

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXPLORATORY DIFFUSION MODEL FOR UNSUPERVISED REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Unsupervised reinforcement learning (URL) pre-trains agents by exploring diverse states in reward-free environments, aiming to enable efficient adaptation to various downstream tasks. Without extrinsic rewards, prior methods rely on intrinsic objectives, but heterogeneous exploration data demand strong modeling capacity for both intrinsic reward design and policy learning. We introduce the **Exploratory Diffusion Model (ExDM)**, which leverages the expressive power of diffusion models to fit diverse replay-buffer distributions, thus providing accurate density estimates and a score-based intrinsic reward that drives exploration into under-visited regions. This mechanism substantially broadens state coverage and yields robust pre-trained policies. Beyond exploration, ExDM offers theoretical guarantees and practical algorithms for fine-tuning diffusion policies under limited interactions, overcoming instability and computational overhead from multi-step sampling. Extensive experiments on Maze2d and URLB show that ExDM achieves superior exploration and faster downstream adaptation, establishing new state-of-the-art results, particularly in environments with complex structure or cross-embodiment settings.

1 INTRODUCTION

Developing agents that generalize across diverse tasks remains a central challenge in reinforcement learning (RL). Unsupervised RL (URL) (Eysenbach et al., 2018; Laskin et al., 2021) aims to address this by pre-training in reward-free environments to acquire diverse skills or transferable representations. In the absence of extrinsic rewards, agents often rely on intrinsic objectives that are frequently hand-crafted, myopic, and weakly aligned with downstream tasks. The data collected through exploration are highly heterogeneous, demanding representations that are expressive yet stable against collapse or spurious correlations. In addition, policies trained in fixed reward-free settings often fail to transfer under shifts in dynamics, embodiment, or semantics.

A central obstacle in URL is the demand for strong modeling capacity during both pre-training and fine-tuning. Effective exploration in reward-free environments hinges on intrinsic rewards derived from accurate estimates of the underlying state distribution, which is typically heterogeneous and difficult to capture. Existing methods can collect diverse trajectories but often rely on simple pre-trained policies—such as Gaussian (Pathak et al., 2017; Mazzaglia et al., 2022) or discrete skill-based policies (Eysenbach et al., 2018; Laskin et al., 2022)—chosen for their ease of training and sampling. Such policies fail to capture the full diversity of explored data in the replay buffer, limiting both unsupervised exploration and downstream adaptation. This calls for more powerful modeling approaches, where diffusion models stand out for their stability and strong density estimation ability.

To address these challenges, we propose the **Exploratory Diffusion Model (ExDM)**, which leverages diffusion-based density estimation to address the exploration bottleneck in unsupervised RL while providing a reusable prior for downstream adaptation. At its core, ExDM trains a diffusion model on the heterogeneous and nonstationary state distribution in the replay buffer, and uses the resulting score function to define an intrinsic reward $\mathcal{R}_{\text{score}}$ that explicitly targets under-visited states. This drives broad state coverage and maximizes entropy during reward-free exploration. Unlike conventional generative uses of diffusion, ExDM employs the score function for exploration utility rather than sample fidelity, and must learn from an online replay buffer with shifting visitation distributions. To keep train efficiency, ExDM decouples modeling from acting—replacing costly multi-step

Figure 1: **Overview of Exploratory Diffusion Model (ExDM).** Different from standard RL, URL aims to explore in reward-free environments, requiring expressive policies and models to fit heterogeneous data (Theorem 4.1). During pre-training, ExDM employs the diffusion model to model the heterogeneous exploration data and calculate score-based intrinsic rewards to encourage exploration. Moreover, we adopt a Gaussian behavior policy to collect data that avoids the inefficiency caused by the multi-step sampling of the diffusion policy.

diffusion sampling with a lightweight Gaussian policy trained to maximize $\mathcal{R}_{\text{score}}$. This design preserves the modeling strength of diffusion while enabling scalable training and action selection.

Beyond enhancing unsupervised exploration, ExDM also provides a strong initialization for downstream tasks. In addition to fine-tuning the Gaussian behavior policy with standard RL algorithms, ExDM allows the diffusion model itself to be adapted for downstream control. This adaptation is particularly challenging in URL, where fine-tuning must succeed with limited online interaction. To this end, we analyze the fine-tuning objective and derive an alternating optimization procedure whose convergence and optimality are formally established in Theorem 4.2.

We evaluate ExDM on both unsupervised exploration and downstream adaptation across standard benchmarks, including Maze2d (Campos et al., 2020) and continuous control in URLB (Laskin et al., 2022). In Maze2d, ExDM consistently achieves substantially higher state coverage than all baselines. On the most challenging mazes with many branching paths and decision points, ExDM attains up to **51% higher coverage** and reaches comparable performance using only **37% of timesteps**, demonstrating its ability to efficiently explore diverse regions under strict interaction budgets, while baselines often stall near corners and fail to cover the maze. Beyond exploration, URLB experiments, including single-embodiment and cross-embodiment settings, further show that ExDM adapts rapidly to diverse downstream tasks and **outperforms SOTA URL and diffusion fine-tuning baselines by large margins**, highlighting its effectiveness as a general framework for exploration and transfer.

In summary, the main contributions are as follows:

- To the best of our knowledge, this is the first work to introduce diffusion models into unsupervised RL, enabling accurate modeling of heterogeneous state distributions and defining a score-based intrinsic reward that substantially improves exploration.
- Beyond exploration, ExDM develops an efficient decoupled training scheme and a fine-tuning algorithm for adapting pre-trained diffusion components to downstream tasks under limited interaction, with theoretical guarantees of convergence and optimality.
- Extensive experiments on Maze2d and URLB benchmarks demonstrate that ExDM achieves broader state coverage and faster adaptation than prior methods, establishing new state-of-the-art performance in both exploration and transfer.

2 RELATED WORK

Unsupervised Pre-training in RL. For achieving zero-shot generalization in RL, there are lots of attempts like in-context RL (Rakelly et al., 2019; Zintgraf et al., 2021) or forward-backward representations (Touati & Ollivier, 2021; Tirinzoni et al., 2025). However, these methods require sampling from tasks during pre-training or reward signals from the offline datasets. Differently, URL pre-trains agents in reward-free environments to acquire knowledge for fast fine-tuning downstream tasks. Existing methods mainly rely on intrinsic rewards to guide agents to explore the environment, falling into two categories: exploration and skill discovery. Exploration methods typically explore

108 diverse states by maximizing intrinsic rewards designed to estimate either uncertainty (Pathak et al.,
 109 2017; Burda et al., 2018; Pathak et al., 2019; Raileanu & Rocktäschel, 2020; Mazzaglia et al., 2022;
 110 Yuan et al., 2023; Ying et al., 2024) or state entropy (Lee et al., 2019; Liu & Abbeel, 2021; Seo
 111 et al., 2021; Mutti et al., 2021). Skill-discovery methods hope to collect diverse skills by maxi-
 112 mizing the mutual information between skills and states (Eysenbach et al., 2018; Lee et al., 2019;
 113 Campos et al., 2020; Kim et al., 2021; Park et al., 2022; Laskin et al., 2022; Yuan et al., 2022; Zhao
 114 et al., 2022; Yang et al., 2023b; Park et al., 2023; Bai et al., 2024; Wilcoxon et al., 2024). Although
 115 exploring diverse states, existing methods always neglect the expression ability of pre-trained poli-
 116 cies and choose simple Gaussian policies (Pathak et al., 2017; Mazzaglia et al., 2022) or skill-based
 117 policies (Eysenbach et al., 2018; Yang et al., 2023b), which fail to capture the diversity present
 118 in the explored data. Consequently, applying generative models with strong expressive ability for
 119 improving the diversity of pre-trained policies is still less studied.

120 **RL with Diffusion Models.** Recent advancements have shown that high-fidelity diffusion models
 121 can benefit RL from different perspectives (Zhu et al., 2023). In offline RL, diffusion policies (Wang
 122 et al., 2023; Chen et al., 2023; Lu et al., 2023; Chi et al., 2023; Hansen-Estruch et al., 2023; Kang
 123 et al., 2024) excel at modeling multimodal behaviors, outperforming previous policies such as Gaus-
 124 sians. Besides policies, diffusion planners (Janner et al., 2022; Ajay et al., 2023; He et al., 2023;
 125 Liang et al., 2023; Nuti et al., 2023; Chen et al., 2024a) have demonstrated the potential in long-term
 126 sequence prediction and test-time planning. Some works have also investigated online training dif-
 127 fusion policies to improve performance (Psenka et al., 2023; Li et al., 2024; Ren et al., 2024; Mark
 128 et al., 2024; Celik et al., 2025; Ma et al., 2025; Ishfaq et al., 2025). However, the computational
 129 cost of multi-step sampling remains the efficiency bottleneck. In addition to behavior modeling,
 130 diffusion models have also been employed as world models (Alonso et al., 2024; Ding et al., 2024),
 131 augmented replay buffer (Lu et al., 2024; Wang et al., 2024a), hierarchical RL (Li et al., 2023;
 132 Chen et al., 2024b), and so on. To the best of our knowledge, this work represents the first attempt
 133 to leverage the strong modeling capabilities for heterogeneous distribution of diffusion models for
 134 unsupervised exploration.

135 3 BACKGROUND

136 3.1 UNSUPERVISED REINFORCEMENT LEARNING

137 RL considers Markov decision processes (MDP) $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \rho_0, \gamma)$. Here \mathcal{S} and \mathcal{A} denote
 138 the state and action spaces, respectively. For $\forall (s, a) \in \mathcal{S} \times \mathcal{A}$, $\mathcal{P}(\cdot|s, a)$ is a distribution on \mathcal{S} ,
 139 representing the dynamic of \mathcal{M} , and $\mathcal{R}(s, a)$ is the extrinsic task reward function. ρ_0 is the initial
 140 state distribution and γ is the discount factor. For a given policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, we define the
 141 discount state distribution of π at state s as $d_\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} [\gamma^t \mathcal{P}(s^t = s)]$. The objective of
 142 RL is to maximize the expected cumulative return of π over the task \mathcal{R} :
 143

$$144 J(\pi) \triangleq \mathbb{E}_{\tau \sim \mathcal{M}, \pi} [\mathcal{R}(\tau)] = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_\pi, a \sim \pi} [\mathcal{R}(s, a)]. \quad (1)$$

145 To boost agents' generalization, unsupervised RL (URL) typically includes two stages: *unsuper-
 146 vised pre-training* and *few-shot fine-tuning*. During pre-training, agents explore the reward-free
 147 environment \mathcal{M}^c , i.e., \mathcal{M} without the reward function \mathcal{R} . Thus, URL requires designing intrinsic
 148 rewards \mathcal{R}_{int} to guide policies to maximize the state entropy $\mathcal{H}(d_\pi(\cdot))$. During fine-tuning, agents
 149 adapt pre-trained policies to handle downstream tasks represented by extrinsic task-specific rewards
 150 \mathcal{R} , through limited interactions (like one-tenth of pre-training steps, the formulation is in Eq. 9).
 151

152 3.2 DIFFUSION MODELS IN REINFORCEMENT LEARNING

153 Recent studies have demonstrated that diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
 154 excel at accurately representing heterogeneous behaviors in continuous control, particularly through
 155 the use of diffusion policies (Wang et al., 2023; Chi et al., 2023). Given state-action pairs (s, a) sam-
 156 pled from some unknown policy $\mu(a|s)$, diffusion policies consider the forward diffusion process
 157 that gradually injects standard Gaussian noise ϵ into actions:
 158

$$159 \mathbf{a}_t = \alpha_t \mathbf{a} + \sigma_t \boldsymbol{\epsilon}, \quad t \in [0, 1], \quad (2)$$

here α_t, σ_t are pre-defined hyperparameters satisfying that when $t = 0$, we have $\mathbf{a}_t = \mathbf{a}$, and when $t = 1$, we have $\mathbf{a}_t \approx \epsilon$. For $\forall t \in [0, 1]$, we can define the marginal distribution of \mathbf{a}_t as

$$p_t(\mathbf{a}_t | \mathbf{s}, t) = \int \mathcal{N}(\mathbf{a}_t | \alpha_t \mathbf{a}, \sigma_t^2 \mathbf{I}) \mu(\mathbf{a} | \mathbf{s}) d\mathbf{a}. \quad (3)$$

Then we train a conditional “noise predictor” $\epsilon_\theta(\mathbf{a}_t | \mathbf{s}, t)$ to predict the added noise of each timestep:

$$\min_{\theta} \mathbb{E}_{t, \epsilon, \mathbf{s}, \mathbf{a}} [\|\epsilon_\theta(\mathbf{a}_t | \mathbf{s}, t) - \epsilon\|^2]. \quad (4)$$

The learned ϵ_θ can estimate the score function $\nabla_{\mathbf{a}_t} \log p_t(\mathbf{a}_t | \mathbf{s}_t, t)$. We can discretize diffusion ODEs of the reverse process (Song et al., 2021b) and sample actions with numerical solvers (Song et al., 2021a; Lu et al., 2022) in around $5 \sim 15$ steps, to approximate the original policy $\mu(\mathbf{a} | \mathbf{s})$. However, this multi-step sampling affects the training efficiency, especially in online settings.

4 METHODOLOGY

Below, we introduce the Exploratory Diffusion Model (ExDM) to capture diverse data to boost unsupervised exploration (Sec. 4.1) and obtain powerful initialization for fast fine-tuning (Sec. 4.2).

4.1 EXPLORATORY DIFFUSION MODEL FOR UNSUPERVISED PRE-TRAINING

The major challenge and objective during unsupervised pre-training is to explore diverse states in reward-free environments. Consequently, a natural pathway is to pre-train the policy to maximize the entropy of the state (Liu & Abbeel, 2021), i.e., $\mathcal{H}(d_\pi(\cdot)) = \int_s -d_\pi(s) \log d_\pi(s) ds$. Although the optimal policy of **fully-observable single-agent RL** is a simple deterministic policy, we prove that, even if the environment is discrete, policies with the maximum state entropy are still complicated and not deterministic with a high probability, requiring much stronger modeling abilities.

Theorem 4.1 (Policy with maximal state entropy). *When \mathcal{S}, \mathcal{A} are discrete spaces, i.e., $|\mathcal{S}| = S, |\mathcal{A}| = A$, there are $M \triangleq A^S$ deterministic policies. Set $\hat{\pi} = \arg \max_\pi \mathcal{H}(d_\pi(\cdot))$, under some mild assumptions, we have*

$$P(\hat{\pi} \text{ is not deterministic policy and } \mathcal{H}(d_{\hat{\pi}}) = \log |S|) \geq 1 - M^S v(S)^M, \quad (5)$$

will fast converge to 1 with the increasing of A , and here $v(S)$ is a constant only related to S and satisfies $0 < v(S) < 1$.

Details and proof are in Appendix B.1 (we also discuss continuous situations there). This theorem demonstrates that maximizing state entropy requires policies with strong expression abilities, rather than simple deterministic policies. Despite previous work mainly considering simple Gaussian policies or skill-based policies, **in practice**, explored replay buffer is always diverse and heterogeneous, as the policy continuously changes to visit new states during pre-training. Consequently, URL requires capturing the heterogeneous distribution of collected data and obtaining policies with high diversity. These challenges pose the requirement of strong density estimation and fitting abilities, while maintaining training stability and efficiency. Inspired by the recent great success of diffusion models in modeling diverse image distributions (Dhariwal & Nichol, 2021) and behaviors (Chi et al., 2023; Janner et al., 2022), ExDM proposes to utilize the diffusion models $\epsilon_{\theta'}$ and ϵ_θ to model the distribution of states and state-action pairs in the replay buffer \mathcal{D} collected before:

$$\min \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} [\mathbb{E}_{t, \epsilon} \|\epsilon_{\theta'}(\mathbf{s}_t | t) - \epsilon\|^2 + \mathbb{E}_{t, \epsilon} \|\epsilon_\theta(\mathbf{a}_t | \mathbf{s}, t) - \epsilon\|^2]. \quad (6)$$

To maximize the entropy of the state distribution, we can use $\log p_{\theta'}(\mathbf{s})$ to measure the frequency of states in the replay buffer. Consequently, we design $-\log p_{\theta'}(\mathbf{s})$ as the intrinsic reward to encourage the agent to explore these regions. Although estimating the log-probability of the diffusion model is challenging, it is well known that $-\log p_{\theta'}(\mathbf{s})$ can be bounded by the following evidence lower bound (ELBO) (Ho et al., 2020):

$$-\log p_{\theta'}(\mathbf{s}) \leq \mathbb{E}_{\epsilon, t} [\mathbf{w}_t \|\epsilon_{\theta'}(\mathbf{s}_t | t) - \epsilon\|^2] + C, \quad (7)$$

here C is a constant independent of θ' , and \mathbf{w}_t are parameters related to α_t, σ_t , which are typically ignored (Ho et al., 2020). Consequently, we propose our score-based intrinsic rewards as:

$$\mathcal{R}_{\text{score}}(\mathbf{s}) = \mathbb{E}_{\epsilon, t} [\|\epsilon_{\theta'}(\mathbf{s} | t) - \epsilon\|^2]. \quad (8)$$

216 **Algorithm 1** Pre-training of ExDM

217 **Require:** Reward-free environment \mathcal{M}^c , replay buffer \mathcal{D} , Gaussian behavior policy π_g , diffusion
 218 policy π_d parameterized with the score model ϵ_θ , state diffusion model $\epsilon_{\theta'}$.
 219 1: **for** sample step = 1, 2, ..., S **do**
 220 2: **for** update step = 1, 2, ..., U **do**
 221 3: Sample s - a pairs $\{(s^m, a^m)\}_{m=1}^M$ from \mathcal{D} .
 222 4: Update ϵ_θ and $\epsilon_{\theta'}$ via optimizing with Eq. (6) with sampled data.
 223 5: Calculate score-based intrinsic rewards r^m via Eq. (8) for each sampled pair (s^m, a^m) .
 224 6: Train π_g with (s^m, a^m, r^m) by any **off-policy** RL algorithm.
 225 7: **end for**
 226 8: Utilize the behavior policy π_g to interact with \mathcal{M}^c and store state-action pairs into \mathcal{D} .
 227 9: **end for**

228
 229 Intuitively, our score-based intrinsic rewards can measure the fitting quality of the diffusion model
 230 to the explored data, thereby encouraging the agent to explore regions that are poorly fitted or un-
 231 explored (more analyses between $\mathcal{R}_{\text{score}}$ and $-\log p_{\theta'}$ are in Appendix C.1). By maximizing these
 232 intrinsic rewards, ExDM trains agents to discover unseen regions effectively. However, directly us-
 233 ing diffusion policies to interact with reward-free environments during pre-training is inefficient and
 234 unstable due to the requirement of multi-step sampling. To address this limitation, ExDM incorpo-
 235 rates a Gaussian behavior policy π_g for efficient action sampling. Gaussian behavior policy π_g can
 236 be trained using any **off-policy** RL algorithm, guided by score-based intrinsic rewards $\mathcal{R}_{\text{score}}(s)$.
 237 This encourages the exploration of regions where the diffusion model either fits poorly or has not yet
 238 been exposed. The pseudo code of the unsupervised exploration stage of ExDM is in Algorithm 1.

239 4.2 EFFICIENT ONLINE FINE-TUNING TO DOWNSTREAM TASKS

240 When adapting pre-trained policies to downstream tasks with limited timesteps, existing URL meth-
 241 ods always directly apply online RL algorithms like DDPG (Lillicrap, 2015) or PPO (Schulman
 242 et al., 2017) for fine-tuning. The behavior policy π_g in ExDM can also be fine-tuned to handle the
 243 downstream task with the same online RL algorithms, performing fair comparison of exploration
 244 efficiency between ExDM and baselines (detailed experimental results are in Sec. 5.3).

245 Besides π_g , ExDM has also pre-trained the diffusion policy π_d , which can better capture the hetero-
 246 geneous explored trajectories for adapting to downstream tasks. Unfortunately, it is challenging to
 247 online fine-tune diffusion policies due to the instability caused by the multi-step sampling and the
 248 lack of closed-form probability calculation (Ren et al., 2024). To address these challenges, we first
 249 analyze the online fine-tuning objective for URL. Given the limited fine-tuning timesteps, the objec-
 250 tive can be formulated as the combination of maximizing the cumulative return and keeping close to
 251 the pre-trained policy over all s (Eysenbach et al., 2021) (more analyses are in Appendix C.2):

$$\begin{aligned} 253 \max_{\pi} J_f(\pi) &\triangleq J(\pi) - \frac{\beta}{(1-\gamma)} \mathbb{E}_{s \sim d_{\pi}} [D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))] \\ 254 &= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi}, a \sim \pi} [\mathcal{R}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))] \\ 255 &= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi}, a \sim \pi} \left[\mathcal{R}(s, a) - \beta \log \frac{\pi(a|s)}{\pi_d(a|s)} \right], \end{aligned} \quad (9)$$

256 here $\beta > 0$ is an unknown trade-off parameter that is related to fine-tuning steps. $J_f(\pi)$ can be inter-
 257 preted as penalizing the probability offset of the policy in (s, a) over π and π_d . More specifically, it
 258 aims to maximize a surrogate reward of the form $\mathcal{R}(s, a) - \beta \log \frac{\pi(a|s)}{\pi_d(a|s)}$. However, this surrogate
 259 reward depends on the policy π , and we cannot directly apply the classical RL analyses. Inspired by
 260 soft RL (Haarnoja et al., 2017) and offline RL (Peng et al., 2019), we define our Q functions as:

$$261 Q_{\pi}(s, a) = \mathbb{E} \left[\mathcal{R}(s, a) + \sum_{i=1}^{\infty} \gamma^i \left(\mathcal{R}(s_i, a_i) - \beta \log \frac{\pi(a_i|s_i)}{\pi_d(a_i|s_i)} \right) \right]. \quad (10)$$

262 Based on this Q function, we can simplify J_f as

$$263 J_f(\pi) = \mathbb{E}_{s \sim \rho_0, a \sim \pi} [Q_{\pi}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))]. \quad (11)$$

270 **Algorithm 2** Diffusion Policy Fine-tuning of ExDM

271 **Require:** Environment \mathcal{M} with rewards \mathcal{R} , replay buffer \mathcal{D} , pre-trained diffusion policy π_d param-
 272 eterized with the score model ϵ_θ , fine-tuned diffusion policy ϵ_ψ .
 273 1: **for** update iteration $n = 1, 2, \dots, N$ **do**
 274 2: Sample $s\text{-}a\text{-}r$ pairs $\{(\mathbf{s}^m, \mathbf{a}^m, \mathbf{r}^m)\}_{m=1}^M$ from \mathcal{D} .
 275 3: Update Q function with IQL and update Guidance $f_{\phi_{n-1}}$ with CEP.
 276 4: Optimize ψ by score distillation with Eq. (14).
 277 5: **for** interaction step $= 1, 2, \dots, S$ **do**
 278 6: Interact with \mathcal{M} by ϵ_ψ and store state-action-reward pairs into \mathcal{D} .
 279 7: **end for**
 280 8: **end for**

281
 282 To optimize J_f , ExDM decouples optimizing Q functions and diffusion policies. In detail, we initial
 283 $\pi_0 = \pi_d$, $Q_0 = Q_{\pi_0}$, then for $n = 1, 2, \dots$, we set
 284

$$285 \pi_n(\cdot|\mathbf{s}) \triangleq \arg \max_{\pi} \mathbb{E}_{\mathbf{a} \sim \pi} [Q_{\pi_{n-1}}(\mathbf{s}, \mathbf{a}) - \beta D_{\text{KL}}(\pi(\cdot|\mathbf{s})\|\pi_d(\cdot|\mathbf{s}))] = \frac{\pi_d(\mathbf{a}|\mathbf{s})e^{Q_{n-1}(\mathbf{s}, \mathbf{a})/\beta}}{Z(\mathbf{s})}, \quad (12)$$

$$287 Q_n \triangleq Q_{\pi_n},$$

288 here $Z(\mathbf{s}) = \int \pi_d(\mathbf{a}|\mathbf{s})e^{Q_{n-1}(\mathbf{s}, \mathbf{a})/\beta} d\mathbf{a}$. Building on soft RL analysis (Haarnoja et al., 2017; 2018),
 289 we show the policy improvement of each iteration and the optimality of the alternating optimization:
 290

291 **Theorem 4.2** (Optimality of ExDM, Proof in Appendix B.2). *ExDM can achieve policy improvement, i.e., $J_f(\pi_n) \geq J_f(\pi_{n-1})$ for $\forall n \geq 1$. And π_n will converge to the optimal policy of J_f .*
 292

293 Compared with offline RL, in which Q functions are related to offline datasets, Q functions here are
 294 related to current policies, which introduces extra challenges as Q functions change correspondingly
 295 during fine-tuning. Below, we introduce the practical diffusion policy fine-tuning method of ExDM
 296 for both updating Q functions and diffusion policies, respectively (pseudo-code in Algorithm 2).

297 **Q function optimization.** Our principle for updating Q functions is to penalize actions with large
 298 log probability ratios between π and π_d . Thus, we apply implicit Q-learning (IQL) (Kostrikov et al.,
 299 2022), which leverages expectile regression to penalize out-of-distribution actions (Appendix C.3).
 300

301 **Diffusion policy distillation.** At each iteration n with Q function Q_{n-1} , calculating π_n by Eq. (12)
 302 is difficult as $Z(s)$ is a complicated integral. However, sampling from π_n can be regarded as sam-
 303 pling from π_d with energy guidance Q_{n-1} , i.e., guided sampling (Janner et al., 2022). Especially,
 304 we employ contrastive energy prediction (CEP) (Lu et al., 2023) to sample from $\propto \pi_d e^{Q_{n-1}/\beta}$ and
 305 parameterize $f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t, t)$ to represent timestep t 's energy guidance, which can be optimized as:
 306

$$307 \min_{\phi_{n-1}} \mathbb{E}_{t, \mathbf{s}} \mathbb{E}_{\mathbf{a}^1, \dots, \mathbf{a}^K \sim \pi_d(\cdot|\mathbf{s})} \left[- \sum_{i=1}^K \frac{e^{Q_{n-1}(\mathbf{s}, \mathbf{a}^i)/\beta}}{\sum_{j=1}^K e^{Q_{n-1}(\mathbf{s}, \mathbf{a}^j)/\beta}} \log \frac{f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t^i, t)}{\sum_{j=1}^K f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t^j, t)} \right]. \quad (13)$$

309 Then ExDM fine-tunes diffusion policies by distilling the score of π_n parameterized by $\epsilon_\psi(\mathbf{a}_t|\mathbf{s}, t)$:

$$311 \min_{\psi} \mathbb{E}_{\mathbf{s}, \mathbf{a}, t} \|\epsilon_\psi(\mathbf{a}_t|\mathbf{s}, t) - \epsilon_\theta(\mathbf{a}_t|\mathbf{s}, t) - f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t, t)\|^2. \quad (14)$$

312 Finally, we can directly sample from ϵ_ψ to generate action of π_n (details are in Appendix C.4).
 313

314

5 EXPERIMENTS

315 In this section, we present extensive empirical results to mainly address the following questions:

316

- 317 • Can ExDM boost the unsupervised exploration efficiency, especially in complicated mazes
 318 with numerous branching paths and decision points? (Sec. 5.2)
- 319 • What about the adaptation efficiency of the pre-trained Gaussian policies of ExDM com-
 320 pared to other URL baselines? (Sec. 5.3)
- 321 • As for fast fine-tuning pre-trained diffusion policies to downstream tasks, how does the
 322 performance of ExDM compare to existing baselines? (Sec. 5.4)

324
325
326
327
328
329
330
331
332
333
334
335
Figure 2: **Heatmap of explored regions by URL methods in the most complicated mazes.**

Domains	Square-a	Square-b	Square-c	Square-d	Square-tree	Square-bottleneck	Square-large
ICM	0.58 ± 0.04	0.53 ± 0.06	0.47 ± 0.07	0.49 ± 0.06	0.49 ± 0.05	0.32 ± 0.07	0.25 ± 0.04
RND	0.50 ± 0.14	0.39 ± 0.08	0.52 ± 0.16	0.32 ± 0.05	0.28 ± 0.06	0.33 ± 0.06	0.33 ± 0.08
Disagreement	0.38 ± 0.10	0.30 ± 0.10	0.41 ± 0.19	0.29 ± 0.11	0.32 ± 0.11	0.28 ± 0.04	0.21 ± 0.06
LBS	0.32 ± 0.04	0.29 ± 0.09	0.27 ± 0.05	0.25 ± 0.03	0.22 ± 0.03	0.21 ± 0.02	0.19 ± 0.06
RE3	0.85 ± 0.09	0.72 ± 0.22	0.73 ± 0.16	0.74 ± 0.01	0.73 ± 0.04	0.62 ± 0.01	0.46 ± 0.03
MEPOL	0.98 ± 0.03	0.99 ± 0.02	0.96 ± 0.07	0.77 ± 0.01	0.89 ± 0.06	0.62 ± 0.01	0.59 ± 0.04
DIAYN	0.41 ± 0.06	0.44 ± 0.04	0.42 ± 0.04	0.37 ± 0.03	0.38 ± 0.06	0.29 ± 0.04	0.30 ± 0.04
SMM	0.47 ± 0.13	0.45 ± 0.20	0.36 ± 0.08	0.28 ± 0.04	0.25 ± 0.02	0.41 ± 0.13	0.34 ± 0.10
LSD	0.45 ± 0.03	0.38 ± 0.05	0.36 ± 0.03	0.35 ± 0.03	0.28 ± 0.03	0.34 ± 0.03	0.32 ± 0.03
CIC	0.94 ± 0.02	0.98 ± 0.01	0.86 ± 0.03	0.74 ± 0.01	0.89 ± 0.01	0.58 ± 0.05	0.47 ± 0.01
BeCL	0.50 ± 0.08	0.48 ± 0.11	0.42 ± 0.10	0.37 ± 0.03	0.36 ± 0.06	0.29 ± 0.06	0.25 ± 0.05
CeSD	0.70 ± 0.04	0.79 ± 0.04	0.67 ± 0.06	0.46 ± 0.06	0.37 ± 0.06	0.46 ± 0.03	0.40 ± 0.01
ExDM (Ours)	0.99 ± 0.02	0.99 ± 0.01	0.98 ± 0.02	0.78 ± 0.01	0.91 ± 0.01	0.75 ± 0.15	0.71 ± 0.07

346
347
Table 1: **State coverage in Maze.** We report the mean and std of 10 seeds for each algorithm.348
5.1 EXPERIMENTAL SETUP
349

350 **Maze2d.** We first evaluate the exploration diversity during the unsupervised stage in widely used
351 maze2d environments (Campos et al., 2020; Yang et al., 2023b): Square-a, Square-b, Square-c,
352 Square-d, Square-tree, Square-bottleneck, and Square-large. Observations and actions here belong
353 to \mathbb{R}^2 . When interacting with mazes, agents will be blocked when they contact walls.

354
355 **Continuous Control.** To evaluate the performance of fine-tuning in downstream tasks, we choose
356 4 continuous control settings in URLB (Laskin et al., 2021): Walker, Quadruped, Jaco, and Hopper.
357 Each domain contains four downstream tasks. More details are in Appendix D.1.

358
359 **Baselines.** In **Maze2d** experiments, we take 6 **exploration baselines**: ICM (Pathak et al., 2017),
360 RND (Burda et al., 2018), Disagreement (Pathak et al., 2019), RE3 (Seo et al., 2021), MEPOL (Mitti
361 et al., 2021), and LBS (Mazzaglia et al., 2022); as well as 6 **skill discovery baselines**: DIAYN (Eysenbach
362 et al., 2018), SMM (Lee et al., 2019), LSD (Park et al., 2022), CIC (Laskin et al., 2022),
363 BeCL (Yang et al., 2023b), and CeSD (Bai et al., 2024), which are standard and SOTA. As for
364 fine-tuning in **URLB**, we consider three settings: **(a)** for a fair comparison, we directly utilize
365 DDPG (Sohl-Dickstein et al., 2015) to fine-tune the pre-trained behavior Gaussian policy in ExDM,
366 compared to existing URL baselines, including ICM, RND, Disagreement, RE3, MEPOL, LBS,
367 DIAYN, SMM, LSD, CIC, BeCL, and CeSD (all baselines fine-tuned by DDPG, the standard RL
368 backbone in URLB, except CeSD fine-tuned by ensembled DDPG); **(b)** We consider complicated
369 cross-embodiment URL (Ying et al., 2024), comparing ExDM with ICM, Disagreement, RND, LBS,
370 DIAYN, SMM, CIC, BeCL, and PEAC (Ying et al., 2024); **(c)** ExDM also fine-tunes pre-trained
371 diffusion policies, compared to diffusion policy fine-tuned baselines, like DQL (Wang et al., 2023),
372 IDQL (Hansen-Estruch et al., 2023), QSM (Psenka et al., 2023), and DIPO (Yang et al., 2023a).

373
374 **Metrics.** In Maze2d, we pre-train agents in reward-free environments with **100k** steps and visu-
375 alize all collected trajectories. Moreover, to quantitatively compare the exploration efficiency, we
376 evaluate the state coverage ratios, which are measured as the proportion of 0.01×0.01 square bins
377 visited. As for URLB, following standard settings, we pre-train agents in reward-free environments
378 for **2M** steps and fine-tune pre-trained policies to adapt each downstream task within extrinsic re-
379 wards for **100K** steps. All settings are run for 10 seeds to mitigate the effectiveness of randomness.

Figure 3: **Aggregate metrics** (Agarwal et al., 2021) for three settings. Details are in Appendix D.5.

5.2 UNSUPERVISED PRE-TRAINING FOR EXPLORATION

In Fig. 2, we visualize the heatmap of collected trajectories during pre-training in complicated Square-bottleneck and Square-large (results of all 7 mazes and 13 baselines are in Appendix D.4). To quantitatively evaluate the exploration efficiency of each algorithm, we further report the state coverages in Table 1 (training curves are in Fig. 8 of Appendix D.4). In both qualitative visualization and quantitative metrics, ExDM outperforms baselines by large margins. Especially, in complicated mazes like Square-bottleneck and Square-large with many different branching points (Fig. 2), all baselines will struggle at some wall corner and cannot explore the entire maze. In contrast, ExDM successfully explores almost the whole maze, demonstrating that our $\mathcal{R}_{\text{score}}$, leveraging the accurate data estimation ability of diffusion models, can effectively guide agents to explore diverse states.

5.3 FINE-TUNING THE GAUSSIAN POLICY TO DOWNSTREAM TASKS

We verify the ability of ExDM to fine-tune downstream tasks in both single-embodiment and cross-embodiment URLB. As existing URL methods directly fine-tune policies with DDPG, for a fair comparison, we also use DDPG to fine-tune pre-trained Gaussian policies π_g in ExDM. Following previous settings, we train DDPG agents for each downstream task with 2M steps to obtain the expert return and calculate the expert-normalized score for each algorithm. In Fig. 3(a)-3(b), we compare all methods with four metrics: mean, median, interquartile mean (IQM), and optimality gap (OG), along with stratified bootstrap confidence intervals. ExDM significantly outperforms all existing SOTA methods, demonstrating that introducing diffusion models can lead to more efficient generalization in downstream tasks. Details of each downstream task are in Appendix D.5.

5.4 FINE-TUNING THE DIFFUSION POLICY TO DOWNSTREAM TASKS

Moreover, ExDM has pre-trained diffusion policies that can capture the diversity of explored trajectories and adapt to downstream tasks. Consequently, in Fig. 3(c), ExDM substantially outperforms existing diffusion online fine-tuning baselines, demonstrating the efficiency of its alternating optimization. However, diffusion policy fine-tuning performance is still lower than Gaussian policy performance, which may be due to limited interaction timesteps during fine-tuning. It is an interesting future direction to design more efficient diffusion online fine-tuning methods.

Figure 4: Ablation studies.

5.5 ABLATION STUDIES

Pre-training Steps. We first do ablation studies on pre-trained steps (100k, 500k, 1M, and 2M) to evaluate fine-tuned performance (100k fine-tuned steps). As shown in Fig. 4(a), ExDM markedly exceeds all baselines from 500k steps, indicating that the diffusion model enhances fine-tuning. Moreover, ExDM substantially improves with increasing pre-training timesteps, showing that the unsupervised exploration benefits downstream tasks. Additional results are in Appendix D.6.

Q function optimization. We conduct ablation studies to evaluate the impact of Q learning methods during fine-tuning. In detail, we introduce ExDM w/o IQL, which utilizes In-support Softmax Q-Learning (Lu et al., 2023) for optimizing Q functions. Fig. 4(b) demonstrates that ExDM consistently outperforms ExDM w/o IQL, verifying the efficiency of IQL in diffusion policy fine-tuning.

Sampling steps of diffusion policies. During fine-tuning diffusion policies, ExDM requires sampling actions from diffusion policies for both trajectory generation and final evaluation. We adopt DPM-Solver (Lu et al., 2022) to accelerate sampling. For trajectory collection, we set the diffusion step to 15, following previous works (Lu et al., 2023). Then we conduct ablation studies between the diffusion sampling steps used during inference and the fine-tuned performance. Fig. 4(c) shows that performance improves as diffusion steps increase and gradually stabilizes when the step exceeds 5.

Ablation study on β . We consider the objective J_f with the behavior regularization term because the fine-tuning step is limited (more analyses are in Appendix C.2). The parameter β implicitly relies on the fine-tuning steps. If the fine-tuning steps are infinite, the optimal β should be 0, and J_f degrades into J . We set $\beta = 1/3.0$ in experiments (following previous work (Lu et al., 2023)) and do ablations with different β in Fig. 4(d), showing that ExDM performs relatively stably of β .

Time cost of ExDM. One of the major concerns for diffusion models is their time cost due to multi-step sampling. This problem may be more severe in online RL, as each collected trajectory requires sampling from diffusion policies. To address it, ExDM decouples modeling from acting, i.e., utilizing Gaussian behavior policies π_g for sampling. Thus, ExDM exhibits high training efficiency for both timesteps and training time. For example, in Square-large, RND achieves the state coverage of 0.33 with 100k timesteps and 1000s of time. ExDM can achieve 0.71 state coverage within 100k timesteps, and achieve 0.4 state coverage with the same time cost (1000s) and only 16.6k timesteps.

6 CONCLUSION

Unsupervised exploration is one of the major problems in RL for improving task generalization, as it relies on accurate intrinsic rewards to guide exploration of unseen regions. In this work, we address the challenge of limited policy expressivity in previous exploration methods by leveraging the powerful expressive ability of diffusion policies. In detail, our Exploratory Diffusion Model (ExDM) improves exploration efficiency during pre-training while generating policies with high behavioral diversity. We also provide a theoretical analysis of diffusion policy fine-tuning, along with practical alternating optimization methods. Experiments in various settings demonstrate that ExDM can effectively benefit both pre-training exploration and fine-tuning performance. We hope this work can inspire further research in developing high-fidelity generative models to improve unsupervised exploration, particularly in large-scale pre-trained agents or real-world control applications.

486 ETHICS STATEMENT
487488 Designing generalizable agents for varying tasks is one of the major concerns in reinforcement
489 learning. This work focuses on utilizing diffusion policies for exploration and proposes a novel
490 algorithm ExDM. One of the potential negative impacts is that algorithms mainly use deep neural
491 networks, which lack interoperability and may face robustness issues. There are no serious ethical
492 issues, as this is basic research.494 REPRODUCIBILITY STATEMENT
495496 To ensure that our work is reproducible, we submit the source code as supplementary material. We
497 also provide the pseudo-code of ExDM in Algorithm 1-2 and implementation details of ExDM,
498 including hyper-parameters in Appendix D. Moreover, for all theoretical results, we have provided
499 all details and proofs in Appendix B.501 REFERENCES
502503 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
504 Deep reinforcement learning at the edge of the statistical precipice. *Advances in neural informa-*
505 *tion processing systems*, 34:29304–29320, 2021.506 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
507 Is conditional generative modeling all you need for decision making? In *The Eleventh Interna-*
508 *tional Conference on Learning Representations*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=sP1fo2K9DFG)
509 [forum?id=sP1fo2K9DFG](https://openreview.net/forum?id=sP1fo2K9DFG).511 Eloi Alonso, Adam Jolley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and
512 François Fleuret. Diffusion for world modeling: Visual details matter in atari. *arXiv preprint*
513 *arXiv:2405.12399*, 2024.514 Adrian Baddeley, Imre Bárány, and Rolf Schneider. Random polytopes, convex bodies, and ap-
515 proximation. *Stochastic Geometry: Lectures given at the CIME Summer School held in Martina*
516 *Franca, Italy, September 13–18, 2004*, pp. 77–118, 2007.518 Chenjia Bai, Rushuai Yang, Qiaosheng Zhang, Kang Xu, Yi Chen, Ting Xiao, and Xuelong Li. Con-
519 strained ensemble exploration for unsupervised skill discovery. *arXiv preprint arXiv:2405.16030*,
520 2024.521 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
522 distillation. In *International Conference on Learning Representations*, 2018.524 Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and Jordi
525 Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In *Inter-
526 national Conference on Machine Learning*, pp. 1317–1327. PMLR, 2020.527 Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palanicek, Jan Peters, Georgia Chalvatzaki,
528 and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. *arXiv*
529 *preprint arXiv:2502.02316*, 2025.531 Boyuan Chen, Diego Martí Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
532 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *arXiv preprint*
533 *arXiv:2407.01392*, 2024a.534 Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
535 planning with diffusion. *arXiv preprint arXiv:2401.02644*, 2024b.537 Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learn-
538 ing via high-fidelity generative behavior modeling. In *The Eleventh International Confer-
539 ence on Learning Representations*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=42zs3qa2kpy)
540 [forum?id=42zs3qa2kpy](https://openreview.net/forum?id=42zs3qa2kpy).

540 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 541 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.

543

544 Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
 545 Model-based reinforcement learning via meta-policy optimization. In *Conference on robot learning*, pp. 617–629. PMLR, 2018.

546

547 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.

548

549 Zihan Ding, Amy Zhang, Yuandong Tian, and Qin Qing Zheng. Diffusion world model. *arXiv preprint arXiv:2402.03570*, 2024.

550

552 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI 2: Fast
 553 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

554

555 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
 556 Learning skills without a reward function. In *International Conference on Learning Representations*, 2018.

557

558 Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. The information geometry of
 559 unsupervised reinforcement learning. In *International Conference on Learning Representations*,
 560 2021.

561

562 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 563 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

564

565 Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, and Satinder
 566 Singh. Bootstrapped meta-learning. *arXiv preprint arXiv:2109.04504*, 2021.

567

568 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 569 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
 570 PMLR, 2017.

571

572 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 573 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pp. 1861–1870. PMLR, 2018.

574

575 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 576 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint arXiv:2304.10573*, 2023.

577

578 Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xuelong
 579 Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
 580 learning. *Advances in neural information processing systems*, 36:64896–64917, 2023.

581

582 Takuwa Hiraoka, Takahisa Imagawa, Voot Tangkaratt, Takayuki Osa, Takashi Onishi, and Yoshi-
 583 masa Tsuruoka. Meta-model-based meta-policy optimization. In *Asian Conference on Machine
 584 Learning*, pp. 129–144. PMLR, 2021.

585

586 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 587 neural information processing systems*, 33:6840–6851, 2020.

588

589 Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, and Doina Precup. Langevin soft actor-critic:
 590 Efficient exploration through uncertainty-driven critic learning. *arXiv preprint arXiv:2501.17827*,
 591 2025.

592

593 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 594 flexible behavior synthesis. In *International Conference on Machine Learning*, pp. 9902–9915.
 595 PMLR, 2022.

596

597 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
 598 offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2024.

594 Jaekyeom Kim, Seohong Park, and Gunhee Kim. Unsupervised skill discovery with bottleneck
 595 option learning. In *International Conference on Machine Learning*, pp. 5572–5582. PMLR, 2021.
 596

597 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 598 learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.
 599

600 Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
 601 Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. In *Thirty-fifth
 602 Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
 603 2)*, 2021.

604 Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
 605 Unsupervised reinforcement learning with contrastive intrinsic control. *Advances in Neural In-
 606 formation Processing Systems*, 35:34478–34491, 2022.
 607

608 Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
 609 nov. Efficient exploration via state marginal matching. *arXiv preprint arXiv:1906.05274*, 2019.
 610

611 Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
 612 making. In *International Conference on Machine Learning*, pp. 20035–20064. PMLR, 2023.
 613

614 Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
 615 Learning multimodal behaviors from scratch with diffusion policy gradient. *arXiv preprint
 616 arXiv:2406.00681*, 2024.
 617

618 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 619 Diffusion models as adaptive self-evolving planners. In *International Conference on Machine
 620 Learning*, pp. 20725–20745. PMLR, 2023.
 621

622 TP Lillicrap. Continuous control with deep reinforcement learning. *arXiv preprint
 623 arXiv:1509.02971*, 2015.
 624

625 Bo Liu, Xidong Feng, Jie Ren, Luo Mai, Rui Zhu, Haifeng Zhang, Jun Wang, and Yaodong Yang.
 626 A theoretical understanding of gradient bias in meta-reinforcement learning. *Advances in Neural
 627 Information Processing Systems*, 35:31059–31072, 2022.
 628

629 Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. *Advances in
 630 Neural Information Processing Systems*, 34:18459–18473, 2021.
 631

632 Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruifeng Chen, Zhilong Zhang, Xinwei Chen, and Yang
 633 Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. *arXiv preprint
 634 arXiv:2407.12448*, 2024.
 635

636 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 637 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural
 638 Information Processing Systems*, 35:5775–5787, 2022.
 639

640 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 641 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Inter-
 642 national Conference on Machine Learning*, pp. 22825–22855. PMLR, 2023.
 643

644 Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. *Ad-
 645 vances in Neural Information Processing Systems*, 36, 2024.
 646

647 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
 648 reinforcement learning for diffusion policy. *arXiv preprint arXiv:2502.00361*, 2025.
 649

650 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 651 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
 652 class and backbone. *arXiv preprint arXiv:2412.06685*, 2024.
 653

654 Pietro Mazzaglia, Ozan Catal, Tim Verbelen, and Bart Dhoedt. Curiosity-driven exploration via
 655 latent bayesian surprise. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 656 ume 36, pp. 7752–7760, 2022.
 657

648 Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via policy gradient of a non-parametric state entropy estimate. In *Proceedings of the AAAI conference on artificial*
 649 *intelligence*, volume 35, pp. 9028–9036, 2021.

650

651 Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
 652 and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
 653 reinforcement learning. *arXiv preprint arXiv:1803.11347*, 2018.

654

655 Felipe Nuti, Tim Franzmeyer, and João F Henriques. Extracting reward functions from diffusion
 656 models. *Advances in Neural Information Processing Systems*, 36:50196–50220, 2023.

657

658 Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
 659 constrained unsupervised skill discovery. In *International Conference on Learning Representations*, 2022.

660

661 Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
 662 abstraction. *arXiv preprint arXiv:2310.08887*, 2023.

663 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 664 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 665 PMLR, 2017.

666

667 Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
 668 In *International conference on machine learning*, pp. 5062–5071. PMLR, 2019.

669

670 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 671 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

672

673 Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
 674 from rewards via q-score matching. *arXiv preprint arXiv:2312.11752*, 2023.

675

676 Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
 677 procedurally-generated environments. *arXiv preprint arXiv:2002.12292*, 2020.

678

679 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 680 meta-reinforcement learning via probabilistic context variables. In *International conference on*
 681 *machine learning*, pp. 5331–5340. PMLR, 2019.

682

683 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
 684 dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
 685 tion. *arXiv preprint arXiv:2409.00588*, 2024.

686

687 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 688 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

689

690 Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
 691 maximization with random encoders for efficient exploration. In *International conference on*
 692 *machine learning*, pp. 9443–9454. PMLR, 2021.

693

694 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 695 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 696 ing*, pp. 2256–2265. PMLR, 2015.

697

698 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 699 national Conference on Learning Representations*, 2021a. URL <https://openreview.net/forum?id=St1giarCHLP>.

700

701 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 702 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 703 national Conference on Learning Representations*, 2021b. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

704

705 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
 706 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv*
 707 *preprint arXiv:1801.00690*, 2018.

702 Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen
 703 Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-
 704 ioral foundation models. *arXiv preprint arXiv:2504.11054*, 2025.

705 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in*
 706 *Neural Information Processing Systems*, 34:13–23, 2021.

708 Renhao Wang, Kevin Frans, Pieter Abbeel, Sergey Levine, and Alexei A Efros. Prioritized genera-
 709 tive replay. *arXiv preprint arXiv:2410.18082*, 2024a.

710 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 711 class for offline reinforcement learning. In *The Eleventh International Conference on Learning*
 712 *Representations*, 2023. URL <https://openreview.net/forum?id=AHvFDPi-FA>.

714 Zhendong Wang, Zhaoshuo Li, Ajay Mandlekar, Zhenjia Xu, Jiaojiao Fan, Yashraj Narang, Linxi
 715 Fan, Yuke Zhu, Yogesh Balaji, Mingyuan Zhou, et al. One-step diffusion policy: Fast visuomotor
 716 policies via diffusion distillation. *arXiv preprint arXiv:2410.21257*, 2024b.

717 James G Wendel. A problem in geometric probability. *Mathematica Scandinavica*, 11(1):109–111,
 718 1962.

720 Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
 721 data for efficient online exploration. *arXiv preprint arXiv:2410.18076*, 2024.

722 Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen,
 723 Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for rein-
 724 forcement learning. *arXiv preprint arXiv:2305.13122*, 2023a.

726 Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen Wang, Peng Liu, and Xuelong
 727 Li. Behavior contrastive learning for unsupervised skill discovery. In *International Conference*
 728 *on Machine Learning*, pp. 39183–39204. PMLR, 2023b.

729 Chengyang Ying, Xinning Zhou, Hang Su, Dong Yan, Ning Chen, and Jun Zhu. Towards safe rein-
 730 forcement learning via constraining conditional value-at-risk. *arXiv preprint arXiv:2206.04436*,
 731 2022.

733 Chengyang Ying, Hao Zhongkai, Xinning Zhou, Xuezhou Xu, Hang Su, Xingxing Zhang, and Jun
 734 Zhu. Peac: Unsupervised pre-training for cross-embodiment reinforcement learning. *Advances*
 735 *in Neural Information Processing Systems*, 37:54632–54669, 2024.

736 Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Automatic intrinsic reward shaping for exploration
 737 in deep reinforcement learning. In *International Conference on Machine Learning*, pp. 40531–
 738 40554. PMLR, 2023.

740 Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Jinyi Liu, Yingfeng Chen, and
 741 Changjie Fan. Euclid: Towards efficient unsupervised reinforcement learning with multi-choice
 742 dynamics model. *arXiv preprint arXiv:2210.00498*, 2022.

743 Andrew Zhao, Matthieu Lin, Yangguang Li, Yong-Jin Liu, and Gao Huang. A mixture of surprises
 744 for unsupervised reinforcement learning. *Advances in Neural Information Processing Systems*,
 745 35:26078–26090, 2022.

746 Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
 747 Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. *arXiv preprint*
 748 *arXiv:2311.01223*, 2023.

750 Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
 751 and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
 752 learning. *arXiv preprint arXiv:1910.08348*, 2019.

753 Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
 754 Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
 755 meta-learning. *Journal of Machine Learning Research*, 22(289):1–39, 2021.

756

757

758

759

A EXTENDED RELATED WORK

760

761

A.1 META RL ANE UNSUPERVISED RL

762 **Improving the generalization of RL agents is a long-term challenge. There are several settings**
 763 **aiming at pre-training agents and then fine-tuning the pre-trained agent to fast adapt to vari-**
 764 **ous tasks, like unsupervised RL and meta RL. Unsupervised RL, as we have discussed above,**
 765 **pre-trains agents in reward-free environments, i.e., the environment without task rewards.**
 766 **Thus, we will design intrinsic rewards to pre-train agents to fully explore the environment.**
 767 **And the pre-trained agent needs to fast adapt to downstream tasks that it has not seen dur-**
 768 **ing the pre-training stage. Meta RL pre-trains agents in several sampled tasks from a task**
 769 **distribution \mathcal{T} . And the pre-trained agent needs to fast adapt to test tasks that are sampled**
 770 **from \mathcal{T} but are not seen during the pre-training stage. There are two major types of methods**
 771 **in Meta RL: gradient-based (Finn et al., 2017; Flennerhag et al., 2021; Liu et al., 2022) and**
 772 **context-based methods (Duan et al., 2016; Rakelly et al., 2019; Zintgraf et al., 2019). Besides**
 773 **model-free methods, there are also some methods that apply learned dynamic models to boost**
 774 **the sample efficiency of meta RL (Nagabandi et al., 2018; Clavera et al., 2018; Hiraoka et al.,**
 775 **2021). Consequently, the major difference between unsupervised RL and meta RL is that,**
 776 **during the pre-training stage, there are no task rewards in the former setting, but the agent**
 777 **can access several task rewards sampled from the same distribution of the test tasks in the**
 778 **latter setting.**

779

780

781

A.2 ONLINE FINE-TUNING DIFFUSION POLICIES

782 **Although diffusion policies have been proven to be expressive models for capturing diverse of-**
 783 **fine datasets (Wang et al., 2023; Chen et al., 2023), online fine-tuning diffusion policies (Psenka**
 784 **et al., 2023; Li et al., 2024; Ren et al., 2024; Mark et al., 2024; Celik et al., 2025; Ma et al., 2025;**
 785 **Ishfaq et al., 2025) still face many challenges and are a key issue of concern for the community.**
 786 **For example, the instability caused by multi-step sampling and the lack of closed-form proba-**
 787 **bility calculation are significant concerns. Many recent works hope to address these challenges**
 788 **and improve the efficiency of online training diffusion policies; they mainly consider two set-**
 789 **tings: online training diffusion policies from scratch with enough timesteps (Psenka et al.,**
 790 **2023; Yang et al., 2023a) or online fine-tuning diffusion policies pre-trained from an offline**
 791 **dataset sampled from the same task (Hansen-Estruch et al., 2023; Ma et al., 2025). Further-**
 792 **more, there are several potential directions for improving fine-tuning efficiency, including:**
 793 **more energy-guided sampling techniques Liu et al. (2024), more efficient diffusion sampling**
 794 **techniques (e.g., distillation, deterministic sampling) (Wang et al., 2024b), and so on.**

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **B THEORETICAL ANALYSES**
 811

812 **B.1 THE DETAILS AND PROOF OF THEOREM 4.1**
 813

814 In this part, we narrate Theorem 4.1 in detail as well as provide its proof.
 815

816 Assume that \mathcal{S}, \mathcal{A} are discrete spaces and $|\mathcal{S}| = S, |\mathcal{A}| = A$. For any policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, we
 817 define the discount state distribution of π as $d_\pi(\mathbf{s}) = (1 - \gamma) \sum_{t=0}^{\infty} [\gamma^t \mathcal{P}(\mathbf{s}^t = \mathbf{s})]$. Naturally, $d_\pi(\cdot)$
 818 is a distribution of the state space \mathcal{S} . Specially, when \mathcal{S} is discrete, following previous work (Eysenbach et al., 2021; Ying et al., 2024), we can regard d_π as a point of the probability simplex in
 819 \mathbb{R}^S , i.e., $d_\pi \in H \triangleq \{(x_i)_{i=1}^S \mid \sum_{i=1}^S x_i = 1, 0 \leq x_i \leq 1\}$ (for example, the light blue plane in the
 820 left part of Fig. 1). Moreover, we consider $D \triangleq \{d_\pi \in H \mid \forall \pi\} \subseteq H$ representing all feasible state
 821 distribution.
 822

823 It is natural that there are $M \triangleq A^S$ different deterministic policies. Previous work (Eysenbach et al.,
 824 2021) has proven that D is a convex polytope, of which the vertices are the state distributions of the
 825 deterministic policies (for example, the green points of Fig. 1). Consequently, for any downstream
 826 task represented by some extrinsic reward function \mathcal{R} , the optimal policy is one the vertices of D ,
 827 i.e., some deterministic policy.
 828

828 Differently, the unsupervised exploration in URL aims to maximize the entropy of the policy, i.e., we
 829 hope to optimize $\hat{\pi} = \arg \max_{\pi} \mathcal{H}(d_\pi(\cdot))$. As $\mathcal{H}(d_\pi(\cdot)) = \int_{\mathbf{s} \sim d_\pi(\cdot)} [-\log d_\pi(\mathbf{s})] d\mathbf{s}$, this problem
 830 can be regard as maximizing a surrogate reward $-\log d_\pi(\mathbf{s})$. However, the surrogate reward is
 831 related to the current policy π , thus the analyses of standard RL may not hold. Actually, if we
 832 consider all distribution over \mathcal{S} , i.e., all points in H , it is well known that the distribution with the
 833 maximal distribution is the center of H , i.e., $O = (1/S, 1/S, \dots, 1/S) \in H$ (for example, the red
 834 point of Fig. 1). Although $O \in D$ may not hold, we hope to claim that the optimal policy $\hat{\pi}$ with
 835 the maximal state distribution entropy may not be deterministic, and its state distribution is O , i.e.,
 836 $O \in D$, with high probability.
 837

837 We consider the distribution in which the state distributions of the M deterministic policies are i.i.d.,
 838 and all follow the uniform distribution on H . Therefore, our problem can be transformed into: *there*
 839 *are M i.i.d. points uniformly sampled from H , and the convex polytope formed by these M points*
 840 *is $D \subseteq H$, then calculating the probability of the event $O \in D$.*

841 Based on the results in geometric probability (Eq. (13) of paper (Baddeley et al., 2007), extending
 842 the Wendel Theorem in (Wendel, 1962)), we have

843
$$P(O \in D) \geq 1 - \sum_{k=0}^{S-1} C_M^k \left(\frac{u(O)}{2} \right)^k \left(1 - \frac{u(O)}{2} \right)^{M-k}, \quad (15)$$

 844

845 here $u(O) = \text{vol}((2O - H) \cap H) / \text{vol}(H)$. Below we first estimate $u(O)$, which is obviously belong
 846 to $[0, 1]$. We have

847
$$\begin{aligned} \text{vol}(H) &= \sqrt{S} \int_{x_1+x_2+\dots+x_S=1, x_i \geq 0} dx_1 dx_2 \dots dx_S \\ &= \sqrt{S} \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \dots \int_0^{1-x_1-x_2-\dots-x_{S-2}} dx_{S-1} \\ &= \sqrt{S} \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \dots \int_0^{1-x_1-x_2-\dots-x_{S-3}} (1 - x_1 - \dots - x_{S-2}) dx_{S-2} \\ &= \sqrt{S} \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \dots \int_0^{1-x_1-x_2-\dots-x_{S-4}} \frac{(1 - x_1 - \dots - x_{S-3})^2}{2} dx_{S-3} \quad (16) \\ &= \dots \\ &= \sqrt{S} \int_0^1 \frac{(1 - x_1)^{S-2}}{(S-2)!} dx_1 \\ &= \frac{\sqrt{S}}{(S-1)!}. \end{aligned}$$

864 Then we estimate $\text{vol}((2O - H) \cap H)$. H is a convex polytope surrounded by S points $A_1 = (1, 0, 0, \dots, 0), \dots, A_S = (0, 0, \dots, 0, 1)$. As $O = (1/S, 1/S, \dots, 1/S)$, $2O - H$ is a convex polytope
865 surrounded by S points $B_1 = (2/S - 1, 1/S, 1/S, \dots, 1/S), \dots, B_S = (1/S, 1/S, \dots, 1/S, 2/S - 1)$.
866 It is difficult to directly calculate the volume of $(2O - H) \cap H$ (although we can calculate it by
867 the inclusion-exclusion principle). We can provide a lower bound of $(2O - H) \cap H$. Consider a
868 convex polytope C surrounded by S points $C_1 = (0, 1/(S-1), 1/(S-1), \dots, 1/(S-1)), \dots, C_S =$
869 $(1/(S-1), 1/(S-1), \dots, 1/(S-1), 0)$. It is easy to show that $C \subseteq (2O - H) \cap H$ and $C \sim H$.
870 As the side length of H and C is $\sqrt{\frac{2}{S}}$ and $\sqrt{\frac{2}{S} \frac{1}{S-1}}$. Thus we have $\text{vol}((2O - H) \cap H) \geq \text{vol}(C) =$
871 $\frac{1}{(S-1)^S} \frac{\sqrt{S}}{(S-1)!}$ and $u(O) = \text{vol}((2O - H) \cap H) / \text{vol}(H) \geq \frac{1}{(S-1)^S}$. Assume that $M \geq S - 2 +$
872 $(S-1) \frac{2-u(O)}{u(O)}$, then for $\forall 0 \leq k \leq S-2$, we have
873

$$\begin{aligned}
& C_M^k \left(\frac{u(O)}{2} \right)^k \left(1 - \frac{u(O)}{2} \right)^{M-k} \\
&= \frac{k+1}{M-k} \frac{2-u(O)}{u(O)} C_M^{k+1} \left(\frac{u(O)}{2} \right)^{k+1} \left(1 - \frac{u(O)}{2} \right)^{M-k-1} \\
&\leq \frac{S-2+1}{M-S+2} \frac{2-u(O)}{u(O)} C_M^{k+1} \left(\frac{u(O)}{2} \right)^{k+1} \left(1 - \frac{u(O)}{2} \right)^{M-k-1} \\
&\leq \frac{S-1}{(S-1) \frac{2-u(O)}{u(O)}} \frac{2-u(O)}{u(O)} C_M^{k+1} \left(\frac{u(O)}{2} \right)^{k+1} \left(1 - \frac{u(O)}{2} \right)^{M-k-1} \\
&= C_M^{k+1} \left(\frac{u(O)}{2} \right)^{k+1} \left(1 - \frac{u(O)}{2} \right)^{M-k-1}.
\end{aligned} \tag{17}$$

889 Consequently, we set $v(S) = 1 - \frac{u(O)}{2} < 1$ and have
890

$$\begin{aligned}
P(O \in D) &\geq 1 - \sum_{k=0}^{S-1} C_M^k \left(\frac{u(O)}{2} \right)^k \left(1 - \frac{u(O)}{2} \right)^{M-k} \\
&\geq 1 - C_M^{S-1} S \left(\frac{u(O)}{2} \right)^{S-1} \left(1 - \frac{u(O)}{2} \right)^{M-S+1} \\
&= 1 - C_M^{S-1} S \left(\frac{u(O)}{2-u(O)} \right)^{S-1} \left(1 - \frac{u(O)}{2} \right)^M \\
&\geq 1 - C_M^{S-1} S v(S)^M \\
&= 1 - \frac{M \times (M-1) \times \dots \times (M-S+2)}{1 \times 2 \times \dots \times (S-1)} S v(S)^M \\
&\geq 1 - M \times (M-1) \times \dots \times (M-S+2) \times S v(S)^M \\
&\geq 1 - M^S v(S)^M.
\end{aligned} \tag{18}$$

905 If we fix S , with the increasing of A , $M^S v(S)^M$ will fast converge to 0 as $0 < v(S) < 1$. Moreover,
906 the right part of the first line of Eq. 18 is always larger than 0 when $M \geq S$ (the sum of these
907 combination numbers is always less than 1 when $M > S$). Thus, we have proven Theorem 4.1.
908

909 Below, we will discuss the situation when the state space and action space are continuous. As
910 the optimal state distribution with the maximal state entropy is somewhat uniform, in continuous
911 environments, there may still not be simple unimodal distributions. For example, assume a one-step
912 MDP, we only take one action from $[0, 1]$ and the state is the same as the action, thus the optimal
913 policy should be the uniform distribution over $[0, 1]$ rather than simple unimodal distributions. We
914 will introduce more examples in the revised version to clarify the importance of introducing high-
915 fidelity models in unsupervised RL, especially for maximizing the state entropy.
916
917

918 B.2 THE PROOF OF THEOREM 4.2
919920 Below, we first analyze our fine-tuning objective Eq. 9 and then prove Theorem 4.2.
921922 Assuming ρ_0 is the original state distribution of the MDP \mathcal{M} , we have
923

$$\begin{aligned}
J_f(\pi) &\triangleq J(\pi) - \frac{\beta}{1-\gamma} \mathbb{E}_{s \sim d_\pi} [D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))] \\
&= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_\pi, a \sim \pi(\cdot|s)} [\mathcal{R}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))] \\
&= \mathbb{E}_{s \sim \rho_0, a \sim \pi(\cdot|s)} \left[\sum_{i=0}^{\infty} \gamma^i (\mathcal{R}(s_i, a_i) - \beta D_{\text{KL}}(\pi(\cdot|s_i) \parallel \pi_d(\cdot|s_i))) \middle| s_0 = s, a_0 = a \right] \\
&= \mathbb{E}_{s \sim \rho_0, a \sim \pi(\cdot|s)} \left[\mathcal{R}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s)) \right. \\
&\quad \left. + \sum_{i=1}^{\infty} \gamma^i (\mathcal{R}(s_i, a_i) - \beta D_{\text{KL}}(\pi(\cdot|s_i) \parallel \pi_d(\cdot|s_i))) \right] \\
&= \mathbb{E}_{s \sim \rho_0, a \sim \pi(\cdot|s)} [Q_\pi(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))],
\end{aligned} \tag{19}$$

937 here we set

$$\begin{aligned}
Q_\pi(s, a) &= \mathbb{E} \left[\mathcal{R}(s, a) + \sum_{i=1}^{\infty} \gamma^i \left(\mathcal{R}(s_i, a_i) - \beta \log \frac{\pi(a_i|s_i)}{\pi_d(a_i|s_i)} \right) \right] \\
&= \mathbb{E} \left[\mathcal{R}(s, a) + \sum_{i=1}^{\infty} \gamma^i (\mathcal{R}(s_i, a_i) - \beta D_{\text{KL}}(\pi(\cdot|s_i) \parallel \pi_d(\cdot|s_i))) \right].
\end{aligned} \tag{20}$$

944 As discussed in Sec. 4.2, ExDM applies the following alternative optimization method:
945

$$\begin{aligned}
\pi_n(\cdot|s) &= \arg \max_{\pi} \mathbb{E}_{a \sim \pi(\cdot|s)} [Q_{\pi_{n-1}}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))], \\
Q_n &= Q_{\pi_n},
\end{aligned} \tag{21}$$

949 Now we prove that $\pi_n(a|s) = \frac{1}{Z(s)} \pi_d(a|s) e^{Q_{n-1}(s, a)/\beta}$. More generally, we define
950

$$F(\pi, \pi', s) = \mathbb{E}_{a \sim \pi(\cdot|s)} [Q_{\pi'}(s, a) - \beta D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_d(\cdot|s))]. \tag{22}$$

952 Using the calculus of variations, we can calculate the optimal point π^* of F satisfying that
953

$$Q_{\pi'}(s, a) = \beta \log \frac{\pi^*(a|s)}{\pi_d(a|s)} + b\beta, \tag{23}$$

956 here b is a constant not related to π^* , and we have $\pi^*(a|s) = \pi_d(a|s) e^{\frac{Q_{\pi'}(s, a)}{\beta} - b}$. As
957 $\int \pi^*(a|s) da = 1$, we can calculate that
958

$$b = \log \int \pi_d(a|s) e^{\frac{Q_{\pi'}(s, a)}{\beta}} da, \quad \pi^*(a|s) = \frac{\pi_d(a|s) e^{\frac{Q_{\pi'}(s, a)}{\beta} - b}}{\int \pi_d(a|s) e^{\frac{Q_{\pi'}(s, a)}{\beta}} da}. \tag{24}$$

963 i.e., we have $\arg \max_{\pi} F(\pi, \pi', s) \propto \pi_d(\cdot|s) e^{Q_{\pi'}(\cdot|s)/\beta}$ and thus $\pi_n(a|s) = \frac{1}{Z(s)} \pi_d(a|s) e^{Q_{n-1}(s, a)/\beta}$.
964965 Below we will prove Theorem 4.2.
966967 *Proof.* Based on the definition of F , we have $J_f(\pi) = \mathbb{E}_{s \sim \rho_0} F(\pi, \pi, s)$. Thus we require to prove
968 $\mathbb{E}_{s \sim \rho_0} F(\pi_n, \pi_n, s) \geq \mathbb{E}_{s \sim \rho_0} F(\pi_{n-1}, \pi_{n-1}, s)$. As we have discussed above,
969

$$\pi_n(\cdot|s) = \arg \max_{\pi} F(\pi, \pi_{n-1}, s) = \frac{1}{Z(s)} \pi_d(a|s) e^{Q_{\pi_{n-1}}(s, a)/\beta}. \tag{25}$$

$$F(\pi_n, \pi_{n-1}, s) \geq F(\pi_{n-1}, \pi_{n-1}, s).$$

972 In other words, we have proven that $\mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_n, \pi_{n-1}, \mathbf{s}) \geq \mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_{n-1}, \pi_{n-1}, \mathbf{s})$. Moreover,
 973 we have

$$\begin{aligned}
 975 \quad Q_{\pi_{n-1}}(\mathbf{s}, \mathbf{a}) &= \mathcal{R}(\mathbf{s}, \mathbf{a}) + \mathbb{E} \left[\sum_{i=1}^{\infty} \gamma^i (\mathcal{R}(\mathbf{s}_i, \mathbf{a}_i) - \beta D_{\text{KL}}(\pi_{n-1}(\cdot | \mathbf{s}_i) \| \pi_{\text{d}}(\cdot | \mathbf{s}_i))) \middle| \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_0 = \mathbf{a} \right] \\
 976 \\
 977 &= \mathcal{R}(\mathbf{s}, \mathbf{a}) - \beta \gamma \mathbb{E}_{\mathbf{s}_1} [D_{\text{KL}}(\pi_{n-1}(\cdot | \mathbf{s}_1) \| \pi_{\text{d}}(\cdot | \mathbf{s}_1))] + \gamma \mathbb{E}_{\mathbf{s}_1, \mathbf{a}_1} [Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)] \\
 978 \\
 979 &= \mathcal{R}(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}_1} F(\pi_{n-1}, \pi_{n-1}, \mathbf{s}). \\
 980
 \end{aligned} \tag{26}$$

981 Thus

$$\begin{aligned}
 982 \quad Q_{\pi_n}(\mathbf{s}, \mathbf{a}) - Q_{\pi_{n-1}}(\mathbf{s}, \mathbf{a}) \\
 983 &= \gamma \mathbb{E}_{\mathbf{s}_1} [F(\pi_n, \pi_n, \mathbf{s}_1) - F(\pi_{n-1}, \pi_{n-1}, \mathbf{s}_1)] \geq \gamma \mathbb{E}_{\mathbf{s}_1} [F(\pi_n, \pi_n, \mathbf{s}_1) - F(\pi_n, \pi_{n-1}, \mathbf{s}_1)] \\
 984 \\
 985 &= \gamma \mathbb{E}_{\mathbf{s}_1} \mathbb{E}_{\mathbf{a}_1 \sim \pi_n} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - \beta D_{\text{KL}}(\pi_n(\cdot | \mathbf{s}_1) \| \pi_{\text{d}}(\cdot | \mathbf{s}_1) \\
 986 &\quad - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1) + \beta D_{\text{KL}}(\pi_n(\cdot | \mathbf{s}_1) \| \pi_{\text{d}}(\cdot | \mathbf{s}_1))] \\
 987 \\
 988 &= \gamma \mathbb{E}_{\mathbf{s}_1} \mathbb{E}_{\mathbf{a}_1 \sim \pi_n} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)]. \\
 989
 \end{aligned} \tag{27}$$

Given the property of d_{π} that $d_{\pi}(\mathbf{s}) - (1 - \gamma)\rho_0(\mathbf{s}) = \gamma \sum_{\mathbf{s}'} d_{\pi}(\mathbf{s}') \sum_{\mathbf{a}} \pi(\mathbf{a} | \mathbf{s}') \mathcal{P}(\mathbf{s} | \mathbf{s}', \mathbf{a})$ (Ying et al., 2022), we have

$$\begin{aligned}
 991 \quad &\mathbb{E}_{\mathbf{s} \sim d_{\pi_n}, \mathbf{a} \sim \pi_n(\cdot | \mathbf{s})} [Q_{\pi_n}(\mathbf{s}, \mathbf{a}) - Q_{\pi_{n-1}}(\mathbf{s}, \mathbf{a})] \\
 992 &\geq \gamma \mathbb{E}_{\mathbf{s} \sim d_{\pi_n}, \mathbf{a} \sim \pi_n(\cdot | \mathbf{s})} \mathbb{E}_{\mathbf{s}_1 \sim \pi_n} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)] \\
 993 \\
 994 &= \int (d_{\pi_n}(\mathbf{s}_1) - (1 - \gamma)\rho_0(\mathbf{s}_1)) \mathbb{E}_{\mathbf{a}_1 \sim \pi_n} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)] d\mathbf{s}_1 \\
 995 \\
 996 &= \mathbb{E}_{\mathbf{s}_1 \sim d_{\pi_n}, \mathbf{a}_1 \sim \pi_n(\cdot | \mathbf{s}_1)} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)] \\
 997 \\
 998 &\quad - (1 - \gamma) \mathbb{E}_{\mathbf{s}_1 \sim \rho_0, \mathbf{a}_1 \sim \pi_n(\cdot | \mathbf{s}_1)} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)]. \\
 999
 \end{aligned} \tag{28}$$

Consequently,

$$\begin{aligned}
 1001 \quad &\mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_n, \pi_{n-1}, \mathbf{s}) - \mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_{n-1}, \pi_{n-1}, \mathbf{s}) \\
 1002 &= \mathbb{E}_{\mathbf{s}_1 \sim \rho_0, \mathbf{a}_1 \sim \pi_n(\cdot | \mathbf{s}_1)} [Q_{\pi_n}(\mathbf{s}_1, \mathbf{a}_1) - Q_{\pi_{n-1}}(\mathbf{s}_1, \mathbf{a}_1)] \geq 0 \\
 1003
 \end{aligned} \tag{29}$$

Finally, we have

$$\begin{aligned}
 1005 \quad J_f(\pi_n) &= \mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_n, \pi_n, \mathbf{s}) \geq \mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_n, \pi_{n-1}, \mathbf{s}) \geq \mathbb{E}_{\mathbf{s} \sim \rho_0} F(\pi_{n-1}, \pi_{n-1}, \mathbf{s}) = J_f(\pi_{n-1}). \\
 1006
 \end{aligned} \tag{30}$$

1008 Thus, our policy iteration can improve the performance. Moreover, under some regularity conditions
 1009 (following Haarnoja et al. (2017; 2018), for example, considering the policy mapping $\tau : \pi \rightarrow$
 1010 $\arg \max_{\pi'} F(\pi, \pi', \mathbf{s})$ and assume that τ is a compressed mapping with a fixed point), π_n converges
 1011 to π_{∞} , which is the fixed point with the maximal J_f . Since non-optimal policies can be improved
 1012 by our iteration, the converged policy π_{∞} is optimal for J_f . \square

1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **C ANALYSES AND DETAILS OF EXDM**
 1027

1028 Below, we discuss more analyses and details about ExDM, including analyses of $\mathcal{R}_{\text{score}}$, analyses of
 1029 the objective J_f , details of the Q function optimization, and details of diffusion policy optimization
 1030 of ExDM during the fine-tuning stage.
 1031

1032 **C.1 ANALYSES OF THE SCORE INTRINSIC REWARD $\mathcal{R}_{\text{score}}$**
 1033

1034 It is an important result stemming from diffusion models that the KL divergence between the original
 1035 distribution and the diffusion model estimated distribution. In detail,
 1036

$$1037 L_{\text{VLB}} = \mathbb{E}_q \log \frac{q(\mathbf{s}_{1:T}|\mathbf{s}_0)}{p(\mathbf{s}_{0:T})} = -\log p(\mathbf{s}_0) \mathbb{E}_q \log \frac{q(\mathbf{s}_{1:T}|\mathbf{s}_0)}{p(\mathbf{s}_{0:T})/p(\mathbf{s}_0)} \\ 1038 = -\log p(\mathbf{s}_0) \mathbb{E}_q \log \frac{q(\mathbf{s}_{1:T}|\mathbf{s}_0)}{p(\mathbf{s}_{0:T}|\mathbf{s}_0)} = -\log p(\mathbf{s}_0) + D_{\text{KL}}(p(\mathbf{s}_{1:T}|\mathbf{s}_0)\|q(\mathbf{s}_{1:T}|\mathbf{s}_0)), \quad (31)$$

1039
 1040

1041 i.e., $\log p(\mathbf{s}_0) + L_{\text{VLB}} = D_{\text{KL}}(p(\mathbf{s}_{1:T}|\mathbf{s}_0)\|q(\mathbf{s}_{1:T}|\mathbf{s}_0))$. Consequently, the gap between L_{VLB}
 1042 and $-\log p(\mathbf{s}_0)$ is the KL divergence between the original distribution and the diffusion model
 1043 estimated distribution, which will be controlled when training the diffusion model. Then L_{VLB} can
 1044 be simplified as our score intrinsic reward $\mathcal{R}_{\text{score}}$. Thus, maximizing the score intrinsic reward can
 1045 maximize the state entropy during the training of the diffusion model.
 1046

1047 **C.2 ANALYSES OF THE OBJECTIVE J_f WHEN FINE-TUNING DIFFUSION POLICIES**
 1048

1049 The final objective of the fine-tuning stage is to maximize J of the policy π within limited steps, and
 1050 we may use any online RL methods like DDPG (Lillicrap, 2015), PPO (Schulman et al., 2017), and
 1051 so on.

1052 Unfortunately, when fine-tuning diffusion policies, directly using existing RL methods may en-
 1053 counter many challenges. For example, in the diffusion policies, the $\log p$ is hard to estimate (while
 1054 $\log p$ is important in policy-gradient-based methods), and taking action from the diffusion policies
 1055 requires the multi-step forward process of the neural network (so it is unstable to update the policy
 1056 via $\nabla a\pi_\theta(s)$, like DDPG). There are several diffusion RL methods that hope to address these issues,
 1057 like DQL (Wang et al., 2023), IDQL (Hansen-Estruch et al., 2023), QSM (Psenka et al., 2023),
 1058 DIPO (Yang et al., 2023a), and so on. And we have included these methods as baselines in Fig. 3(c).
 1059

Given that the fine-tuning stage can only access the limited steps, we directly consider the optimal
 1060 policy we can obtain, i.e., $\arg \max_\pi J_f(\pi)$, and hope to directly sample from the $\arg \max_\pi J_f(\pi)$
 1061 without using methods like policy gradient. (Thus, here the β implicitly relies on the fine-tuning
 1062 steps; if the fine-tuning step is infinity, the optimal we can access is $\arg \max_\pi J(\pi)$, i.e., $\beta = 0$; if
 1063 the fine-tuning step is 0, the optimal we can access is π_d , i.e., $\beta = \infty$)

Given J_f , our results demonstrate that $\arg \max_\pi J_f(\pi)$ is the form of $\propto \pi_d e^{Q/\beta}$. This also provides
 1064 another important insight: the more fine-tuning steps we can take, the closer we learn Q to the
 1065 optimal Q function, and at this point, we should choose a smaller beta.
 1066

Thus, the core idea of ExDM is: learning the Q function, then utilizing guided sampling techniques
 1067 to sample from $\propto \pi_d e^{Q/\beta}$, avoiding calculating $\log \pi(a|s)$ or $\nabla a\pi_\theta(s)$, which are difficult to es-
 1068 timate in diffusion policies. In practice, we find that distilling the pre-trained policy as well as the
 1069 learned Q function into the fine-tuned policy can further improve the performance (this training is
 1070 similar to the supervised training of the diffusion model, thus it is stable).
 1071

1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 C.3 Q FUNCTION OPTIMIZATION
10811082 For the Q function optimization, we choose to use implicit Q-learning (IQL) (Kostrikov et al., 2022),
1083 which is efficient to penalize out-of-distribution actions (Hansen-Estruch et al., 2023). The main
1084 training pipeline of IQL is expectile regression, i.e.,

1085
$$\begin{aligned} \min_{\zeta} L_V(\zeta) &= \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} [L_2^\tau(Q_\phi(\mathbf{s}, \mathbf{a}) - V_\psi(\mathbf{s}))], \\ \min_{\phi} L_Q(\phi) &= \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} [\|r(\mathbf{s}, \mathbf{a}) + \gamma V_\zeta(\mathbf{s}') - Q_\phi(\mathbf{s}, \mathbf{a})\|^2], \end{aligned} \quad (32)$$

1086
1087
1088

1089 here $L_2^\tau(\mathbf{u}) = |\tau - \mathbb{1}(\mathbf{u} < 0)|\mathbf{u}^2$ and τ is a hyper-parameter. In detail, when $\tau > 0.5$, L_2^τ will
1090 downweight actions with low Q-values and give more weight to actions with larger Q-values.
10911092 C.4 DIFFUSION POLICY FINE-TUNING
10931094 For sampling from $\pi_n = \frac{1}{Z(\mathbf{s})} \pi_d e^{Q_{n-1}/\beta}$, we choose contrastive energy prediction (CEP) (Lu et al.,
1095 2023), a powerful guided sampling method. First, we calculate the score function of π_n as
1096

1097
$$\nabla_{\mathbf{a}} \log \pi_n(\mathbf{a} | \mathbf{s}) = \nabla_{\mathbf{a}} \log \pi_d(\mathbf{a} | \mathbf{s}) + \frac{1}{\beta} \nabla_{\mathbf{a}} Q_{n-1}(\mathbf{s}, \mathbf{a}). \quad (33)$$

1098

1099 Moreover, to calculate the score function of π_n at each timestep t , i.e., $\nabla_{\mathbf{a}_t} \log \pi_t^n(\mathbf{a} | \mathbf{s})$, CEP further
1100 defines the following Intermediate Energy Guidance:
1101

1102
$$\mathcal{E}_t^{n-1}(\mathbf{s}, \mathbf{a}_t) = \begin{cases} \frac{1}{\beta} Q_{n-1}(\mathbf{s}, \mathbf{a}_0), & t = 0 \\ \log \mathbb{E}_{\mu_{0t}(\mathbf{a}_0 | \mathbf{s}, \mathbf{a}_t)} [e^{Q_{n-1}(\mathbf{s}, \mathbf{a}_0)/\beta}], & t > 0 \end{cases} \quad (34)$$

1103
1104
1105

1106 Then Theorem 3.1 in CEP proves that
1107

1108
$$\begin{aligned} \pi_t^n(\mathbf{a}_t | \mathbf{s}) &\propto \pi_d(\mathbf{a}_t | \mathbf{s}) e^{\mathcal{E}_t^{n-1}(\mathbf{s}, \mathbf{a}_t)}, \\ \nabla_{\mathbf{a}_t} \log \pi_t^n(\mathbf{a}_t | \mathbf{s}) &= \nabla_{\mathbf{a}_t} \log \pi_d(\mathbf{a}_t | \mathbf{s}) + \nabla_{\mathbf{a}} \mathcal{E}_t^{n-1}(\mathbf{s}, \mathbf{a}_t). \end{aligned} \quad (35)$$

1109

1110 For estimating $\nabla_{\mathbf{a}} \mathcal{E}_t^{n-1}(\mathbf{s}, \mathbf{a}_t)$, CEP considers a parameterized neural network $f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t, t)$ with
1111 the following objective:
1112

1113
$$\min_{\phi_{n-1}} \mathbb{E}_{t, \mathbf{s}} \mathbb{E}_{\mathbf{a}^1, \dots, \mathbf{a}^K \sim \pi_d(\cdot | \mathbf{s})} \left[- \sum_{i=1}^K \frac{e^{Q_{n-1}(\mathbf{s}, \mathbf{a}^i)/\beta}}{\sum_{j=1}^K e^{Q_{n-1}(\mathbf{s}, \mathbf{a}^j)/\beta}} \log \frac{f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t^i, t)}{\sum_{j=1}^K f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t^j, t)} \right]. \quad (36)$$

1114
1115

1116 Then Theorem 3.2 in CEP (Lu et al., 2023) has proven that its optimal solution $f_{\phi_{n-1}^*}$ satisfying that
1117 $\nabla_{\mathbf{a}_t} f_{\phi_{n-1}^*}(\mathbf{s}, \mathbf{a}_t, t) = \nabla_{\mathbf{a}_t} \mathcal{E}_t^{n-1}(\mathbf{s}, \mathbf{a}_t)$.
11181119 Consequently, we propose to fine-tune $\nabla_{\mathbf{a}_t} \log \pi_t^n(\mathbf{a}_t | \mathbf{s})$ parameterized as $s_\psi(\mathbf{a}_t | \mathbf{s}, t)$ with the fol-
1120 lowing distillation objective:
1121

1122
$$\min_{\psi} \mathbb{E}_{\mathbf{s}, \mathbf{a}, t} \|\epsilon_\psi(\mathbf{a}_t | \mathbf{s}, t) - \epsilon_\theta(\mathbf{a}_t | \mathbf{s}, t) - f_{\phi_{n-1}}(\mathbf{s}, \mathbf{a}_t, t)\|^2. \quad (37)$$

1123

1124 And the optimal solution ψ^* satisfying that $\epsilon_{\psi^*}(\mathbf{a}_t | \mathbf{s}, t)$ is the score function of π_n , i.e., we can sam-
1125 ple from $\epsilon_{\psi^*}(\mathbf{a}_t | \mathbf{s}, t)$ with any unconditional diffusion model sampling methods like DDIM (Song
1126 et al., 2021a) or DPM-solver (Lu et al., 2022).
1127
1128
1129
1130
1131
1132
1133

1134 **D EXPERIMENTAL DETAILS**
1135

1136 In this section, we will introduce more information about our experimental details. In Sec. D.1, we
1137 first introduce all the domains and tasks evaluated in our experiments. Then we briefly illustrate all
1138 the baselines compared in experiments in Sec. D.2. Then in Sec. D.3, we introduce the hyperpa-
1139 rameters of ExDM. Moreover, we supplement more detailed experimental results about maze2d and
1140 URLB in Sec. D.4 and Sec. D.5, respectively. The detailed ablation studies are in Sec. D.6. And we
1141 finally report the computing resource in Sec. D.7.

1142 **Codes of ExDM are provided in the Supplementary Material.**
1143

1144 **D.1 DOMAINS AND TASKS**
1145

1146 **Maze2d.** This setting includes 7 kinds of mazes: Square-a, Square-b, Square-c, Square-d, Square-
1147 tree, Square-bottleneck, and Square-large. These mazes are two-dimensional, and agents need to
1148 explore as many states as possible during the unsupervised pre-training stage.
1149

1150 **Continuous Control.** Our domains of continuous control follow URLB (Laskin et al., 2021),
1151 including 4 domains: Walker, Quadruped, Jaco, and Hopper, each with 4 downstream tasks from
1152 Deepmind Control Suite (DMC) (Tassa et al., 2018) (we plot each task of each domain in Fig. 5):
1153

- 1154 • **Walker** is a two-legged robot, including 4 downstream tasks: **stand**, **walk**, **run**, and **flip**.
1155 The maximum episodic length and reward for each task is 1000.
- 1156 • **Quadruped** is a quadruped robot within a 3D space, including 4 tasks: **stand**, **walk**, **run**,
1157 and **jump**. The maximum episodic length and reward for each task is 1000.
- 1158 • **Jaco** is a 6-DOF robotic arm with a 3-finger gripper, including 4 tasks: **reach-top-left (tl)**,
1159 **reach-top-right (tr)**, **reach-bottom-left (bl)**, and **reach-bottom-right (br)**. The maxi-
1160 mum episodic length and reward for each task is 250.
- 1161 • **Hopper** is a one-legged hopper robot, including 4 tasks: **hop**, **hop-backward**, **flip**, and
1162 **flip-backward**. The maximum episodic length and reward for each task is 1000.
1163

1179 Figure 5: Illustration of domains with their downstream tasks in URLB (Laskin et al., 2021). We
1180 consider 4 domains, and each domain has four downstream tasks.
1181
1182

1183 **D.2 BASELINES AND IMPLEMENTATIONS**
1184

1185 We first introduce all URL baselines in our experiments.
1186

1187 **ICM (Pathak et al., 2017).** Intrinsic Curiosity Module (ICM) trains a forward dynamics model
1188 and designs intrinsic rewards as the prediction error of the trained dynamics model.
1189

1188 **RND (Burda et al., 2018).** Random Network Distillation (RND) utilizes the error between the
 1189 predicted features of a trained neural network and a fixed randomly initialized neural network as the
 1190 intrinsic rewards.
 1191

1192 **Disagreement (Pathak et al., 2019)** The Disagreement algorithm proposes a self-supervised al-
 1193 gorithm that trains an ensemble of dynamics models and leverages the prediction variance between
 1194 multiple models to estimate state uncertainty.
 1195

1196 **LBS (Mazzaglia et al., 2022).** Latent Bayesian Surprise (LBS) designs the intrinsic reward as the
 1197 Bayesian surprise within a latent space, i.e., the difference between prior and posterior beliefs of
 1198 system dynamics.
 1199

1200 **DIAYN (Eysenbach et al., 2018).** Diversity is All You Need (DIAYN) proposes to learn a di-
 1201 verse set of skills during the unsupervised pre-training stage, by maximizing the mutual information
 1202 between states and skills.
 1203

1204 **SMM (Lee et al., 2019).** State Marginal Matching (SMM) aims at learning a policy, of which the
 1205 state distribution matches a given target state distribution.
 1206

1207 **LSD (Park et al., 2022).** Lipschitz-constrained Skill Discovery (LSD) adopts a Lipschitz-
 1208 constrained state representation function for maximizing the traveled distances of states and skills.
 1209

1210 **CIC (Laskin et al., 2022).** Contrastive Intrinsic Control (CIC) leverages contrastive learning be-
 1211 tween state and skill representations, which can both learn the state representation and encourage
 1212 behavioral diversity.
 1213

1214 **BeCL (Yang et al., 2023b).** Behavior Contrastive Learning (BeCL) defines intrinsic rewards as the
 1215 mutual information (MI) between states sampled from the same skill, utilizing contrastive learning
 1216 among behaviors.
 1217

1218 **CeSD (Bai et al., 2024).** Constrained Ensemble exploration for Skill Discovery (CeSD) utilizes an
 1219 ensemble of value functions for distinguishing different skills and encourages the agent to explore
 1220 the state space with a partition based on the designed prototype.
 1221

1222 **PEAC (Ying et al., 2024).** Pre-trained Embodiment-Aware Control (PEAC) analyzes the fine-
 1223 tuning and pre-training objectives for the cross-embodiment unsupervised RL, resulting the cross-
 1224 embodiment intrinsic rewards.
 1225

1226 In experiments of URLB, most baselines (ICM, RND, Disagreement, DIAYN, SMM) com-
 1227 bined with RL backbone DDPG are directly following the official implementation in
 1228 urlb (https://github.com/rll-research/url_benchmark). For LBS, we re-
 1229 fer to the official implementation (<https://github.com/mazpie/mastering-urlb>)
 1230 and combine it with the codebase of urlb. For CIC, BeCL, CeSD, and PEAC, we
 1231 also follow their official implementations (<https://github.com/rll-research/cic>,
 1232 <https://github.com/Rooshy-yang/BeCL>, <https://github.com/Baichenjia/CeSD>,
 1233 <https://github.com/thu-ml/CEURL>), respectively.
 1234

1235 Below, we will list the diffusion fine-tuning baselines in our experiments.
 1236

1237 **DQL (Wang et al., 2023).** Diffusion Q-Learning (DQL) inherited the idea of policy gradient and
 1238 proposes to directly backpropagate the gradient of the Q function within the actions (calculated with
 1239 the diffusion action by multi-step denoising).
 1240

1241 **QSM (Psenka et al., 2023).** Q-Score Matching (QSM) proposes to align the score of the diffusion
 1242 policy with the gradient of the learned Q function.
 1243

1244 **DIPO (Yang et al., 2023a).** Diffusion Policy for Model-free Online RL (DIPO) utilizes the Q
 1245 function to optimize the actions, i.e., finding the better action with gradient ascent of the Q function,
 1246 and then trains the diffusion policy to fit the “optimized” actions.
 1247

1242 **IDQL (Hansen-Estruch et al., 2023).** Implicit Diffusion Q-learning (IDQL) considers to sample
 1243 multiple actions from the diffusion policy and then select the optimal action with the learned Q
 1244 function.

1245 We implement these methods based on their official codebases: DQL (<https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL>), QSM (https://github.com/Alescontrela/score_matching_rl), DIPO (<https://github.com/BellmanTimeHut/DIPO>), and IDQL (<https://github.com/philippe-eecs/IDQL>).

1250 D.3 HYPERPARAMETERS

1252 Hyperparameters of baselines are taken from their implementations (see Appendix D.2 above). Here
 1253 we introduce ExDM’s hyperparameters.

1254 First, for the RL backbone DDPG, our code is based on URLB (https://github.com/rll-research/url_benchmark) and inherits DDPG’s hyperparameters. For the diffusion
 1255 model hyperparameters, we follow CEP (Lu et al., 2023). For completeness, we list all hyperparam-
 1256 eters in Table 2.

1259 DDPG Hyperparameter	1260 Value
1260 Replay buffer capacity	1261 10^6
1261 Action repeat	1262 1
1262 Seed frames	1263 4000
1263 n-step returns	1264 3
1264 Mini-batch size	1265 1024
1265 Seed frames	1266 4000
1266 Discount γ	1267 0.99
1267 Optimizer	1268 Adam
1268 Learning rate	1269 1e-4
1269 Agent update frequency	1270 2
1270 Critic target EMA rate τ_Q	1271 0.01
1271 Features dim.	1272 1024
1272 Hidden dim.	1273 1024
1273 Exploration stddev clip	1274 0.3
1274 Exploration stddev value	1275 0.2
1275 Number of pre-training frames	1276 1×10^5 for Maze2d and 2×10^6 for URLB
1276 Number of fine-tuning frames	1277 1×10^5 for URLB
1277 ExDM Hyperparameter	1278 Value
1278 Diffusion SDE	1279 VP SDE
1279 α_t of diffusion model	1280 $\alpha_t = -\frac{\beta_1 - \beta_0}{4}t^2 - \frac{\beta_0}{2}t, \beta_0 = 0.1, \beta_1 = 20$
1280 σ_t of diffusion model	1281 $\sigma_t = \sqrt{1 - \alpha_t^2}$
1281 Diffusion model neural network	1282 3 MLPResnet Blocks, hidden_dim=256, 1283 the same as IDQL (Hansen-Estruch et al., 2023)
1282 Optimizer	1284 Adam
1283 Learning rate	1285 1e-4
1284 Energy guidance model	1286 4-layer MLP, hidden_dim=256, the same as CEP (Lu et al., 2023)
1285 Sampling method	1287 DPM-Solver
1286 Sampling step	1288 15

1289 Table 2: Details of hyperparameters used for Maze2d and state-based URLB.

1296 D.4 ADDITIONAL EXPERIMENTS IN MAZE
12971346 Figure 6: Visualization of explored trajectories by URL methods in **Square-a**, **Square-b**, **Square-c**,
1347 and **Square-d** maze.
1348
1349

Figure 7: Visualizations of explored trajectories by URL methods in mazes **Square-tree**, **Square-bottleneck**, and **Square-large**, respectively.

Moreover, we include the visualization of all algorithms (ICM, RND, Disagreement, RE3, MEPOL, LBS, DIAYN, SMM, LSD, CIC, BeCL, CeSD, and ExDM) within all 7 mazes: Square-a, Square-b, Square-c, Square-d, Square-tree, Square-bottleneck, and Square-large, in Fig. 6 - Fig. 7, respectively.

As shown in these figures, although baselines can explore unseen states and try to cover as many states as they can, the behaviors of baselines can not fully cover the explored replay buffer due to their limited expressive ability. Using the strong modeling ability of diffusion models, the pre-trained policies of ExDM can perform diverse behaviors, setting a great initialization for handling downstream tasks.

Figure 8: State coverage ratios of different algorithms in 7 mazes during pre-training.

D.5 ADDITIONAL EXPERIMENTS IN URLB

In Table 3, we report the detailed results of all methods in the 4 downstream tasks of 4 domains in URLB. In both the Quadruped and Jaco domains, ExDM obtains state-of-the-art performance in downstream tasks. Overall, there are the most number of downstream tasks that ExDM performs the best, and ExDM significantly outperforms existing exploration algorithms.

Domains	Tasks	stand	Walker	walk	run	flip	Quadruped	walk	run	jump	Jaco	tl	tr	bl	br	Hopper	hop	hop-back	Hopper	flip	flip-back
ICM		828.5	628.8	223.8	400.3		298.9	129.9	92.1	148.8	96.5	91.7	84.3	83.4	82.1	160.5	106.9	107.6			
RND		878.3	745.4	348.0	454.1		792.0	544.5	447.2	612.0	98.7	110.3	107.0	105.2	83.3	267.2	132.5	184.0			
Disagreement		749.5	521.9	210.5	340.1		560.8	382.3	361.9	427.9	142.5	135.1	129.6	118.1	86.2	255.6	113.0	215.3			
LBS		594.9	603.2	138.8	375.3		413.0	253.2	203.8	366.6	166.5	153.8	129.6	139.6	24.8	240.2	88.9	105.6			
APT		953.3	900.0	504.1	675.6		582.0	582.0	303.0	416.0	76.7	116.2	121.1	121.1	133.3	260.2	135.7	202.7			
RE3		905.5	777.5	322.1	441.7		841.0	705.8	453.2	604.0	109.1	114.0	100.7	97.4	86.5	213.0	113.0	161.1			
MEPOL		936.0	775.8	306.3	471.2		609.6	491.3	298.5	595.8	124.9	138.8	113.4	130.6	70.6	164.0	92.6	119.1			
DIAYN		721.7	488.3	186.9	317.0		640.8	525.1	275.1	567.8	29.7	15.6	30.4	38.6	1.7	10.8	0.7	0.5			
SMM		914.3	709.6	347.4	442.7		223.9	93.8	91.6	96.2	57.8	30.1	34.8	45.0	29.3	61.4	47.0	29.7			
APS		575.8	472.5	155.4	374.4		484.8	335.6	387.8	351.7	34.0	40.0	29.2	43.8	1.0	2.0	3.0	10.0			
LSD		770.2	532.3	167.1	309.7		319.4	186.3	179.6	283.5	11.6	33.6	22.5	6.7	12.0	6.6	2.9	12.2			
CIC		941.1	883.1	399.0	687.2		789.1	587.8	475.1	630.6	167.6	122.3	145.9	82.7	191.6	96.2	161.3				
BeCL		951.7	912.7	408.6	626.2		798.7	694.9	391.7	645.5	114.2	132.2	117.7	144.7	37.1	68.3	73.6	142.7			
CeSD		884.0	838.7	325.2	570.9		886.5	763.4	636.4	759.1	155.7	170.2	137.3	117.9	118.4	155.7	46.4	183.6			
ExDM (Ours)		905.9	874.1	389.5	572.1		915.4	873.6	569.5	755.2	173.5	202.6	170.3	170.5	107.6	275.8	155.3	220.1			

Table 3: Detailed results in URLB of different pre-trained methods that fine-tune Gaussian policies with DDPG. Average cumulative reward (mean of 10 seeds) of the best policy.

Metrics	Median	IQM	Mean	Optimality Gap
ICM	0.40, [0.34, 0.44]	0.38, [0.33, 0.42]	0.39, [0.35, 0.43]	0.61, [0.57, 0.65]
RND	0.59, [0.55, 0.63]	0.59, [0.56, 0.62]	0.59, [0.56, 0.62]	0.41, [0.38, 0.44]
Disagreement	0.54, [0.50, 0.58]	0.53, [0.49, 0.57]	0.57, [0.51, 0.57]	0.46, [0.43, 0.50]
LBS	0.48, [0.41, 0.53]	0.45, [0.39, 0.51]	0.47, [0.43, 0.52]	0.53, [0.49, 0.58]
RE3	0.46, [0.41, 0.51]	0.46, [0.41, 0.51]	0.46, [0.42, 0.51]	0.54, [0.50, 0.58]
MEPOL	0.48, [0.43, 0.53]	0.48, [0.42, 0.53]	0.48, [0.44, 0.53]	0.52, [0.48, 0.56]
DIAYN	0.29, [0.24, 0.34]	0.24, [0.18, 0.30]	0.29, [0.25, 0.33]	0.71, [0.67, 0.75]
SMM	0.29, [0.23, 0.34]	0.21, [0.16, 0.27]	0.29, [0.24, 0.33]	0.71, [0.67, 0.76]
LSD	0.21, [0.17, 0.26]	0.14, [0.10, 0.19]	0.21, [0.18, 0.25]	0.79, [0.75, 0.82]
CIC	0.66, [0.61, 0.70]	0.68, [0.63, 0.72]	0.66, [0.62, 0.69]	0.35, [0.31, 0.38]
BeCL	0.59, [0.54, 0.66]	0.62, [0.56, 0.68]	0.60, [0.55, 0.64]	0.40, [0.36, 0.45]
CeSD	0.67, [0.62, 0.72]	0.71, [0.67, 0.76]	0.67, [0.63, 0.71]	0.33, [0.29, 0.37]
ExDM (Ours)	0.78, [0.74, 0.81]	0.80, [0.76, 0.84]	0.77, [0.74, 0.81]	0.23, [0.20, 0.26]

Table 4: Aggregate metrics (Agarwal et al., 2021) with confidence interval in URLB. For every algorithm, there are 4 domains, each trained with 10 seeds and fine-tuned under 4 downstream tasks, thus each statistic for every method has 160 runs.

Moreover, we further provide the detailed metrics (including the confidence interval) of all methods within URLB in Table 4. As shown here, ExDM significantly outperforms all baselines, for example, ExDM’s IQM is larger than the second-best method, CeSD, by 13%.

In Table 5, we further report the detailed results of all methods in the 4 downstream tasks of 2 domains in cross-embodiment URLB, which is much more challenging as the algorithms require handling various embodiments. In both the Walker-mass and Quadruped-mass domains, ExDM obtains state-of-the-art performance in downstream tasks. Overall, there are the most number of downstream tasks that ExDM performs the best, and ExDM significantly outperforms existing exploration algorithms.

Domains Tasks	Walker-mass				Quadruped-mass			
	stand	walk	run	flip	stand	walk	run	jump
ICM	665.3	418.0	146.2	246.6	460.2	229.5	215.6	323.5
RND	588.9	386.7	176.4	253.8	820.6	563.7	409.6	589.5
Disagreement	549.3	331.6	139.8	250.0	555.5	372.4	329.8	506.1
PEAC	823.8	499.9	210.6	320.5	786.0	754.5	388.3	645.6
DIAYN	502.1	245.2	106.8	212.7	682.7	484.3	371.0	469.1
SMM	673.5	509.2	220.7	329.6	357.0	176.4	189.7	277.8
CIC	824.8	536.6	220.7	327.7	762.5	610.9	442.7	617.5
BeCL	838.6	623.6	238.5	348.1	729.8	445.0	349.4	557.1
ExDM (Ours)	872.2	647.6	266.2	396.7	872.7	717.6	465.8	693.7

Table 5: **Detailed results in cross-embodiment state-based DMC.** Average cumulative reward (mean of 10 seeds) of the best policy.

Metrics	Median	IQM	Mean	Optimality Gap
ICM	0.42, [0.37, 0.48]	0.41, [0.35, 0.46]	0.42, [0.38, 0.47]	0.58, [0.53, 0.62]
RND	0.57, [0.53, 0.62]	0.57, [0.53, 0.61]	0.58, [0.54, 0.62]	0.42, [0.38, 0.46]
Disagreement	0.47, [0.43, 0.50]	0.45, [0.42, 0.48]	0.47, [0.43, 0.50]	0.53, [0.50, 0.57]
LBS	0.56, [0.50, 0.60]	0.52, [0.48, 0.57]	0.55, [0.50, 0.59]	0.45, [0.41, 0.50]
PEAC	0.68, [0.63, 0.74]	0.70, [0.64, 0.76]	0.68, [0.63, 0.72]	0.32, [0.28, 0.37]
DIAYN	0.46, [0.40, 0.51]	0.42, [0.38, 0.47]	0.46, [0.42, 0.50]	0.54, [0.50, 0.58]
SMM	0.44, [0.39, 0.52]	0.45, [0.37, 0.53]	0.45, [0.40, 0.51]	0.55, [0.49, 0.60]
CIC	0.67, [0.62, 0.73]	0.68, [0.62, 0.74]	0.67, [0.63, 0.71]	0.33, [0.29, 0.37]
BeCL	0.65, [0.58, 0.71]	0.67, [0.60, 0.73]	0.65, [0.60, 0.70]	0.35, [0.30, 0.40]
ExDM (Ours)	0.77 , [0.73, 0.81]	0.80 , [0.75, 0.83]	0.77 , [0.74, 0.80]	0.23 , [0.20, 0.26]

Table 6: **Aggregate metrics (Agarwal et al., 2021) with confidence interval in cross-embodiment URLB.** For every algorithm, there are 2 domains, each trained with 10 seeds and fine-tuned under 4 downstream tasks; thus, each statistic for every method has 80 runs.

Moreover, we further provide the detailed metrics (including the confidence interval) of all methods within URLB in Table 6. As shown here, ExDM significantly outperforms all baselines, for example, ExDM’s IQM is larger than the second-best method, PEAC, by 14%.

D.6 ABLATION OF Timesteps in URLB

In Figure 9, we show additional results about the performance in four domains of URLB for different algorithms and pre-training timesteps. Overall, ExDM outperforms all methods, while CIC and CeSD are still competitive on some domains.

Figure 9: **Ablation study of pre-training steps in URLB.**

D.7 COMPUTING RESOURCE

In experiments, all agents are trained by GeForce RTX 2080 Ti with Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz. In maze2d / urlb, pre-training ExDM (each seed, domain) takes around 0.5 / 2 days, respectively.

E THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, LLMs were used solely as auxiliary tools for paraphrasing and polishing the writing to improve readability. No LLM was involved in formulating research ideas, designing methods, constructing datasets, implementing experiments, conducting analyses, or drawing conclusions. All scientific contributions and substantive content presented in this paper are the original work of the authors.