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Abstract

Despite the impressive capability of large language
models (LLMs), knowing when to trust their gen-
erations remains an open challenge. The recent
literature on uncertainty quantification of natu-
ral language generation (NLG) utilizes a conven-
tional natural language inference (NLI) classifier
to measure the semantic dispersion of LLMs re-
sponses. These studies employ logits of NLI clas-
sifier for semantic clustering to estimate uncer-
tainty. However, logits represent the probability
of the predicted class and barely contain feature
information for potential clustering. Alternatively,
CLIP (Contrastive Language–Image Pre-training)
performs impressively in extracting image-text
pair features and measuring their similarity. To
extend its usability, we propose Contrastive Se-
mantic Similarity, the CLIP-based feature extrac-
tion module to obtain similarity features for mea-
suring uncertainty for text pairs. We apply this
method to selective NLG, which detects and re-
jects unreliable generations for better trustwor-
thiness of LLMs. We conduct extensive exper-
iments with three LLMs on several benchmark
question-answering datasets with comprehensive
evaluation metrics. Results show that our proposed
method performs better in estimating reliable re-
sponses of LLMs than comparable baselines. The
code are available at https://github.com/
AoShuang92/css_uq_llms.

1 INTRODUCTION

Despite recent breakthroughs in a wide range of natural
language generation (NLG) tasks [Hoffmann et al., 2022,
Touvron et al., 2023, Chowdhery et al., 2023], the uncer-
tainty quantification (UQ) of large language models (LLMs)

remains an open challenge. Without reliable measures of
uncertainty, it is implausible to apply LLMs in critical tasks
such as medical [Singhal et al., 2023] or legal question-
answering [Louis et al., 2023], or medical diagnosing [Wang
et al., 2023]. A reliable measure of uncertainty helps to de-
cide when to trust a model, which is also the key problem in
building safer AI systems [Hendrycks et al., 2021]. Recently,
LLMs have been deployed in the industry as powerful tools
to assist professional or personal work, with well-known
interfaces such as ChatGPT1, Gemini2 and Perplexity AI3.
However, with the enhanced capabilities of LLMs, concerns
are simultaneously raised about their trustworthiness.

The study of UQ in LLMs has gained significant attention
recently. Most existing methods are white-box, relying on
either calculating entropy from predicted probabilities [Ma-
linin and Gales, 2020, Kuhn et al., 2023] or querying models
for their prediction confidence [Lin et al., 2022b, Kada-
vath et al., 2022]. However, these techniques often require
task-specific labels, additional training data, or white-box
access to the internal model information. Black-box UQ
strategies address this by analyzing the consistency of infor-
mation across model generations. Techniques like n-gram
overlap [Fomicheva et al., 2020] assess surface-level simi-
larity, while more recent approaches explore semantic equiv-
alence [Kuhn et al., 2023, Lin et al., 2023]. These methods
cluster sentences based on meaning to estimate uncertainty,
with a higher number of clusters indicating greater semantic
diversity and thus higher LLM uncertainty. However, a key
limitation lies in using Natural Language Inference (NLI)
classifier logits to measure semantic equivalence. Logits rep-
resent class probabilities, not the semantic features needed
for accurate clustering. This highlights the need for more
sophisticated features that better capture the true semantic
relationships between generated texts.

The Contrastive Language-Image Pre-training (CLIP) [Rad-
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ford et al., 2021] learns the link between textual semantics
and their visual representations rather than mapping fea-
tures to a fixed set of predetermined object categories. In
other words, it captures similarity features in a contrastive
approach by learning how much a given text snippet relates
to an image. Inspired by its promising function, we design
CLIP to contrastively extract similarity features between
text pairs, where semantic relations can be represented by
feature patterns learned from the model. We propose the
contrastive semantic similarity (CCS), where features con-
tain implicit information about the semantic relations of
text inputs. Our method allows the transitivity between the
measurement of semantic equivalence and the inner seman-
tic relations between text pairs. It also provides insightful
clustering information to form semantic sets and further
uncertainty estimation.

We evaluate our method with selective NLG [Ren et al.,
2022, Cole et al., 2023], a self-assessment evaluation
method to detect when the generations of LLMs are un-
reliable. Responses with high-uncertainty are likely to be
wrongly generated, which will diminish the trustworthi-
ness of a model. Therefore, accurate uncertainty estima-
tion can provide higher performance in selective answering.
The evaluation is conducted with the area under the accu-
racy/rejection trade-off curve. In this paper, we conduct
extensive evaluation on several open and closed book free-
form question answering benchmark datasets, with sampled
set of answers for a given question generated by SOTA
LLMs. Results show the superiority of our proposed method
over the NLI classifier logits. Our contributions and findings
are summarized as below:

1. We design a novel technique for UQ in LLMs that uti-
lizes Contrastive Semantic Similarity (CSS) to extract
insightful semantic relations between text pairs.

2. We modify the CLIP text encoder to obtain text-text
pairs semantic similarities, then employ spectral clus-
tering technique to estimate uncertainty of sampled
generations of LLMs.

3. By conducting extensive experiments on LLMs and
question-answering datasets, together with extensive
ablation studies, we report:

(a) our proposed method outperforms SOTA UQ
techniques, indicating the contrastive semantic
similarity contains more semantic information
than NLI logits;

(b) Contrastive feature extraction of CLIP are supe-
rior to regular language models, extending their
application scope in language generation;

(c) our proposed method enhances selective NLG by
detecting unreliable generations more accurately,
which reflect the effectiveness of our method for
UQ in LLMs.

2 RELATED WORK

The study of UQ has attracted great attention in deep learn-
ing tasks such as classification or regression [Lakshmi-
narayanan et al., 2017, Kendall and Gal, 2017, Abdar et al.,
2021, Ao et al., 2023a]. However, most UQ techniques are
not transferable to generative AI due to the unique chal-
lenges in free-form NLG in terms of (1) entropy calculation
of the utmost high-dimension probability, (2) texts with
distinct tokens but with identical meanings, and (3) accessi-
bility of token-level probability or fine-tuning for end-users.
To solve the extremely high-dimension output issue, [Ma-
linin and Gales, 2020] utilize the geometric mean token-
probability to calculate the length-normalizing predictive
entropy, based on the prior empirical success of [Murray
and Chiang, 2018]. Moreover, a recent study introduces a
novel entropy-based uncertainty measure called semantic
entropy [Kuhn et al., 2023], incorporating linguistic invari-
ances created by shared meanings.

Word overlap metrics such as METEOR [Banerjee
and Lavie, 2005], BLEU [Papineni et al., 2002] and
ROUGE [Lin, 2004] are typically used to measure simi-
larities between text pairs. However, distinct tokens may
carry similar semantic meanings, and these methods may
fail to extract semantic relations between text pairs. To high-
light semantic meanings in free-from NLG, semantic equiva-
lence [Kuhn et al., 2023] is introduced via the bi-directional
entailment algorithm of natural language inference (NLI),
which is further utilized to cluster generations of LLMs
based on their semantic meanings. Utilizing the concept
of entailment to measure the semantic relations between
text pairs is logical and understandable from a linguistic
perspective. In other words, two sentences are semantically
equivalent if they entail each other. This novel method is
a breakthrough for text clusters based on semantic mean-
ings instead of traditional n-gram token counting, but it still
requires access to predicted probability. To measure the un-
certainty of LLMs in a post-hoc fashion, Graph Laplacian is
employed to cluster LLM generations that are represented
by the NLI classifier [Lin et al., 2023].

Selective NLG (also referred to as selective answer-
ing/generation, NLG with rejection) is the main application
to evaluate the effectiveness of UQ methods for language
generation. Samples with higher uncertainty are likely to be
wrongly predicted or generated, and rejecting them can im-
prove the reliability of the model. It is analogous to the com-
monly used term selective prediction in classification [Lin
et al., 2022a, Geifman and El-Yaniv, 2017, Ao et al., 2023b].
Both tasks can determine when to trust a model, whether it
is a classifier or an LLM. Selective answering benefits the
decision-making process and improves the trustworthiness
of LLMs by detecting their failure outputs.



3 METHODOLOGY

This section discusses uncertainty quantification methods
for LLMs based on measuring the information consistency
across m generated responses {r1, r2, . . . , rm} for a given
input question x.

3.1 BACKGROUND

NLI Classifier. The natural language inference (NLI) clas-
sifier has been used to measure semantic similarities for
text pairs. The NLI classifier predicts classes as entailment,
neutral and contradiction, via utilizing the pre-trained off-
the-shelf DeBERTa model [He et al., 2020].

Semantic Entropy with NLI Classifier. Semantic equiv-
alence of text pairs can be measured with NLI classifier log-
its/scores (referred as NLI logits for simplification). The NLI
logits denotes as sri,rj for text pairs ri, rj . If two sentences
can entail each other, they share similar semantic meanings.
Based on this linguistic concept, the recent study [Kuhn
et al., 2023] hereby introduces the bi-directional entail-
ment algorithm to measure semantic similarity between
text pairs. All generations are clustered into three semantic
sets by the predicted label of NLI logits. To obtain the like-
lihood of a semantic set, the predicted probability of each
sentence in the cluster is accumulated. Given m sampled
responses of a given question, larger semantic sets indi-
cate higher information consistency or lower uncertainty,
as more sentences carry similar meanings. With the given
input x and its corresponding sampled m responses, sup-
pose number of semantic clusters as C, the semantic en-
tropy (SE) estimated by Monte Carlo integration is written
as: SE(x) ≈ −|C|−1

∑|C|
i=1 log p (Ci | x). This method re-

quires access to the predicted probabilities of LLMs. One
limitation of this work lies in the over-simplified clustering,
as ambiguous responses can belong to more than one class.
Furthermore, the equivalence between NLI logits judged
cluster and real semantic clusters is not guaranteed [Lin
et al., 2023].

Graph Laplacian with NLI Classifier. Given the pair-
wise similarities represented by NLI logits sri,rj , but with-
out obtaining predicted probabilities of each generation, a
straightforward way to cluster m generations is via spec-
tral clustering. For an input question x, let R = {ri}mi=1

be the generation set for each item as a node. Based on
the bi-directional entailment algorithm, the semantic rela-
tions between ri, rj defined by NLI logits is written as:
wi,j = (si,j + sj,i) /2. Hence the symmetric weighted ad-
jacency matrix W is W = (wi,j)i,j=1,...,m. The degree
matrix D is a diagonal matrix, where a node with a higher
degree means well-connected with other nodes. The higher
degree of one generation suggests it carries similar meanings
with other generations, resulting in the lower uncertainty of

LLMs. The degree for ri, rj is written as: Dii =
∑

j Wij .
When there are semantic relations between ri and rj , i = j
and Dii is non-zero; otherwise Dij is 0. The pairwise dis-
tance represents the semantic difference between text pairs,
and the degree matrix to estimate uncertainty is written as:

UDeg = trace(m−D)/m2 (1)

The graph Laplacian L is thereby: L := D−W . The eigen-
values of L are non-negative and sorted in ascending order:
λ1 ≤ λ2 ≤ . . . ≤ λn. The eigenvectors form an orthogonal
basis: v1, v2 . . . , vn.

The corresponding eigenvalues and eigenvectors are used to
measure the uncertainty of the sampled generation set R. In
spectral clustering, the distribution of eigenvalues is used
to determine the number of clusters [Von Luxburg, 2007].
Under the context of uncertainty for LLMs, the multiplicity
of the zero eigenvalues coincides with the number of seman-
tic sets [Lin et al., 2023]. Thus the uncertainly estimated by
eigenvalues-based semantic clusters (Uset) can be written
as:

UEig =

m∑
k=1

max (0, 1− λk) (2)

As the eigenvalue in graph Laplacian, λ coincides with the
number of semantic clusters. Following previous work [Lin
et al., 2023, Von Luxburg, 2007], eigenvalues larger than 1
are ignored as only the smallest few eigenvalues carry impor-
tant information about the clusters. Hence equation (2) picks
the max value between 0 and 1− λk to ignore eigenvalues
larger than 1.

The eigenvectors are treated as coordinates for nodes (sam-
pled generation). The informal embedding space ei for the
generation ri can be formed as ei = [v1,i, . . . , vn,i] [Ng
et al., 2001, Von Luxburg, 2007]. The average distance to
the center is treated to measure uncertainty, named eccen-
tricity (UEcc) which is written as:

UEcc =
∥∥[e′1⊤, . . . , e′⊤m ]∥∥

2
(3)

in which e′ demonstrate the offset from the average embed-
ding. Eccentricity has been applied to measure uncertainty
for LLMs in a black-box way [Lin et al., 2023], and also
to detect out-of-distribution generations in conditional lan-
guage models [Ren et al., 2022]. However, utilizing NLI
logits to represent semantic similarities is still questionable
as logits are only predicted probabilities. It is necessary
to apply features that represent semantic relations for text
pairs.

Contrastive Feature Extraction. CLIP is a contrastive
approach to learn the link between textual and visual rep-



resentations, which is is trained on a large dataset of 400
million image-text pairs [Radford et al., 2021]. It learns a
multi-modal embedding space from the transformer based
image-encoder and text-encoder, where semantically simi-
lar images and texts are also similar in the joint embedding
space. As a foundation model trained on vast amount of data,
it has shown great capabilities in tasks such as language-
driven image generation [Ramesh et al., 2022], zero-shot
semantic segmentation [He et al., 2023] and text-guided im-
age manipulation [Hou et al., 2022]. Hence utilizing CLIP
to learn semantic similarities between text pairs can be a
plausible approach.

3.2 UQ WITH CONTRASTIVE SEMANTIC
SIMILARITIES

In this section, we propose Contrastive Semantic Similarities
(CSS): the CLIP-based semantic similarity features for text
pairs. We then utilize CSS in Graph Laplacian (GL) to
estimate uncertainty for LLMs.

Contrastive Semantic Similarities Initially, CLIP learns
the relation of text-image pairs via the jointly trained im-
age and text encoder. By connecting images and texts in
the same space, the cosine similarity of the embeddings
for correct related image-text pairs is minimized and vice
versa. To extract contrastive semantic similarity features,
we solely utilize the text encoder for text-pairs embeddings,
which avoids the discrepancy of multi-modal embeddings in
joint space. For the text pair ri, rj , we first utilize CLIP text-
encoder to extract features for each of them, then conduct
point-wise product (Hadamard Product) on the correspond-
ing embeddings to obtain similarity features, as demon-
strated in Figure 1.

As CLIP is based on contrastive approach, the obtained
features represent contrastive relations between text pairs,
which is called Contrastive Semantic Similarities (CSS)
in our work. CSS feature maps maintain the same dimen-
sion as embeddings. For better semantic clustering with
graph Laplacian, we then apply principal component analy-
sis (PCA) to reduce dimensions of CSS feature maps.

Graph Laplacian with Contrastive Semantic Similari-
ties Let denote the CSS feature map for text-pair ri, rj as
cssri,rj . Similar to estimating uncertainty with NLI logits,
the symmetric weighted adjacency matrix for R is W css.
wcss

i,j is a scalar value obtained from the affinity matrix by
projecting the similarity vector cssri,rj . Suppose the degree
matrix is Dcss, the uncertainty for m generations can be
written as:

U css
Deg = trace(m−Dcss)/m2 (4)

The graph Laplacian with CSS features then can be written

Text 1 (ri)

Text 2 (rj) rj1 rj2 rj3 … rjN

ri1 ri2 ri3 … riN

ri1*rj1 ri2*rj2 ri3*rj3 … riN*rjN

Text 
Encoder

Text 
Encoder

Figure 1: The demonstration of obtaining our proposed con-
trastive semantic similarities for text pairs. After passing
each generation to the CLIP text encoder, we conduct point-
wise product on the corresponding embeddings to obtain
the similarity features.

as: Lcss := Dcss −W css. The ascending order eigenvalues
are λcss

1 ≤ λcss
2 ≤ . . . ≤ λcss

n , and corresponding eigen-
vectors are vcss1 , vcss2 . . . , vcssn . Recalled that eigenvalues
represent number of semantic clusters, based on Eq. 2, the
uncertainty U css

set is formed as:

U css
Eig =

m∑
k=1

max (0, 1− λcss
k ) (5)

The embedding space ecssi for generation ri now is formed
with eigenvectors vcss generated by similarity features.
Given the offset the average embedding as ecss′, the ec-
centricity U css

Ecc as uncertainty is demonstrated as:

U css
Ecc =

∥∥∥[ecss′1⊤, . . . , ecss′⊤m ]∥∥∥
2

(6)

We applied PCA to reduce dimension of CSS feature maps
for better clustering, with feature dimension of 64 in our
experiments.

4 EXPERIMENTS

4.1 DATASET AND BASELINES

We use the open-book conversational question answering
dataset CoQA [Reddy et al., 2019], a closed-book ques-
tion answering dataset TriviaQA [Joshi et al., 2017], and
a challenging closed-book QA dataset Natural Questions
(NQ) [Kwiatkowski et al., 2019] for our experiments. We
utilize the development/validation set for each dataset, re-
spectively 7983, 9960 and 3610 samples for CoQA, Trivi-
aQA and NQ. In terms of LLMs, LLaMA (with 13 billion
parameters) [Touvron et al., 2023], OPT (with 13 billion
parameters) [Zhang et al., 2022], and GPT (GPT-3.5-turbo)
by OpenAI API are used to generate sampled responses
for each question. For fair comparison, we use the official



implementation 4 5 for all the baselines and we fixed the
number of sampled generations of each question as m = 20.

We compare our proposed method with the following state
of the art techniques:

1. Lexical Similarity (LexiSim) [Lin, 2004]: measures the
average Rouge-L score among sampled generations.

2. Number of Semantically Distinct Answers (Num-
Sem) [Kuhn et al., 2023]: leverages the count of seman-
tically unique responses within correct and incorrect
generations as a measure of uncertainty.

3. Semantic Entropy (SE) [Kuhn et al., 2023]: computes
entropy over clusters formed by semantically equiva-
lent samples, which required the access of token-level
logits/predicted probabilities from LLMs.

4. P(true) [Kadavath et al., 2022]: estimates the prob-
ability of generations by querying the model itself
if generations are true or false. This method utilizes
the token-level logits, and we follow the experimental
setup detailed in the originating study.

5. Graph Laplacian with NLI Classifier Logits (L-
GL) [Lin et al., 2023]: demonstrates that semantic
dispersion can effectively estimate the quality of gen-
erations of LLMs. By utilizing NLI logits to cluster
generations with similar semantic meaning, the uncer-
tainty is measured by invariances of GL, respectively
eigenvalues (EigV), degree matrix (Deg), eigenvectors
(Ecc).

4.2 IMPLEMENTATION DETAILS

For our experiments, we use the pre-trained CLIP model
openai/clip-vit-base-patch32 by using Huggingface library,
which is trained on a dataset of about 400 million image-text
pairs collected from the Internet. Our CSS takes about 2.3
seconds to calculate the UQ for a text pair, where previous
work [Lin et al., 2023] takes about 1.2 seconds. This demon-
strates a minor computational additional resource for our
method, which is still quite fast. For all our experiments,
we use the 2 GPUs of Nvidia Tesla P40 with 23 GB RAM.
Generating 20 responses for each question takes about 30 -
50 seconds.

4.3 EVALUATION METRICS

Following the prior work of [Kuhn et al., 2023, Lin et al.,
2023], we use the Rouge-L score and GPT correctness score
as matching criteria to evaluate the correctness of generated
responses. GPT correctness score is provided by gpt-3.5-
turbo from the OpenAI API, which assigns a correctness

4https://github.com/lorenzkuhn/semantic_uncertainty
5https://github.com/zlin7/UQ-NLG

score between 0 and 1 for the similarity between given
reference answer and generated responses. If the Rouge-L
score for the generation and reference answer is larger than
0.3, the generation is considered to be correct. Similarly, the
threshold for the GPT correctness score is 0.7.

To validate our proposed method in terms of selective an-
swering, we apply Area Under Accuracy-Rejection Curve
(AUARC) [Nadeem et al., 2009] as the evaluation metric.
After applying baselines and our proposed method, each
sample (one question with 20 sampled generations) obtains
one score to represent the uncertainty. We rank all samples
based on this score and reject higher-uncertainty ones to
calculate accuracy for the remaining data. If the UQ method
is effective and precise, samples with higher uncertainty
are more likely to be wrongly predicted. Thus, the higher
the AUARC, the better the quality of the UQ methods. To
further examine the overall performance of LLMs, we fol-
low previous works [Kuhn et al., 2023, Lin et al., 2023,
Band et al., 2022] to employ Area Under Receiver Operat-
ing Characteristic (AUROC) to compare UQ methods. The
uncertainty score for each sample serves as the threshold for
calculating the sensitivity and specificity for the AUROC. A
higher AUROC indicates lower uncertainty in LLMs, signi-
fying that the sampled generations of a given question are
more consistent.

5 RESULTS

Table 1 presents the AUARC results of sampled generations
on the TriviaQA, CoQA, and NQ datasets using LLMs, with
the Rouge-L score serving as the criterion for correctness.
The results for white-box (WB) methods of semantic en-
tropy (SE) and p(true) depend on token-level probabilities.
As the ChatGPT API does not provide these, we are unable
to report the corresponding AUARC and AUROC results.

When the model is perfectly calibrated, all rejected samples
will be the wrong ones. In the table, Oracle represents this
upper bound on AUARC performance.

As the only rule-based measurement (utilizing Rouge-L)
among all methods, lexical similarity demonstrates a supe-
rior capability in estimating uncertainty compared to the
Number of Semantically Distinct Answers (NumSem) in
most cases. This suggests that variations in vocabulary or
grammar contribute significantly to semantic meanings. For
NLI logits-based methods, all three (labelled EigV, Ecc and
Deg) sub-methods in NLI logits-based graph Laplacian per-
form better than semantic entropy in LLaMA-generated
datasets.

The performance of our proposed CCS graph Laplacian is,
on average, 1.5% to 2% higher than that of L-GL. CSS-Deg
achieves better performance than CSS-EigV and CSS-Ecc
in most cases.



Table 1: Results of AUARC with Rouge-L score as the correctness criterion, on sampled generation by LLaMA, OPT and
GPT on dataset of TriviaQA, CoQA and NQ. Results of white-box (WB) methods semantic entropy (SE) and p(true) on
GPT generation are not available. WB methods require the predicted probabilites of outputs, which are not provided in
ChatGPT API. All results are shown in percentages for clarity. Best results are in bold for each dataset.

Dataset TriviaQA CoQA NQ
Model LLaMA OPT GPT LLaMA OPT GPT LLaMA OPT GPT

Acc 57.57 25.60 81.07 55.96 51.99 66.38 19.32 9.10 39.83
Oracle 89.60 54.30 97.91 85.10 78.56 93.00 42.35 24.15 75.58

NumSem 73.25 33.76 81.07 64.31 57.29 67.81 20.85 10.58 45.97
LexiSim 78.98 46.72 87.47 79.09 73.15 80.39 35.74 17.77 58.01

L-GL
EigV 80.67 48.70 92.32 79.54 71.96 84.34 33.58 14.72 62.13
Ecc 80.20 48.83 92.01 78.92 70.96 83.94 34.26 17.41 61.80
Deg 80.71 49.00 92.24 79.12 71.83 84.22 34.23 17.49 62.42

WB SE 74.09 47.90 – 77.65 67.46 – 28.97 16.62 –
P(true) 61.85 20.93 – 61.75 58.32 – 20.19 8.27 –

Ours (CSS)
CSS-EigV 81.47 49.85 92.70 81.92 72.13 87.26 36.80 18.10 64.83
CSS-Ecc 81.29 49.60 93.07 80.83 71.36 87.34 36.62 18.19 65.04
CSS-Deg 81.55 50.08 93.18 81.17 73.18 87.02 36.67 18.34 64.87

Table 2: Results of AUROC with Rouge-L score as the correctness criterion, on sampled generation by LLaMA, OPT and
GPT on dataset of TriviaQA, CoQA and NQ. All results are shown in percentages for clarity. Best results are in bold for
each dataset.

Dataset TriviaQA CoQA NQ
Model LLaMA OPT GPT LLaMA OPT GPT LLaMA OPT GPT

NumSem 75.06 68.56 68.20 57.76 57.60 51.69 55.59 59.20 61.13
LexiSim 77.63 76.48 81.13 75.72 76.40 68.70 76.72 73.90 71.65

L-GL
EigV 84.35 82.88 83.40 77.95 75.70 78.65 72.59 73.88 80.88
Ecc 83.66 83.91 82.50 77.26 74.81 77.39 74.44 76.02 79.82
Deg 84.52 83.36 82.93 77.53 75.85 78.76 74.01 74.75 81.31

WB SE 74.39 81.54 – 74.55 71.25 – 69.50 74.61 –
P(true) 55.12 41.64 – 55.14 52.67 – 52.52 47.92 –

Ours (CSS)
CSS-EigV 85.52 85.37 82.27 78.78 77.19 80.04 76.08 77.08 79.28
CSS-Ecc 85.17 84.97 81.57 78.40 76.70 80.40 75.76 76.53 79.91
CSS-Deg 85.63 85.82 81.77 78.68 76.95 79.12 75.81 77.25 80.01

The ARC depicted in Figure 2 illustrates how the eccentric-
ity of our method (Ecc (ours)) outperforms other baselines
in OPT-sampled generations for the CoQA dataset. As the
rejection rate increases, our method demonstrates superior
performance compared to other approaches, indicating im-
proved uncertainty estimation through our contrastive tech-
nique. The AUROC results in table 2 are mostly consistent
with AUARC results, where our proposed CSS-Eigv obtain
highest performance in most cases.

Table 3 presents the AUARC results of sampled generations
on the TriviaQA, CoQA, and NQ datasets using LLMs,
with the GPT score as the correctness criterion. Responses
generated by GPT across all datasets are omitted due to
their exceptionally high accuracy (over 95%) – it would be
unfair to compare GPT generations with those from LLaMA
and OPT. Our method outperforms other baselines, where
CSS-Ecc shows more improvements to estimate uncertainty
for generations of LLMs.

In summary, the graph Laplacian methods (L-GL and ours)

outperform the white-box methods of semantic entropy and
p(true), demonstrating the effectiveness of spectral cluster-
ing in analyzing semantic relations. Our proposed method
exhibits superior uncertainty estimation compared to L-GL,
indicating more effective extraction of semantic relations
through the contrastive method.

6 ABLATION STUDY

We conducted an extensive ablation study alongside our
main experiments to evaluate the necessity of applying di-
mension reduction to Contrastive Semantic Similarity (CSS)
feature maps. We tested CSS feature maps of various di-
mensions on sampled generations from LLaMA, OPT, and
GPT on the CoQA dataset, employing the Eccentricity met-
ric of our proposed method. We utilized the original CSS
features with a dimension of 512, and reduced dimensions
of 128 and 64 using PCA and UMAP [McInnes et al., 2018]
techniques. The results, as shown in Table 4, indicate that a
certain level of dimension reduction can enhance AUARC



Table 3: Results of AUARC with GPT score as the cor-
rectness criterion, on sampled generation by LLaMA and
OPT on dataset of TriviaQA, CoQA and NQ. ACC is accu-
racy, NumSem is Number of Semantically Distinct Answers
(NumSem), and LexiSim means Lexical Similarity. L-GL
is Graph Laplacian with NLI Classifier Logits, including
EigV, Ecc and Deg sub-methods. WB means white-box
methods as semantic entropy (SE) and p(true) require token-
level logits access. Our proposed methods include three
sub-methods, CSS-EigV, CSS-Ecc, and CSS-Deg, where
CSS stands for contrastive semantic similarity. All results
are shown in percentages for clarity. Best results are in bold
for each dataset.

TriviaQA CoQA NQ
LLaMA OPT LLaMA OPT LLaMA OPT

Acc 61.18 25.75 62.46 51.81 23.63 8.60
Oracle 87.03 54.72 86.29 79.41 47.67 23.28

NumSem 78.78 39.46 67.58 60.41 28.18 10.36
LexiSim 80.32 45.68 78.17 71.46 40.15 15.92

L-GL
EigV 83.52 50.54 80.21 72.46 40.02 17.20
Ecc 83.64 50.42 80.14 71.73 40.16 17.82
Deg 84.61 51.06 79.34 72.51 40.81 17.43

WB SE 79.15 51.11 78.83 70.75 36.03 17.40
P(true) 64.98 20.25 64.04 50.23 24.72 7.63

Ours
CSS-EigV 84.76 50.16 81.21 73.67 41.15 18.20
CSS-Ecc 84.95 51.24 82.66 73.38 42.39 18.65
CSS-Deg 86.03 52.35 81.28 72.96 41.76 18.59
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Figure 2: The accuracy-rejection curve for OPT sampled
generations for CoQA, with Rouge-L>0.3 as the correct-
ness criterion to obtain the base accuracy. After ranking
samples based on their uncertainty scores obtained by the
listed methods, we reject samples with higher uncertainty
and calculate the accuracy for the remaining data. Oracle
represents the highest performance of the model, where
the model is perfectly calibrated and all rejected samples
are wrongly predicted. We compare the Eccentricity of our
method (ECC (ours)) with other baselines, namely p(true),
semantic entropy (SE), Eccentricity in L-GL (Ecc (L-GL)),
and number of Semantically distinct answers (NumSem).

and AUROC results, suggesting benefits for improved clus-

Table 4: Results of feature reduction on Eccentricity in pro-
posed method (CSS-Ecc) with LLaMA, OPT, and GPT for
sampled generations on CoQA Dataset. The original fea-
ture dimension is 512, which then reduced to 128 and 64
via PCA and UMAP. Results for our proposed method is
underscored.

AUARC AUROC
Features LLaMA OPT GPT LLaMA OPT GPT

Original 512 80.17 71.04 84.23 77.28 74.92 77.45

PCA 128 80.54 71.12 86.89 78.25 76.75 78.52
64 80.83 71.36 87.34 78.40 76.70 80.04

UMAP 128 79.95 71.09 84.22 78.15 75.21 77.85
64 80.52 71.16 85.64 78.46 75.67 79.58

Table 5: Comparison of utilizing NLI logits and NLI fea-
ture maps based graph Laplacian on sampled generations
of LLaMA and GPT on TriviaQA dataset. The AUARC
and AUROC results are based on GPT score for correct-
ness. ’L-GL’ denotes the graph Laplacian based on NLI
logits, and ’F-GL’ represents the graph Laplacian based on
NLI feature maps. These results are compared across three
sub-methods of uncertainty quantification (UQ): Eigenvalue
(EigV), Eccentricity (Ecc), and Degree Metric (Deg).

AUARC AUROC
LLaMA OPT LLaMA OPT

L-GL
EigV 83.52 50.54 84.90 86.09
Ecc 83.64 50.42 86.43 86.86
Deg 84.61 51.06 84.21 86.60

F-GL
EigV 83.54 50.48 84.95 85.92
Ecc 83.62 51.62 86.53 86.95
Deg 84.65 51.36 84.16 87.12

tering. UMAP’s results were slightly inferior to those of
PCA; therefore, we used the reduced dimension of 64 by
PCA for our main experiments.

Moreover, we argue that NLI classifier logits lack substantial
semantic clustering information, as they represent predicted
probabilities. To verify this claim, we compared the NLI
logits-based graph Laplacian (L-GL) with NLI feature maps
extracted from the off-the-shelf DeBERTa model [He et al.,
2020] as the basis for the graph Laplacian (F-GL) on sam-
pled generations from LLaMA and GPT on the TriviaQA
dataset. The results for EigV, Ecc, and Deg, as presented
in Table 5, show that the overall performance of F-GL is
marginally better than that of L-GL, indicating that fea-
ture maps contain more clustering information than mere
probabilities.

CLIP is trained on a contrastive objective using a dataset
containing image-caption pairs, where the text encoder is
specifically trained on image captions. Despite both using
textual data, the domain of image captions can differ sig-
nificantly from the NLP corpus that language models are
trained on. As a result, employing such an image-caption-
focused text embedding to evaluate text generated by LLMs



Table 6: Comparing of CLIP text encoder and language
models of BERT, DeBERTa and Sentence-BERT for fea-
ture embedding with TriviaQA dataset on LLaMA sampled
generations. The AUARC and AUROC results are based on
GPT score for correctness on evaluation metric Eccentric-
ity (CSS-Ecc). All feature embeddings are without feature
reduction, and the best result is in bold.

Model AUARC AUROC
BERT 83.78 86.24
DeBERTa 83.62 86.53
Sentence-BERT 83.72 87.02
CLIP 84.32 87.19

Table 7: Comparing Rouge-L and METEOR as correctness
criteria on generated responses by LLaMA on the TriviaQA
dataset. The AUARC and AUROC results are on evaluation
metric of Eccentricity (Ecc) in L-GL and ours.

Evaluation Metric Method AUARC AUROC

Rouge-L L-GL 80.20 83.66
Ours 81.29 85.17

METEOR L-GL 80.32 83.79
Ours 81.35 85.22

may raise concerns. We therefore conducted experiments to
compare CLIP text encoder and regular Language Models
BERT [Devlin et al., 2018], DeBERTa [He et al., 2020]
and Sentence-BERT [Reimers and Gurevych, 2019]. We
used these language models for feature embedding with
TriviaQA dataset on LLaMA sampled generations evaluated
with GPT correctness score. Table 6 shows that CLIP out-
performs other language models, suggesting CLIP yields
more accurate text-text similarity assessments.

Following previous work, we utilized Rouge-L as the cor-
rectness measurement for sampled generations of LLMs,
to ensure a fair comparison with previous studies [Kuhn
et al., 2023, Lin et al., 2023]. However, as the n-gram based
metric, Rouge-L may fail to evaluate lexical different but se-
mantically similar sentences, whereas LLM-generated text
is more semantically driven. To address this limitation, we
employed METEOR, a metric that incorporates more se-
mantic features than simple lexical overlap, as an evaluation
criterion for the generated responses of LLMs. Interestingly,
results in Table 7 shows that METEOR follow a similar
trend with Rouge-L in AUROC and AUARC.

7 DISCUSSION

The empirical evidence shown in tables 1, 2 and 3 from ex-
tensive experiments across multiple datasets and evaluation
metrics firmly establishes the superiority of our proposed
contrastive semantic similarity over existing methods, es-
pecially the most recent NLI logits-based approaches. Our

proposed CLIP-based semantic similarity further learns con-
trastive features between text pairs, demonstrating better
semantic clustering compared to the baselines.

Our extensive ablation study and novel findings demonstrate
the superiority of our intuitive and simple, yet effective, ap-
proach. The study presented in Table 4 demonstrates the ben-
efits of dimension reduction on feature maps for improved
clustering with techniques of PCA and UMAP. Additionally,
NLI logits represent the predicted probabilities for the labels
"entailment," "contradiction," and "neutral." However, they
lack comprehensive latent semantic features, as logits are
primarily trained to identify labels. Semantic relationships
between text pairs can be implicit, making a feature map a
better semantic representation than NLI logits. Our ablation
study, shown in Table 5, compares NLI logits and the NLI
feature map from DeBERTa, revealing that feature maps
contain more potential semantic clustering information than
logits.

Furthermore, we investigate the effectiveness of text feature
extraction between CLIP and regular language models, with
results shown in Table 6. CLIP’s ability to extract contrastive
features from input pairs has made it widely applicable for
understanding alignments between image-text pairs [Rad-
ford et al., 2021, Ramesh et al., 2022, Hou et al., 2022]
and as well as between image-image pairs [Yu et al., 2024].
While previous studies have focused on CLIP’s use with
image-text and image-image data, we extend its application
to investigate image-free contrastive semantic feature ex-
traction, thus broadening the scope for which CLIP can be
utilized.

In addition, to address the limitations of the n-gram-based
metric ROUGE-L, we incorporate METEOR as an evalua-
tion criterion for the generated responses to better capture
semantic similarities. Although both metrics reveal similar
trends in their results shown in Table 7, the use of METEOR
provides a more accurate and meaningful evaluation than
ROUGE-L. We will expand our experiments to include ad-
ditional metrics that more effectively account for semantic
features, thereby providing a more accurate evaluation of
generated text of LLMs.

Our research also contributes to the ongoing discourse on
the trustworthiness of large language models, offering a
pragmatic solution to the challenge of selective answering
in question-answering systems. The demonstrated efficacy
of our CSS (shown in Figure 2) in identifying and rejecting
unreliable generations holds significant implications for the
development of more trusted LLMs applications.

In terms of bias and fairness, vision-language models in-
variably exhibit varying degrees of bias, as highlighted in
the work [Radford et al., 2021] using the FairFace dataset,
which includes race, gender, and age subgroups. However,
our current datasets lack subgroup information, and our pri-
mary objective is to develop an effective UQ method for



LLMs. In future research, we will address bias and fairness
issues by incorporating relevant subgroup data into our un-
certainty estimation processes, ensuring a comprehensive
evaluation and improvement of fairness in our models.

8 CONCLUSION

In this paper, we proposed a novel UQ technique for LLMs
using Contrastive Semantic Similarity (CSS) to capture in-
sightful semantic relationships between text pairs. By adapt-
ing the CLIP text encoder and utilizing spectral clustering,
our method accurately estimates the uncertainty of LLM-
generated responses than SOTA techniques.

Our extensive experiments demonstrated that our approach
outperforms existing UQ methods, revealing richer semantic
information than NLI logits. We also showed the superiority
of contrastive feature extraction of CLIP over regular lan-
guage models, expanding its application scope in language
generation. Furthermore, our exploration of the METEOR
metric provided a more comprehensive assessment of se-
mantic relationships compared to ROUGE-L, enhancing
evaluation criteria for generated texts. Our method also
improves selective NLG by more effectively identifying
unreliable responses. Future work will focus on further con-
fidence and uncertainty calibration techniques and exploring
the application of our method to a broader range of NLG
tasks.
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