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Deepfake technology, which encompasses various video manipulation techniques implemented 
through deep learning algorithms-such as face swapping and expression alteration-has advanced to 
generate fake videos that are increasingly difficult for human observers to detect, posing significant 
threats to societal security. Existing methods for detecting deepfake videos aim to identify such 
manipulated content to effectively prevent the spread of misinformation. However, these methods 
often suffer from limited generalization capabilities, exhibiting poor performance when detecting fake 
videos outside of their training datasets. Moreover, research on the precise localization of manipulated 
regions within deepfake videos is limited, primarily due to the absence of datasets with fine-grained 
annotations that specify which regions have been manipulated.To address these challenges, this 
paper proposes a novel spatial-based training method that does not require fake samples to detect 
spatial manipulations in deepfake videos. By employing a technique that combines multi-part local 
displacement deformation and fusion, we generate more diverse deepfake feature data, enhancing 
the detection accuracy of specific manipulation methods while producing mixed-region labels to guide 
manipulation localization. We utilize the Swin-Unet model for manipulation localization detection, 
incorporating classification loss functions, local difference loss functions, and manipulation localization 
loss functions to effectively improve the precision of localization and detection.Experimental results 
demonstrate that the proposed spatial-based training method without fake samples effectively 
simulates the features present in real datasets. Our method achieves satisfactory detection accuracy 
on datasets such as FF++, Celeb-DF, and DFDC, while accurately localizing the manipulated regions. 
These findings indicate the effectiveness of the proposed self-blending method and model in deepfake 
video detection and manipulation localization.

Forgery primarily relies on deepfake faceswapping technology, which employs deep learning methods to 
manipulate images or videos. With the continuous advancement of deep learning, deepfake technology is 
becoming increasingly mature, producing fake images and videos that are more realistic, thus exerting a more 
profound impact on societal security. For instance, techniques such as Progressive Growing of GANs (PGGAN)1, 
Style-based GAN (StyleGAN)2, Unified Generative Adversarial Networks (StarGAN)3, High-fidelity GAN 
(HifiGAN)4, Face Swapping GAN (Fsgan)5, and FaceShifter6are used for synthesizing full-face images, editing 
attributes, swapping identities, or using Face2Face7 for exchanging facial expressions.Despite their innovative 
potential, these technologies, when abused, pose severe hazards. They enable the creation of highly realistic fake 
videos, infringing upon personal privacy and reputation, and undermining social trust. Moreover, they present 
significant challenges to law enforcement and regulation, making it difficult to identify and punish infringing 
acts. Additionally, deepfake videos may have far-reaching economic, social, and political impacts, including 
misleading consumers and compromising electoral integrity. Fortunately, despite the sophistication of these 
meticulously forged images and videos, they can still be detected using deep learning methods.

To curb the widespread dissemination of deepfake videos on the internet, there is an urgent need for deepfake 
detection technology to discern forged videos. In pursuit of this goal, Facebook collaborated with prominent 
companies and universities such as Microsoft and MIT to launch the Deepfake Detection Challenge (DFDC) on 
the Kaggle competition platform8. This competition attracted participation from over 2200 teams, significantly 
promoting research and development in deepfake detection technology.

However, despite the significant achievements in fostering technological innovation through the DFDC 
competition, the reliability of deepfake detection technology has not yet reached an ideal level. When using 
well-trained models to detect datasets with unknown manipulation methods, the detection results are poor, 
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indicating the need for further improvement in the models’ generalization. The application of deepfake detection 
technology in the real world still faces certain challenges. Facebook officially stated after the conclusion of 
the DFDC competition: “The problem of detecting facial deepfake remains unsolved.” Therefore, research on 
deepfake video detection technology is still needed to enhance its detection accuracy and generalization.

Numerous studies have been conducted on the detection of Deepfake face-swapping videos, typically 
based on deep learning methods. These studies can be classified into frame-level detection and video-level 
detection. Frame-level detection focuses on spatially extracting forged features without considering inter-frame 
relationships. For example, exploring spatial inconsistency achieve high accuracy in detecting manipulations 
within the dataset9–12. Additionally, some methods that combine frequency domain information fusing high-
frequency manipulation features to improve model accuracy13–15. Video-level detection incorporates inter-frame 
information to primarily explore temporal inconsistencies in videos. Since video manipulations are typically 
performed frame by frame and then synthesized into a video, forged videos exhibit temporal discontinuities 
compared to genuine ones. Utilizing temporal or spatiotemporal combination for detection improves model 
performance and generalization20–25. The Critical Forgery Mining (CFM) framework44pioneered this transition 
by moving beyond prior knowledge limitations, while Vision Transformer (ViT)-based methods have emerged 
as powerful solutions, incorporating innovations such as Low-Rank Adaptation46and Mixture-of-Experts 
modules48to enhance detection performance while maintaining computational efficiency. These developments 
address critical challenges in generalization and robustness through pixel-inconsistency modeling47and 
parameter-efficient adaptation methods49, while the Forgery-aware Adaptive Vision Transformer (FA-
ViT)50further improves cross-database performance. Together, these advancements represent a comprehensive 
response to the growing security threats posed by deepfakes45, establishing more reliable and efficient detection 
systems for real-world applications.

However, these methods have relatively low accuracy in detecting unseen manipulation methods, indicating 
insufficient generalization. To enhance the models’ generalization, it is necessary to capture the commonalities 
of manipulations. Face X-ray16provides a good idea, focusing on the commonality of Deepfake face-swapping 
forgery. By proposing an automatic mixer based on traditional synthesis methods and reproducing manipulation 
vulnerabilities for model learning, the model’s generalization is significantly improved. Subsequent methods 
such as PCL-I2G18and SBI19 also reproduce forgery vulnerabilities through synthesis, achieving state-of-the-
art performance and generalization. These training methods, known as learning without forged samples, only 
utilize real samples from the dataset. These methods achieve high detection accuracy on face-swapping forgery 
samples and exhibit good generalization.

Meanwhile, since these detection methods are primarily designed for training samples of face-swapping 
forgery, their accuracy in detecting videos manipulated through expression manipulation or texture editing 
methods is limited. Furthermore, there has been insufficient research on traceability issues, namely manipulation 
localization detection. Therefore, this paper will employ a training method without forged samples to realize 
manipulation localization detection and improve the model’s accuracy in detecting various forgery methods, 
enhancing the model’s generalization in detection.

The main contributions of this paper are as follows: 

 1.  A Multi-Part Local Displacement Deformation Self-Blending Method: By employing a training method 
without forged samples, the model can learn the forged features of deepfake methods such as expression 
manipulation or texture editing, thereby improving the detection accuracy of these forged samples and en-
hancing the model’s generalization.

 2.  Adoption of Multi-Task Learning: Designing classification loss functions, local difference loss functions, and 
manipulation localization loss functions enables the model to focus not only on global features but also on 
local difference features. This approach not only achieves manipulation localization and detection but also 
enhances the model’s detection accuracy.

 3.  Experimental Validation: Demonstrating that the proposed self-blending training method effectively sim-
ulates the features in real datasets. Detection conducted on datasets such as FF++, Celeb-DF, and DFDC 
achieves satisfactory accuracy, while accurately localizing the manipulated regions. This indicates the effec-
tiveness of the proposed self-blending method and model in deepfake video detection and manipulation 
localization.

Relate work
A. Deepfake Detection

Currently, research on detecting Deepfake face-swapping videos predominantly employs methods based on 
deep learning. These approaches model frame images or video features using deep learning techniques and 
utilize a binary classification strategy for detection. Specifically, detection methods are categorized into frame-
level and video-level approaches. Frame-level detection focuses on spatially extracting forged features without 
accounting for inter-frame relationships, whereas video-level detection incorporates temporal information 
between frames, primarily investigating inconsistencies in the temporal sequence of videos.

In 2019, the release of the Faceforensics++ (FF++) dataset greatly propelled the development of Deepfake 
detection technology. It includes 1000 original videos, 4000 forged videos created using four deepfake methods, 
and frame-level detection using various convolutional neural network models. Among them, Xception achieves 
the best detection accuracy within the dataset. However, the detection generalization of models using global 
feature extraction and binary classification training is poor due to their failure to fully exploit spatially forged 
features. To enhance the network’s focus on various facial regions, Zhao et al9. proposed a fine-grained detection 
method, introducing an attention map generation module to guide the generation of attention maps for shallow 
texture feature generation. This approach directs the network’s attention to multiple regions of the face, aiding 
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in capturing subtle manipulation traces. Wang and Deng10removed attention positions calculated during 
network feedback training and then trained the model to focus on other positions to improve the detection 
of local manipulation effects. Dong et al11. proposed an ID-unaware Deepfake Detection Model, which guides 
the network’s focus to local areas through the introduction of local loss, thereby enhancing generalization. 
Additionally, some methods combine frequency domain information for detection. Qian et al12.use frequency 
domain transformation and local frequency statistics, employing CNNs for feature extraction and fusion to 
enhance detection accuracy, particularly for low-resolution image discrimination. Li et al13. similarly use 
frequency domain transformation, employing an adaptive feature generation model to extract features from 
frequency domain images and train with special loss functions to obtain more discriminative features. Tian et 
al14. combine local and global features, spatial and frequency domain features, achieving good performance in 
both intra-dataset and cross-dataset tests.

A particularly noteworthy training approach is the training without forged samples method, which only uses 
real data from the dataset during training. Li et al15. focused on synthetic vulnerabilities, proposing an automatic 
mixer model that generates mixed data by mixing real samples from the dataset, enhancing the model’s learning 
of mixed features. Zhao et al16. further enhanced this by applying data augmentation to mixed images, such as 
compression, adding Gaussian noise, changing brightness contrast, and randomly selecting two mixing methods 
to increase sample diversity. Chen et al17. introduced the selection of mixing types and mixing ratios to increase 
sample diversity, also incorporating multi-task learning to improve model detection generalization. Shiohara 
and Yamasaki18 used self-blending, capturing more manipulation vulnerabilities such as facial mismatches, 
obvious mixing boundaries, color inconsistencies, and frequency inconsistencies. These methods share the 
common feature of using simple methods to generate datasets with vulnerabilities in manipulation methods for 
model learning. This strategy helps the model to comprehensively understand various manipulation methods, 
enhancing generalization and detection capabilities.

In video-level detection, temporal information between frames, i.e., temporal inconsistencies, is explored. 
Models that extract temporal features, such as RNNs, LSTMs, Transformers, and 3DCNNs, can be used. Masi et 
al19. proposed a dual-branch recursive network detection framework that extracts features from frames in the RGB 
and frequency domains, fusing features from both domains. Finally, the sequence is passed through bidirectional 
LSTMs to obtain video-level features with temporal information. Gu et al20. proposed a spatiotemporal 
inconsistency detection framework, with two branches exploring spatial and temporal inconsistencies, achieving 
good results in intra-dataset or cross-dataset tests. Sun et al21. input a feature encoding sequence formed by a 
series of facial keypoint coordinates into a dual-stream RNN network to extract temporal information. Zheng et 
al22. proposed a Fully Temporal Convolutional Network (FTCN), a detection method that fully explores temporal 
information, combining 3DCNNs with Transformers to extract long and short-distance temporal information, 
achieving good generalization. Gu et al23. proposed a hierarchical detection method, dividing it into local and 
global levels. The local level consists of consecutive frames called segments, while the global level integrates 
several segments to simultaneously focus on short-term and long-term inconsistencies. Guan et al24. combined 
Vision Transformer modules to extract local temporal information. Firstly, using attention mechanisms to obtain 
temporal information about the same local regions between frames, then applying attention mechanisms to each 
local region’s temporal information to obtain video-level features, significantly improving generalization and 
accuracy. These models employ different strategies for mining temporal information, enabling them to better 
handle Deepfake videos, improving detection performance and generalization.

In addition to spatiotemporal integration methods, there is a category called multimodal detection methods, 
which combine various information such as images, sounds, and text to detect videos. Haliassos et al25. detect fake 
videos by discriminating whether lip shapes and speech match. Cheng et al26. detect fake videos by discriminating 
whether sounds and faces match. Yang et al27. proposed a method to detect audio-visual inconsistency by 
exploiting inconsistencies between speech and visuals, and fabricated their own dataset DefakeAVMiT, where 
each modality is manipulated through various synthesis methods. Feng et al28. detect videos by abnormal visual 
and auditory cues, proposing a method to create audiovisual inconsistencies through time delay. By synthesizing 
datasets with flaws that may cause audiovisual anomalies for model training, the model learns these flaws. Their 
datasets FakeAVCeleb and KoDF achieve high accuracy. Zhang et al29. proposed the joint audio-visual deepfake 
detection model AVA-CL, which fully utilizes the inherent correlation between facial and audio clues to conduct 
deepfake detection simultaneously in the audio and visual domains, outperforming current leading methods in 
robustness and generalization. Although audiovisual combined detection methods can achieve high accuracy 
and generalization, some methods have to fabricate their own datasets due to the lack of large-scale training data 
suitable for training.

B.Binary Mask Supervision
Among the methods mentioned above, only image-level or video-level labels are available, indicating only the 

authenticity of images or videos. Such labels cannot directly guide the model to learn localized forged features 
accurately. Therefore, more fine-grained mosaic labels, which represent manipulated areas with ’1’ and unaltered 
areas with ’0’, can more precisely guide the model to learn local forged features. Mosaic labels play a crucial role 
in training manipulation localization models.

Bappy et al30. designed a hybrid CNN-LSTM model to capture boundary difference features, achieving 
manipulation localization functionality. Chen et al31. proposed an end-to-end detection and localization 
framework, introducing the DLFMNet model, which integrates RGB image information and noise image 
information to achieve both detection and localization. Kong et al32. utilized mosaic labels and noise images 
to extract high-level semantic information clues and low-level clues effectively from images, achieving high 
detection accuracy and localization functionality. Chao et al33. used a dual-stream network to extract features 
from images and noise images and used mosaics as labels to guide fine-grained similarity comparison, improving 
cross-dataset testing accuracy. Zhao et al34. utilized the concept of domain generalization and designed a hybrid 
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domain meta-learning network to achieve manipulation detection and localization functionality, demonstrating 
good performance on several benchmark datasets.

In contrast to the aforementioned methods, this paper employs a self-blending method to generate more 
diverse data and produces more accurate mosaics as fine-grained labels for guidance. Additionally, it captures 
multi-scale local difference features to perform manipulation detection and localization on images.

Method
This section begins by introducing the proposed multi-part local deformation self-blending method, which is 
utilized to generate negative samples, i.e., forged samples, in the training data. Subsequently, it outlines the 
manipulation localization detection model employed in this paper along with the training methodology.

A. Multi-part Local Deformation Self-blending Method
In the previous self-blending methods, the operation of blending two faces was utilized to mimic the synthesis 

of deepfake faces. This approach not only enables the model to learn the local differences in the synthesis of two 
faces but also provides richer data for model learning. Building upon this, various data augmentation techniques 
are applied to the images, including local deformation, frequency variation, color transformation, displacement, 
and scaling. Additionally, operations for synthesizing different parts of the face are introduced. Apart from 
enhancing the diversity of training samples, this approach allows for the simulation of forged features specific to 
certain manipulation methods, thereby strengthening the model’s learning of these features. The steps involved 
in the multi-part local deformation self-blending are illustrated in Fig. 1.

Multiple-part local displacement and deformation are introduced by a hybrid input, represented by a 
genuine face image I. This image is duplicated to yield the source face Is and the target face It. Random data 
augmentation techniques are applied to both faces, including variations in the RGB color space, sharpening, 
and downsampling. Concurrently, corresponding mosaics are generated for selected facial regions such as eyes, 
mouth, nose, and overall face based on the key points of the genuine face.

The self-blended face is generated through a sequential masking process, where different facial regions (eyes, 
mouth, nose, and overall face) are processed individually with unique masks created from facial landmarks. 
During the training process, the mosaic generation incorporates extensive random variations: the area coverage 
of each facial region varies dynamically (eyes: 80 − 120%, mouth: 90 − 130%, nose: 85 − 115%, overall face: 
90 − 110% of their original sizes), while mosaic parameters such as cell size (4–16 pixels), grid orientation 
(±5 degrees), and opacity (85 − 100%) are randomly determined for each iteration. This comprehensive 
randomization in both the masking sequence and mosaic generation ensures that each training sample presents 
unique characteristics, creating a diverse dataset that enhances the model’s ability to detect various types of facial 
manipulations and prevents overfitting through exposure to a wide range of blending scenarios.

Subsequently, localized translation and deformation are applied to the target face to alter its expression or 
facial contour, simulating potential artifacts of deepfake generation through displacement or scaling operations, 
resulting in I ′

t. Finally, the final blended face O is obtained by preserving the external features of the source face 
and internal features of the target face based on the mosaics.

The inclusion of localized translation and deformation aims to simulate expression manipulation or texture 
editing for forged features, thereby enhancing the model’s discriminative capability in these aspects. The 
localized translation and deformation algorithm can infer the displacement of a point within a specific region 
and the corresponding displacement positions of other points. The color of the displaced point is filled using 
bilinear interpolation. This enables slight deformations in small areas, such as subtle changes in mouth corners, 

Fig. 1. Multi-part local deformation self-blending method. (The face images shown in this figure are sourced 
from the FaceForensics++ (FF++) dataset36.).
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face slimming, eyebrow deformations, drooping or lifting of eye corners, etc. The formula is depicted as follows 
in Equation (1).

 
α =

(
r2

max − |x⃗ − c⃗|2

(r2
max − |x⃗ − c⃗|2) + |m⃗ − c⃗|2

)2

 (1)

 u⃗ =x⃗ − α(m⃗ − c⃗)  (2)

Taking the example of changing the expression to a smile, the first step involves altering the position of the 
mouth corners. Using the mouth corner as the center, a circle is drawn with a specified radius, forming a circular 
region as depicted in Fig 2. To lift the corners of the mouth, points near the mouth corners need to be vertically 
displaced. Assuming the center point C, a certain distance upward leads to point M. Now, to determine any 
point X within the circular region, it is necessary to ascertain from which position point U is displaced. Equation 
(2) computes the displacement vector m⃗ − c⃗ to obtain the displacement distance of point C , while Equation 
(1) establishes the displacement ratio for other points. The numerator represents the distance of point X from 
the circumference, while the denominator is the sum of the distance from X to the circumference and the 
distance from the circumference to point M. This implies that points closer to the circumference have a smaller 
proportion and hence a smaller displacement, while points farther away have a larger proportion and a greater 
displacement. Squaring the ratio ensures that the displacement of points on the circumference from the center is 
non-linear, thereby ensuring greater displacement for points closer to the center. By iterating through all points 
within the region, the original position of each point can be determined.

Now that the original position of a point X before displacement has been determined. It is necessary to assign the 
color information of the pre-displacement point U to point X. Since point X may not align precisely with pixel 
boundaries, bilinear interpolation is employed to approximate its color information using the color values of the 
surrounding four points. The calculation of bilinear interpolation is illustrated in Fig. 3.

By utilizing the U-coordinate, we can derive the coordinates of its adjacent points: 
a(x0, y1), b(x1, y1), c(x0, y0), d(x1, y0). As depicted in the figure, this region is partitioned into four areas: 
A, B, C, and D. Through the coordinates, we can calculate the areas of these four regions separately. Taking A 
as an example, the formula for the area of A is illustrated in equation (3). Essentially, this equation denotes the 
weight of color at point d attributed to point U. In other words, the closer U is to a certain pixel point, the greater 
the weight it holds, and the closer the color approximation. Equation (4) computes the extent to which point U 
contributes to the color of point d, where the function f() represents the numerical value of the color domain at 
a certain point. Finally, by synthesizing the extent to which point U influences the color of each point, we obtain 
the color of point U, denoted as f(U), as shown in equation (5).

 ωd = SA =(x − x0)(y1 − y)  (3)

 f(Ud) =ωd · f(d)  (4)

 f(U) =ωa · f(a) + ωb · f(b) + ωc · f(c) + ωd · f(d)  (5)

Fig. 2. Local displacement and deformation process.
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Finally, through the generated mosaic, the source face Is and the target face I ′
t are synthesized. The synthesis 

formula is represented by equation (6), where ⊙ denotes element-wise matrix multiplication. This preserves 
the black regions of the mosaic from the source image while retaining the white regions from the target image.

 O = Is ⊙ M + I ′
t ⊙ (1 − M) (6)

By employing self-blending techniques, a multitude of data is synthesized, imbued with characteristics akin 
to those of fake faces generated through deepfake methods. These characteristics may include certain artifacts 
and spatial inconsistencies. Additionally, the method employs local displacement deformations to simulate 
facial expression manipulation, enriching the learned features of the model and enhancing its generalizability. 
Subsequently, mosaics of different regions are generated to enrich the synthesis region, diversify the dataset, and 
enable the model to perceive both global and local features.

Next, it will introduce how to train practical models for detection, emphasizing techniques to facilitate the 
learning of spatial inconsistencies and utilizing self-blending methods for tampering localization.

B. Detection Model
The Swin-Unet model was first proposed in35 and was utilized for medical image classification. It is a Unet 

model constructed entirely based on the Swin-Transformer architecture. Its front-end serves as the encoder, 
transforming a medical X-ray image into features, while the back-end functions as the decoder, converting the 
features back into an image.

This image achieves the classification of various organ types on the X-ray image, represented with different 
colors. Building upon this foundation, this paper improves the model to enable tampering localization. The 
model framework is depicted in Fig. 4.

The lower part comprises the encoder section, which shares the same structure as the Swin-transformer 
model. Each stage consists of layers (2, 2, 6, 2), equivalent to the size of the Swin-t model. Given an input of 
dimensions (H, W, C), it passes through four stages of Swin-transformer modules to obtain feature maps of 
dimensions H

32 × W
32 × 8C , as depicted in equation (7).

 F = Encoder(I) (7)

The feature maps serve two additional purposes besides being fed into the decoder to generate predicted 
mosaics. Initially, the feature maps are used to generate binary predictions of authenticity. The feature maps 
F undergo adaptive average pooling to yield a feature vector FC(1, 8C). Subsequently, a linear layer reduces 
the dimensionality from 8C to 2, producing binary predictions of authenticity, denoted as FC , as shown in 
equations (8) and (9). Beyond predicting detection results, the same feature maps are employed to output a 
low-dimensional mosaic prediction Pm( H

32 × W
32 × 1). This operation involves flattening the features F to 

obtain ( H
32 × W

32 ) vectors of dimensions 8C each. Each vector undergoes linear transformation to reduce it to a 
1-dimensional value. Subsequently, a sigmoid operation constrains the value to the range (0,1), yielding a low-
dimensional mosaic prediction map, as shown in equation (10). This approach aims to compel the model to not 
only focus on global features but also to attend to local features, thereby generating local features that exhibit 
more diversity due to spatial differences. This step necessitates the guidance of the corresponding local diversity 
loss function to regulate the generation of local features, as will be elaborated in subsequent sections.

 FC =AdaptiveAvgP ooling2d(F )  (8)

Fig. 3. Bilinear interpolation.
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 PC =F C(FC)  (9)

 Pm =Sig(Line(F latten(F )))  (10)

The upper part comprises the decoder, which represents the inverse process of the encoder. Within the Patch 
Expansion Module, instead of employing upsampling methods, linear layers are utilized. Taking the first 
layer as an example, with input dimensions of H

32 × W
32 × 8C, the features are expanded dimensionally to 

H
32 × W

32 × 16C, doubling the original dimensions. Subsequently, the shape is adjusted to H
16 × W

16 × 4C, as 
depicted in equation (11), accomplishing the expansion operation. Throughout this process, there exists a skip 
connection step where the output of the third stage of the encoder is concatenated with the features expanded in 
the first stage of the decoder. Subsequently, dimensionality is restored through linear transformation, as shown 
in equation (12). This approach aims to retain shallow texture feature information, facilitating the training and 
learning process of the model. Finally, after passing through a linear layer, a matrix of dimensions H × W × 1 
is obtained. Each pixel’s value is then constrained to the range from 0 to 1 via a sigmoid operation. Consequently, 
a grayscale image is obtained, as depicted in equation (13).

 Expend(F ) =Rearrange(Line(F ))  (11)

 F d1 =Line(Concat(F3, Expend(F )))  (12)

 PM =Sig(Line(Decoder(F )))  (13)

C. Training and Loss Function

During the training process of tampering localization detection, guidance is needed from labels. However, 
current deepfake face datasets lack precise mosaic labels to annotate tampered regions. In the FF++ dataset, only 
datasets generated using the Deepfakes method provide mosaics, but these mosaics only enclose the entire face 
with a square box, which does not provide clear guidance for training tampering localization detection. This 
is because these areas may include parts that have not been tampered with, thus affecting the model’s feature 
extraction.

Therefore, this paper proposes the use of self-blending to simulate deepfake methods through simple image 
processing techniques, synthesizing more synthetic faces with mosaic labels. By training the model using this 
data and labels, it can effectively locate tampered areas. The training process of the model is illustrated in Fig. 5.

Fig. 4. Deepfake Detection and Localization Model. (The face images shown in this figure are sourced from 
the FaceForensics++ (FF++) dataset36.).

 

Scientific Reports |         (2025) 15:3927 7| https://doi.org/10.1038/s41598-025-88523-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In the process, the first stage involves preprocessing, where all frames of the dataset’s real videos are extracted 
into images. Subsequently, the entire blending process is performed in real-time alongside the training process, 
meaning that random data augmentation and random synthesis are applied to the required data for each training 
iteration, ensuring data diversity.

Within one training iteration: 

 1.  Eight frames are randomly sampled from each video, and self-blending operations are performed on each 
image to obtain synthetic faces F and synthetic mosaic ground truth GT.

 2.  The GT is downsampled to obtain gt, which has the same size as the encoder output Pm and serves as the 
label for Pm.

 3.  Both real faces R and synthetic faces F are fed into the tampering detection model.
 4.  The model’s predicted authenticity PC  from the encoder output is compared with the real labels, and the 

predicted feature map mosaic Pm is obtained.
 5.  The encoder output is directly fed into the decoder to obtain the predicted blending area PM , which is then 

compared with the real synthetic mosaic GT.
 6.  The next video is selected, and the training continues from the first step until all videos have been sampled, 

completing one training round.In Fig. 5, three training loss functions are depicted: classification loss func-
tion Lc, local diversity loss function Lm, and tampering localization loss function LM . The classification loss 
function Lc treats the task as a binary classification problem, where 0 represents real images and 1 represents 
fake images. Therefore, the classification loss function employs binary cross-entropy loss:

 LC = −ygt log (PC) − (1 − ygt) log (1 − PC) , (14)

ygt represents the true label value. When the predicted label is close to the true label, the loss function tends 
towards 0. Conversely, when there is a significant difference between the predicted label and the true label, the 
loss function will be larger. Therefore, through this loss function constraint, as the loss function value decreases, 
the predicted label becomes closer to the true label.

The local diversity loss function is primarily designed to encourage the model to learn local spatial differences 
rather than solely focusing on global features. Local diversity refers to the existence of certain differences between 
the blending area and the regions outside it. The local diversity loss function constrains the local features of these 
two parts to exhibit certain differences, as illustrated in Fig. 6.

Due to the nature of the Swin-Transformer in generating features, even though the image is partitioned into 
blocks, and despite the fusion stage, the relative positions of the obtained feature maps do not change compared 
to the original image. Therefore, the feature vector at each position in the feature map outputted by the encoder 
is regarded as the local feature at that position, as illustrated by the third image in Fig. 6.

The difference between feature vectors can be quantified using the dot product of vectors, as shown in 
equation (15). If the dot product of two vectors is larger, it indicates that the difference between the two vectors 
is smaller; conversely, if the dot product of two vectors is smaller, it suggests that the difference between the two 
vectors is larger. By calculating the difference value of each vector with every other vector, we obtain h2 × w2 
difference values. Parallel computation, as depicted in equation (16), yields an h2 × w2 matrix containing all 

Fig. 5. Training Process. (The face images shown in this figure are sourced from the FaceForensics++ (FF++) 
dataset36.).
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difference values. Finally, a sigmoid operation is applied to all difference values to constrain them to the range 
(0, 1).

 Sim(i, j) =Pm(i) · Pm(j)  (15)

 Simpred =Sig(Pm · P T
m)  (16)

If two feature vectors belong to the same blending area (either inside or outside), they should be made as close 
to each other as possible. Conversely, if two feature vectors belong to different areas, their difference should be 
maximized. This aspect is guided by the ground truth gt , where the values range between 0 and 1, with darker 
areas closer to 1 and lighter areas closer to 0. By taking the absolute difference between the values at two positions 
in gt, the larger the difference, the greater the disparity between the two positions. Therefore, from equation (17), 
we obtain the local diversity label Simgt , where Flatten denotes the flattening operation, transforming gt into a 
vector of dimensions h × w. By subtracting this vector from its transpose, we obtain an h2 × w2 matrix, which 
stores the difference values between each position and every other position.

 Simgt = 1 − |F latten(gt) − F latten(gt)T | (17)

The final local diversity loss function is represented as equation (18). The predicted difference matrix Simpred is 
subtracted from the ground truth difference matrix Simgt at corresponding positions to obtain their difference. 
Then, the average of these differences is calculated to serve as the loss function value.

 Lm = Mean(|Simgt − Simpred|) (18)

The final loss function is the tampering localization loss function LM. Since PM  obtained from the decoder is a 
matrix of shape (H, W, 1), with each value ranging from 0 to 1, it directly corresponds to the generated mosaic 
ground truth GT. By flattening both PM  and GT, the cross-entropy is calculated at each position, and then 
the average is taken to obtain the difference between the predicted PM  and the ground truth GT, as shown in 
equation (19).

 

LM = − 1
HW

HW∑
i

(GT [i] log (PM [i]) + (1 − GT [i]) log (1 − PM [i]))

 (19)

The final composite loss function L used during training is derived by combining the three individual loss 
functions. It is represented by equation (20).

 L = αLC + βLM + γLm (20)

Experiments
A. Datasets

The primary training dataset used in this experiment is the FaceForensics++ (FF++) dataset36, which 
consists of 1000 publicly available original videos, each lasting several seconds. It encompasses four different 
deepfake methods: FaceSwap, Deepfakes, Face2Face, and NeuralTextures, with 1000 videos forged using each 
method, totaling 4000 forged videos. FaceSwap and Deepfakes are face swapping methods, while Face2Face and 
NeuralTextures are facial expression replacement methods. The dataset also includes three different compression 
qualities: C0, C23, and C40. C0 represents the lossless original version, C23 represents the high-quality HQ 
version, and C40 represents the low-quality LQ version. Due to the large quantity, high quality, diverse forging 
methods, and clear labels of this dataset, as well as the different compression versions, it has been widely used in 
deepfake video detection. This experiment also employs this dataset for model training and evaluation. During 
training, the ratio of training set to validation set to test set is 8:1:1. As the training method uses non-forged 
samples, the model is trained entirely using real videos, with fake images obtained through self-blending. During 
testing, both real and fake videos from the dataset are used.

Fig. 6. Local diversity.

 

Scientific Reports |         (2025) 15:3927 9| https://doi.org/10.1038/s41598-025-88523-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, to demonstrate the model’s generalization ability, cross-database testing is also conducted. 
In addition to the FF++ dataset, several other high-quality open-source datasets are utilized for testing and 
evaluating the model’s generalization performance. These datasets include DFDC and DFDCP, as well as the 
Celeb-DF38 dataset. The DFDC is a significant event initiated by Facebook, in collaboration with Microsoft, 
the Massachusetts Institute of Technology (MIT), and several other renowned companies and universities. 
This event launched a highly appealing facial forgery detection challenge on the Kaggle platform. The DFDC 
dataset is immense, encompassing over 20,000 real videos and more than 100,000 forged videos. Unfortunately, 
these videos lack clear forgery classifications and generally suffer from poor quality, significantly increasing the 
difficulty of the detection task. DFDCP represents the high-quality videos within the DFDC, comprising 1,141 
authentic videos and 4,073 forged videos. Meanwhile, Celeb-DF is a dataset focused on high-quality forged 
videos, employing advanced deepfake techniques to produce 590 high-quality samples and expanding to include 
5,639 high-quality forged videos.

B. Experimental Setup and Parameters
Preprocessing: Firstly, all real videos from the FF++ dataset are converted into frames using a frame extraction 

tool. The Dlib library38 is utilized for detecting facial key points, locating facial regions, and obtaining key points 
coordinates. Subsequently, based on the facial key points coordinates, the images are cropped to retain only the 
facial region. Finally, the size of the images is resized to (224, 224).

Training: The tampering localization detection model, based on the Swin-Unet architecture with 
modifications, is trained. The minimum model has encoder stages with 2, 2, 6, 2 layers, and decoder stages with 
2, 2, 2 layers. Additionally, experiments involve enlarging the model by adjusting the encoder stages to have 2, 
2, 18, 2 layers. The weights of the encoder part are initialized using pretrained weights of Swin-transfomer on 
ImageNet39. The training optimizer is SAM40with a batch size of 16 and a learning rate of 0.001 for 100 epochs. 
During training, data augmentation operations are applied to both real and self-blended images using methods 
from the Albumentations library41, such as color changes, saturation changes, sharpening, scaling, cropping, 
downsampling, etc.

Detection: When detecting the authenticity of a video, 32 frames are sampled from each video, and each 
frame is individually evaluated to provide a judgment. The authenticity of the video is determined by averaging 
the results of these 32 frames.

All experiments are conducted on an NVIDIA 3090 GPU with 16GB of memory.
C. Performance Testing and Analysis
Firstly, the effectiveness of the multi-part local deformation self-blending algorithm is demonstrated. The 

proposed multi-part local deformation self-blending algorithm generates training data by blending real faces 
with themselves, resulting in data with forged features resembling those in real datasets, along with corresponding 
synthetic mosaic regions. The images processed by the multi-part local deformation self-blending algorithm are 
shown in Fig. 7. In this figure, the source face represents the original face, and all self-blending methods are 

Fig. 7. Demonstration of Multi-part Local Deformation Self-blending. (The face images shown in this figure 
are sourced from the FaceForensics++ (FF++) dataset36.).
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applied based on this source. Column “Self-blend a” mainly demonstrates self-blending applied to the entire 
face, showing clear differences inside and outside the blending region, thus reflecting the spatial inconsistency 
mentioned in Chapter 2. Column “Self-blend b” primarily showcases local deformations applied to specific parts 
of the face, such as facial contours, mouth, and eyes, simulating the forged features in expression manipulation 
and texture editing forgery methods. Column “Self-blend c” illustrates self-blending applied to different parts of 
the face, such as eyes, nose, and mouth. The resulting mosaics will vary correspondingly based on the different 
blending regions.

Subsequently, comparative experiments are conducted to verify the model’s discrimination ability against 
deepfake videos. Table 1 presents the in-set detection result. The model proposed in this chapter is trained on 
the lossless training set of FF++, utilizing only real data and employing the multi-part local deformation self-
blending algorithm to generate fake data for training. Then, testing is performed on the test sets of FF++ with 
four different forgery methods. Among the comparison algorithms, Face X-ray adopts a training method similar 
to that of this paper, utilizing only non-forged samples for training, while other comparison algorithms use both 
real and forged data from FF++ for training. The model proposed in this chapter performs excellently on the 
DF and FS datasets but relatively poorly on the F2F and NT datasets. This is mainly because the data features 
generated by the multi-part local deformation self-blending method proposed in this chapter are more similar 
to those in these two datasets.

Then, cross-dataset testing is conducted as shown in Table 2, where the experiment involved training on the 
FF++ dataset and testing on other datasets. As shown in the table, the model exhibits a certain level of detection 
capability in datasets beyond those used for training. It performs exceptionally well in CDF and DFDC datasets, 
indicating that the self-blending method contributes to the model’s generalization ability, and the model can 
learn forged features effectively.

To comprehensively evaluate the model’s performance, we conducted comparative experiments by replacing 
the Encoder component of the Swin-Unet architecture while maintaining its original Decoder structure. We 
implemented and tested three variants: the original Swin-Unet, and two modified versions using ResNet50 and 
Vision Transformer Small (ViT-S) as feature extractors. The experiments were conducted across four different 
manipulation scenarios from the FaceForensics++ dataset: DeepFakes (FF++DF), Face2Face (FF++F2F), 
FaceSwap (FF++FS), and NeuralTextures (FF++NT). As shown in Table 3, the original Swin-Unet consistently 
demonstrated superior performance, achieving the highest AUC scores across all four manipulation types. 
Specifically, it achieved AUC scores of 99.95% for FF++DF, 98.82% for FF++F2F, 99.88% for FF++FS, and 99.13% 
for FF++NT, outperforming both the ResNet50 and ViT-S variants. This superior performance can be attributed 
to Swin-Unet’s hierarchical feature extraction capability and its efficient handling of both local and global 
dependencies in the image, making it particularly effective for detecting various types of facial manipulations.

To evaluate the effectiveness of each step, ablation experiments were conducted separately on the four forgery 
datasets of FF++, as shown in Table 4. It can be observed that adding these two steps helps improve the model’s 
detection accuracy. Moreover, after incorporating local displacement deformation, the detection accuracy is 
enhanced, particularly for the F2F and NT forgery datasets, where the forgery methods involve expression 

Method

Training 
Set Test Set AUC (%)

Real Fake CDF DFDCP DFDC

Xception36 ✓ ✓ 65.5 - 59.4

F3Net12 ✓ ✓ 67.8 - 57.9

Two-branch19 ✓ ✓ 73.4 - 60.8

FTCN22 ✓ ✓ 86.9 - 74

LipForensics25 ✓ ✓ 82.4 73.5 -

Face X-Ray15 ✓ 80.58 71.15 -

Ours ✓ 87.52 72.25 80.34

Table 2. Cross-dataset Evaluation.

 

Method

Training 
Set Test Set AUC (%)

Real Fake FF++DF FF++F2F FF++FS FF++NT

Xception36 ✓ ✓ 96.1 92.1 93.8 85.7

F3Net12 ✓ ✓ 98.0 95.2 96.0 88.4

Two-branch19 ✓ ✓ 98.8 96.0 97.4 88.6

LipForensics25 ✓ ✓ 99.7 90.1 99.7 99.1

Face X-Ray15 ✓ 99.17 98.57 98.21 98.13

Ours ✓ 99.95 98.82 99.88 99.13

Table 1. In-dataset Evaluation on FF++.
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manipulation and texture editing. This indicates the effectiveness of the proposed method in detecting these 
forgery techniques.

Finally, tampering localization results and visualization experiments were conducted. The data used in this 
experiment were entirely generated through self-blending methods, simulating spatial inconsistencies using 
synthetic synthesis. By learning such spatial inconsistencies, the model achieves tampering localization. When 
applying the trained model to real datasets, it can identify tampered regions, as shown in Fig. 8. The first four 
rows represent data from the four forgery methods in FF++, and the last row represents data from CDF. In the 
first column, genuine images are shown, where the model detects tampered regions as pure black, indicating 
no tampering detected. In the third column, fake images are displayed, with the predicted tampered regions 
concentrated on the inner side of the face. This demonstrates that the model trained on data generated through 
multi-part local deformation self-blending can effectively detect tampered regions in real datasets, affirming the 
effectiveness of the training method proposed in this paper.

Visualization will utilize the GradCAM++ method41, applied to the tampering localization detection model 
proposed in this paper, to reveal the regions the model focuses on when making judgments. The heatmap in 
the last column of Figure 7 shows the areas of attention of the model when detecting the four different forgery 
methods in FF++. It can be observed that the model’s attention is primarily concentrated on the tampered 
regions of the face, affirming the effectiveness of the model in tampering localization detection.

Conclusion
This paper aims to address the threats posed by deepfake technology to society and content security, with a 
particular focus on improving methods for detecting and localizing deepfake videos. Currently, deep learning 
methods suffer from insufficient generalization and the lack of fine-grained labels, which affects localization. To 
tackle these issues, this paper proposes a multi-location local displacement self-mixing method to generate more 
diverse deepfake feature data and simultaneously generate mixed region labels to more accurately guide the 

Fig. 8. Tampering Localization and Heatmap Visualization. (In this figure, the face images in the last column 
are sourced from the CDF dataset37, whereas all other face images are from the FaceForensics++ (FF++) 
dataset36.).

 

Method Test Set AUC (%)

 Multi-Part Local Displacement Deformation FF++DF FF++F2F FF++FS FF++NT

96.1 94.2 95.8 94.2

✓ 97.0 95.3 96.2 95.4

✓ ✓ 99.95 98.82 99.88 99.13

Table 4. Ablation on FF++.

 

Method

Test Set AUC (%)

FF++DF FF++F2F FF++FS FF++NT

Resnet5042 96.1 94.2 95.8 94.2

Vit-s43 97.0 95.3 96.2 95.4

Ours 99.95 98.82 99.88 99.13

Table 3. Evaluation on FF++ for Different Backbone.
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model in learning fake regions. Furthermore, by employing the Swin-Unet model, the paper achieves tampering 
localization detection, introducing classification loss functions, local difference loss functions, and tampering 
localization loss functions to effectively improve the precision of localization and detection. Experimental results 
demonstrate that this self-mixing method can effectively simulate fake features in real datasets and achieve good 
detection accuracy on actual datasets, while also enabling fake region prediction, indicating the effectiveness of 
this training method. Ultimately, an integrated approach for detecting and localizing deepfake videos is realized, 
exhibiting high detection accuracy and generalization capability.

While extensive experiments were conducted on mainstream datasets, it is important to acknowledge that 
these datasets do not cover the entire breadth of deepfake techniques. Consequently, the achieved results, 
although promising, still present certain limitations, primarily manifested in the method’s generalization 
capability. This limitation reflects one of the inherent challenges of deep learning-based methods-namely, that 
training and testing on a finite range of data may not fully capture the variations encountered in real-world 
scenarios. Looking ahead, expanding the range of datasets and exploring more diverse fake content will be a 
central focus of our future work to enhance the model’s robustness and adaptability. We aim to further refine the 
proposed self-mixing approach with advanced data augmentation, domain adaptation strategies, and additional 
architectures capable of handling novel and highly sophisticated types of deepfake attacks.

Data availability
The following statement contains information about the datasets and pre-trained models used in this paper: 1. 
FaceForensics++ are available at the following URL: https://github.com/ondyari/FaceForensics 2. Celeb-DF is 
available at the following URL: https://gith ub.com/yuezu nli/celeb-de epfakeforen sics 3. The pre-trained model 
trained in this paper which is named “swin_small_patch4_window7_224.pth” is available at the following URL: 
https://pan.baidu.com/s/1nHD5QUYF_2MLlGbhGZv52w? p wd =1234
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