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Figure 1. We introduce Gaussian Garments, a novel approach for reconstructing realistic simulation-ready garments from multi-view videos.
Our natural coupling of 3D meshes and 3D Gaussian splatting allows Gaussian Garments to accurately represent both the overall geometry
and the high-frequency details of human clothing. The reconstructed garments can then be retargeted to novel human models, resized to fit
novel body shapes, and simulated over moving bodies with novel motions. Our approach also enables the automatic construction of complex
multi-layer outfits from a set of separately captured Gaussian garments.

Abstract

We introduce Gaussian Garments, a novel approach for
reconstructing realistic simulation-ready garment assets
from multi-view videos. Our method represents garments
with a combination of a 3D mesh and a Gaussian texture
that encodes both the color and high-frequency surface de-
tails. This representation enables accurate registration of
garment geometries to multi-view videos and helps disen-
tangle albedo textures from lighting effects. Furthermore,
we demonstrate how a pre-trained graph neural network
(GNN) can be fine-tuned to replicate the real behavior of
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each garment. The reconstructed Gaussian Garments can
be automatically combined into multi-garment outfits and
animated with the fine-tuned GNN.

1. Introduction
Reconstructing and animating human apparel is essential for
many applications, from virtual try-on systems to movies
and video games.

Faithful digital representation of real garments requires
capturing three key aspects. First, the 3D geometry of the
garments must be reconstructed to model both their overall
structure and fine details. Second, the appearance of the gar-
ments must be recreated to accurately reflect their color and
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texture. Finally, the real behavior of the garments must be
mimicked to produce convincing animations. Our method,
Gaussian Garments, leverages the expressivity of 3D Gaus-
sian splatting to reconstruct these three critical aspects from
multi-view videos.

In computer graphics, garments are traditionally repre-
sented as polygonal meshes with 2D textures. While this
representation enables efficient simulation and appealing ren-
dering, creating detailed garment meshes is labor-intensive,
particularly for complex textures like fur. Further, meshes
are not well-suited for differentiable optimization of their
structure and topology from images. To overcome these lim-
itations, recent works have started to explore neural implicit
representations (NIRs) as a basis for modeling photorealistic
clothing. While NIRs provide strong flexibility in terms of
clothing topology and appearance, using them to generate
physically realistic motions is exceedingly difficult.

3D Gaussian splatting has recently emerged as a highly
efficient and flexible alternative for photorealistic scene re-
construction. Unlike NIRs, Gaussians can be edited individu-
ally to accommodate changes in scene geometry, appearance,
and lighting. Recent works leverage this ability to generate
photorealistic digital copies of clothed humans. However,
these methods construct holistic avatars without the ability to
extract individual garments as separate assets. Consequently,
they cannot retarget these garments to different bodies, adjust
their size, or combine clothing items from various avatars
into a novel outfit—tasks crucial for many computer graphics
applications.

In this work, we introduce Gaussian Garments—the first
method that uses 3D Gaussian splatting to reconstruct pho-
torealistic, simulation-ready assets of human clothing. At
its core, our method combines mesh-based geometry with
Gaussian-based appearance modeling. Starting with an ini-
tial garment mesh obtained from multi-view images we reg-
ister it to a set of multi-view videos using a photometric
optimization procedure based on Gaussian splatting. Then,
we optimize a Gaussian texture to recover the garment’s
detailed appearance, with disentangled ambient color and
view-dependent properties. Finally, using the registered
mesh, we fine-tune a graph neural network (GNN) for neural
simulation to match the garment’s real-world behavior.

In summary, our main contributions are
• a comprehensive pipeline for reconstructing the shape,

appearance, and behavior of real-world garments using
Gaussian splatting,

• an algorithm for registering garment meshes to multi-
view videos with an optimization procedure based on
Gaussian splatting, and

• a Gaussian Garment representation that combines trian-
gle meshes with Gaussian textures to capture photoreal-
istic appearance and can be used as a fully controllable
3D asset.

2. Related work
2.1. Garment reconstruction
Reconstructing 3D representations of real-world garments is
a long-studied task. Input data in this problem ranges from
4D scans and multi-view videos to single images.

ClothCap [24] and SIZER [34] segment 4D scans to ex-
tract garment meshes, which can be retargeted to novel body
shapes and poses. CaPhy [33] further optimizes a neural net-
work to animate garments while preserving physical proper-
ties. Bang et al. [1], NeuralTailor [13] and SewFormer [19]
estimate sewing patterns from static 3D scans, point clouds
and monocular images, respectively. These sewing patterns
can then be draped over body geometry to produce a 3D
mesh. DiffAvatar [15] employs static 3D representation to
jointly optimize both the garment’s 2D pattern and material
properties, resulting in simulation-ready meshes.

BCNet [8] and SMPLicit [4] train neural networks to
generate template-mesh displacements and unsigned neural
fields, respectively, from monocular images. DeepFash-
ion3D [43], Zhu et al. [44] and SelfRecon [9] use joint
explicit–implicit representations to register garment tem-
plates to 2D images. REC-MV [27] reconstruct temporally
consistent surfaces from monocular videos. However, these
methods do not reconstruct the garment’s appearance.

SCARF [5] uses monocular videos to optimize an artic-
ulated neural radiance field (NeRF). While it can model
garments’ appearance over novel body shapes and poses,
it suffers from the choice of representation. NeRF recon-
structions produce poor geometries and are affected by slow
optimization and rendering speed. Additionally, SCARF
does not allow combining different reconstructed garments.

Closest to our approach are the works by Xiang et
al. [37, 38]. They reconstruct textured garment meshes from
multi-view videos, with [37] also using a physical simulator
to generate cloth dynamics. While achieving high visual
quality, they use simple textured meshes to represent gar-
ments, which limits their ability to model high-frequency
geometric details like fur. Moreover, they do not provide a
means to reconstruct material parameters for the garments
and select them manually instead.

With Gaussian Garments, we demonstrate how 3D gar-
ment meshes can be combined with 3D Gaussian splatting
technique to achieve photorealistic garment appearance. Ad-
ditionally, we fine-tune a garment-modeling GNN to accu-
rately replicate the real garment behavior.

2.2. 3D Gaussian splatting for human avatars
The recently proposed 3D Gaussian splatting (3DGS) tech-
nique [11] reconstructs scenes using explicitly defined 3D
Gaussian kernels. This method combines the advantages
of both implicit and explicit 3D representations. Simi-
lar to Neural Radiance Fields (NeRFs) [2, 32] and neural
signed distance fields [22, 35], the 3DGS representation



Figure 2. The procedure for obtaining simulation-ready photorealistic garment assets consists of four steps. In Step 1, we initialize the
garment’s geometry and appearance from a single multi-view frame (Sec. 3.1). In Step 2, we register the garment geometry to multi-view
videos (Sec. 3.2). In Step 3, we optimize the garment’s appearance over the training sequences (Sec. 3.3). In Step 4, we fine-tune a simulation
GNN to accurately replicate the garment’s real behavior (Sec. 3.5). The resulting garment assets can be directly simulated with the GNN,
combined into multi-garment outfits, and resized to fit different body shapes.

can be optimized from multi-view images and is capable of
flexibly modeling diverse topologies. Additionally, the ex-
plicit nature of 3DGS enables it to easily represent dynamic
scenes [20] and model physical behavior [39].

Despite its recent introduction, 3D Gaussian splatting has
been adopted by numerous approaches to represent humans
in digital environments. GaussianAvatars [25] and Splattin-
gAvatar [31] use parametric meshes with rigidly attached
3D Gaussians to represent human heads and clothed bodies.
GaussianAvatar [7] and 3DGS-Avatar [26] optimize a canon-
ical Gaussian body, a skinning model, and a neural network
that predicts pose-dependent offsets to the Gaussian parame-
ters. AnimatableGaussians [16] construct a person-specific
canonical template and predict a Gaussian texture containing
appearance and geometry parameters. The canonical tem-
plate and diffused skinning model allow [16] to better model
loose garments. PhysAvatar [41] uses 3D Gaussian splatting
to register meshes of clothed humans to multi-view videos. It
then uses inverse rendering to reconstruct the mesh textures
and inverse physics to recover material parameters. For its
final representation, PhysAvatar discards 3D Gaussians and
uses flat-textured meshes instead. This enables relighting
the meshes with standard techniques but does not allow the
modeling of non-flat surfaces like fur. Moreover, PhysAvatar
does not provide a means to reconstruct template meshes for
clothed humans and uses ground-truth ones instead.

A common drawback of these methods is their focus on
reconstructing holistic avatars of clothed humans without
separating garments from the bodies. This limitation reduces
their applicability in common computer graphics tasks such
as simulating garments over different human models, com-
bining garments into outfits, and fitting garment sizes to

varying body shapes. D3GA [45] and LayGA [18] address
this issue by separating garments from human bodies, but
are limited to modeling simple tight-fitting outfits consisting
of two garments (e.g. a T-shirt and pants).

In contrast, Gaussian Garments reconstructs distinct 3D
garment assets that can be resized and combined into multi-
layer outfits. Fine-tuning a cloth simulation GNN enables
realistic modeling of loose garments in dynamic motions.

3. Method

We use a set of multi-view videos to reconstruct geome-
try, appearance, and behavior of a real-world garment. Our
pipeline, outlined in Fig. 2, consists of four main stages.
First, we initialize Gaussian garment geometry and appear-
ance from a single multi-view frame (Sec. 3.1). Second,
we register the garment’s geometry to all available frames
(Sec. 3.2). Third, we optimize the garment’s appearance
by disentangling the albedo Gaussian texture from light-
ing effects and per-frame local transformation offsets pre-
dicted by a neural network (Sec. 3.3). Finally, we fine-tune
the garment’s behavior by optimizing a graph neural net-
work (GNN) [6] to replicate the registered garment motion
(Sec. 3.5). In this section, we detail each of these steps.

Note that apart from RGB frames, our pipeline requires
2D semantic segmentation maps and parametric human body
models [23] fitted to each frame. We extract this informa-
tion from multi-view videos automatically using existing
method [36].



3.1. Gaussian garment initialization
3.1.1. Mesh reconstruction
As an initial step, we reconstruct the static geometry of a
given garment. For that, we select a “template” multi-view
frame where the garment’s is surface fully visible. We re-
cover the garment’s 3D mesh from this frame, using existing
algorithms for multi-view stereo [30], surface reconstruc-
tion [10], and remeshing [14] (see Sec.1 in Supp. Mat.).

Together with the Gaussian texture, described below, the
meshes obtained in this step can represent both the overall
garment geometry and high-frequency details like fur.

3.1.2. Gaussian texture
To represent the garment’s appearance, we use a so-called
Gaussian texture. Similar to a traditional texture, it maps
between the 3D mesh surface and a 2D texture image that
controls the surface appearance. However, in our case, each
point on the texture defines parameters for a 3D Gaussian:
spherical harmonic coefficients ϕ ∈ [0, 1]16×3, opacity α,
scale s ∈ R3

+, local rotation r ∈ H and translational offsets
µ ∈ R3. The latter two are set in a local coordinate frame
which we define later.

We use the Gaussian texture and the mesh geometry to
construct a Gaussian garment in 3D space in the following
way. We first sample the Gaussians from the texture in a
regular grid (e.g., once per texel). The Gaussian’s location
on the texture controls which 3D face fi it is attached to and
what its barycentric coordinates within fi are. These two
elements define the initial position of the Gaussian on the
mesh surface. We call this position the Gaussian’s “surface
point”. This surface point serves as the origin for the Gaus-
sian’s local coordinate frame. The basis of this coordinate
frame consists of the normal vector for the face fi and two
orthogonal vectors on its surface (see Fig. 3, left).

Following Qian et al. [25], we determine the Gaus-
sian’s final 3D position and shape using its scale s, rotation
quaternion r, and translational offsets µ. See Sec.2 of the
Supp. Mat. for details.

3.2. Tracking-based registration
To use Gaussian Splatting for geometry registration, we first
have to construct an initial appearance model represented
by 3D Gaussians. To do so, we initialize the Gaussian tex-
ture with default parameters, create Gaussians on the mesh
surface, and optimize them to match the template-frame ob-
servations (see Sec. 2.1 in Supp. Mat. for details). This
initial appearance model is only used for mesh registration.
We enhance its visual quality and disentangle albedo color
from lighting effects in later steps (Sec. 3.3). After obtaining
a template garment mesh and an initial appearance model,
we register the template mesh to multi-view videos. The
key to this process is propagating the gradient from the im-
age space to the positions of the mesh nodes. To achieve

Figure 3. To register the garment mesh we render the Gaussians
rigidly attached to the mesh faces (top left) and optimize a com-
bination of the RGB loss LRGB and physical energies Lphys. We
also use a body penetration term Lbody to ensure that the garment
conforms to the body model.

this, we compute the error LRGB between the rendered Gaus-
sian splats and the ground-truth images. We then pass its
gradients through the 3D Gaussians, rigidly attached to the
garment’s faces, to the nodes of the garment mesh. LRGB is
defined as

LRGB = λRGBL1 + (1− λRGB)LSSIM, (1)

where L1 is a mean absolute error, LSSIM is a structural
similarity loss, and λRGB is a balancing weight.

However, naı̈ve minimization of the RGB discrepancy
LRGB between renders and observations would result in
severely disfigured meshes (see Fig.1 in the Supp. Mat.).
Therefore, we expand the optimized loss function with a set
of physical energies.

First, we regularize the angle between each pair of neigh-
boring faces with bending energy Lbending:

Lbending =
∑
(i,j)

∥eij∥2

aij
atan2(sin(θij), cos(θij))

2, (2)

where (i, j) are indices of neighboring triangles, θij is the
angle between the triangles’ normal vectors, ∥eij∥ is the
length of the edge connecting the two triangles, and aij is
the sum of their areas.

Second, we regularize the stretching of the triangles rel-
ative to the template frame using the strain energy Lstrain,
based on the St. Venant–Kirchhoff material model. This en-
ergy uses the deformation gradient F =

∂xt
∂X

of the current
frame geometry xt relative to the template geometry X , and
is computed as a sum over all faces fi:

Lstrain =
∑
i

Vi

(
λ

2
tr(Gi)

2 + µtr(G2
i )

)
. (3)



Figure 4. We model the appearance of Gaussian Garments using a combination of an albedo Gaussian texture and a neural network that
predicts lighting effects and local translational offsets. The albedo Gaussian texture stores color information along with Gaussian parameters,
including local rotation, translation, and scale. During rendering we regularly sample the Gaussian texture and spawn the 3D Gaussians
rigidly attached to the garment surface.

Here, Gi is the Green strain tensor for the face fi: Gi =
1
2 (Fi

TFi−I), Vi is the face’s volume (thickness×area), and
λ and µ are Lamé coefficients serving as balancing weights.
For λ and µ we use the same default values as in SNUG [29].

We denote the full physical-regularization term as Lphys =
Lbending + Lstrain. It helps preserve the physical realism of
the tracked mesh but does not provide any information about
the underlying body. Hence, the garments tend to implode
and not conform to the body shape. This issue can be solved
using a parametric body mesh fitted to the multi-view se-
quence. Following ContourCraft [6], we use cubic energy
term to penalize negative normal distance between garment
nodes and the body faces closest to them:

Lbody =
∑
i

max(ϵbody − ((vi − fi) · n⃗i), 0)3, (4)

where vi are the vertex coordinates, fi is a point on the body
face, n⃗i is this face’s normal vector, and ϵbody is a safety
margin. In our experiments, we set ϵbody to 3mm.

However, for sequences with dynamic body motions, the
optimization process often starts far from the target body
pose. This large difference in vertex positions causes the
optimization to produce unrealistic geometries or diverge
completely (see Fig.1 in Supp. Mat. for illustrations). We
work around this issue by substituting Lbody with a simple
ersatz regularization, LVE, in the first half of the optimization
process. This regularization uses virtual edges built between
the garment faces opposite each other in the template-frame
geometry and penalizes these face pairs for getting too close
together (see Sec.3.1 in Supp.Mat. for details). In the sec-
ond half of the optimization, after the RGB signal pulls the

garment geometry to better conform to the body pose, we
switch to using the body penetration term Lbody.

The full energy term minimized in the registration process
is formulated as

Lregister = λ1LRGB + λ2Lphys + λ3Lbody, (5)

with Lbody here substituted by LVE for the first half of the
optimization process in each frame.

3.3. Appearance reconstruction
So far, we have used the Gaussian texture reconstructed from
the template frame. While it provides useful gradients for
the registration procedure, its quality is limited by the visual
information available in a single time frame. Moreover, the
lighting conditions are baked into this texture. Therefore, we
further optimize the garment’s appearance using multi-view
videos and meshes registered in the previous step.

We disentangle the garment’s appearance into two compo-
nents: a) a base Gaussian texture, introduced in Section 3.1.2.
b) a texture update predicted by a neural network fθ. This
neural network takes as input the albedo occlusion map A
and the normal map N of the mesh. Following Li et al. [16],
we choose the StyleUNet architecture for fθ. It predicts off-
sets to the texture’s spherical harmonics ∆ϕ, and translations
∆µ in each frame.

The predicted offsets to the spherical harmonic coeffi-
cients allow the model to separate the albedo colors stored in
the base texture from lighting effects (see Fig. 5). The trans-
lational offsets account for observational noise, preserving
high-frequency detail and local geometry of the surface (see
Fig.3 in Supp. Mat. for visual examples).



Figure 5. We disentangle the albedo color of the Gaussian Garments from the lighting effects predicted by a neural network. Here we
show four garments rendered over the registered sequence. Note how, when rendered with albedo colors, the garments lack any shadows or
specular effects. The lighting information comes solely from network predictions and matches the ground-truth information. The figure
shows registered mesh sequences that were not seen by the appearance model during training.

Figure 6. When a “fuzzy” garment is placed under another one, its
Gaussians phase through the outer garment (A, left). We solve this
by checking the visibility of the Gaussians’ surface points based on
the mesh geometries (B). Only the Gaussians with visible surface
points are rendered (A, right).

The final Gaussian texture Ω for a specific frame is for-
mulated as follows:

Ω = {ϕ+∆ϕ, α, s, r,µ+∆µ} ∈ RH×W×59, (6)

where ∆ϕ and ∆µ are predicted by fθ:

∆ϕ,∆µ = fθ(A,N). (7)

3.4. Mesh-based 3DGS rendering
When modeling surfaces in close proximity using 3D Gaus-
sian splatting, it is crucial to properly handle the visibility
of the Gaussians. For instance, if a fuzzy surface (e.g., fur)
is placed beneath an outer garment layer, the inner layer’s
Gaussians would incorrectly phase through it (see Fig. 6A),
whereas in reality, the fur would be pressed down by the
outer layer. Properly modeling effects like this would re-
quire simulating physical behavior on a per-Gaussian level.
We address this issue with a simple yet effective workaround
that leverages the coupling between the mesh and 3D Gaus-
sian splatting representations.

For each Gaussian, we cast a ray from the camera origin
to its corresponding surface point, defined by a mesh face
and the point’s barycentric coordinates. We then check if

this point is occluded by another mesh, such as the human
body or another garment, and only render the Gaussian if its
corresponding surface point is visible (see Fig. 6B).

3.5. Behavior fine-tuning
In the final stage of our pipeline, we optimize the garment’s
behavior. To simulate the dynamics of Gaussian garments,
we employ a learned graph neural network introduced in
ContourCraft [6]. This GNN, denoted as gψ, where ψ are
the network’s parameters, takes as input the nodal positions
xt and velocities vt of the mesh at the current frame t, along
with each node’s material vector m and each edge’s rest-
ing geometry Ē. From these inputs, gψ predicts the nodal
accelerations ât+1 for the next frame:

ât+1 = gψ(xt,vt,m, Ē) (8)

To fit the observed behavior of the garment, we jointly opti-
mize the model’s weights, the material vectors, and the rest
edges to minimize the loss function Lbehavior. This loss func-
tion combines the mean squared error between the predicted
and registered nodal positions with a set of physical terms.

ψ∗,m∗, Ē∗ = argmin
ψ∗,m∗,Ē∗

[∑
t

Lbehavior(gψ(xt,vt,m, Ē),at+1) ]
(9)

where at+1 are the nodal accelerations in frame t + 1 in a
registered sequence. For more details, please refer to Sec. 4
of the supplementary material.

4. Results
4.1. Data
In total, we use 15 garments in our experiments, of which
13 are part of the 4D-Dress dataset [36], and two are newly
captured garments with fuzzy fur-like textures. The subjects
wearing the garments are recorded by 48 cameras regularly
placed around them. Each garment is captured in 6 to 10



Table 1. Quantitative ablation study of our registration algorithm.

F-score, % ↑ CD, cm ↓ p2m, cm ↓ Lbody ↓
only-RGB 4.4 15.5e+2 6.19e-1 3.47e+2
w/o body 88.4 1.12 5.24e-1 4e-3
w/ body 89.1 6.57 5.26e-1 4.24e-1

Ours-full 89.6 1.04 5.04e-1 1.03e-5

video sequences with diverse poses of roughly 150 frames
each. We use 44 cameras to reconstruct, register, and train
the appearance models and validate our results using the
remaining 4 cameras. We train the appearance model and
fine-tune the simulation GNN with all multi-view videos
available for the given subject except one, holding it out as
a validation set. This way, we evaluate the trained parts of
the pipeline (appearance and behavior optimization) on the
pose sequences unseen during training. In our qualitative
evaluation and supplementary video, we also use sequences
from the AMASS dataset [21] demonstrating our ability to
generalize to completely new poses and body shapes.

4.2. Garment registration
We evaluate our algorithm for tracking-based mesh registra-
tion. In this section, we compare it to several ablations. In
Sec.6.1 of the Supp.Mat. we also compare our registration
procedure to the state-of-the-art registration method by Lin
et al. [17]. We demonstrate that using multi-view videos our
method achieves comparable, albeit slightly lower, accuracy
to [17], while the latter optimizes template meshes using
ground-truth scanned geometries.

For the quantitative analysis, we use three metrics: Cham-
fer Distance (CD), average point-to-mesh distance (p2m),
and F-score [12], which intuitively describes the percentage
of correctly reconstructed points on the mesh surface. We
use a threshold value of 1cm for the F-score. These metrics
measure how close the registration results are to the ground-
truth garment meshes, which are reconstructed with a system
similar to that used in [3]. To obtain the individual garment
parts, we perform semantic segmentation with the method
proposed by Wang et al. [36]. We also compute the body
penetration loss Lbody to measure how well the registered
mesh aligns with the underlying body geometry.

The first ablation “only-RGB” optimizes the positions of
the mesh vertices using only the RGB signal LRGB without
any physics-based regularization. In this case, the optimized
mesh completely loses its structure, producing disfigured ge-
ometry spatially distant from the ground truth (Table 1). The
second ablation adds two physical terms to the optimization
energy: Lbending and Lstretching. They serve as regularization
and help to keep garment geometry physically plausible.
However, the garments optimized without the body geome-
tries tend to implode and do not conform to the observed
body. In Table. 1 we call this ablation “w/o body.” “w/
body” uses the body penetration term Lbody with respect to
the parametric body meshes. This improves the draping in

Table 2. We quantitatively compare our full appearance model to a
set of ablations over the unseen pose sequences and unseen camera
views. Predicting lighting effects and per-frame translation offsets
allows us to better match the ground-truth observations.

LPIPS ↓ SSIM ↑ PSNR ↑
template-frame 1.09e-2 0.988 36.5

only-texture 9.52e-3 0.990 37.6
w/ lighting 8.52e-3 0.991 38.3
Ours-full 8.12e-3 0.992 38.8

most cases, but in dynamic pose sequences, the optimization
may start far away from the next frame body mesh leading
to divergence and worse metric values on average. In our
full registration pipeline “Ours-full,” we use a substitute loss
LVE for the first half of the optimization and then switch back
to Lbody (Sec. 3.2). This way, we successfully register the
dynamic movement of loose garments like dresses and open
jackets (see Fig.1 of the supplementary document for qual-
itative comparison of the ablations and the supplementary
video for further result visuals).

4.3. Appearance modeling
We evaluate the photorealism of our appearance model
both quantitatively (Table 2) and qualitatively (Fig.3 in the
Supp.Mat.) by comparing it to several ablations. The quanti-
tative evaluation (Table 2) compares the models in terms of
three metrics measuring visual realism: structural similarity
(SSIM) [42], learned perceptual similarity (LPIPS) [40], and
peak signal-to-noise ratio (PSNR). We perform the compar-
isons using validation videos not seen in training by any of
the models and novel camera views.

We first compare our model to a simple “template-frame”
procedure, which optimizes the Gaussian scene only for the
template frame. This bakes the lighting conditions and any
visual artifacts present in the template frame into the gar-
ment’s appearance. On the other hand, naı̈vely optimizing
the Gaussian texture over multiple videos (“only-texture”)
averages the lighting and high-frequency details, resulting in
blurry textures. The ablation w/ lighting optimizes a neural
network to predict lighting effects from local information –
ambient occlusion and normal maps. This helps disentangle
the garment’s albedo texture from lighting but still averages
high-frequency details. Finally, our full model (Ours-full)
accounts for the noise in the observations by predicting trans-
lational offsets for the Gaussians in each frame, which helps
preserve high-frequency information and reduce blur.

We also evaluate our behavior-tuning procedure in Sec.4
of the Supp. Mat.

4.4. Applications
Gaussian Garments create comprehensive representations of
real-world garments as distinct 3D assets. This opens the
door for many applications sought by 3D designers.



Figure 7. Applications of Gaussian Garments. A: Comparison of our method’s animations of dynamic pose sequences to Animatable
Gaussians [16]. Mesh-based representation and neural simulation make Gaussian Garments much more robust in challenging poses. B: We
automatically resize the Gaussian Garments to fit the desired body shape. C: We automatically combine multiple Gaussian Garments into
a single multi-layer outfit. This outfit is then simulated over a new pose sequence (leftmost). All results in this figure show geometries
simulated with a fine-tuned GNN over pose sequences from AMASS [21] that were not seen during training.

4.4.1. Simulation
Gaussian garments can be simulated in dynamic sequences
by the fine-tuned ContourCraft [6] GNN, which can pre-
vent and resolve cloth self-penetrations, thus automatically
modeling re-sized and re-posed multi-layer outfits. The sim-
ulation speed ranges from 10 fps for single garments to 1
fps for outfits with multiple layers as in Fig. 7C.

Compared to holistic Gaussian avatars like Animatable
Gaussians [16], using our reconstructed garments with the
simulation GNN allows us to robustly model challenging
pose sequences like jumps and tumbles. In Fig. 7A and in
the supplementary video, we demonstrate examples where
Gaussian Garments excel in modeling the reconstructed out-
fits compared to [16]. Since our method does not model the
non-covered parts of the human body, we do not compare
quantitatively to [16]. In Sec. 6.2 of the Supp. Mat. we also
provide a quantitative comparison to SCARF [5].

4.4.2. Mix-and-match
Multiple distinct garment assets, extracted from differ-
ent multi-view videos, can be combined into novel multi-
garment outfits. We first align each individual garment with
the canonical pose and shape of the parametric body model
SMPL-X [23]. Then, we automatically order the garments
by running a simple procedure built around ContourCraft
(see Sec. 5 of the Supp. Mat.). The resulting outfit can then
be simulated with the fine-tuned ContourCraft model. In
Fig. 7C, we show how we automatically combine garments
into a single simulation-ready outfit.

4.4.3. Garment resizing
The reconstructed Gaussian garments and their combina-
tions can be automatically re-sized to match a given body
shape, by adjusting the edge lengths in the garments’ rest
geometry according to the shape blend-weights collected
from the SMPL-X body. We diffuse the body model’s blend
weights as proposed by Santesteban et al. [28] to avoid arti-
facts caused by the resizing. Fig. 7B demonstrates an outfit
automatically resized to random body shapes.

5. Limitations and future work
While our method can model the overall geometry and pho-
torealistic appearance of garments, the following limitations
are to be addressed in future work. 1) For the appearance
model, we assume scenes with uniform lighting. Our ap-
proach predicts lighting effects based on ambient occlusion
and normal maps but does not accommodate dynamic re-
lighting. 2) While our Gaussian texture can capture high-
frequency geometric details like fur to some extent, its effec-
tiveness is limited by the quality of the segmentation masks
used during training. 3) We use Gaussian textures with a
fixed resolution of 5122 pixels, which may lead to magni-
fication and minification artifacts. An important direction
of future work is adopting standard computer graphics tech-
niques like mipmapping to Gaussian textures. 4) Details
such as collars and pockets are represented using the appear-
ance model rather than explicit geometry, as our approach is
not aware of the geometry of creases.

Finally, the first three stages of our pipeline can be used



with a differentiable physical simulator instead of the learned
GNN as long as this simulator allows for optimizing the
material parameters of the cloth. We chose ContourCraft [6]
for its ability to initialize and recover from self-intersecting
geometries and its inference speed.

6. Conclusion
We present Gaussian Garments, a comprehensive approach
for creating fully controllable 3D clothing assets from multi-
view videos based on 3D Gaussian splatting (3DGS). Our
approach seamlessly integrates 3DGS with commonly used
polygonal meshes to reconstruct the 3D geometry of gar-
ments, register it to video observations, optimize garment
appearance to achieve photorealistic quality, and fine-tune
garment behavior to model dynamic garment motion. We
demonstrate results on garment simulation, mixing-and-
matching, and resizing as some of the applications of our
Gaussian Garments.
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