Trust, but verify: model-based exploration in sparse
reward environments

Konrad Czechowski*
University of Warsaw
k.czechowski@mimuw.edu.pl

Marek Zbysinski
University of Warsaw
m.zbysinskiQ@
students.mimuw.edu.pl

Polish Academy of Sciences
lkucinski@impan.pl

Michat Izworski*
University of Warsaw
m.izworski@
student.uw.edu.pl

Tomasz Odrzyg6zdz*
University of Warsaw
tomaszo@impan.pl

Piotr Milo$
Polish Academy of Sciences
pmilos@impan.pl

Fukasz Kucinski

Abstract

We propose trust-but-verify (TBV) mechanism, a new method which uses model
uncertainty estimates to guide exploration. The mechanism augments graph search
planning algorithms with the capacity to deal with learned model’s imperfections.
We identify certain type of frequent model errors, which we dub false loops,
and which are particularly dangerous for graph search algorithms in discrete
environments. These errors impose falsely pessimistic expectations and thus hinder
exploration. We confirm this experimentally and show that TBV can effectively
alleviate them. TBV combined with MCTS or Best First Search forms an effective
model-based reinforcement learning solution, which is able to robustly solve sparse

reward problems.

1 TBY framework

This work attempts to pave the way in
harnessing the power of graph search
methods to reinforce model-based re-
inforcement learning. Majority of the
planners were designed be supplied
with a perfect model, otherwise they
often yield an unexpected, or outright
wrong, result. Although in some en-
vironments, like games or simulators,
a perfect model is available, in most
real-world scenarios it is a luxury we
cannot afford. We are thus led to two
seemingly conflicting desiderata for
the choice of a method: we would
like to use models which are robust
to model errors, and planners which
leverage the structure of the underly-
ing problem, and hence are more sus-
ceptible to model errors.

*equal contribution

False-loop visualization

Agent's current state What agent thinks would happen What would actually happen

.‘
i
]
| |
||
E

Room position:

Room position: |
{ Agent position:

Room position: |
Agent position: {

Agent position:

1, 5)
1. 18)

1, 5)

1, 18}
Figure 1: Agent (gray circle) is moving in a grid-world. It can
move through the door (blue) to other rooms, if it enter a trap (red)
the episode is terminated. (Genuine) one-step loop arise when agent
attempts to walk into the wall. In the example, the model imagines
that performing action "right" will not result in environment change

(false loop). In fact choosing this action would result in moving to
the next room.

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

We advocate developing methods, which will facilitate adoption of search algorithms into setting
with imperfect models. In this work we make a step towards implementing this plan. We identify and
study certain type of model errors, which we dub false loops, and we propose Trust, but verify (TBV)
method, which can successfully immunize planners with respect to said errors.

1.1 Model errors

Sutton & Barto|(2018| Section 8.3) conveniently categorize model errors into two categories: opti-
mistic and pessimistic. A situation when a model predicts higher reward or better state transitions
(optimistic error) is easier to handle since while the agent enters an erroneous region, it collects
corrective data. More dangerously, predictions more pessimistic then reality may prevent the agent
ever to visit certain regions.

In this work, we concentrate on errors related to the graph structure of the problem. By definition, the
edges in this graph correspond to transitions induced by actions, and thus the errors are “incorrect
edges”. Perhaps the simplest prediction task (for a model) is to determine if an edge is one-step loop
(i.e. if an action will change or not the current state). In this work, we focus on the loop errors, as they
turn out to be critical to performance (see Figure[I]for examples). In Figure 2] we present numerical
results that show rather frequent occurrence of false loop. This is a pessimistic error, which, unless
corrected, e.g. by TBV, prevents exploration. To read broad context of existing work, see Section[A.9]
in Appendix.

1.2 Trust, but verify method

Trust, but verify (TBV) is a method which can be integrated with graph search planners. The key idea
of TBV is to prioritize visits in states for which the model is suspected to be pessimistic. In each state
the planner is asked for a recommended action. If the model uncertainty of the current state is high,
we may suspect that the planner’s results are misleading. In such a case, a different action is chosen
to verify the model’s accuracy. This promotes exploration and thus reduces errors in the model.

To measure the uncertainty, we utilize ensembles, which is a popular approach in the literature. To
avoid potential problems with a priori uncontrollable scale of uncertainty, we quantify its magnitude
as quantiles of the uncertainty distribution induced by the planner’s search graph. The details follow
the pseudo-code for TBYV, listed in Algorithm[I] For completeness, in Appendix, we also present a
typical model-based training loop in Algorithm[7].

As shown in Algorithm [T} TBV interacts with a planner, which uses an imperfect learned model.
During its execution, the planner expands a search graph, g,,, in order to propose an action a,.Each
state-action pair in g, is given a score reflecting uncertainty assigned to it by the model, and which is
quantified by a function DISAGREEMENT_MEASURE. Based on that, TBV decides whether to keep
the planner’s decision a,, (trust the model) or override it (and explore to verify model predictions).
More precisely, a state-action pair with the maximal score is considered if it reaches above the
threshold given by quantile_score. We found using quantiles instrumental in avoiding tuning
thresholds which are problem-specific and change during the training.

Furthermore, QR is relatively easy to tune (see Section [2) and is the only hyperparameter introduced
by TBV. In the algorithm, we use additional randomization to prevent multiple revisits of the same
state-action pair, while waiting for the model (and scores) update. This could be alternatively realized
by more principled approaches, which we leave for future work.

Using TBV yields little computational overhead beyond the necessity of using ensembles (in
efficient implementations STATE_SCORE and TRANSITION_SCORE calls can be inlined into
planner.CHOOSE_ACTION). DISAGREEMENT_MEASURE depends on the state space represen-
tation; in our experiments, we found standard deviation computed on states work well. Other
methods, like Bayesian inference, could be used as well.

1.3 Planners

Online Best First Search Best First Search (BestFS) is a family of search algorithms that builds a
graph by expanding most promising nodes among already visited. A classical BestFS expands nodes
until it finds the goal state. In order to use it in on-line planning regime, we choose to extend the

Algorithm 1 TBV planner

Require: model ensemble of models used in Algorithm
planner planner that uses model
QR quantile rank € (0, 1)
Use: QUANTILE(1,q) computes the g-quantile of list [
RANDOM() random number from 2/(0, 1)

function CHOOSE_ACTION(state)
ap < planner.CHOOSE_ACTION(state)

gp < planner.GET_GRAPH_OF_PLANNING

scores + ||
for state € g, do

scores.APPEND(STATE_SCORE(state))
quantile_score < QUANTILE(scores, QR)

one_step_scores + ||
for a € actions do

one_step_scores.APPEND(TRANSITION_SCORE(state, a))
if max(one_step_scores) > quantile_score and RANDOM() > 0.5 then

return arg max
else
return a,

action

one_step_score

function TRANSITION_SCORE(state, action)

predictions « |]
for network € model do

next_state, next_reward < network.PREDICT_NEXT_STATE(state, action)
predictions.APPEND((next_state, next_reward))
return DISAGREEMENT_MEASURE (predictions)

function STATE_SCORE(state)

return max,t;on (TRANSITION_SCORE(state,action))

graph by fixed amount of vertices in any planning phase (typically 10). The proposed action is the
first edge on the shortest path to the best node in the subgraph searched so far.

An important design decision is choosing heuris-
tics for assigning nodes numerical values. In our
experiments, we concentrated of exploration and
used Disagreement_Measure (standard devi-
ation) between ensemble predictions.

By design BestFS ignores one step loops and
thus is especially prone to false loops described
in Section

Monte Carlo tree search Monte Carlo Tree
Search (MCTYS) is a well-established planning
algorithm which was successfully applied to
complex problems. Due to its simplicity and
effectiveness, it has numerous extensions (see
Browne et al.|(2012)) for a survey) including fa-
mous AlphaZero Silver et al.| (2018)). We use
implementation of Milos et al.| (2019) taking ad-
ventage of graph structure and using ensembles
of values to guide search. For more details see
Appendix [A.7]and Milos et al.|(2019).

10-
Event

—— Right corridor visited
Would leave room if TBV was used

o o
@ @
| |

Event frequency
o
8
1

Number of steps 106

Figure 2: Numerical measurement of influence of
TBYV on BestFS in the presence of a false loop in
ToyMR. The upper (blue) line presents the fre-
quency of reaching the open doors in the first
room. The agent without TBV never enters the
door due to a false loop error. The lower (orange)
line present the frequency the agent would leave
the room if TBV was used.

2 Experiments

The experiments below were chosen to highlight the aforementioned false-loops model errors.
We have selected ToyMontezumaRevenge environment and the Tower of Hanoi puzzle. These
environments have sparse rewards and distance to the goal spans at least a few hundred steps.

As a performance metrics for the methods, we use the minimal distance to the goal state, measured in
steps, and treated as a function of total environment steps used in training. We apply this measure to
two planners: BestFS and MCTS (each in the vanilla version, with e-greedy exploration, and TBV).
For comparison, we also use RND [Burda et al.|(2018), a strong model-free exploration baseline. In
all experiments, we found that planners equipped with TBV mechanism significantly outperform
other baselines.

ToyMontezumaRevenge ToyMontezumaRevenge is navigation, maze-like, environment intro-
duced by |Roderick et al.|(2018) as a testing ground for long-horizon planning and exploration (see
Figure[7]in Appendix).

For both planners using epsilon-greedy improves over vanilla version but not as much as TBV (see
Figure[3)). For BestFS, 4 out of 10 experiments were unable to leave the first room. This stemmed
from the fact that the agent could not make progress by getting stuck in the early stages of exploration
due to the inability to pass through false-loops. This is visualized in Figure[2] where it is also shown
that TBV helps.

A N R :
N —
190 - 180 -
\ method -

125 - LML —— MCTS with epsilon-greedy
h MGTS with TBY
—— MoTS

\ —— RND
75 - \ - —
- . 50— mathod
S —— BFS with epsilon-greedy
25 \ 25— BFS with TBY

— . — BFs
0 = 0

Distance to goal
Distance to goal
14

10 15 20 25 o 5 10 15
Number of steps. e6 Number of steps 1e6

Figure 3: ToyMontezumaRevenge, comparison between planners augmented with 7BV, epsilon-greedy, and
no top-level exploration mechanism. Results are averaged over 10 random seeds, shaded areas shows 95%
confidence intervals.

method a
—— MCTS with epsilon-greedy
50— MCTS with TBY.
— meTs

2 3 a 5 [1 2 3
Number of steps 106 Number of steps 108

Figure 4: Tower of Hanoi, both MCTS and BestFS quickly find the solution if augmented with TBV. In other
cases finding solution in 5 million steps is very rare. Results are averaged over 10 random seeds, shaded areas
shows 95% confidence intervals.

Tower of Hanoi The Tower of Hanoi is a classical puzzle consisting of 3 pegs and n disks (see
section[A.8.2]and Figure[§]in Appendix).

As can be seen in Figure] TBV method significantly improves both MCTS and BestFS planners in
this domain. This is due to the nature of the Tower of Hanoi, which can create an illusion that the
biggest disk stays in the same position. This can result in the false belief of the model that the biggest
disk does not move, hence causing the false-loop errors.

References

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s cube
with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356-363, 2019.
doi: 10.1038/s42256-019-0070-z. URL https://doi.org/10.1038/s42256-019-0070-z|

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in
games, 4(1):1-43, 2012.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224-8234, 2018.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. CoRR, abs/1810.12894, 2018. URL http://arxiv.org/abs/1810.12894|

Benjamin E. Childs, James H. Brodeur, and Levente Kocsis. Transpositions and move groups
in monte carlo tree search. In Proceedings of the 2008 IEEE Symposium on Computational
Intelligence and Games, CIG 2009, Perth, Australia, 15-18 December, 2008, pp. 389-395, 2008.
doi: 10.1109/CIG.2008.5035667. URL https://doi.org/10.1109/CIG.2008.5035667.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS 2018, pp. 4759—
4770, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In 2nd Annual Conference
on Robot Learning, CoRL 2018, Ziirich, Switzerland, 29-31 October 2018, Proceedings, vol-
ume 87 of Proceedings of Machine Learning Research, pp. 617-629. PMLR, 2018. URL
http://proceedings.mlr.press/v87/claveral8a.html.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

James E Doran and Donald Michie. Experiments with the graph traverser program. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences, 294(1437):235-259,
1966.

Ashley D Edwards, Laura Downs, and James C Davidson. Forward-backward reinforcement learning.
arXiv preprint arXiv:1803.10227, 2018.

Ben Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 15220-15231, 2019.

Gregory Farquhar, Tim Rocktéischel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree planning for deep reinforcement learning. CoRR, abs/1710.11417, 2017.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael 1. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning. CoRR,
abs/1803.00101, 2018. URL http://arxiv.org/abs/1803.00101,

Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Silver, Csaba Szepesviri,
and Olivier Teytaud. The grand challenge of computer go: Monte carlo tree search and extensions.
Commun. ACM, 55(3):106—-113, 2012. doi: 10.1145/2093548.2093574. URL https://doi.
org/10.1145/2093548.2093574.

Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra,
Rémi Munos, and David Silver. Learning to search with MCTSnets. In ICML, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555-2565. PMLR, 2019a.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri

https://doi.org/10.1038/s42256-019-0070-z
http://arxiv.org/abs/1810.12894
https://doi.org/10.1109/CIG.2008.5035667
http://proceedings.mlr.press/v87/clavera18a.html
http://arxiv.org/abs/1803.00101
https://doi.org/10.1145/2093548.2093574
https://doi.org/10.1145/2093548.2093574

and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 2555-2565. PMLR, 2019b. URL http://proceedings.
mlr.press/v97/hafner19a.htmll

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to con-
trol: Learning behaviors by latent imagination. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=S110TC4tDS.

Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theophane Weber, Lars
Buesing, and Peter W. Battaglia. Combining g-learning and search with amortized value esti-
mates. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=SkeAaJrKDS.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

Mikael Henaff. Explicit explore-exploit algorithms in continuous state spaces. In Advances in Neural
Information Processing Systems, pp. 9377-9387, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, pp. 12519-12530,
2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning
for atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
1id=S1xCPJHtDB.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial
time. Mach. Learn., 49(2-3):209-232, 2002. doi: 10.1023/A:1017984413808. URL https:
//doi.org/10.1023/A:1017984413808|

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=SJJinbWRZ,

Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Byey7n05FQ.

Kevin Lu, Igor Mordatch, and Pieter Abbeel. Adaptive online planning for continual lifelong learning.
CoRR, abs/1912.01188, 2019. URL http://arxiv.org/abs/1912.01188,

Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s cube
with approximate policy iteration. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/
forum?id=Hyfn2jCcKm.

Piotr Milos, Lukasz Kucinski, Konrad Czechowski, Piotr Kozakowski, and Maciej Klimek.
Uncertainty-sensitive learning and planning with ensembles. CoRR, abs/1912.09996, 2019. URL
http://arxiv.org/abs/1912.09996.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7559-7566. IEEE, 2018.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,

http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=SkeAaJrKDS
https://openreview.net/forum?id=SkeAaJrKDS
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=Byey7n05FQ
http://arxiv.org/abs/1912.01188
https://openreview.net/forum?id=Hyfn2jCcKm
https://openreview.net/forum?id=Hyfn2jCcKm
http://arxiv.org/abs/1912.09996

Long Beach, CA, USA, pp. 6118-6128, 2017. URL http://papers.nips.cc/paper/

7192-value-prediction-network.

Laurent Orseau, Levi Lelis, Tor Lattimore, and Theophane Weber. Single-agent policy tree
search with guarantees. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pp. 3205-3215, 2018. URL https://papers.nips.cc/paper/
7582-single-agent-policy-tree-search-with-guarantees.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 2778-2787. PMLR,
2017. URL http://proceedings.mlr.press/v70/pathakl7a.html,

Sébastien Racaniere, Theophane Weber, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-
augmented agents for deep reinforcement learning. In NIPS, 2017.

Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract g-networks. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2018, Stockholm, Sweden, July 10-15, 2018, pp. 131-138, 2018. URL http://dl.acm.org/
citation.cfm?id=3237409.

Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach, 2nd Edition. Prentice
Hall series in artificial intelligence. Prentice Hall, 2003. ISBN 0130803022. URL https:
//www.worldcat.org/oclc/314283679.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

Richard B. Segal. On the scalability of parallel UCT. In Computers and Games - 7th International
Conference, CG 2010, Kanazawa, Japan, September 24-26, 2010, Revised Selected Papers,
pp. 3647, 2010. doi: 10.1007/978-3-642-17928-0\ 4. URL https://doi.org/10.1007/
978-3-642-17928-0_4.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. CoRR, abs/2005.05960, 2020. URL
https://arxiv.org/abs/2005.05960.

Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pp. 5779-5788, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 1144:1140-1144, 2018.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. CoRR, abs/1804.00645, 2018. URL http://arxiv.org/abs/1804.00645,

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Martin Troussard, Emmanuel Pignat, Parameswaran Kamalaruban, Sylvain Calinon, and Volkan
Cevher. Interaction-limited inverse reinforcement learning. arXiv preprint arXiv:2007.00425,
2020.

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Miiller. Learning to combat
compounding-error in model-based reinforcement learning. CoRR, abs/1912.11206, 2019. URL
http://arxiv.org/abs/1912.11206.

http://papers.nips.cc/paper/7192-value-prediction-network
http://papers.nips.cc/paper/7192-value-prediction-network
https://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees
https://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees
http://proceedings.mlr.press/v70/pathak17a.html
http://dl.acm.org/citation.cfm?id=3237409
http://dl.acm.org/citation.cfm?id=3237409
https://www.worldcat.org/oclc/314283679
https://www.worldcat.org/oclc/314283679
http://arxiv.org/abs/1911.08265
https://doi.org/10.1007/978-3-642-17928-0_4
https://doi.org/10.1007/978-3-642-17928-0_4
https://arxiv.org/abs/2005.05960
http://arxiv.org/abs/1804.00645
http://arxiv.org/abs/1912.11206

A Appendix

A.1 Training setup

Code for all our experiments can be accessed at https://github.com/ComradeMisha/
TrustButVerifyl

Our experiments adhere to the general model-based training loop logic, described in Algorithm 2]
We use a distributed system with 32 workers solving distinct episodes, where data gathered across
a batch of workers is collected in two common experience buffers: the replay buffer for trainable
model of size 50000 and the replay buffer for value function of size 30000. Before the solving of
actual episode, we collect 1000 random trajectories, that we use for initial training of the model of
environment. This initial training has critical importance for the performance of our agents. Episodes
are limited to: 600 steps for ToyMontezumaRevenge and 1000 steps for the Tower of Hanoi.

To update value network for MCTS we follow approach of (Milos et al.,[2019) (similar to Hamrick
et al.|(2020)) for BFS experiments we simply calculate future discounted returns for each transition
encountered by agent.

A.2 Model-based training loop

In Algorithm 2] we present general training loop used in our experiments.

Algorithm 2 Model-based training loop

Initialize parameters of ensemble of models
Initialize parameters planner specific networks
Initialize buf fer
repeat
episode <~ COLLECT_EPISODE
buf fer.ADD(episode)
B < buf fer.BATCH
Train ensembles of models
Update planner specific networks
until convergence
function COLLECT_EPISODE
S < env.RESET
episode « []
repeat
a < TBV_planner.CHOOSE_ACTION(s) > TBV-augmented graph planner
s',r < env.STEP(a) > using models, see Algorithm 1]
episode.APPEND((s,a,r,s'))
s+ 8
until episode is done
return episode

A.3 Network architectures for model and value

A.3.1 Single networks

In every experiments we use two neural network architectures: one to estimate the value function
of a given state and the other to predict the outcome of taking a step in the environment. In
ToyMR we represent state as a vector of length 17 and in the Tower of Hanoi as a vector of length
3 x number of discs (it is due to one-hot encoding of the peg number for each disc).

In both environments, for value estimation we use an MLP architecture with two hidden layers of
50 neurons and ReLu non-linearity and for model we use an MLP with four hidden layers of 250
neurons and ReLLU activations.

https://github.com/ComradeMisha/TrustButVerify
https://github.com/ComradeMisha/TrustButVerify

The model output consists of: the difference between next and current observations (delta target),
reward and theepisode termination flag (0 or 1).

A.3.2 Ensemble

For both value estimation and model we use ensemble of networks with architectures described in
Section[A.3.T] The final estimation of value is an average of predictions across ensemble. The The
standard deviation of this predictions multiplied by « is used by MCTS as an auxiliary score added to
value.

In Algorithm [3]we present the procedure of transforming the output of ensemble of model networks
to a valid prediction of environment signal. In our experiments, it turned out to be beneficial to
train the model to predict change between observations rather then the ready observations. The
transformation performs the following step: collects predictions of all networks in ensemble, then
averages next predicted change of observations, predicted rewards and predicted end of episode flags.
Averaged observation change is added to current state, then clipped to the range of possible values
(some coordinates of the state vector are binary variables), rounded to integers and returned as the
next predicted state. Reward and end of episode flag are predicted to be true if their average value
across networks in ensemble is larger than 0.5.

Algorithm 3 Transforming model ensemble predictions

function PREDICT_STEP(state, action)
next_observations + ||
rewards < ||
is_done_flags + ||
for network € ensemble do:
(next_obs_delta, reward, is_done) < network.PREDICT (state, action)
next_obs < state + next_obs_delta
next_observations.APPEND(next_obs)
rewards.APPEND(reward)
is_done_flags.APPEND(is_done)
predicted_reward < AVERAGE(next_reward)
if predicted_reward > 0.5 then
predicted_reward < 1
else
predicted_reward < 0
predicted_is_done < AVERAGE (is_done_flags)
if predicted_is_done > 0.5 then
predicted_is_done < True
else
predicted_is_done < False
predicted_next_obs +— AVERAGE(next_observations)
predicted_next_obs < CLIP(predicted_next_obs)
predicted_next_obs +— ROUND(predicted_next_obs)
return(predicted_next_obs, predicted_reward predicted_is_done)

To stabilize performance of value and model ensembles we used additional masks mechanism: we
create a number of networks (given by ensemble size parameter), but each worker uses only a random
subset of given size (given by number of masks parameter).

A.4 Quantile Rank value analysis

Figure 3] presents performance of agent for different values of Quantile Rank.

Distance to goal

100 -

Quantile Rank

— 08
BO - 0.85
— 09
—— 095
— 099
60 —
40 -
20 -
~
D T T T T
1.5 2.0 25 3.0
Mumber of steps 1e6

Figure 5: Performance of 7BV BestFS on the Tower of Hanoi domain with different values of Qantile

Rank

A.5 Hyper-parameters

In table[3] we present hyper-parameters used in our experiments.

Toy MR Tower of Hanoi
Parameter BestFS MCTS BestFS MCTS
Number of planner passes C' 10 10 10 10
Discounting factor ~y 0.99 0.99 0.99 0.99
¢ greedy exploration for baslines 0.001 0.02 0.001 0.02
score factor for value uncertainty s - 3 - 3
Dead end value - —0.2 - —0.2
Avoid history coefficient ! —100 —-0.2 —100 -0.2
Value ensemble size 2 20 20 20 20
Value ensemble mask size 2 10 10 10 10
Model ensemble size > 8 8 8 8
Model ensemble mask size > 4 4 4 4

Optimizer

Learning rate

Batch size for value training
Batch size for model training

RMSprop RMSprop
2.5e—4 2.5e—4
32 32

1024 1024

RMSprop RMSprop
2.5e—4 2.5e—4
32 32

1024 1024

! The difference between the value of this parameter for BestFS and MCTS has no practical reason,
it is an artifact of some tests, however we verified that the exact value of it is not important as

long as the value negative.

2 See Section for explanation of these parameters.

Table 1: Hyper-parameters values used in our experiments.

For MCTS we took hyperparameters from Milos et al.|(2019). As they used setup without learned
model we needed to tune model architecture and model training parameters on ToyMontezumaRe-

10

venge domain. Then, we separately tuned epsilon and Quantile Rank for each combination of
domain/planner.

Parameter Value
Rollout length 128
Maximal length of an episode 1000
Total number of rollouts per environment 6200
Number of minibatches 4
Number of optimization epochs 4
Coefficient of extrinsic reward 1
Coefficient of intrinsic reward 10
Number of parallel environments 32
Learning rate 0.001
Optimization algorithm Adam
A 0.95
Entropy coefficient 0.001
Proportion of experience used for training predictor 1.0
VE 0.999
I 0.99
Clip range [0.9, 1.1]
Policy architecture FCN

Table 2: Default hyper-parameters for PPO and RND algorithms for Hanoi experiments where
applicable.

A.6 RND and PPO

Interestingly, it was quite hard to tune RND on ToyMontezumaRevenge (the agent struggled to find
the second key and explored at most 14 out of 24 rooms). The reason for this could be related to the
fact that RND needs more data to work, and our data regime was low (originally RND was trained
with billions of transitions). Additionally, RND was designed and tested for visual observations, so
our setup could not lend to its strengths. Hyperparameters choice for RND can be found in Table 3]
and Table[d]

For Hanoi Tower RND continued to explore the environment when left for longer training (up to
25M transitions, see[6). Its progress is, however, very slow when compared to other methods. This is
in line with our observation from the previous section that RND is designed to work on larger scale
experiments.

A7 MCTS

A vanilla MCTS constructs a search tree in four stages: node selection, leaf expansion, rollout, and
backpropagation (see Browne et al.| (2012] Section 3.1) for a comprehensive review). In modern
approaches, the rollout phase is often replaced by a neural network evaluation step. MCTS is often
equipped with auxiliary mechanisms exploiting the graph structure of the problem. In our work, we
use an MCTS implementation with four such mechanisms: hard loop-avoidance inside the search
tree, soft loop-avoidance within to the whole episode, the transposition tables and amortized value
estimates, see|Milos et al.|(2019) for details.

Transposition tables (Childs et al., 2008} (Gelly et al., 2012) enable sharing information between
different tree nodes, which correspond to the same state (i.e. have been reached using distinct
trajectories). Similar in spirit are mechanisms, which attempt to avoid visiting a node multiple times.
These are akin to classical graph search methods in which a node it typically visited only once. This
may take place on the level of the whole episode, within one planning phase (in the search tree). A
“soft” way of implementing such mechanisms is to use “virtual loss”, which assigns a temporary
negative value when a graph node is first encountered. This encourages the exploration and tree
building mechanism to avoid this node. Such solutions have been proposed in (Segal, 2010) to
enhance parallelism and later used in (McAleer et al.| 2019) to tackle Rubik’s cube search. A hard
version (equivalent to setting virtual loss to —oo) strictly prohibits entering the same node twice. In
(Milos et al., 2019) it is reported to be a significant efficiency boost for modest planning budgets

11

100 -

a] —
]
& e0-
]
2 =
g __\\ y S—
3 ap- i l
G method _“H— —,
= BFS with epsilon-greedy T ™,
BFS with TBV
20 - BFS
RND
—— PPO
o T T J I I :
: : 10 15 20 25
Number of steps 1e6

Figure 6: Performance of RND and PPO on Tower of Hanoi with longer training.

Parameter Value
Rollout length 128
Maximal length of an episode 600
Total number of rollouts per environment 6200
Number of minibatches 4
Number of optimization epochs 16
Coefficient of extrinsic reward 1
Coefficient of intrinsic reward 100
Number of parallel environments 32
Learning rate 0.001
Optimization algorithm Adam
A 0.95
Entropy coefficient 0.001
Proportion of experience used for training predictor 1.0
YE 0.999
vr 0.99
Clip range [0.9, 1.1]
Policy architecture FCN

Table 3: Default hyper-parameters for PPO and RND algorithms for ToyMontezumaRevenge experi-
ments where applicable.

12

Parameter Value
Number of optimization epochs [1, 4, 16]
Coefficient of intrinsic reward [1, 3, 10, 30, 100, 300]
Learning rate [5-1072,1072,5-1073,1073,5-1074,107%]
A [0.95, 0.99]
Proportion of experience used for training predictor [0.25, 1.0]
YE [0.999, 0.9999]
vr [0.99, 0.999]
Policy architecture layers number [2, 3, 4]
Policy architecture layers width [64, 128, 256]
Random target and prediction networks last layer width [64, 128]

Table 4: Hyper-parameters for RND algorithm checked during tuning process of ToyMontezumaRe-
venge.

G =

Figure 7: Map of ToyMontezumaRevenge state space. The only source of reward is reaching the goal
room marked with GG. To obtain it agent needs to gather several keys (marked in yellow) and pass
through doors (marked in blue). Stepping on a trap (marked in red) results in episode termination.
We use a code from https://github.com/chrisgrimm/deep_abstract_q_network

on the classical Sokoban puzzle. Recent works (Milos et al.,[2019; Hamrick et al., 2020)), propose
to utilize “amortized value estimates” (which are calculated using the internal MCTS statistics) as
targets for value function for training.

Our version uses a learned value function (similarly to AlphaZero) to evaluate new nodes. Similarly
to |[Lowrey et al.| (2019) and Milos et al.| (2019) we use also value function ensemble to ensure
exploration during planning.

A.8 Environments

A.8.1 ToyMontezumaRevenge

ToyMontezumaRevenge has a greatly simplified visual layer compared to the original Montezuma’s
Revenge Atari game, but it retains much of its exploration difficulty. In our experiments, we consider
the biggest map containing 24 rooms and sparse rewards: the agent gets a reward 1 only if it reaches
the treasure room, otherwise the episode is terminated after 600 steps. Observation is represented as
a tuple containing current room location, agent position within the room, and status of all keys and
doors on the board. It turns out that traps (see caption below Figure[T)) pose a challenge for BestFS
algorithm. In order to mitigate this issue, we to modified the novelty mechanism to explicitly avoid
traps (performing actions resulting in episode termination without positive reward, according to the
learned model). For a fair comparison, we also added the same mechanism to epsilon-greedy: when
sampling from action space, only actions not leading to traps were considered. Similar improvements
were unnecessary for MCTS.

13

https://github.com/chrisgrimm/deep_abstract_q_network

False-loop visualization

Agent's current state

What agent thinks would happen

What would actually happen

Figure 8: Tower of Hanoi puzzle. For the first time, the agent finds himself in a position to move the
fourth disk but mistakenly believes that it is not possible, resulting in a false-loop.

A.8.2 Tower of Hanoi

The objective of the game is to move the entire stack of disks from the starting peg to the goal peg.
The rules are that only one disk can be moved at a time and it is disallowed to put a larger disk on top
of a smaller one. This makes it a challenging combinatorial problem, and an optimal solution requires
2™ — 1 moves. This is an interesting domain for planning methods as model-free algorithms struggle
to deal with larger instances (Troussard et al.| (2020) used n = 4, and |[Edwards et al.| (2018)) used
n = 3). In this paper, we use a considerably harder version, with n = 7. Furthermore, we consider a
more difficult version of the puzzle, where the agent does not have access to the disk sizes. This does
not allow to generalize the dynamics of the environment from partial data, and it makes it challenging
to learn the rule that "the smaller disk can always be placed on larger". Instead, the agent needs to
learn the relation between sizes for each pair of disks separately, as the exploration progresses.

A.9 Related Work

Many model-based reinforcement learning algorithms follow the framework laid out in Dyna, see
Sutton| (1991). |[Kaiser et al.[(2020) uses a model to collect fictitious playouts and obtains impressive
results for low data regime on Atari. In the continuous domains, a similar approach is adopted by
Kurutach et al.| (2018). Simultaneous training of a single policy on model ensemble is proposed to
tackle model errors. Interestingly, this approach is reported to perform better than back-propagation
through time. |Clavera et al.| (2018) indicates that polices trained on model ensembles might be
over-conservative and proposed to use policy meta-learning. Another approach to dealing with
model errors works by choosing the unroll horizon for a model. Janner et al.| (2019), proposed short
model-generated branched rollouts starting from data collected on “real environment”. Perhaps
surprisingly, they find that one-step rollouts provide competitive results. Similarly, short rollouts are
used in |Feinberg et al.|(2018)) and |Buckman et al.| (2018) to improve value estimates. |Janner et al.

14

(2019); Buckman et al.|(2018) uses ensembles to reduce model bias. The former generates diverse
data similarly to|Chua et al.|(2018)), and the latter automatically adapt the planning horizon based on
uncertainty estimates. [Xiao et al.| (2019) proposed another adaptive horizon mechanism based on
measurement of model errors using principled Temporal Difference methods.

There is a huge body of work about planning; for classical results, the interested reader is referred
to|Cormen et al.|(2009), Russell & Norvig| (2003) and the references therein. Traditional heuristic
algorithms such as A™ (Hart et al.|(1968)) or GBFS (Doran & Michie|(1966)) are widely used in
practice. In|/Agostinelli et al.|(2019) the authors utilise the value-function to improve upon the A*
algorithm and solve Rubik’s cube. Similarly, Orseau et al. (2018]) bases on the classical BES to build
a heuristic search mechanism with theoretical guarantees. The Monte Carlo Tree Search (MCTS)
algorithm, which combines heuristic search with learning, led to breakthroughs in the field, see
Browne et al.|(2012)) for an extensive survey. Famously, Silver et al.| (2018)) develop MCTS-based
technique to master the ancient game of go. The POLO algorithm presented in|Lowrey et al.|(2019)
proposes to enrich MPC planning with ensemble-based risk measures to augment exploration. This
work is extended by NEEDLE (Milos et al.|(2019)) to tree-based MCTS planners and by |Lu et al.
(2019) to successfully tackle life-long learning scenarios of environmental change. [Hamrick et al.
(2020) explores how to use better statistics collected while searching to calculate signal for value
function training.

The above works plan using a perfect model. Recently, a lot of research has focused on planning
with learned models. [Nagabandi et al.| (2018]) successfully blends the strengths of model-based
and model-free approaches. PlaNet (Hafner et al.|(2019a)) and Dreamer |Hafner et al.| (2020) train
latent models, which are used for planning. Conceptually, a similar route was explored in MuZero
(Schrittwieser et al.[(2019)) and Universal Planning Networks (Srinivas et al.| (2018))). [Farquhar
et al.|(2017) and |Oh et al.| (2017) investigate the possibility of creating neural network architectures
inspired by the planning algorithms.

When a learned model is unrolled during planning, errors typically accumulate dramatically.
Racaniere et al.| (2017) and |Guez et al.| (2018) are two approaches to learn the planning mecha-
nism and make it robust to model errors. Sekar et al.| (2020) uses ensembles to measure model
uncertainty and deal with model inaccuracies. In a somewhat similar spirit, Eysenbach et al.| (2019)
treats the replay buffer as a non-parametric model forming a graph and uses ensembles of learned
distances as a risk-aware mechanism to avoid certain types of model errors.

There is an emerging body of work on the intersection of model learning and exploration. [Pathak et al.
(2017) uses a self-supervised inverse dynamics model to provide intrinsic reward driving exploration.
Sekar et al.|(2020) proposes a method of learning task agnostic global world model, which can be
utilised to quickly solve new incoming tasks. Somewhat similarly, [Henaff| (2019) draws inspiration
from E2 algorithm (Kearns & Singhl 2002), actively searching for data useful in model training.
Shyam et al.| (2019) has a similar objective implemented using novelty mechanism derived from
Bayesian perspective on exploration.

Our work also falls into this area. We construct a model-based approach capable of exploring sparse
reward environments. Compared to (Pathak et al.,[2017)) we use uncertainty measures and planning.
Sekar et al.|(2020) uses ensembles similarly to us but instead of an on-line planner utilises Dreamer
(Hafner et al.,|2019b)). [Henaft] (2019) is perhaps the closest to our work, however it puts emphasis
on continuous environments and consequently leaves aside using graph structure and related model
errors. Similarly, [Shyam et al.|(2019) largely ignores graph structure and online planning, though
briefly mentions a loop problem stemming from this fact.

15

	TBV framework
	Model errors
	Trust, but verify method
	Planners

	Experiments
	Appendix
	Training setup
	Model-based training loop
	Network architectures for model and value
	Single networks
	Ensemble

	Quantile Rank value analysis
	Hyper-parameters
	RND and PPO
	MCTS
	Environments
	ToyMontezumaRevenge
	Tower of Hanoi

	Related Work

