.,
2023a) grounded an LLM planner with a real-world affordance function (either skill-, object- or
environment-related) to propose feasible and appropriate plans. Developing these affordance func-
tions requires extra training from massive offline data or domain-specific knowledge. In contrast,
we rely entirely on LLM’s capability of deriving the affordance from the language input and do not
require separate pretrained affordance functions.

Robot Tool Use. Tool use enables robots to solve problems that they were unable to without tools.
There is a long history of interest in robotics literature that focuses on manipulating tools to finish
designated tasks, such as furniture polishing (Nagata et al., 2001), nut fastening (Pfeiffer et al.,
2017), playing table tennis (Muelling et al., 2010), using chopsticks Ke et al. (2021) etc. Despite
these successful attempts, they focus on generating actions for specific tools and do not study the
causal effect of tools and their interaction with other objects. Therefore, they cannot deal with
novel objects or tasks and generally lack improvisational capability (Sinapov & Stoytchev, 2008;
Levihn & Stilman, 2014; Wicaksono & Sammut, 2016; Xie et al., 2019; Fang et al., 2020). Related
to our method, Toussaint et al. (2018) formulated a Logic-Geometric Program to solve physical
puzzles with sequential tool use, such as using a hook to get another longer hook to reach for
a target ball. Ren et al. (2023b) utilized LLMs to transform task and tool features in text form
as latent representations and concatenate them with vision input to achieve faster adaptation and
generalization via meta-learning. More recently, RT2 (Brohan et al., 2023) performed multi-stage
semantic reasoning to, for example, decide the rock could be used as an improvised hammer. Unlike
most of the existing robotics literature, our method leverages LLM’s massive prior knowledge about
object affordance and impressive planning capability to propose creative solutions to different kinds
of physical puzzles. These solutions require highly complex reasoning and planning capability.

3 METHODOLOGY

We are interested in enabling robots to solve complex long-horizon tasks with multiple environment-
and embodiment-related constraints, that require robot’s creative tool-use capability to solve the
tasks. In this section, we first posit our problem as a hybrid discrete-continuous planning problem in
Sec. 3.1. We then introduce our proposed method, RoboTool, in Sec. 3.2, which is a creative robot
tool user built on LLMs and can solve complex task planning problems in a zero-shot manner.

3.1 PROBLEM FORMULATION

With a focus on robotic applications, we aim to solve a hybrid discrete-continuous planning problem
with multiple constraints based on a natural language description. The provided description contains
words and numerical values to depict the environments, tasks, and constraints. Assuming the robot
is equipped with a repertoire of parameterized skills, we seek a hierarchical solution to generate a
plan composed of a sequence of provided skills and a sequence of parameters for the corresponding
skills. As code serves as a general interface to send commands to robots, our method will output
executable robot policy code that sequentially calls skills with the parameters according to the plan,
to complete the task. Solving such problems typically involves interacting with different objects
in the scene to satisfy the environment and embodiment constraints. This symbolizes the tool-use
behavior, which is a cornerstone of intelligence.

Language Description as Inputs. We define the environment layout space as Q and the initial
environment configuration as q0 ∈ Q. The API Fq helps parse q0 into an environment language
description LQ = Fq(q0), which includes the spatial layouts of objects, such as “there is a hammer
on the table” and “the robot is on the ground,” as well as each object’s positions, sizes, and physical
properties. We denote the constraint set as C = CQ∪CR, where CQ represents the constraints related
to environments, such as “the scroll cannot be lifted”, and CR represents the constraints stemming

3

Under review at Workshop on Language and Robot Learning at CoRL 2023

Analyzer

You are a robot arm with workspace x-range 0-0.5m, y-range ….
There is a milk carton, a hammer and a box on the table.
The milk carton’s position is at [0.8, 0.0, 0.1] with size ….
Give me a plan to grasp the milk carton.

Use the hammer as a tool.
Step 1: Move to the hammer and grasp the hammer.

The 3D target pos is …
Step 2: Move the hammer to the milk to ensure in contact.

The 3D target pos is …
Step 3: Drag the the milk carton into the workspace.

The 3D target pos is …
Step 4: Grasp the milk carton.

The key feature is the x
position of the milk carton 0.8
which is out of the robot
workspace along the x-axis.

User: Constraints, Scene Description, Task

Planner Calculator

Coder

import numpy as np

Move to hammer and grasp the hammer
hammer_position, _ =
get_position('hammer')
target_position = hammer_position +
np.array([0.0, 0.0, 0.05/2 - 0.02])
move_to_position(target_position)
close_gripper()

Move the hammer to the milk
milk_position, _ = get_position('milk
carton')
milk_size = get_size('milk carton')
target_position = [milk_position[0],
milk_position[1], milk_position[2] -
milk_size[2]/1.3]
move_to_position(target_position)

Move the milk into the workspace
target_position = [0.175, 0.0,
milk_position[2]]
move_to_position(target_position)
open_gripper()

Move to the milk and grasp the milk
. . .

Robot Execution

Figure 2: Overview of our proposed RoboTool, which is a creative robot tool user consisting of four key
components including Analyzer, Planner, Calculator and Coder.

from the robot’s physical limitations, encompassing aspects like the robot’s workspace boundary
and the extent of its skills. Let the robot embodiment space be R. Each constraint C ∈ C can be
activated based on different combination of Q and R. The API FC helps parse the constraints C into
a constraint description LC = FC(C). The user will provide the task LT in natural language. The
concatenated language description L = {LT , LQ, LC} serves as the query input to our method.

Hierarchical Policies for Robot Tool Use. We consider a Markov Decision Process M defined
by a tuple (S,A, p, r, ρ0), representing the state space, action space, transition dynamics, reward
function, and initial state distribution, respectively. We use a two-level hierarchy consisting of a set
of parameterized skills and a high-level controller. For each robot embodiment R ∈ R, we assume
that there is a set of parameterized skills ΠR = {πR

i }Ni=1. Each skill receives a parameter x ∈ Xi,
where Xi is the parameter space of skill i. The skill πR

i (x) generates a squence of low-level actions
(a1, · · · , at, · · ·), at ∈ A. A parameterized skill can be moving the robotic arm’s end effector to a
targeted position x. The high-level controller outputs (H,X), where H = (h1, . . . , hk, . . .) is the
skill sequence, hk ∈ [N] is the skill at plan step k, X = (x

(1)
h1

, . . . , x
(k)
hk

, . . .) is the corresponding

parameter sequence, and x
(k)
hk

∈ Xhk
denotes the parameter for skill hk. Given a language descrip-

tion L for the tool-use tasks, our goal is to generate a code τ((H,X),Π, L) that can solve the task
by calling a sequence of parameterized skills meanwhile providing their parameters. Considering
the feasible solution τ may not be unique and potentially involves manipulating different numbers
of objects as tools, we also desire a simple plan that interacts with a minimal number of objects.

3.2 ROBOTOOL: CREATIVE ROBOT TOOL USE WITH LARGE LANGUAGE MODELS

<start of analysis>
The key feature that affects the
feasibility of the plan is the gap
between sofa_1 and sofa_2...

To calculate the gap, we need to
consider the x-axis positions of the
two sofas and their sizes. The center
of sofa_1 is at x=0.0 and its size
along the x-axis is 1.5m, so its edge
is at x=0.0+1.5/2=0.75m...

Therefore, the gap between the two
sofas is 1.15m - 0.75m = 0.4m, which
is larger than the maximum gap the
robot can walk across (0.1m).
<end of analysis>

<start of description>
The key feature is the gap between
sofa_1 and sofa_2 which is 0.4m,
since the robot can only walk across
a gap smaller than 0.1m. According to
the initial configuration, the
constraint is violated initially.
<end of description>

Figure 3: Analyzer output.

We propose RoboTool, that solves hybrid discrete-continuous plan-
ning problems with constraints through creative tool use in a zero-
shot manner. RoboTool takes natural language instructions as in-
puts, making it user-friendly and outputs executable codes calling
the robot’s parameterized skills. RoboTool maintains a hierarchi-
cal structure consisting of four key components (Fig. 2), including
an Analyzer, a Planner, a Calculator and a Coder, each is a LLM
handling one functionality.

3.2.1 ANALYZER

Humans can clearly identify crucial concepts that will affect the
task plan (Weng et al., 2023). For instance, when placing a book on
a bookshelf, we use the book’s dimensions, available shelf space,
and slot height to determine whether the task is feasible. Can we
endow robots with such reasoning capability to identify key con-
cepts before detailed planning? We seek to answer the question by
utilizing LLMs, which store a wealth of knowledge about objects’ physical and geometric proper-
ties and human common sense. We propose the Analyzer, powered by LLMs, which extract the key
concepts and their values that are crucial to determine task feasibility. Analyzer is fed with a prompt
that structures its response in two segments: an analysis section elucidating its thinking process and

4

Under review at Workshop on Language and Robot Learning at CoRL 2023

a description section listing the key concepts alongside their values and the related constraint. An
example output of Analyzer is shown in Fig. 3. We add the content in the description section of
the Analyzer output to the original descriptions L to construct the key concept augmented descrip-
tion L∗ for downstream modules. It’s worth noting that the LLMs’ internalized prior knowledge
autonomously determines the selection of these key concepts, and there is no prerequisite to delin-
eating a predefined set of concepts. Moreover, Analyzer can extract explicit concepts provided in the
description in L, such as the objects’ positions and related workspace ranges, and implicit concepts
that require calculations based on provided numerical information, such as the gap width between
two objects as in Fig. 3.

3.2.2 PLANNER <start of description>
[SOFA_1]: ...
[SOFA_2]: ...
[SURFBOARD]: The surfboard is light enough for the robot to
push and can be used as a bridge to cross the gap between the
sofas.
[STRIP_OF_CLOTH]: The strip of cloth is on sofa_1 but it is too
thin and small to be useful in this task.
[Key Feature and constraints]: The key feature is the gap
between sofa_1 and sofa_2...
[Abstract Plan]: The robot should first push the surfboard to
the edge of sofa_1...
<end of description>

<start of plan>
- Use the 'get_position' skill to...
- Use the 'push_to_position' skill to push the surfboard...
...
<end of plan>

Figure 4: Planner output.

Motivated by the strong task decomposition ca-
pability of LLMs (Ahn et al., 2022; Huang
et al., 2022a), we propose to use an LLM as a
Planner to generate a plan skeleton H based on
the key concept augmented language descrip-
tion L∗. The response of the Planner con-
tains a description section and a plan section,
as shown in Fig. 4. Planner first describes each
object’s properties and possible roles in finish-
ing the task, showing the reasoning process and
constructing an abstract plan in the description
section. Planner then generates a detailed plan
skeleton based on the parameterized skills in the plan section. We provide Planner with a prompt
describing each parameterized skill, formats of the response, and rules for the two sections. We
observe that Planner can automatically generate a plan by utilizing objects within the environment
as intermediate tools to complete a task, with the help of the key concept augmentation. Exam-
ples include “using a box as a stepping stone” or “using a hammer to drag the milk carton in the
workspace.” Planner can discover functionalities of the objects beyond their standard affordances,
demonstrating the creative tool-use capability by reasoning over the objects’ physical and geomet-
ric properties. In addition, Planner can generate a long-horizon plan, especially in handling tasks
requiring multiple tools sequentially. For instance, it can generate a plan consisting of 15 plan steps
for the “Can-Grasping” task as in Fig. 5.

3.2.3 CALCULATOR
Existing literature shows that LLMs’ performance tends to decline when they operate across varied
levels of abstractions (Liang et al., 2023; Yu et al., 2023). Inspired by these findings, we introduce
a Calculator, a standalone LLM for calculating the desired parameters for the parameterized low-
level skill at each plan step, denoted as X in Sec. 3.1. Calculator processes both the key concept
augmented description L∗ and the Planner-generated plan skeleton H for its calculation. Similar
to the Analyzer and Planner, it generates a response with two sections, including a description sec-
tion showing its calculation process and an answer section containing the numerical values. These
numerical outcomes, representing target positions, are then integrated into each corresponding step
of the plan skeleton. We provide Calculator with multiple exemplars and rules to help deduce tar-
get positions. Calculator can generate navigation target positions for quadrupedal robots and push
offsets for robotic arms to manipulate objects.

3.2.4 CODER
Finally, we introduce a Coder module that transforms the plan (H,X) into an executable code script
τ that invokes robot low-level skills, perception APIs, and built-in Python libraries to interact with
the environment. We provide Coder with the definitions of each low-level skill and template-related
rules. Although Coder generates the script in an open-loop manner, the produced code is inherently
designed to receive feedback from the environment. It achieves this through built-in skills like
“get position”, granting a certain level of responsiveness to environmental changes.

4 CREATIVE ROBOT TOOL USE BENCHMARK

Unlike conventional tool use, creative tool use, also termed as flexible tool use, is recognized by
some as an indication of advanced intelligence, denoting animals’ explicit reasoning about tool ap-
plications contingent on context (Call, 2013). From a general problem-solving perspective, Fitzger-
ald et al. (2021) further characterized human creativity attributes, including improvisation in the

5

Under review at Workshop on Language and Robot Learning at CoRL 2023

Sofa-Traversing Milk-Reaching

(a) Tool selection

Sofa-Climbing Can-Grasping

(b) Sequential tool use

Cube-Lifting Button-Pressing

(c) Tool manufacturing
Figure 5: Visualization of RoboTool’s creative tool-use behaviors. (a) Tool selection. The quadrupedal robot
needs to select the surfboard over a strip of cloth and push it to bridge the gap (Sofa-Traversing). The robotic
arm needs to choose the hammer among many options and use it as a hook to pull the milk carton into the
workspace (Milk-Reaching). (b) Sequential tool use. The quadrupedal robot needs to push a small box against
a large box adjacent to the sofa and use the small box as the initial stepstone and the large box as the intermediate
stepstone to climb onto the sofa (Sofa-Climbing). The robotic arm needs to pick up a stick, push a can onto a
strip of paper, and then pull the paper closer with the can on it (Can-Grasping). (c) Tool manufacturing. The
quadrupedal needs to identify the hidden lever structure in the environment and push away a chair supporting
one end of the lever so that it can activate the lever arm and lift a heavy cube (Cube-Lifting). The robotic arm
needs to assemble magnetic blocks to create a stick to press a button outside its workspace (Button-Pressing).

absence of typical tools, use of tools in novel ways, and design of innovative tools tailored for new
tasks. In this work, we aim to explore three challenging categories of creative tool use for robots:
tool selection, sequential tool use, and tool manufacturing (Qin et al., 2023), and design six tasks
for two different robot embodiments: a quadrupedal robot and a robotic arm. The details of each
task are as shown in Fig. 5 and Sec. F, and the constraints of each task are listed in Tab. 2.

• Tool selection (Sofa-Traversing and Milk-Reaching) requires the reasoning capability to choose
the most appropriate tools among multiple options. It demands an understanding of object at-
tributes and the ability to analyze the relationship between these properties and the objective.

• Sequential tool use (Sofa-Climbing and Can-Grasping) entails utilizing a series of tools in a
specific order to reach a desired goal. It requires long-horizon planning to determine the best
sequence for tool use, with successful completion depending on each step in the plan.

• Tool manufacturing (Cube-Lifting and Button-Pressing) involves accomplishing tasks by craft-
ing tools from available materials or adapting existing ones. This procedure requires the robot to
discern implicit connections among objects and assemble components through manipulation.

5 EXPERIMENT RESULTS

We investigate whether RoboTool possesses various types of creative tool-use capabilities by evalu-
ating it on the benchmark outlined in Sec. 4. We compare RoboTool with four baselines described in
Sec. 5.1. We measure the task success rates to understand the performance of RoboTool in Sec. 5.2
and analyze the effect of RoboTool’s modules through error breakdown in Sec. 5.3. We then dive
deeper into the role of Analyzer and show that it enables discriminative creative tool-use behaviors
in Sec 5.4. We leave the detailed experimental setup in simulation and real-world in Sec. B.

5.1 BASELINES

We compare RoboTool with four baselines, including one variant of Code-as-Policies (Liang et al.,
2023) and three variants of our proposed RoboTool. Coder takes the natural language instruction as
input and directly outputs executable code. It is a variant motivated by Code-as-Policies (Liang et al.,
2023). This baseline demonstrates the combinatorial effect of the other three modules in RoboTool.
Planner-Coder removes the Analyzer and the Calculator in RoboTool. This baseline demonstrates
the combinatorial effect of the Analyzer and the Calculator modules. RoboTool without Analyzer

6

Under review at Workshop on Language and Robot Learning at CoRL 2023

Table 1: Success rates of RoboTool and baselines. Each value is averaged across 10 runs. All methods except
for RoboTool (Real World) are evaluated in simulation.

Milk- Can- Button- Sofa- Sofa- Cube- AverageReaching Grasping Pressing Traversing Climbing Lifting
RoboTool 0.9 0.7 0.8 1.0 1.0 0.8 0.87
RoboTool w/o Analyzer 0.0 0.4 0.2 1.0 0.7 0.2 0.42
RoboTool w/o Calculator 0.0 0.1 0.8 0.3 0.0 0.3 0.25
Planner-Coder 0.0 0.2 0.5 0.1 0.0 0.4 0.20
Coder 0.0 0.0 0.0 0.0 0.0 0.4 0.07

RoboTool (Real World) 0.7 0.7 0.8 0.7 0.8 0.9 0.77

Table 2: RoboTool’s proposed key concept accuracy in simulation. Each value is averaged across 10 runs.

Key Concept and Violated Constraints Accuracy
Milk-Reaching Milk’s position is out of robot workspace. 1.0
Can-Grasping Can’s position is out of robot workspace. 1.0
Button-Pressing Button’s position is out of robot workspace. 0.9
Sofa-Traversing Gap’s width is out of robot’s walking capability. 1.0
Sofa-Climbing Sofa’s height is out of robot’s climbing capability. 0.8
Cube-Lifting Cube’s weight is out of robot’s pushing capability. 1.0

has a Planner directly takes the language instruction as input. This baseline reveals the effect of the
Analyzer in the downstream planning. RoboTool without Calculator has a Coder directly takes
the response of the Planner. This baseline demonstrates the effect of the Calculator module. We
evaluate RoboTool both in simulation and in the real world while only evaluating of baselines in
simulation given their relatively low success rates in simulation. RoboTool’s prompts are in Sec. E.

5.2 CAN ROBOTOOL ACHIEVE CREATIVE TOOL USE?
We present the quantitative success rates of RoboTool and baselines in Tab. 1 and real-world qual-
itative visualizations of RoboTool in Fig. 5. RoboTool consistently achieves success rates that are
either comparable to or exceed those of the baselines across six tasks in simulation. RoboTool’s
performance in the real world drops by 0.1 in comparison to the simulation result, mainly due to the
perception errors and execution errors associated with parameterized skills, such as the quadrupedal
robot falling down the soft sofa. Nonetheless, RoboTool (Real World) still surpasses the simulated
performance of all baselines. Considering that the tasks in Sec. 4 are infeasible without manipu-
lating objects as tools, we show that RoboTool can successfully enable robot tool-use behaviors.
Moreover, as visualized in Fig. 5, RoboTool transcends the standard functionalities of objects and
creatively capitalizes on their physical and geometric properties, including materials, shapes, and
sizes. Here are some highlights of the creative tool-use behaviors.
In the Milk-Reaching task (Fig. 5a), RoboTool leverages LLM’s prior knowledge about all the
available objects’ shapes and thus improvisationally uses the hammer as an L-shape handle to pull
the milk carton into the workspace. In the Can-Grasping task (Fig. 5b), RoboTool sequentially uses
the stick to push the can onto the scroll and then drag the scroll into the workspace with the can on it.
This reveals RoboTool’s long-horizon planning capability by generating a plan with as many as 15
steps. In the Cube-Lifting task with the quadrupedal robot (Fig. 5c), RoboTool identifies a hidden
mechanism consisting of the yoga roller as the fulcrum and the surfboard as the lever. RoboTool
first constructs the lever by pushing the chair away, then activates the lever by walking to one end
of the lever, and finally lifts the cube. It illustrates that RoboTool can not only fabricate a tool from
available objects but also utilize the newly created tool.
RoboTool without Analyzer performs worse than RoboTool while better than RoboTool without
Calculator. Moreover, they perform better than baselines lacking Analyzer and Calculator, including
Planner-Coder and Coder. These observations show that both Analyzer and Calculator are critical
in achieving high success rates, and Calculator plays a more important role in tasks that require
accurate positional offsets such as Milk-Reaching, Can-Grasping and Sofa-Climbing.

5.3 ERROR BREAKDOWN

We further analyze what causes the failure of RoboTool and baselines based on simulation exper-
iments. We define three types of errors: tool-use error, logical error, and numerical error. The
tool-use error indicates whether the correct tool is used. The logical error mainly focuses on the
planning error, such as using tools in the wrong order or ignoring the constraints provided. The
numerical error includes calculating the wrong target positions or adding incorrect offsets. We show
the error breakdown averaged across six tasks in Fig. 6a. The results show that the Analyzer helps
reduce the tool-use error when comparing RoboTool and RoboTool without Analyzer. Calculator
significantly reduces the numerical error when comparing RoboTool, RoboTool without Calculator
and Planner-Coder. We provide per-task error breakdown results in Sec. A.

7

Under review at Workshop on Language and Robot Learning at CoRL 2023

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0

Tool Use Error Logical Error Numerical Error Success

(a) Error breakdown

Probability

1.00 1.00

0.90 0.90

0.15 0.90

1.00 1.00

0.90 1.00

0.10 1.00

No Tool Used Tool Used

Sm
al

l G
ap

Lo
w

So
fa

Large Gap
High Sofa

Oracle RoboTool RoboTool w/o Analyzer

(b) Discriminative tool-use behavior
Figure 6: (a) Error breakdown of RoboTool and baselines. (b) Discriminative tool-use behavior is enabled by
Analyzer’s explicit reasoning about the key concepts.

5.4 HOW DOES ANALYZER AFFECT THE TOOL-USE CAPABILITY?
Key Concept Identification Accuracy. We show the accuracy of the proposed key concept in
Tab. 2, based on whether the Analyser correctly returns the key concept, the value of the key con-
cept, and the related constraint. The target responses are provided by human. The results show that
Analyzer could correctly identify the key concept that affects the plan’s feasibility and accurately
calculate the key concepts’ value. For instance, in the Sofa-Traversing task, the key concept is iden-
tified as the distance between the boundaries of the two sofas, which is the gap width the robot needs
to cover. Moreover, the Analyzer could link the key concept with the robot’s limit: the quadrupedal
robot can only walk across a gap over 0.1m.
Discriminative Tool-use Capability. Given the impressive creative tool-use capability of
RoboTool, we want to investigate further whether RoboTool possesses the discriminative tool-use
capability, which is using tools when necessary and ignoring tools when the robot can directly finish
tasks without the need to manipulate other objects. We choose Sofa-Traversing and Sofa-Climbing
to test the discriminative tool-use capability. For Sofa-Traversing, we compare the rate of tool use
in scenarios with large gaps where using tools is necessary, against scenarios with small gaps that
allow the robot to traverse to another sofa without using tools. For Sofa-Climbing, we evaluate
the tool-use rate in scenarios where a high-profile sofa requires the use of boxes as stepstones, in
contrast to low-profile sofas, in which the robot can ascend directly without assistance.
We compare the RoboTool with an Oracle that can derive the most efficient plan and the baseline
RoboTool without Analyzer, and present the main results in Fig. 6. In both sets of tasks, RoboTool
tends not to use tools when unnecessary (Small Gap and Low Sofa), demonstrating more adaptive
behaviors given different environment layouts. In contrast, without the help of Analyer, the base-
line tends to use tools in all four scenarios, dominated by the prior knowledge in LLMs. These
observations show that Analyser helps enable the discriminative tool-use behavior of RoboTool.

6 CONCLUSION
We introduce RoboTool, a creative robot tool user powered by LLMs that enables solving long-
horizon planning problems with implicit physical constraints. RoboTool contains four components:
(i) an “Analyzer” that discerns crucial task feasibility-related concepts, (ii) a “Planner” that generates
creative tool-use plans, (iii) a “Calculator” that computes skills’ parameters, and (iv) a “Coder” that
generates executable code. We propose a benchmark to evaluate three creative tool-use behaviors,
including tool selection, sequential tool use, and tool manufacturing. Through evaluating on the
creative tool use benchmark, we show that RoboTool can identify the correct tool, generate precise
tool-usage plans, and create novel tools to accomplish the task. RoboTool also achieves superior
performance when the desired tasks require precise and creative tool use.
Limitations. Since we focus on the tool-use capability of LLMs at the task level in this paper, we
rely on existing APIs to process visual information, such as describing the graspable points of each
object and summarizing the scene. It is possible to integrate vision language models to replace the
designed API to get the affordance for each object similar to VoxPoser (Huang et al., 2023b). In
addition, we highlight that the proposed method serves as a planner, specializing in executable plan
creation, not an execution framework. Reactive execution with a feedback loop could be achieved
by integrating hybrid shooting and greedy search into our method, such as in Lin et al. (2023b).

8

Under review at Workshop on Language and Robot Learning at CoRL 2023

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022. 2, 3, 5

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023. 2, 3

Josep Call. Three ingredients for becoming a creative tool user, pp. 3–20. Cambridge University
Press, 2013. doi: 10.1017/CBO9780511894800.002. 5

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Autotamp: Au-
toregressive task and motion planning with llms as translators and checkers. arXiv preprint
arXiv:2306.06531, 2023. 1, 3

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with large
language models for object rearrangement. arXiv preprint arXiv:2303.06247, 2023. 3

Carl Henrik Ek, Dan Song, Kai Huebner, and Danica Kragic. Exploring affordances in robot grasp-
ing through latent structure representation. Vision for Cognitive Tasks, ECCV, 2010. 15

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and Silvio
Savarese. Learning task-oriented grasping for tool manipulation from simulated self-supervision.
The International Journal of Robotics Research, 39(2-3):202–216, 2020. 3, 15, 18

M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applica-
tions to image analysis and automated cartography. Communications of the ACM, 24(6):381–395,
1981. 13, 14

Tesca Fitzgerald, Ashok Goel, and Andrea Thomaz. Modeling and learning constraints for creative
tool use. Frontiers in Robotics and AI, 8:674292, 2021. 1, 5

Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997–3004,
2014. doi: 10.1109/IROS.2014.6942976. 14

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of
the International Conference on Automated Planning and Scheduling, volume 30, pp. 440–448,
2020. 3

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4:265–293, 2021. 1, 3

Michael D Gumert, Marius Kluck, and Suchinda Malaivijitnond. The physical characteristics and
usage patterns of stone axe and pounding hammers used by long-tailed macaques in the andaman
sea region of thailand. American Journal of Primatology: Official Journal of the American Society
of Primatologists, 71(7):594–608, 2009. 1

Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act:
Mapping multi-modality instructions to robotic actions with large language model. arXiv preprint
arXiv:2305.11176, 2023a. 18

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a. 2, 3, 5

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b. 3

9

Under review at Workshop on Language and Robot Learning at CoRL 2023

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023b. 2, 8, 18

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for robot control. arXiv preprint arXiv:2303.00855, 2023c. 3

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the now.
In 2011 IEEE International Conference on Robotics and Automation, pp. 1470–1477. IEEE, 2011.
3

Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots, and Siddhartha Srinivasa.
Grasping with chopsticks: Combating covariate shift in model-free imitation learning for fine
manipulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
6185–6191. IEEE, 2021. 3

Wolfgang Kohler. The mentality of apes. Routledge, 2018. 1

Martin Levihn and Mike Stilman. Using environment objects as tools: Unconventional door open-
ing. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2502–
2508. IEEE, 2014. 3, 18

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023. 5, 6,
18

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2Motion:
From natural language instructions to feasible plans. March 2023a. 3

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023b. 1,
8

Yun Lin and Yu Sun. Robot grasp planning based on demonstrated grasp strategies. The Interna-
tional Journal of Robotics Research, 34(1):26–42, 2015. 15

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023. 3

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022. 13, 15, 17

Katharina Muelling, Jens Kober, and Jan Peters. Learning table tennis with a mixture of motor
primitives. In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 411–416.
IEEE, 2010. 3

Austin Myers, Ching L Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance detection
of tool parts from geometric features. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1374–1381. IEEE, 2015. 15

Fusaomi Nagata, Keigo Watanabe, and Kiyotaka Izumi. Furniture polishing robot using a trajectory
generator based on cutter location data. In Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (Cat. No. 01CH37164), volume 1, pp. 319–324. IEEE, 2001.
3

Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international
conference on robotics and automation, pp. 3400–3407. IEEE, 2011. 13

10

Under review at Workshop on Language and Robot Learning at CoRL 2023

Kai Pfeiffer, Adrien Escande, and Abderrahmane Kheddar. Nut fastening with a humanoid robot.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6142–
6148. IEEE, 2017. 3

Meiying Qin, Jake Brawer, and Brian Scassellati. Robot tool use: A survey. Frontiers in Robotics
and AI, 9:1009488, 2023. 6

Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng
Xu, Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment
for large language model planners. arXiv preprint arXiv:2307.01928, 2023a. 3

Allen Z Ren, Bharat Govil, Tsung-Yen Yang, Karthik R Narasimhan, and Anirudha Majumdar.
Leveraging language for accelerated learning of tool manipulation. In Conference on Robot
Learning, pp. 1531–1541. PMLR, 2023b. 3

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Pack Kaelbling, and
Michael Katz. Generalized planning in pddl domains with pretrained large language models.
arXiv preprint arXiv:2305.11014, 2023. 3

Jivko Sinapov and Alexadner Stoytchev. Detecting the functional similarities between tools using a
hierarchical representation of outcomes. In 2008 7th IEEE International Conference on Develop-
ment and Learning, pp. 91–96. IEEE, 2008. 3, 18

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023. 18

Dan Song, Kai Huebner, Ville Kyrki, and Danica Kragic. Learning task constraints for robot grasp-
ing using graphical models. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1579–1585. IEEE, 2010. 15

Dan Song, Carl Henrik Ek, Kai Huebner, and Danica Kragic. Task-based robot grasp planning using
probabilistic inference. IEEE transactions on robotics, 31(3):546–561, 2015. 15

Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable
physics and stable modes for tool-use and manipulation planning. 2018. 1, 3

Yijia Weng, Kaichun Mo, Ruoxi Shi, Yanchao Yang, and Leonidas Guibas. Towards learning geo-
metric eigen-lengths crucial for fitting tasks. 2023. 4

Handy Wicaksono and Claude Sammut. Relational tool use learning by a robot in a real and simu-
lated world. In Proceedings of ACRA, 2016. 3, 18

Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through physical un-
derstanding: Using novel objects as tools with visual foresight. arXiv preprint arXiv:1904.05538,
2019. 3, 18

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.
3

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023. 2, 5

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293, 2020. 13

11

Under review at Workshop on Language and Robot Learning at CoRL 2023

A ADDITIONAL EXPERIMENT RESULTS

We provide additional error breakdown results in Fig. 7. We observe that different modules play
different roles in various tasks. For instance, in the Milk-Reaching task, the Planner-Coder baseline
is dominated by the tool use error without knowing using the hammer as the tool to drag the milk
into the workspace. In this case, Analyzer helps reduce the tool use error significantly. In contrast, in
the Cube-Lifting task, most of the generated plans could construct a lever by pushing away the chair.
However, the baselines tend to ignore the weight of the cube and assume that the dropping surfboard
could automatically lift the cube. In this case, the Analyzer helps reduce the logical error. While
in other tasks, the Calculator becomes quite important, especially in Can-Grasping, Sofa-Climbing,
and Milk-Reaching.

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(a) Milk-Reaching

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(b) Sofa-Traversing

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(c) Can-Grasping

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(d) Sofa-Climbing

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(e) Button-Pressing

RoboTool RoboTool
 w/o

Analyzer

RoboTool
 w/o

Calculator

Planner-
Coder

Coder
0.0

0.2

0.4

0.6

0.8

1.0
Tool Use Error Logical Error Numerical Error Success

(f) Cube-Lifting

Figure 7: Error breakdown for each creative tool-use task.

12

Under review at Workshop on Language and Robot Learning at CoRL 2023

B EXPERIMENT SETUP

Robotic Arm. We test RoboTool with a Kinova Gen3 robotic arm (details in Sec. D). In sim-
ulation, we build tasks based on robosuite (Zhu et al., 2020) and assume known object posi-
tions and sizes. In real-world experiments, we employ OWL-ViT (Minderer et al., 2022) to
obtain 2D locations and bounding boxes for each object. In both platforms, the robot main-
tains a skill set as [“get position”, “get size”, “open gripper”, “close gripper”,
“move to position”]. Note that we use skills without explicitly listing the object-centric move-
ments caused by the “move to position” skill, such as pushing or picking.

Quadrupedal Robot. We test RoboTool with a Unitree Go1 quadrupedal robot (details in Sec. C).
The simulation experiments for quadrupedal robots are evaluated based on the generated code and
through human evaluations. In real-world experiments, considering the relatively large workspace
compared with the tabletop setting with the robotic arm, we use AprilTags (Olson, 2011) affixed to
each object in real-world experiments to get the object’s positions. Each skill in real-world experi-
ments is equipped with skill-specific motion planners to generate smooth and collision-free velocity
commands for different walking modes of Go1. For both simulation and real-world experiments,
the quadrupedal robot’s skill set is [“get position”, “get size”, “walk to position”,
“climb to position”, “push to position”].

C REAL-WORLD SETUP FOR QUADRUPEDAL ROBOT

In the quadrupedal robot environment setup, several objects with which the robot can interact are
presented in Fig. 8. These include two blocks of varying heights, two sofas positioned adjacently
with gaps between them, a chair, a surfboard, and a yoga roller. Additionally, two ZED2 cameras
are situated at the top-left and top-right of the environment to capture the positions of the robot and
other objects. These April tags are identifiable by the two ZED 2 cameras situated at the top-left
and top-right of the environment, enabling the computation of the object’s position using the PnP
algorithm Fischler & Bolles (1981).

Surfboard

Sofa 1 Sofa 2

Chair

Box 1

Box 2

Camera 1 Camera 2

LegrobotYoga Roller

Figure 8: The figures illustrate the quadrupedal robot environment setup including object names
and geometries. The image shows various objects with which the robot can interact. The above-
described objects are labeled with names in the figure.

13

Under review at Workshop on Language and Robot Learning at CoRL 2023

The quadrupedal robot possesses five skills within its skill set: move to position,
push to position, climb to position, get position, get size.

C.1 MOVE TO POSITION

Upon invoking this skill, the quadrupedal robot navigates to the target position from its current
location, avoiding obstacles present in the scene. The movement is facilitated using the built-in
trot gait in continuous walking mode from Unitree. Trajectories are generated using the informed
RRT* method Gammell et al. (2014) to prevent potential collisions during trajectory planning. Fig. 9
illustrates an example of a trajectory produced by the motion planner and demonstrates the robot’s
movement along this path.

Figure 9: This figure illustrates the robot’s moving skill, the robot reaches the target location while
avoiding an obstacle on the path. The collision-free trajectory is generated by an informed RRT*
path planner.

C.2 PUSH TO POSITION

When this skill is called, the quadrupedal robot pushes an object to the target location following this
sequence, also as demonstrated in Fig. 10:

1. Rotate Object: The quadrupedal robot initially attempts to rotate the object until its rota-
tion along the z-axis aligns with the target.

2. Push along y-axis: The quadrupedal robot subsequently attempts to push the object along
the y-axis until the object’s y-position matches the target.

3. Push along x-axis: Finally, the quadrupedal robot pushes the object along the x-axis until
the object’s x-position meets the target.

C.3 CLIMB TO POSITION

This skill enables the robot to climb to the desired location utilizing the built-in stair-climbing mode
from Unitree. Path planning is disabled when this skill is invoked because the robot is able to move
above obstacles.

Fig. 11 illustrates an instance where the robot climbed onto a sofa by climbing on two boxes of
varying heights.

C.4 GET POSITION

The position of each object is estimated using AprilTags affixed to them. These AprilTags are
identifiable by the two ZED 2 cameras, enabling the computation of the object’s position using the
PnP algorithm (Fischler & Bolles, 1981). Fig. 12 shows the estimated positions of some objects
from one camera.

C.5 GET SIZE

The bounding boxes of the objects are pre-measured and stored in a database. Each time this function
is invoked, it returns the object’s size based on its position and orientation.

Fig. 12 illustrated some object bounding boxes estimated from one camera.

14

Under review at Workshop on Language and Robot Learning at CoRL 2023

(a) Rotate object (b) Push alone y-axis (c) Push alone x-axis

Figure 10: This figure demonstrates the robot’s object-pushing skill. (a) First, the robot rotates the
object by pushing one corner. (b) Then, it pushes the object along the y-axis, (c) followed by the
x-axis, until the object reaches its designated location.

Figure 11: An illustration showcasing the robot’s climbing skill, the robot successfully ascends onto
a sofa by navigating through box 1 and box 2 of differing heights.

D REAL-WORLD SETUP FOR THE ROBOTIC ARM

We test RoboTool using a Kinova Gen3 Robot arm with 7 degrees of freedom and a two-fingered
gripper. In real-world experiments, we applied the OWL-ViT Minderer et al. (2022) to obtain 2D
locations and bounding boxes for each object. We did this by capturing a slightly tilted top-down
view of the scene. Next, we converted the coordinates of the bounded image from 2D to both world
coordinates and robot coordinates. Finally, we combined the depth information of each detected
object with the transformed 2D bounding box in robot coordinates to calculate the complete 3D
position and size of the objects in the scene.

We assume the graspable point of each object is given to RoboTool. Graspable point of objects is a
long-standing and active research field in robotics (Fang et al., 2020; Lin & Sun, 2015; Myers et al.,
2015; Song et al., 2010; Ek et al., 2010; Song et al., 2015). In this work, we focus on the high-level
planning capability of LLMs rather than the low-level grasping policy.

In the robot arm environment setup, the tasks focus on table-top manipulations. such as Button-
Pressing, Milk-Reaching, and Can-Grasping. Tasks are executed by the combination of the
following skills: move to position, open gripper, close gripper, get position,
get size

D.1 MOVE TO POSITION

Upon invoking the move to position skill, the built-in Kinova high-level planner would gen-
erate waypoints along the Euclidean distance direction between the current tool pose and target

15

Under review at Workshop on Language and Robot Learning at CoRL 2023

Surfboard

LegrobotBox 2

Box 1 Chair

Figure 12: This image illustrates the estimated positions and bounding boxes of various objects, as
computed by the PnP algorithm by capturing AprilTags placed on each object. The objects shown
include box 1, box 2, a surfboard, a quadrupedal robot, and a chair.

position. However, there are some constraints introduced by certain object scenes. The detailed
motion planning paths are shown in Fig. 13 and described as follows:

1. Milk-Reaching: Due to the geometric features of object hammer, which its centre does
not represent grasping point of the object, we added an object-specfic offset in both x and
y axes to the motion planner when grasping the hammer. All the other motion bahavior are
generated by RoboTool and directly executed by Kinova high-level motion planner.

2. Can-Grasping: Under the object settings, we have pre-scripted a collsion-free path given
the target position. Instead of moving along Euclindean distance vector, we assume the
scene is in grid world settings where the arm agent could only move in one direction once.
The motion of approching target objects is start with Y, followed by X, and then Z.

3. Button-Pressing: For the magnetic toy cubes geometries, only the flat surface can be
attached firmly. To resolve the instability, we assume the Button-Pressing scene is in grid
world settings where the arm agent could only move in one direction once. The motion of
approching target objects is start with Z, followed by Y, and then X.

(a) Button-Pressing (b) Milk-Reaching (c) Can-Grasping

Figure 13: The figure demonstrates the scripted execution order for an arm motion planner. The
red arrows in (b) show the euclidean distance vector motion. (a) and (c) shows the scripted moving
orders on each axis.

16

Under review at Workshop on Language and Robot Learning at CoRL 2023

D.2 GET POSITION

When invoking the get position function, we employed the OWL-ViT methodology as detailed
in the reference Minderer et al. (2022). This approach allowed us to derive 2D bounding boxes en-
compassing the objects within the scene. This was achieved by capturing a slightly slanted top-down
perspective of the environment. Following this, we conducted a conversion of the bounded image’s
coordinates from 2D to both world coordinates and robot coordinates. Subsequently, we fused the
depth information from stereo input to each identified object with the transformed 2D bounding box
represented in robot coordinates. As a result, we were able to calculate the comprehensive 3D posi-
tions of the objects within the scene. add detection picture. Fig. 14 presents an example of various
object positions as detected by the OWL-ViT detector.

D.3 GET SIZE

While this function is invoked, the size of objects can also be captured using methods as described
in function get position. The output is in three dimensions, which include the width, length,
and height of the objects. Fig. 14 also presents the bounding box of various object positions.

(a) Can (b) Milk Carton (c) Emergency button (d) Hammer

Figure 14: This image demonstrates the detection capabilities of the OWL-ViT detector. The detec-
tor successfully identifies various objects along with their respective positions and bounding boxes
on the table.

D.4 OPEN & CLOSE GRIPPER

This would connect with Kinova API on closing and opening the gripper. While closing the gripper,
the gripper finger distance does not need explicit scripts, where the Kinova built-in gripper sensors
would automatically grasp the object under pre-set pressure.

E PROMPTS

E.1 ROBOTIC ARMS

Prompt for Analyzer: Link.

Prompt for Planner: Link.

Prompt for Calculator: Link.

Prompt for Coder: Link.

E.2 QUADRUPEDAL ROBOTS

Prompt for Analyzer: Link.

Prompt for Planner: Link.

Prompt for Calculator: Link.

Prompt for Coder: Link.

17

https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_prompt_analyzer.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_prompt_planner.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_prompt_calculator.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_prompt_coder.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_prompt_analyzer.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_prompt_planner.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_prompt_calculator.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_prompt_coder.txt

Under review at Workshop on Language and Robot Learning at CoRL 2023

F TASK DESCRIPTIONS

Descriptions for Milk-Reaching: Link.

Descriptions for Can-Grasping: Link.

Descriptions for Button-Pressing: Link.

Descriptions for Sofa-Traversing: Link.

Descriptions for Sofa-Climbing: Link.

Descriptions for Cube-Lifting: Link.

G ADDITIONAL RELATED WORKS

Existing works integrating LLM and TAMP output the plan either in the format of natural language,
PDDL language, or code scripts. With the focus on robotics applications, one natural interface
to call the low-level skills is code generated by LLMs. Code-as-Policies (Liang et al., 2023) and
ProgPrompt (Singh et al., 2023) showed that LLMs exhibit spatial-geometric reasoning and assign
precise values to ambiguous descriptions as well as writing snippets of logical Python code. In the
multi-modal robotics, Instruct2Act (Huang et al., 2023a) and VoxPoser Huang et al. (2023b) also
generate code to incorporate perception, planning, and action. Following these works, we propose
to use a standalone LLM module to generate codes.

To interact with tools in a more intelligent way, Sinapov & Stoytchev (2008) and Levihn & Stilman
(2014) conducted early attempts to study the effects of different tools and mechanisms. Wicaksono
& Sammut (2016) developed a system to learn a simple tool from a demonstration of another agent
employing a similar tool by generating and testing hypotheses, represented by Horn clauses, about
what tool features are important. Xie et al. (2019) and Fang et al. (2020) trained deep neural net-
works from diverse self-supervised data of tool use to either predict the effects of tools or generate
the action directly.

18

https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_description_hammer.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_description_scroll.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/arm_description_magnet.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_description_surfboard.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_description_box.txt
https://raw.githubusercontent.com/Creative-RoboTool/Creative-RoboTool.github.io/main/src/texts/legRobot_description_lever.txt

	Introduction
	Related Works
	Methodology
	Problem Formulation
	RoboTool: Creative Robot Tool Use with Large Language Models
	Analyzer
	Planner
	Calculator
	Coder

	Creative Robot Tool Use Benchmark
	Experiment Results
	Baselines
	Can RoboTool achieve creative tool use?
	Error Breakdown
	How does Analyzer Affect the Tool-Use Capability?

	Conclusion
	Additional Experiment Results
	Experiment Setup
	Real-World Setup for Quadrupedal Robot
	move_to_position
	push_to_position
	climb_to_position
	get_position
	get_size

	Real-World Setup for the Robotic Arm
	move_to_position
	get_position
	get_size
	open & close gripper

	Prompts
	Robotic Arms
	Quadrupedal Robots

	Task Descriptions
	Additional Related Works

