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Abstract

Alignment with human preferences is an im-001
portant step in developing accurate and safe002
large language models. This is no exception003
in machine translation (MT), where better han-004
dling of language nuances and context-specific005
variations leads to improved quality. However,006
preference data based on human feedback can007
be very expensive to obtain and curate at a008
large scale. Automatic metrics, on the other009
hand, can induce preferences, but they might010
not match human expectations perfectly. In011
this paper, we propose an approach that lever-012
ages the best of both worlds. We first collect013
sentence-level quality assessments from pro-014
fessional linguists on translations generated by015
multiple high-quality MT systems and evaluate016
the ability of current automatic metrics to re-017
cover these preferences. We then use this anal-018
ysis to curate a new dataset, MT-PREF (Metric-019
induced Translation PREFerence), which com-020
prises 18k instances covering 18 language di-021
rections, using texts sourced from multiple022
domains post-2022. We show that aligning023
TOWER models on MT-PREF significantly im-024
proves translation quality on WMT23 and FLO-025
RES benchmarks.1026

1 Introduction027

The use of large language models (LLMs) in ma-028

chine translation (MT) has garnered significant at-029

tention from the research community (Kocmi et al.,030

2023). Unlike traditional sequence-to-sequence031

MT models trained on parallel data (Koehn and032

Knowles, 2017), LLM-based MT systems either033

use in-context learning to elicit translation knowl-034

edge acquired during pre-training (Briakou et al.,035

2023) or undergo supervised finetuning (SFT) on036

high-quality translations to further enhance their037

translation capabilities (Li et al., 2024; Xu et al.,038

2023; Alves et al., 2023, 2024).039

1We will release the code and datasets to reproduce all the
results on acceptance.

The default SFT approach for LLM-based MT 040

is to tune systems based solely on single human 041

reference translations. However, this kind of super- 042

vision might be insufficient to push quality further: 043

First, because many valid translations may exist 044

for a given source, with some preferred over oth- 045

ers (Mayhew et al., 2020). Second, because the 046

next-token prediction objective of SFT does not 047

capture sentence-level semantics and quality crite- 048

ria (Eikema and Aziz, 2020; Liu et al., 2022). This 049

has motivated new approaches which go beyond 050

SFT to leverage translation preferences or quality 051

feedback to improve learning (Yang et al., 2023; 052

He et al., 2024; Xu et al., 2024; Zhu et al., 2024). 053

A key factor in aligning LLMs toward transla- 054

tion preferences is ensuring the quality and diver- 055

sity of the datasets used for training (Gao et al., 056

2024; Morimura et al., 2024; Liu et al., 2023). Un- 057

fortunately, existing datasets have several limita- 058

tions: First, they are created from translation out- 059

puts of one or two models, for limited language 060

pairs, thereby restricting their diversity and applica- 061

bility to novel scenarios. Second, these datasets are 062

either entirely automatically generated (Xu et al., 063

2024) or completely based on human feedback 064

(Zhu et al., 2024). While automatic evaluation of- 065

fers efficiency, it lacks the crucial validation that the 066

metrics used truly align with human preferences. 067

On the other hand, datasets that use human feed- 068

back, while high-quality and reliable, pose resource 069

constraints and are challenging to scale. 070

To bridge this gap, we provide a holistic ap- 071

proach to balance the advantages of automated 072

metrics while ensuring that they lead to prefer- 073

ences that truly align with humans. We first col- 074

lect sentence-level quality assessments and prefer- 075

ences from human expert translators (§3)—we use 076

the WMT23 English-German and Chinese-English 077

datasets (Kocmi et al., 2023) with outputs from 078

five high-quality MT systems: TOWERINSTRUCT- 079

7B, TOWERINSTRUCT-13B (Alves et al., 2024); 080
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ALMA-13B-R (Xu et al., 2024); GPT-4-based081

(Hendy et al., 2023) and GOOGLETRANSLATE.082

Using these assessments, we then examine the abil-083

ity of automatic quality estimation (QE) metrics084

to recover human preferences. Our findings show085

that an ensemble of XCOMET-XL and XCOMET-086

XXL (Guerreiro et al., 2023)—XCOMET-XL+XXL—087

achieves the highest correlation with human judg-088

ments and a high precision score in identifying the089

preferred translations.090

Using this analysis, we create a new MT091

preference dataset, MT-PREF (Metric-induced092

Translation PREFerence dataset), with source sen-093

tences mined post-2022 for 10 languages (English,094

German, Chinese, Russian, Portuguese, Italian,095

French, Spanish, Korean and Dutch). Translations096

for each source sentence are generated using di-097

verse MT systems representing different architec-098

tures, training data, and quality levels (§4). We099

use the ensemble metric XCOMET-XL+XXL to get100

the most and least preferred translations from the101

set of hypotheses. Experiments on aligning MT-102

specialized decoder-only models (TOWER) using103

existing preference learning algorithms with our104

MT-PREF dataset demonstrate improved transla-105

tion quality on the WMT23 (Kocmi et al., 2023)106

and FLORES (Costa-jussà et al., 2022) bench-107

marks, with larger gains in out-of-English trans-108

lation directions (§6). Further analysis shows that109

the aligned models better rank translations accord-110

ing to human preferences over baselines.111

2 Background: Aligning MT with112

Translation Preferences113

Given a source text, the goal of MT is to generate114

a translation that accurately reflects the informa-115

tion and meaning conveyed in the source. At train-116

ing time, the MT model πθ goes through SFT to117

minimize the negative log-likelihood (NLL) loss118

induced by source-reference pairs (x, y):119

LNLL(x, y; θ) = − log πθ (y|x) . (1)120

A drawback of SFT is that it typically optimizes121

the model towards a single reference translation. In122

contrast, preference learning objectives incorporate123

relative preferences between alternatives, allowing124

the model to learn from subtle differences in trans-125

lation quality (Zeng et al., 2023).126

Different variants of preference optimization127

(PO) have been proposed in the literature. Rein-128

forcement learning from human feedback (RLHF)129

has shown to be effective in aligning model be- 130

havior with human values (Ouyang et al., 2022). 131

Rafailov et al. (2024) propose direct preference 132

optimization (DPO) as a simple and scalable alter- 133

native to RLHF. Given a preference dataset D with 134

source sentences x, preferred or chosen outputs y+ 135

and less preferred or rejected outputs y−, the model 136

is trained with the following objective: 137

LDPO(x, y±;πθ, πref) = (2) 138

− log σ

(
β log

πθ(y+|x)
πref(y+|x)

− β log
πθ(y−|x)
πref(y−|x)

)
, 139

where πθ is the parameterized policy, πref is a base 140

reference policy (set to the policy used to generate 141

the dataset for collecting preferences), and β is a 142

(inverse) temperature hyperparameter. 143

One notable limitation of the DPO objective is 144

that it requires both πθ and πref in memory, signifi- 145

cantly increasing memory requirements and com- 146

putation costs. To address this, Xu et al. (2024) 147

further approximate the DPO objective using a uni- 148

form reference model (πref = U) to derive a con- 149

trastive preference optimization (CPO) loss: 150

LDPO(x, y±;πθ,U) = − log σ

(
β log

πθ(y+|x)
πθ(y−|x)

)
.

(3)

151

However, both losses (2)–(3) only maximize the rel- 152

ative difference between preferred and dispreferred 153

outputs. On tasks like MT where the difference in 154

the two outputs is small, this may lead to failure 155

modes where the learning objective leads to a re- 156

duction of the model’s likelihood of the preferred 157

examples, as long as the relative probability be- 158

tween the two classes increases (Pal et al., 2024). 159

Therefore, following Hejna et al. (2023), Xu et al. 160

(2024) introduce a behavior cloning regularizer to 161

ensure that the model stays close to the preferred 162

distribution, leading to the final CPO objective: 163

LCPO(x, y±; θ) = (4) 164

LDPO(x, y±;πθ,U) + λLNLL(x, y+; θ), 165

where λ is a hyperparameter that controls the rela- 166

tive strength of the two objectives. 167

As the quality of the preference datasets used 168

for training is key for its success (Gao et al., 2024; 169

Morimura et al., 2024; Liu et al., 2023), we next 170

discuss our process of collecting a high-quality 171

dataset for preference learning for MT. 172
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3 Modeling User Preferences Via173

Automatic Metrics174

To create a high-quality preference dataset for MT,175

we need human judgments on translation outputs176

from strong MT systems. This helps us understand177

and model human preferences among competitive178

translations. Since large-scale collection of these179

judgments is costly, we evaluate existing automatic180

metrics to see if they effectively reflect human pref-181

erences. This determines if metrics can be reli-182

able proxies for human judgments when translation183

quality is high and preference variance is low.184

We describe the dataset, models, and task in-185

structions given to the expert annotators used in186

our study in §3.1. The human evaluation results187

are presented in §3.2. Finally, we discuss our meta-188

evaluation of automatic MT metrics in their ability189

to recover human preferences in §3.3.190

3.1 Data and Annotation Task191

We randomly sample 200 source instances from the192

WMT23 English-German (EN-DE) and Chinese-193

English (ZH-EN) test sets and generate transla-194

tions using five MT models: GOOGLETRANS-195

LATE, GPT-4, TOWERINSTRUCT-7B, TOWERIN-196

STRUCT-13B, and ALMA-13B-R (described in197

Appendix B).2 We employ DA+SQM (Direct As-198

sessment + Scalar Quality Metric) source con-199

trastive evaluation (Kocmi et al., 2022), using200

the Appraise evaluation framework (Federmann,201

2018).3 We then ask one linguist per language pair202

to read all translations for a given source and evalu-203

ate each of them on a continuous 0-100 scale. The204

scale features seven labeled tick marks indicating205

different quality labels combining accuracy and206

grammatical correctness. Linguists can further ad-207

just their ratings to reflect preferences or assign208

the same score to translations of similar quality.209

Detailed guidelines and a screenshot of the inter-210

face are provided in Appendix A. This results in a211

preference dataset including 1000 ratings each for212

EN-DE and ZH-EN.4213

3.2 Human Evaluation Findings214

We present the results from our human evaluation215

in Table 1 and discuss the findings below:216

2This is the only dataset that was not used in the training
of any evaluated models.

3https://github.com/AppraiseDev/Appraise.git.
4Completing the task takes approximately 10 to 11 hours

for each language pair.

DA TOP-1
MODEL EN-DE ZH-EN EN-DE ZH-EN

GOOGLETRANSLATE 86.87 79.85 62 114
GPT-4 87.98 79.12 66 108
TOWERINSTRUCT-13B 86.53 69.12 53 56
ALMA-13B-R 84.96 66.02 46 51
TOWERINSTRUCT-7B 83.32 68.66 37 63

Table 1: Human evaluation results: DA scores for all
MT systems are high, suggesting that translations are
generally of very good quality according to experts.
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Figure 1: Pairwise Preferences between different Sys-
tems: Google and GPT-4 translations are more preferred
over open-sourced alternatives.

Overall Quality For EN-DE, DA scores range 217

from 83.32 to 87.98, with no significant difference 218

in the translation quality of different systems, ac- 219

cording to the Mann-Whitney test (McKnight and 220

Najab, 2010). On the other hand, DA and Top-1 221

are significantly better for GPT-4 and GOOGLE- 222

TRANSLATE models for ZH-EN. Further qualitative 223

analysis shows that for WMT23 ZH-EN, the quality 224

of the source sentences is often poor—up to 25% 225

of source sentences were marked as problematic 226

by the linguist. This suggests there is still room for 227

improvement for open-source models over close- 228

sourced alternatives when generating translations 229

for noisy source texts (Peters and Martins, 2024). 230

Pairwise Preferences We also report pairwise 231

wins for each model against the other in Fig. 1. 232

GOOGLETRANSLATE and GPT-4 outputs are gen- 233

erally more preferred over open-sourced translation 234

alternatives. Further analysis shows that about 25% 235

and 10% pairs are tied for equal preferences for ZH- 236

EN and EN-DE respectively, further validating close 237

translation quality amongst alternatives. Taken to- 238

gether, these results show that all the evaluated MT 239

systems generate high-quality translations. 240
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EN-DE ZH-EN
METRIC

P S TAU PRECISION@1 P S TAU PRECISION@1

COMETKIWI-XL 0.275 0.272 0.229 47.0 0.332 0.336 0.289 42.9
COMETKIWI-XXL 0.253 0.238 0.198 43.9 0.342 0.346 0.279 46.6
XCOMET-XL 0.334 0.300 0.249 41.9 0.456 0.410 0.342 44.5
XCOMET-XXL 0.316 0.312 0.252 44.4 0.343 0.410 0.340 44.0
METRICX-23-L 0.238 0.238 0.191 37.9 0.428 0.409 0.328 42.4
METRICX-23-XL 0.270 0.245 0.206 39.4 0.417 0.410 0.342 45.5

XCOMET-XL+XXL 0.341 0.329 0.270 47.0 0.434 0.411 0.336 48.7
COMETKIWI-XL+XXL 0.273 0.252 0.211 43.9 0.347 0.357 0.290 41.4
XCOMET+KIWI-XXL 0.286 0.271 0.223 45.5 0.377 0.382 0.304 46.6

COMET-REF 0.331 0.286 0.234 50.5 0.243 0.211 0.169 47.1

Table 2: Correlation and Precision@1 for automatic QE metrics: XCOMET-XL+XXL results in the highest correlation
and Precision@1 across the board, outperforming reference-based metric, COMET-REF.

3.3 Evaluating Automatic Metrics241

We evaluate the best-performing metrics from242

the WMT23 QE Shared Task: 1) COMETKIWI243

(Rei et al., 2023); 2) XCOMET (Guerreiro et al.,244

2023); 3) METRICX (Juraska et al., 2023) and245

ensembles of these metrics obtained by aver-246

aging the scores from the two metrics: 4)247

COMETKIWI-XL+XXL 5) XCOMET-XL+XXL and248

6) COMETKIWI+XCOMET-XXL.5249

3.3.1 Metrics for Meta-Evaluation250

We report the following scores to assess these met-251

rics in their ability to recover human preferences:252

Correlation Following WMT evaluation cam-253

paign, we report the Pearson (P), Spearman (S),254

and Kendall Tau (TAU) correlation of automatic255

metrics with human judgements over all collected256

judgments grouped by source.257

Precision@1 for the best translation We addi-258

tionally report the precision of identifying the best259

hypothesis by an automatic metric as the number of260

times the metric’s ranked best translation is in the261

set of human-ranked best translations. Note that262

as we ask linguists to provide the same scores to263

mark equal preferences over different translations,264

multiple translations can obtain the highest quality.265

3.3.2 Findings266

Our main results are summarized in Table 2. The267

correlation between human judgments and met-268

ric scores on these high-quality translations is269

rather low, suggesting a limited ability to model270

5We refer the reader to the original papers for each metric
for more details about the training and architecture.

human preferences between multiple translations 271

for the same source. XCOMET-XL+XXL, an ensem- 272

ble of XCOMET-XL and XCOMET-XXL, achieves 273

the best Spearman and PRECISION@1 across the 274

board, even outperforming reference-based metric 275

COMET (Rei et al., 2020) on this task. Hence, we 276

use this metric to induce preference judgments in 277

our dataset in §4. Designing metrics that accu- 278

rately reflect these quality preferences remains an 279

open challenge. The dataset collected in our study 280

can potentially be used to benchmark new metrics, 281

which we leave for future work. 282

4 MT-PREF Dataset 283

Building on the findings from §3, we create our 284

preference dataset using XCOMET-XL+XXL. We 285

discuss the choice of the text and models in §4.1, 286

followed by the method for inducing and selecting 287

preference pairs from the dataset in §4.2. 288

4.1 Data and MT Systems 289

We collect source segments from REDPAJAMA 290

(Computer, 2023) for English, German, French, 291

Spanish, and Italian, and use MC4 (Raffel et al., 292

2019) for the remaining languages: Portuguese, 293

Russian, Chinese, French, and Korean. Approxi- 294

mately 1000 segments published after July 2022 295

were extracted and filtered for each language us- 296

ing the perplexity score available in the original 297

REDPAJAMA and MC4 collections. The perplexity 298

thresholds vary across languages and were defined 299

after manual checks on the filtered segments, avoid- 300

ing non-fluent segments with repetitive patterns 301

such as sequences of numbers, non-alphanumeric 302

characters, and repeated words, among others. 303
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Figure 2: Distribution of counts and scores for the chosen (y+) and rejected (y−) hypotheses across models.

We generate translation outputs using greedy304

decoding from six diverse models varying in archi-305

tecture (encoder-decoder and decoder-only), model306

sizes (7B, 13B, 54B), and output quality (see Fig-307

ure 2). Specifically, we use 1) NLLB-54B (Costa-308

jussà et al., 2022), 2) ALMA-13B (Xu et al.,309

2023), 3) GPT-4, 4) GOOGLETRANSLATE, and310

5) TOWER models (TOWERINSTRUCT-13B and311

TOWERINSTRUCT-7B). A detailed description of312

MT systems is provided in the Appendix B. We313

generate translations using all models for all direc-314

tions EN ⇔ {DE, FR, PT, NL, KO, ZH, RU, ES, IT},315

with two exceptions. For ALMA-13B, we only316

generate outputs for supported language pairs (EN317

⇔ {DE, ZH, RU}) and discard translations for {ZH,318

KO} → EN from NLLB-54B due to inferior quality319

and frequent hallucinations.320

4.2 Creating Preferences321

For each source sentence x, we have up to six322

translation options {yj}6j=1. Our goal is to get323

preference triples of source (x), a preferred/chosen324

hypothesis (y+), and a less preferred/rejected hy-325

pothesis (y−). We use an automatic quality estima-326

tion metric M to create this dataset of preference327

triples D = {(x, y+, y−)} and resort to a simple328

criterion that obtains the maximum discrepancy un-329

der M. We first measure the translation quality330

scores for each pair (x, yj), resulting in the scores331

s = {sj}6j=1. We then select the best and the332

worst translation hypotheses from the ranked list333

induced by the scores, s, i.e. y+ = yargmaxj(sj)334

and y− = yargminj(sj). This results in a unique335

preference triplet for each source sentence.336

5 Experimental Settings337

We use the MT-PREF dataset to align MT mod-338

els with translation preferences (§4) and compare339

several preference learning methods detailed in §2.340

Training Data The MT-PREF dataset contains341

18k instances with approximately 1k examples for342

each translation direction. The counts of the chosen 343

and the rejected hypotheses from each model and 344

the distribution of metric scores are shown in Fig. 2. 345

The NLLB-54B model accounts for most of the 346

rejected hypotheses (∼46%), whereas the chosen 347

hypotheses are more equally distributed across the 348

GPT-4, GOOGLETRANSLATE, and the TOWER 349

models, illustrating consistent and higher-quality 350

translations generated by these models. 351

Evaluation We evaluate finetuned models on the 352

WMT23 test set (EN ↔ {DE, RU, ZH}) and the 353

FLORES dev-test set (EN ↔ DE, RU, ZH, ES, FR, 354

PT, NL, IT, KO) using TOWER-EVAL.6 We re- 355

port system-level translation quality using CHRF 356

(Popović, 2015), COMET, and XCOMET-XL. We 357

cluster system performance using the Wilcoxon 358

rank-sum test (p < 0.05) with COMET as the pri- 359

mary metric. Rank ranges, denoted by [l+1, n−w], 360

indicate the number of systems a particular system 361

underperforms or outperforms, where l represents 362

the number of losses, n is the total number of sys- 363

tems, and w is the number of systems that the sys- 364

tem in question significantly outperforms (Kocmi 365

et al., 2023). We compare the models’ accuracy (% 366

ACC.) for selecting the best-over-worst hypothesis 367

with the model’s likelihood on the human prefer- 368

ences (§3) after finetuning on MT-PREF. 369

Model Configurations We finetune TOWERIN- 370

STRUCT-7B using preference optimization methods 371

detailed in §2 with the following configurations: 372

• SFT: a baseline model supervised finetuned on 373

the chosen or the most preferred response. 374

• DPOsft: model trained with πref=SFT in Eq. 2. 375

• DPObase: base model directly finetuned with 376

DPO, i.e. πref=TOWERINSTRUCT-7B. 377

• DPObase+SFT: base model finetuned with a com- 378

bination of DPO and SFT regularization, i.e. 379

LDPO(x, y±;πθ, πref) + λLNLL(x, y+; θ). 380

6https://github.com/deep-spin/tower-eval
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EN-XX XX-EN
MODEL

CHRF COMET XCOMET-XL RANK CHRF COMET XCOMET-XL RANK
% ACC.

TOWERINSTRUCT-7B 52.25 84.32 85.32 9-12 58.87 82.77 88.77 9-12 53.25
+ SFT 53.29 84.26 85.11 9-12 59.30 82.79 89.16 5-12 58.50
+ DPOsft 53.27 84.85 85.63 5-9 59.86 83.18 89.56 3-11 59.25
+ DPObase 49.90 84.64 86.14 9-12 58.34 83.05 89.73 4-12 59.50
+ DPObase+SFT 52.42 84.99 86.37 5-8 59.43 83.16 89.60 3-11 58.25
+ CPO 52.95 85.05 86.43 5-8 59.62 83.14 89.70 3-11 59.50

TOWERINSTRUCT-13B 54.15 85.17 86.55 5-8 59.86 83.18 89.33 4-12 59.50
+ CPO 54.45 85.59 87.22 3-4 60.55 83.49 89.98 2-7 60.25

ALMA-13B-R 47.57 84.95 87.27 8-12 58.79 83.12 89.43 5-12 50.00
GPT-3.5 56.38 85.56 86.92 3-4 60.92 83.48 90.00 2-9 -
GPT-4 56.94 86.01 87.43 2 61.33 83.69 90.34 2-4 -
GOOGLETRANSLATE 60.43 86.44 87.53 1 62.05 84.07 89.83 1 -

Table 3: Comparing PO methods on WMT23: Both CPO and DPObase+SFT result in significant improvement in
translation quality, closing the gap with TOWERINSTRUCT-13B.

• CPO: model finetuned with the objective in Eq. 4.381

We also compare the aligned models against382

TOWERINSTRUCT-13B, GPT-4, ALMA-13B-R383

and GOOGLETRANSLATE models. All training384

details are provided in Appendix D.385

6 Results386

We first present the results of comparing several387

PO methods (§2) in Table 3 on the WMT23 and388

FLORES datasets. Scores are averaged for from-389

English (EN-XX) and to-English (XX-EN) transla-390

tion directions. Results for individual language391

pairs are shown in Appendix E. We then compare392

preference learning on MT-PREF against an ex-393

isting preference dataset (§6.2), followed by an394

ablation on the impact of the dataset size on the395

final translation quality (§6.3).396

6.1 Comparing PO Algorithms397

SFT results in limited translation quality gains.398

SFT on the chosen response from the MT-PREF399

dataset improves CHRF over TOWERINSTRUCT-7B400

on EN-XX (+1.04) and XX-EN (+0.43) translation401

directions, with no significant difference in COMET402

and XCOMET-XL in EN-XX direction. However,403

we observe a large gain (+5.25%) in % ACC., sug-404

gesting that the model does acquire some ability405

to distinguish high-quality translations even when406

trained with best translations only.407

Preference learning improves translation qual-408

ity. Most PO methods improve COMET and409

XCOMET-XL as well as % ACC. over TOWERIN-410

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

60

40

20

Lo
gp

s

CPO
DPO-from-SFT

DPO-from-Base
DPO-from-Base+SFT

Figure 3: Log probabilities for chosen ( ) and rejected
( ) hypotheses during training across PO methods:
DPObase reduces the likelihood for both chosen and
rejected responses, resulting in reduced output quality.

STRUCT-7B in both directions, showing that align- 411

ing LLMs with preferences benefits MT. The trans- 412

lation quality gap between TOWERINSTRUCT-7B 413

and TOWERINSTRUCT-13B by COMET is reduced 414

significantly. Optimizing TOWERINSTRUCT-13B 415

on MT-PREF with CPO further improves transla- 416

tion quality significantly reaching comparable qual- 417

ity to GPT-3.5 and GPT-4 for EN-XX and XX-EN 418

directions respectively. This illustrates that finetun- 419

ing on MT-PREF can improve translation quality 420

even for larger models. 421

SFT is necessary to obtain translation qual- 422

ity improvements using DPO. Comparing dif- 423

ferent variants of DPO (DPOsft, DPObase and 424

DPObase+SFT), we find that either the SFT phase 425

or the SFT regularization is necessary to obtain sig- 426
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EN-XX XX-EN
DATASET

CHRF COMET XCOMET-XL RANK CHRF COMET XCOMET-XL RANK

TOWERINSTRUCT-7B 56.14 88.51 93.01 4 64.08 88.28 96.20 3-4
+ CPO 56.70 88.81 93.71 2-3 64.21 88.32 96.56 3-4

TOWERINSTRUCT-13B 57.17 88.89 93.85 2-3 64.80 88.50 96.44 1-2
+ CPO 57.79 89.15 94.30 1 64.90 88.51 96.71 1-2

Table 4: CPO finetuning using MT-PREF improves translation quality for TOWER models on FLORES.

EN-XX XX-EN
DATASET METRIC N

CHRF COMET XCOMET-XL RANK CHRF COMET XCOMET-XL RANK

TOWER-7B - - 52.25 84.32 85.32 5-7 58.87 82.77 88.77 5-7

MT-PREF
XCOMET-XL+XXL

18k 52.95 85.05 86.43 1-5 59.62 83.14 89.70 1-6
6k 52.98 84.81 85.98 2-6 59.63 83.09 89.46 1-7

XCOMET+KIWI–XXL 18k 52.87 84.86 85.90 1-6 59.86 83.15 89.54 1-6

ALMA-R XCOMET+KIWI-XXL
14k 49.87 84.89 86.35 3-7 59.63 83.24 89.47 1-6
6k 51.02 84.76 85.90 2-7 59.72 83.15 89.33 1-6

TOWER-13B 54.15 85.17 86.55 1-3 59.86 83.18 89.33 1-7

Table 5: CPO finetuning on ALMA-R-PREF and MT-PREF variants: Preferences induced via XCOMET-XL+XXL
on all examples gives the best overall results.

nificant COMET improvements. This also aligns427

with findings from Tunstall et al. (2023) who show428

that learning from chat preference datasets fails429

when skipping the initial SFT stage. Interestingly,430

DPObase attains the highest % ACC. scores among431

variants, showing an improved ability to discern but432

not necessarily generate high-quality translations.433

We find that as suggested by (Pal et al., 2024), it434

is indeed because DPObase increases the relative435

probability between the two classes by decreasing436

the model’s likelihood for both chosen and rejected437

translations (see Fig. 3).438

Results on FLORES We report the results of439

aligning TOWERINSTRUCT-7B with CPO on FLO-440

RES in Table 4. On average, the translation qual-441

ity of the base models, TOWERINSTRUCT-7B and442

TOWERINSTRUCT-13B, improves with alignment443

tuning across the board according to all metrics,444

with TOWERINSTRUCT-7B reaching close COMET445

and XCOMET-XL scores to TOWERINSTRUCT-446

13B, despite being 2 times smaller in size.447

In gist, we show that CPO results in the best-448

aligned TOWERINSTRUCT-7B, matching transla-449

tion quality with TOWERINSTRUCT-13B on both450

WMT23 and FLORES benchmarks. We next com-451

pare preference optimization using CPO on MT-452

PREF against existing preference datasets.453

6.2 MT-PREF Vs. ALMA-R-PREF 454

Xu et al. (2024) use the FLORES-200 develop- 455

ment and test datasets to create a preference dataset, 456

ALMA-R-PREF. For each source sentence in 457

the corpus, they take the human-written reference, 458

and outputs from ALMA-13B-R and GPT-4 mod- 459

els, and induce preferences using an ensemble of 460

XCOMET-XXL and COMETKIWI-XXL metrics. We 461

note that this metric ensemble attains similar or 462

lower correlation scores compared to the best indi- 463

vidual metrics on both language pairs as shown in 464

Table 2. We compare the translation quality of the 465

resulting models when aligned with MT-PREF and 466

ALMA-R-PREF preference datasets in Table 5.7 467

Training on ALMA-R-PREF preference dataset 468

improves neural metrics but significantly hurts 469

CHRF compared to the base model, TOWERIN- 470

STRUCT-7B.8 Our analysis shows that finetuning 471

on the ALMA-R-PREF dataset increases the out- 472

put length significantly. This could be due to the 473

inherent bias in the dataset where the chosen re- 474

sponses, typically by GPT-4 (45%), are on average 475

longer than the rejected responses.9 This has im- 476

7We do not compare with MAPLE (Zhu et al., 2024) due
to lack of open access to this dataset.

8A difference of 2.4 CHRF points is considered significant
with 87% accuracy (Kocmi et al., 2024).

9The difference in the length of chosen and rejected trans-
lations in the training dataset is also significant according to
an independent t-test with a p-value of 0.01.
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Figure 4: COMET with varying size of the preference
dataset: EN-XX continues to benefit from more samples.

portant implications for the creation and modeling477

of preferences – when a model is too frequently478

“preferred” in a dataset, it can lead to the distillation479

of that model’s characteristics and it is unclear to480

what extent humans prefer these distilled features.481

TOWERINSTRUCT-7B finetuned on equal-sized482

ALMA-R-PREF and MT-PREF datasets score483

close on neural metrics, with a difference of 1.96484

points on CHRF. As our preference dataset con-485

siders outputs from multiple models with diverse486

styles, we do not distill any such model-specific487

biases. Furthermore, aligning on preferences in-488

duced via XCOMET-XL+XXL yields slightly better489

COMET score on EN-XX direction over preferences490

with XCOMET+KIWI-XXL, further validating the491

importance of inducing preferences using metrics492

guided by human knowledge.493

6.3 Impact of the Size of Preference Datasets494

One advantage of our approach is that we can scale495

the size of preference datasets as necessary as pref-496

erences are induced using an automatic QE metric.497

To understand whether this is indeed beneficial, we498

conduct an ablation where we vary the number of499

unique source samples per language pairs as: {200,500

400, 600, 800, 1000} and align TOWERINSTRUCT-501

7B on the resulting preference dataset using CPO.502

Fig. 4 shows the results: while the improvement in503

quality for XX-EN plateaus with just 400 samples504

per language direction, COMET continues to im-505

prove for EN-XX suggesting that adding more data506

might benefit translations from English to other507

language pairs. This aligns with the fact that the508

model is exposed to relatively fewer non-English509

texts during pretraining and hence benefits more510

from any additional dataset on these languages.511

7 Related Work 512

LLMs for MT Earlier works exploring LLMs to 513

perform MT study prompting techniques to gener- 514

ate translations (Hendy et al., 2023; Zhang et al., 515

2023a; Vilar et al., 2023) with research focusing 516

on selecting high-quality and relevant examples 517

as demonstrations to incorporating external knowl- 518

edge mimicking human-like translation strategies 519

(He et al., 2023). More recently, several works have 520

proposed finetuning LLMs to improve the transla- 521

tion quality (Zhang et al., 2023b; Alves et al., 2023), 522

resulting in specialized models that attain com- 523

petitive performance to state-of-the-art production 524

level translation systems (Xu et al., 2023; Alves 525

et al., 2024). Across all methods, the quality of 526

the data used for training is paramount to the fine- 527

tuning methods. Therefore, in this work, we focus 528

on curating a high-quality translation preference 529

dataset using metrics that closely reflect true hu- 530

man translation preferences and outputs generated 531

from a diverse set of high-quality MT systems. 532

Quality Feedback for MT Using feedback from 533

automatic metrics for MT or human quality assess- 534

ment has been an active area of research through 535

the past decade. This quality signal is either uti- 536

lized during training (Shen et al., 2016; Wieting 537

et al., 2019; Yang et al., 2023; He et al., 2024; Gul- 538

cehre et al., 2023; Nguyen et al., 2017; Kreutzer 539

et al., 2018, 2020) or decoding (Freitag et al., 2022; 540

Fernandes et al., 2022; Farinhas et al., 2023) or 541

for modeling translation preferences in the dataset 542

directly (Xu et al., 2024; Zhu et al., 2024). Simi- 543

lar to Xu et al. (2024), we use automatic metrics 544

to induce preferences in the dataset but with the 545

additional validation that the chosen metric indeed 546

reflects human quality expectations and with trans- 547

lations generated from diverse MT systems. 548

8 Conclusion 549

We present MT-PREF, a high-quality translation 550

preference dataset, curated by combining the 551

strengths of human evaluation and automatic met- 552

rics. The dataset includes metric-induced prefer- 553

ences from strong MT models across 18 language 554

directions with new source sentences mined post- 555

2022. Aligning state-of-the-art decoder-only LLMs 556

on this preference dataset using existing aligning 557

tuning algorithms improves translation quality. Fur- 558

thermore, the aligned models are also better at mod- 559

eling human preferences of translation quality. 560
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Limitations561

We note a few limitations of our work. We evalu-562

ate the translation quality of the finetuned models563

primarily using automatic metrics. While we val-564

idate that they can indeed provide a reasonable565

signal to differentiate quality at the system level566

(See Appendix C), it requires a human evaluation567

to confirm whether and to what extent the aligned568

models match human preferences. Furthermore,569

we use existing QE metrics that can be sensitive570

to the domain of the datasets (Zouhar et al., 2024).571

However, as the QE metrics continue to improve,572

our approach allows to substitute the preferences573

with that induced by a better QE metric. Finally,574

we do not handle tied preferences in translation575

quality and always induce a strict preference order.576

Incorporating neutral preferences between transla-577

tions can help the model focus on attributes that578

truly improve quality over stylistic preferences; we579

leave the investigation of this phenomenon to fu-580

ture work. We note that our dataset can be used to581

design better QE metrics for ranking translations,582

inducing preferences using new criteria, and em-583

ploying better optimization methods.584

Potential Risks585

Large language models may carry the potential586

risk of generating fluent and hallucinated content.587

When the users do not know the target or the588

source language, they might trust the generated589

translation without further verification (Martindale590

and Carpuat, 2018). And while our approach is591

driven toward making the model aware of trans-592

lations of varying quality during finetuning, the593

coverage is limited to the supported language pairs.594

Users should exercise caution and seek verification595

from additional sources where possible when using596

LLMs on real-world applications.597
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Popel, and Maja Popović. 2022. Findings of the 2022 735
conference on machine translation (WMT22). In 736
Proceedings of the Seventh Conference on Machine 737
Translation (WMT), pages 1–45, Abu Dhabi, United 738
Arab Emirates (Hybrid). Association for Computa- 739
tional Linguistics. 740

Tom Kocmi, Vilém Zouhar, Christian Federmann, and 741
Matt Post. 2024. Navigating the metrics maze: Rec- 742
onciling score magnitudes and accuracies. arXiv 743
preprint arXiv:2401.06760. 744

Philipp Koehn and Rebecca Knowles. 2017. Six chal- 745
lenges for neural machine translation. In Proceedings 746
of the First Workshop on Neural Machine Translation, 747
pages 28–39, Vancouver. Association for Computa- 748
tional Linguistics. 749

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler. 750
2020. Correct me if you can: Learning from error 751
corrections and markings. In Proceedings of the 22nd 752
Annual Conference of the European Association for 753
Machine Translation, pages 135–144, Lisboa, Portu- 754
gal. European Association for Machine Translation. 755

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and 756
Stefan Riezler. 2018. Can neural machine translation 757
be improved with user feedback? In Proceedings of 758
the 2018 Conference of the North American Chap- 759
ter of the Association for Computational Linguistics: 760
Human Language Technologies, Volume 3 (Industry 761
Papers), pages 92–105, New Orleans - Louisiana. 762
Association for Computational Linguistics. 763

Jiahuan Li, Hao Zhou, Shujian Huang, Shanbo Cheng, 764
and Jiajun Chen. 2024. Eliciting the translation abil- 765
ity of large language models via multilingual finetun- 766
ing with translation instructions. Transactions of the 767
Association for Computational Linguistics, 12:576– 768
592. 769

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and 770
Junxian He. 2023. What makes good data for 771
alignment? a comprehensive study of automatic 772
data selection in instruction tuning. arXiv preprint 773
arXiv:2312.15685. 774

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham 775
Neubig. 2022. BRIO: Bringing order to abstractive 776
summarization. In Proceedings of the 60th Annual 777
Meeting of the Association for Computational Lin- 778
guistics (Volume 1: Long Papers), pages 2890–2903, 779

10

https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://aclanthology.org/2020.eamt-1.15
https://aclanthology.org/2020.eamt-1.15
https://aclanthology.org/2020.eamt-1.15
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207


Dublin, Ireland. Association for Computational Lin-780
guistics.781

Marianna Martindale and Marine Carpuat. 2018. Flu-782
ency over adequacy: A pilot study in measuring user783
trust in imperfect mt. In Proceedings of the 13th Con-784
ference of the Association for Machine Translation785
in the Americas (Volume 1: Research Track), pages786
13–25.787

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill788
McDowell, Will Monroe, and Burr Settles. 2020. Si-789
multaneous translation and paraphrase for language790
education. In Proceedings of the Fourth Workshop on791
Neural Generation and Translation, pages 232–243,792
Online. Association for Computational Linguistics.793

Patrick E McKnight and Julius Najab. 2010. Mann-794
whitney u test. The Corsini encyclopedia of psychol-795
ogy, pages 1–1.796

Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Ken-797
shi Abe, and Kaito Air. 2024. Filtered direct prefer-798
ence optimization. arXiv preprint arXiv:2404.13846.799

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-800
Graber. 2017. Reinforcement learning for bandit801
neural machine translation with simulated human802
feedback. In Proceedings of the 2017 Conference on803
Empirical Methods in Natural Language Processing,804
pages 1464–1474, Copenhagen, Denmark. Associa-805
tion for Computational Linguistics.806

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,807
Carroll Wainwright, Pamela Mishkin, Chong Zhang,808
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.809
2022. Training language models to follow instruc-810
tions with human feedback. Advances in neural in-811
formation processing systems, 35:27730–27744.812

Arka Pal, Deep Karkhanis, Samuel Dooley, Man-813
ley Roberts, Siddartha Naidu, and Colin White.814
2024. Smaug: Fixing failure modes of prefer-815
ence optimisation with dpo-positive. arXiv preprint816
arXiv:2402.13228.817

Ben Peters and André FT Martins. 2024. Did trans-818
lation models get more robust without anyone even819
noticing? arXiv preprint arXiv:2403.03923.820
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A Annotation Guidelines and Interface 928

Task Overview This task involves evaluating five translations of a source text and assigning a quality 929

rating to each translation based on its overall quality and adherence to the source content. You will need 930

to consider the accuracy, fluency, and overall quality when assessing the different translations. 931

Annotation Scale Each translation is evaluated on a continuous scale of 0-6 with the quality levels 932

described as follows: 933

• 6: Perfect Meaning and Grammar: The meaning of the translation is completely consistent with the 934

source and the surrounding context (if applicable). The grammar is also correct. 935

• 4: Most Meaning Preserved and Few Grammar Mistakes: The translation retains most of the meaning 936

of the source. It may have some grammar mistakes or minor contextual inconsistencies. 937

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but misses 938

significant parts. The narrative is hard to follow due to fundamental errors. Grammar may be poor. 939

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source. 940

Grammar is irrelevant. 941

You can scroll up or down to see all the other translation outputs from the different systems. Figure 5 942

shows the interface when comparing and evaluating five translations. While each translation is evaluated 943

independently, these translations can also be ranked based on the difference in their absolute scores. It is 944

perfectly valid to give the same score to multiple translations if you believe they are of the same overall 945

quality. 946

Other Details We hired native speakers of Chinese and German for this task (both females) and they 947

were compensated at $20 per hour. 948

B MT Systems 949

We use the following MT systems: 950

1. NLLB-54B (Costa-jussà et al., 2022) is a 54B encoder-decoder multilingual translation model, based 951

on a sparsely gated Mixture of Experts (MoE) approach. It covers 202 languages, supporting translation 952

for many low-resource languages. 953

2. TOWERINSTRUCT-13B and TOWERINSTRUCT-7B are 13B and 7B decoder-only LLMs, trained to 954

optimize quality on multiple tasks present in translation workflows. The model is continued pretrained 955

from LLAMA 2 (Touvron et al., 2023) checkpoints on a multilingual mixture of monolingual and 956

parallel data, followed by finetuning on instructions relevant to translation processes. 957

3. ALMA-13B (Xu et al., 2023) is a 13B decoder-only model specialized for MT via continued pretaining, 958

followed by instruction tuning on a small but high-quality parallel dataset. Unlike TOWERINSTRUCT 959

models, the continued pretraining phase only explores monolingual data, and the instruction tuning is 960

performed with an MT dataset only. 961

4. ALMA-13B-R (Xu et al., 2024) is a 13B decoder-only model obtained by finetuning ALMA-13B 962

with ALMA-R-PREF using CPO. 963

5. GPT-4 (Achiam et al., 2023) is prompted in a zero-shot fashion, following Hendy et al. (2023), to 964

generate translations using the prompt: 965

Translate this sentence from [source language] to [target language]: 966

Source: [source sentence] 967

Target: 968

6. GOOGLETRANSLATE is the basic version of the Translate API v2 accessed on 2024-03-04.10 969

10https://translation.googleapis.com/language/translate/v2
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EN-DE ZH-ENMODEL
CHRF COMET XCOMET-XL DA CHRF COMET XCOMET-XL DA

GOOGLETRANSLATE 68.83 (1) 0.854 (1) 0.941 (1) 86.87 (2) 49.40 (1) 0.810 (1) 0.884 (1) 79.85 (1)
GPT-4 68.50 (2) 0.848 (2) 0.932 (3) 87.98 (1) 45.95 (2) 0.799 (2) 0.877 (2) 79.12 (2)
TOWERINSTRUCT-13B 66.45 (3) 0.843 (3) 0.931 (4) 86.53 (3) 45.29 (3) 0.794 (3) 0.866 (3) 69.12 (3)
ALMA-13B-R 59.92 (5) 0.836 (4) 0.935 (2) 84.96 (4) 44.72 (4) 0.793 (4) 0.858 (5) 66.02 (5)
TOWERINSTRUCT-7B 64.61 (4) 0.830 (5) 0.918 (5) 83.32 (5) 43.77 (5) 0.790 (5) 0.860 (4) 68.66 (4)

PAIRWISE-ACC 8/10 9/10 7/10 - 9/10 9/10 10/10 -

Table 6: Automatic Evaluation - System Level for reference-based metrics. Ranks represent the ordering based on
averaged DA scores.

C System-level Correlation970

Table 6 shows the system-level translation quality scores assigned by reference-based metrics: CHRF,971

COMET, and XCOMET-XL for all five models and their induced system-level rankings. For both directions,972

COMET results in 90% agreement with human judgments, confirming its accuracy in rating high-quality973

systems and hence we use COMET as the primary metric for ranking different systems.974

D Training Details975

Hyperparameters We finetune TOWERINSTRUCT-7B and TOWERINSTRUCT-13B models (Alves et al.,976

2024) using the TRL library (von Werra et al., 2020) with a batch size of 64, a maximum output length977

of 256, a learning rate of 5× 10−7 and a warm-up ratio of 0.1. The model is finetuned using different978

preference algorithms (§2) for 3 epochs with RMSProp optimizer (Hinton et al., 2012). For SFT, following979

(Tunstall et al., 2023), we finetune the base model for one epoch with a learning rate of 1× 10−5 using980

Adam optimizer (Kingma and Ba, 2014). We use greedy decoding to generate translation hypotheses using981

the aligned models. All our models are trained on two Nvidia A100 GPUs. Training takes approximately982

four to five hours to converge.983

E Results by WMT23 Language Direction984

We report results comparing preference optimization methods when trained with MT-PREF on individual985

language pairs using COMET, CHRF and XCOMET-XL in Tables 7, 8 and 9 respectively.986

MODEL EN-DE EN-ZH EN-RU DE-EN ZH-EN RU-EN

TOWERINSTRUCT-7B 83.25 84.98 84.72 85.25 80.15 82.90
+ SFT 83.01 85.47 84.29 85.25 80.25 82.86
+ DPOsft 83.83 85.81 84.91 85.66 80.72 83.17
+ DPObase 83.73 84.64 85.55 85.25 80.60 83.30
+ DPObase+SFT 83.86 85.65 85.46 85.53 80.69 83.26
+ CPO 83.92 85.74 85.49 85.47 80.79 83.17

TOWERINSTRUCT-13B 84.02 85.97 85.52 85.60 80.71 83.23
+ CPO 84.53 86.32 85.91 85.72 81.25 83.49

ALMA-13B-R 84.03 84.97 85.85 85.54 80.55 83.28
GPT-3.5 84.61 86.70 85.38 85.91 81.52 83.02
GPT-4 84.89 87.08 86.07 86.17 81.27 83.63
GOOGLETRANSLATE 84.77 88.09 86.45 86.24 82.19 83.78

Table 7: COMET on WMT23 dataset comparing PO methods when trained with MT-PREF.
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MODEL EN-DE EN-ZH EN-RU DE-EN ZH-EN RU-EN

TOWERINSTRUCT-7B 65.74 37.34 53.66 67.80 49.91 58.89
+ SFT 65.76 40.16 53.95 67.93 50.89 59.08
+ DPOsft 66.16 39.56 54.10 68.57 51.61 59.38
+ DPObase 64.23 33.02 52.43 66.61 50.25 58.15
+ DPObase+SFT 65.90 37.59 53.78 67.97 50.89 59.42
+ CPO 66.22 38.68 53.96 68.25 51.31 59.30

TOWERINSTRUCT-13B 66.90 40.62 54.95 68.47 51.22 59.89
+ CPO 67.36 40.74 55.24 69.03 52.35 60.28

ALMA-13B-R 60.38 32.14 50.19 66.30 51.28 58.79
GPT-3.5 68.38 45.25 55.50 69.21 53.78 59.77
GPT-4 69.30 45.67 55.86 69.91 53.37 60.70
GOOGLETRANSLATE 69.08 52.99 59.21 70.28 55.15 60.72

Table 8: CHRF on WMT23 dataset comparing PO methods when trained with MT-PREF.

MODEL EN-DE EN-ZH EN-RU DE-EN ZH-EN RU-EN

TOWERINSTRUCT-7B 84.44 83.77 87.75 89.07 85.02 92.23
+ SFT 84.48 83.67 87.19 89.24 85.75 92.48
+ DPOsft 84.98 84.13 87.78 89.62 86.22 92.84
+ DPObase 85.17 83.78 89.47 89.54 86.41 93.23
+ DPObase+SFT 85.24 84.67 89.20 89.51 86.33 92.95
+ CPO 85.33 84.98 88.97 89.51 86.70 92.88

TOWERINSTRUCT-13B 85.42 85.17 89.05 89.41 85.81 92.77
+ CPO 86.13 85.80 89.74 89.86 86.86 93.21

ALMA-13B-R 86.09 84.81 90.91 89.24 86.14 92.92
GPT-3.5 86.62 85.16 88.99 89.80 87.23 92.98
GPT-4 86.72 85.59 89.98 89.92 87.43 93.68
GOOGLETRANSLATE 85.76 86.73 90.11 89.37 86.93 93.20

Table 9: XCOMET-XL on WMT23 dataset comparing PO methods when trained with MT-PREF.
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Figure 5: Annotation Interface.
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