DOCLAYOUT-YOLO: ENHANCING DOCUMENT LAY-OUT ANALYSIS THROUGH DIVERSE SYNTHETIC DATA AND GLOBAL-TO-LOCAL ADAPTIVE PERCEPTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Document Layout Analysis is crucial for real-world document understanding systems, but it encounters a challenging trade-off between speed and accuracy: multimodal methods leveraging both text and visual features achieve higher accuracy but suffer from significant latency, whereas unimodal methods relying solely on visual features offer faster processing speeds at the expense of accuracy. To address this dilemma, we introduce DocLayout-YOLO, a novel approach that enhances accuracy while maintaining speed advantages through document-specific optimizations in both pre-training and model design. For robust document pretraining, we introduce the Mesh-candidate BestFit algorithm, which frames document synthesis as a two-dimensional bin packing problem, generating the largescale, diverse DocSynth-300K dataset. Pre-training on the resulting DocSynth-300K dataset significantly improves fine-tuning performance across various document types. In terms of model optimization, we propose a Global-to-Local Controllable Receptive Module that is capable of better handling multi-scale variations of document elements. Furthermore, to validate performance across different document types, we introduce a complex and challenging benchmark named DocStructBench. Extensive experiments on downstream datasets demonstrate that DocLayout-YOLO excels in both speed and accuracy. Code, data, and models will be made publicly available.

033

000

001

002

004 005 006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

1 INTRODUCTION

With the rapid advancement of large language models and retrieval-augmented generation (RAG)
research Lewis et al. (2020); Ram et al. (2023); Edge et al. (2024), the demand for high-quality
document content parsing Wang et al. (2024b) has become increasingly critical. A central step in
document parsing is Document Layout Analysis (DLA), which aims to precisely locate different
types of regions (text, titles, tables, graphics, etc.) within a document. Over the past few years, DLA
algorithms have made significant progress, performing well on common document types. However,
when faced with diverse document formats, existing layout analysis algorithms Huang et al. (2022);
Li et al. (2022) still struggle with speed and accuracy.

Currently, there are two main approaches to document parsing: multimodal methods that combine 042 visual and textual information, and unimodal methods that rely solely on visual features. Multi-043 modal methods, which typically involve pretraining on document images using unified text-image 044 encoders, generally achieve higher accuracy but are often slower due to the complexity of their 045 architectures. In contrast, unimodal methods, which rely only on visual features, offer faster pro-046 cessing speeds but tend to lack accuracy due to the absence of specialized pretraining and model 047 design for document data. To achieve robust performance on diverse real-world documents while 048 meeting the demands of real-time applications, this paper introduces the DocLayout-YOLO layout detection algorithm. This method leverages the strengths of both multimodal and unimodal approaches to quickly and accurately identify various regions within documents. As illustrated in Fig-051 ure 1, DocLayout-YOLO matches the speed of the mainstream unimodal method YOLOv10 (Wang et al., 2024a) and surpasses all existing methods, including the unimodal DINO-4scale (Zhang et al., 052 2023a) and YOLO-v10, as well as the multimodal LayoutLMv3 (Huang et al., 2022) and DiT-Cascade (Li et al., 2022), in terms of accuracy on diverse evaluation datasets. Specifically, we

(a) Comparison of speed (FPS) and accuracy (mAP) of DocLayout-YOLO (Ours) against existing methods on the DocStructBench dataset (including Academic, Textbook, Market, and Financial documents).

(b) Detailed mAP values of DocLayout-YOLO (Ours) and other methods on D^4LA , DocLayoutNet, and the four subsets of the DocStruct-Bench dataset.

Figure 1: Comparisons between DocLayout-YOLO and existing state-of-the-art (SOTA) DLA methods. DocLayout-YOLO surpasses unimodal and multimodal methods in both speed and accuracy.

optimize the YOLOv10 algorithm along two dimensions: pretraining on diverse document data with visual annotations and refining the target detection network structure for document layout analysis.

We observe that multimodal layout analysis methods such as LayoutLMv3 and DiT-Cascade sig-081 nificantly enhance model generalization by pretraining on large-scale unsupervised document data. However, for unimodal layout analysis methods, existing datasets predominantly comprise single 083 document types such as PubLayNet (Zhong et al., 2019) and DocBank (Li et al., 2020b). Models 084 fine-tuned on such datasets tend to overfit to a single distribution, failing to generalize to the diverse 085 layouts encountered in real-world scenarios. To address this, we propose an automated pipeline for constructing diverse document layout data, introducing the Mesh-candidate BestFit algorithm. 087 This algorithm synthesizes document layouts by leveraging principles from the two-dimensional bin 880 packing problem, using a rich set of base components (text, images, tables) to generate a large-scale, 089 diverse pretraining corpus, DocSynth-300K.

YOLO (Jocher et al., 2023; Wang et al., 2024a), a leading algorithm in object detection, excels in both accuracy and speed on natural images. To further enhance YOLO's performance on document images, we adapt the network to the specific characteristics of document data. In diverse documents, the scale of different elements can vary significantly, from small single-line titles to full-page paragraphs, images, and tables. To better handle these multi-scale variations, we introduce the Global-to-Local Controllable Receptive Module (GL-CRM), enabling the model to effectively detect targets of varying scales. The contributions of this paper can be summarized as follows:

097 098

054

071

073

074

- This paper proposes DocLayout-YOLO, a novel model for diverse layout analysis tasks, which leverages the large-scale and diverse document layout dataset DocSynth-300K, and incorporates the GL-CRM to enhance detection performance.
- This paper introduces the Mesh-candidate BestFit algorithm, which synthesizes diverse layout documents from various components (text, images, tables) to create the DocSynth-300K dataset. This dataset will be open-sourced to support further research in document layout analysis.
- This work designs the GL-CRM, which enhances the model's capability to detect elements of varying scales, thereby improving detection accuracy.
- Extensive experiments are conducted on the D⁴LA, DocLayNet, and our in-house diverse evaluation datasets (DocStructBench). The proposed DocLayout-YOLO model achieves state-of-the-art mAP scores of 70.3%, 79.7%, and 78.8% respectively, along with an inference speed of 85.5 frames per second (FPS), thus enabling real-time layout analysis on diverse documents.

108 **RELATED WORK** 2 109

2.1 DOCUMENT LAYOUT ANALYSIS APPROACHES

110 Document Layout Analysis (DLA) focuses on identifying and locating different components within 111 documents, like text and images. DLA approaches are divided into unimodal and multimodal meth-112 ods. Unimodal methods treat DLA as a special object detection problem, using generic off-the-shelf 113 detectors (Ren et al., 2015; Zhong et al., 2019; Carion et al., 2020; Jocher et al., 2023; Zhang et al., 114 2023a). Multimodal methods improve DLA by aligning text-visual features through pre-training. For example, LayoutLM (Xu et al., 2020; 2021; Huang et al., 2022) offers a unified approach with 115 116 various pre-training goals, achieving impressive results on various document tasks. DiT (Li et al., 2022) boosts performance via self-supervised pre-training on extensive document datasets. VGT 117 (Da et al., 2023) introduces grid-based textual encoding for extracting text features. 118

2.2 DOCUMENT LAYOUT ANALYSIS DATASETS 119

Current document layout analysis datasets, such as the IIT-CDIP (Lewis et al., 2006) with 42 million 120 low-resolution, unannotated images, and its subset RVL-CDIP (Harley et al., 2015), which catego-121 rizes 400,000 images into 16 classes, suffer from limitations in annotation detail. PubLayNet (Zhong 122 et al., 2019) includes 360,000 pages from PubMed journals, significantly scaling up the dataset size 123 for document layout analysis. DocBank (Li et al., 2020b) annotates 500,000 arXiv pages using weak 124 supervision, while DocLayNet (Pfitzmann et al., 2022) focuses on 80,863 pages from magazine-type 125 documents. D⁴LA (Da et al., 2023) manually annotates 11,092 images from RVL-CDIP across 27 126 categories, and M⁶Doc (Cheng et al., 2023) offers a diverse collection of 9,080 images annotated 127 with 74 types but is not open source due to copyright restrictions. Additional datasets such as 128 DEES200 (Yang et al., 2017), CHN (Li et al., 2020a), Prima-LAD (Antonacopoulos et al., 2009), 129 and ADOPD (Gu et al., 2024) are either not open-sourced or primarily suitable for fine-tuning. As for document generation methods (Zhang et al., 2023b; Inoue et al., 2023; Hui et al., 2023; Jiang 130 et al., 2023; Kong et al., 2022; Gupta et al., 2021), most approaches focuses on academic papers. 131 Overall, current document layout analysis datasets have significant limitations in diversity, volume, 132 and annotation granularity, leading to sub-optimal pre-training models. 133

Figure 2: Illustration of Mesh-candidate BestFit. Initially, in (A) Preprocessing, a category-wise element pool is created from a small initial dataset. During (B) Layout Generation, Mesh-candidate BestFit iteratively searches for the optimal candidate-grid match.

148 149

147

- 150
- 151
- 152

3 DIVERSE DOCSYNTH-300K DATASET CONSTRUCTION

Existing unimodal pre-training datasets are characterized by significant homogeneity, primarily 153 comprising academic papers. This limitation substantially hinders the generalization capabilities 154 of pre-trained models. To enhance adaptability to diverse downstream document types, it is impera-155 tive to develop a more varied pre-training document dataset. 156

157 The diversity of pre-training data can be primarily manifested in two dimensions: (1) Element diver-158 sity: This includes a variety of document elements, such as text in different font sizes, tables in var-159 ious forms, and more. (2) Layout diversity: This encompasses various document layouts, including single-column, double-column, multi-column, and formats specific to academic papers, magazines, 160 and newspapers. In this paper, we propose a novel methodology termed Mesh-candidate BestFit, 161 which automatically synthesizes diverse and well-organized documents by leveraging both element and layout diversity. The resulting dataset, termed **DocSynth-300K**, significantly enhances model
 performance across various real-world document types. The overall pipeline of Mesh-candidate
 BestFit is illustrated in Figure 2 and detailed as follows:

3.1 PREPROCESSING: ENSURING ELEMENT DIVERSITY

In the preprocessing phase, to ensure the inclusion of a diverse range of document elements, we utilize M⁶Doc test (Cheng et al., 2023), which consists of 74 different document elements coming from about 2800 diverse document pages, as our initial data. Consequently, we fragment the pages, extracting and constructing an element pool by each fine-grain category. Meanwhile, to maintain diversity within elements of the same category, we design an augmentation pipeline that enlarges the data pool of rare categories that have quantities less than 100 elements (Appendix A.2.2).

3.2 LAYOUT GENERATION: ENSURING LAYOUT DIVERSITY

In addressing the challenge of synthesizing diverse layouts, the most straightforward approach is random arrangement. However, random arrangement yields disorganized and confusing layouts, which severely hampers the improvement on real-world documents. Regarding the layout generation models based on Diffusion (Chen et al., 2024; Inoue et al., 2023) or GAN (Jiang et al., 2023; Gupta et al., 2021), existing methods are limited to producing homogeneous layouts such as academic papers, which is insufficient to cover various real-world document layouts.

To ensure layout diversity and consistency with real-world documents, inspired by the 2D binpacking problem, we regard available grids built by the current layout as "bins" of different sizes and iteratively perform the best matching to generate more diverse and reasonable document layouts, balancing both the layout diversity (randomness) and aesthetics (such as fill rate and alignment). Detailed steps of layout generation are demonstrated as follows:

- 1. *Candidate Sampling* For each blank page, a subset is obtained through stratified sampling from the element pool based on element size, serving as candidate set. Then, randomly sample an element from the candidate set and place it at a certain position on the page.
- 2. *Meshgrid Construction* Construct the meshgrid based on the layout and filter out the invalid grids that overlaps with inserted elements. Only the remaining grids will be able to participate in matching with the candidate in subsequent steps.
- 3. **BestFit Pair Search** For each candidate, traverse all grids that meet the size requirement and search for the Mesh-candidate pair with the maximum fill rate. Subsequently, remove the optimal candidate from the candidate set and update the layout.
- 4. *Iterative Layout Filling* Repeat step 2 ~ 3 until no valid Mesh-candidate satisfy the size requirement. Ultimately, random central scaling will be applied to all filled elements separately.

Through the above process, elements are continuously filled in at optimal positions, ultimately creating a well-organized and visually appealing document image, as shown in Figure 3. The generated documents exhibit a high degree of diversity, which enables the pre-trained models to adapt to a variety of real-world document types effectively. Meanwhile, quantitative analysis demonstrates that the generated document closely adheres to human design principles such as alignment and density (Appendix A.3.1). The detailed algorithm of the above layout generation is shown in Algorithm 1.

222 223

224

239

240

245

249

250 251

259

265

267

4 GLOBAL-TO-LOCAL MODEL ARCHITECTURE

225 Unlike natural images, different elements in 226 document images can vary significantly in 227 scale, such as one-line title and whole-page ta-228 ble. To handle this scale-varying challenge, we introduce a hierarchical architecture called GL-229 CRM, which consists of two main components: 230 the Controllable Receptive Module (CRM) and 231 the Global-to-Local Design (GL). CRM flexi-232 bly extracts and integrates features with mul-233 tiple scales and granularities, while GL archi-234 tecture features a hierarchical perception pro-235 cess from global context (whole-page scale), to 236 sub-block areas (medium-scale), and finally lo-237 cal semantics information. 238

Figure 4: Illustration of Controllable Receptive Module (CRM), which extracts and fuses features of varying scales and granularities.

4.1 CONTROLLABLE RECEPTIVE MODULE

CRM is illustrated in Figure 5. To elaborate, for each layer's feature X, we start by extracting features using a weight-shared convolution layer w with kernel size k. To capture features of different granularities, we employ a set of varying dilation rates $d = [d_1, d_2, ..., d_n]$. This approach allows us to obtain a set of features of different granularities, denoted as $F = [F_1, F_2, ..., F_n]$:

$$F_i = GELU(BN(Conv(X, w, d_i)))$$
(1)

After extracting features $F = [F_1, F_2, \dots, F_n]$ of different granularities, we proceed to integrate these features and allow the network to learn to fuse different feature components autonomously:

$$\hat{F} = Concat([F_1, F_2, \dots, F_n]) \tag{2}$$

$$M = \sigma(GELU(BN(Conv_{gate}(\hat{F})))) \tag{2}$$

A lightweight convolutional layer $Conv_{gate}$ with a kernel size of 1 and groups of nC is used to extract a mask M with values ranging between 0 and 1. M can be considered importance weights for different features. Finally, M is applied to the fused features \hat{F} , followed by a lightweight output projector $Conv_{out}$. Additionally, a shortcut connection is used to merge the integrated feature with the initial feature X:

$$X_{CRM} = X + GELU(BN(Conv_{out}(M \otimes \hat{F})))$$
(4)

The CRM is plugged into the conventional CSP bottleneck (Wang et al., 2020) for extracting and enhancing features of different granularities, as shown in Figure 5. The functionality of the CRM is controlled by two parameters k and d, which control the granularity and scale of extracted features.

Figure 5: Illustration of Global-to-local design.

266 4.2 GLOBAL-TO-LOCAL DESIGN

Global-level. For the shallow stage, which contains rich texture details, we use CRM with enlarged kernel size and dilation rates (k = 5, d = 1, 2, 3). A large kernel helps capture more texture details and preserve local patterns for whole-page elements.

Figure 6: Examples of complex documents with different formats and structures in DocStructBench.

Block-level. For the intermediate stage, where the feature map is downsampled and texture feature is reduced, we employ CRM with smaller kernel (k = 3, d = 1, 2, 3). In this case, expanded dilation rates are sufficient for the perception of medium-scale elements, such as document sub-blocks.

Local-level. For the deep stage, where semantic information is predominant, we use a basic bottleneck that serves as a lightweight module which focuses on local semantic information.

5 EXPERIMENTS

5.1 EXPERIMENTAL METRICS AND DATASETS

For evaluation metrics, we report COCO-style mAP (Lin et al., 2014) for accuracy and FPS (processed images per second) for speed. For evaluation datasets, experiments are conducted on the two most complex public DLA datasets D⁴LA (Da et al., 2023) and DocLayNet (Pfitzmann et al., 2022). D⁴LA consists of 11,092 noisy images annotated with 27 categories from IIT-CDIP (Lewis et al., 2006) across different 12 document types. The training set consists of 8,868 images and the testing set consists of 2,224 images. As for DocLayNet, DocLayNet contains 80,863 pages from 7 document types and is manually annotated with 11 categories. Images are split into 69,103/6,480/4,994 for training/validation/testing, respectively. DocLayNet validation set is used for evaluation.

300 Meanwhile, to quantitatively evaluate model performance across different document types, we cu-301 rate an in-house dataset termed **DocStructBench**, which is a comprehensive dataset designed for 302 evaluation across various real-world scenario documents. It consists of four subsets categorized by 303 the source of the documents: Academic, Textbooks, Market Analysis, and Financial (examples of 304 these documents are illustrated in Figure 6). The data sources of DocStructBench are notably di-305 verse, encompassing a broad range of domains from various institutions, publishers, and websites. 306 DocStructBench consists of 7,310 training images and 2,645 testing images. Each image has been manually annotated across 10 distinct categories: Title, Plain Text, Abandoned Text, Figure, Figure 307 Caption, Table, Table Caption, Table Footnote, Isolated Formula, and Formula Caption. For exper-308 iments on DocStructBench, we perform training on a mixture of all four subsets and report results 309 on each subset separately. Other details about DocStructBench can be found at Appendix A.1. 310

311 312

280 281 282

283

284

285

287 288 289

290 291

5.2 COMPARISON DLA METHODS & DATASETS

DocLayout-YOLO is compared with both multimodal and unimodal methods. Multimodal methods include LayoutLMv3 (Huang et al., 2022), DiT-Cascade (Li et al., 2022), VGT (Da et al., 2023).
For unimodal comparison methods we use robust object detector DINO-4scale-R50 (Zhang et al., 2023a). For DLA pre-training datasets, we compare DocSynth-300K with public DLA pre-training datasets PubLayNet (Zhong et al., 2019) and DocBank (Li et al., 2020b).

319 320

5.3 IMPLEMENTATION DETAILS

For DocLayout-YOLO, we conduct pre-training on DocSynth-300K with image longer side resized at 1600 and use a batch size of 128 and learning rate of 0.02 for 30 epochs. For fine-tuning on DocLayNet, longer side is resized to 1120 and learning rate is set to 0.02. For fine-tuning on D⁴LA, the longer side is set to 1600 and learning rate is set to 0.04. For fine-tuning on DocStructBench, the Table 1: Results of DocLayout-YOLO with different optimization strategies. Pretrain denotes DocSynth-300K pre-training. Resulting DocLayout-YOLO significantly outperforms the baseline model. $\uparrow \Delta$ denotes improvements compared with baseline YOLO-v10 model.

Improv	ement	D ⁴	LA	DocL	ayNet	Acad	demic	Text	book	Marke	et Analysis	Fina	ncial
GL-CRM	Pretrain	mAP	AP50	mAP	AP50	mAP	AP50	mAP	AP50	mAP	AP50	mAP	AP50
		68.6	80.7	76.7	93.4	80.5	95.0	70.2	88.0	68.9	79.2	89.8	95.9
\checkmark		69.8	81.7	77.7	93.0	81.4	95.4	71.5	88.8	70.2	80.0	90.0	95.8
	\checkmark	69.8	82.1	79.3	93.6	82.1	95.8	71.5	88.5	69.3	79.6	90.3	95.5
\checkmark	\checkmark	70.3	82.4	79.7	93.4	81.8	95.8	73.7	90.3	69.4	79.4	90.1	95.9
<u> </u>	Δ	1.7	1.7	3.0	-	1.3	0.8	3.5	2.3	0.5	0.2	0.3	-

Table 2: Performance comparison on D⁴LA and DocLayNet. v10m++ denotes the original v10m bottleneck enhanced by our proposed GL-CRM bottleneck. Best and second best are highlighted.

N	Aethods	Backbone	Pretrain Dataset	D ⁴	LA	DocL	ayNet
I.	retilous	Dackbolle	Fretram Dataset	mAP	AP50	mAP	AP50
Unimodal	YOLO-v10	v10m	-	68.6	80.7	76.2	93.0
Unimodal	DINO-4scale	R50	ImageNet1K	64.7	76.9	<u>77.7</u>	93.5
	VGT	ViT-B	IIT-CDIP, 42M	<u>68.8</u>	-	-	-
Multimodal	LayoutLMv3-B	ViT-B	IIT-CDIP, 42M	60.0	72.6	75.4	92.1
минтоаан	DiT-Cascade-B	ViT-B	IIT-CDIP, 42M	67.7	79.8	73.2	87.6
	DiT-Cascade-L	ViT-L	IIT-CDIP, 42M	68.2	80.1	72.6	84.9
Ours	DocLayout-YOLO	v10m++	DocSynth, 300K	70.3	82.4	79. 7	<u>93.4</u>

longer side is set to 1280 and learning rate is set to 0.04. Training performs with a patience of 100 epochs on $8 \times A100$ GPUs. As for comparison models, DINO employs MMDetection (Chen et al., 2019), using a multi-scale training with an image longer side of 1280 and an AdamW optimizer at 1.0×10^{-4} . LayoutLMv3 and DiT use Detectron2 Cascade R-CNN (Wu et al., 2019) training with an image longer side of 1333, SGD optimizer of 2.0×10^{-4} for 60k iterations.

5.4 MAIN RESULTS

EFFECTIVENESS OF PROPOSED OPTIMIZATION STRATEGIES 5.4.1

We start by analyzing the effects of different improvement strategies implemented in DocLayout-YOLO, with the experimental results presented in Table 1. Results indicate that (1) DocSynth-300K largely enhances performance across various document types, DocSynth-300K pre-trained model achieves 1.2 and 2.6 improvement on D⁴LA and DocLayNet, which encompasses multiple doc-ument types. Meanwhile, DocSynth-300K pre-trained model also leads to improvement on four subsets of DocStructBench. (2) The resulting DocLayout-YOLO achieves significant improve-ment, by combining both CRM and DocSynth-300K pre-training, the resulting DocLayout-YOLO achieves 1.7/2.6/1.3/3.5/0.5/0.3 improvements compared with baseline YOLO-v10 model.

5.4.2 COMPARISON WITH CURRENT DLA METHODS

Next, we conduct the comparison with existing DLA methods across multiple datasets. Results of D⁴LA and DocLayNet are shown in Table 2. We can conclude that (1) DocLayout-YOLO outper-forms robust unimodal DLA methods. For instance, it shows an improvement of 2.0 over DINO, which is the second best on DocLayNet. (2) DocLayout-YOLO also outperforms SOTA multimodal methods. For example, on the D⁴LA dataset, DocLayout-YOLO achieves 70.3 mAP, surpassing second-best VGT's 68.8. Meanwhile, we conduct experiments on DocStructBench and results are presented in Table 3. DocLayout-YOLO achieves superior performance in three out of four subsets, surpassing existing SOTA unimodal (DINO) and multimodal approaches (DIT-Cascade-L). As for Market Analysis, DocLayout-YOLO is second best compared to DIT-Cascade-L, we suspect this is because DocSynth-300K pre-training is still not sufficient for most complex layouts.

378 Table 3: Performance comparison on DocStructBench. v10m++ denotes original v10m bottleneck 379 enhanced by our proposed GL-CRM bottleneck. FPS is tested on the same single A100 GPU ma-380 chine. LayoutLMv3-B^C denotes pre-trained on additional Chinese document data. * denotes FPS tested under Detectron2, [†] denotes FPS tested under Ultralytics (Jocher et al., 2023) and [‡] denotes 381 tested under MMDetection. Best and second best are highlighted. 382

Method		Backbone	Acad mAP	lemic AP50	Text	book AP50	Marke mAP	t Analysis AP50	Fina mAP	ncial AP50	FPS
Unimodal	YOLO-v10	v10m	80.5	95.0	70.2	88.0	68.9	79.2	<u>89.9</u>	<u>95.9</u>	144.9 [†]
	DINO-4scale	R50	80.5	95.4	70.5	85.6	68.6	79.2	89.1	95.6	26.7 [‡]
Multimodal	DiT-Cascade-B	ViT-B	79.7	95.1	69.7	86.1	63.7	71.0	88.7	94.1	14.1*
	DiT-Cascade-L	ViT-L	<u>81.0</u>	96.0	<u>70.8</u>	<u>86.8</u>	70.8	80.8	89.3	94.5	6.0*
	LayoutLMv3-B	ViT-B	76.5	94.9	66.0	82.3	65.7	75.2	85.7	90.4	9.0*
	LayoutLMv3-B ^C	ViT-B	77.7	93.5	68.0	82.8	67.9	75.7	87.6	92.1	9.0*
Ours	DocLayout-YOLO	v10m++	81.8	<u>95.8</u>	73.7	90.3	<u>69.4</u>	<u>79.4</u>	90.1	95.9	<u>85.5</u> †

Table 4: Donwstream fine-tuning performance of different document dataset pre-trained model (baseline YOLO-v10m is utilized). baseline row indicates from scratch training results. Results show that compared with public and synthetic document datasets, DocSynth-300K shows better adaptability across all document types. Best and second best are highlighted.

Data Type	Pretrain Dataset	Volume	Acad mAP	lemic AP50	Text	book AP50	Marke mAP	t Analysis AP50	Fina <i>mAP</i>	ncial AP50
	baseline		80.5	95.0	70.2	88.0	68.9	79.2	89.9	95.9
Public	M ⁶ Doc DocBank PubLayNet	2k 400k 300k	80.4 81.6 81.0	94.9 <u>95.5</u> 95.3	70.0 70.9 71.5	87.7 89.6 88.8	68.9 69.1 <u>69.1</u>	79.1 <u>79.5</u> 78.8	89.7 <u>90.1</u> 89.7	95.8 95.9 95.7
Synthetic	Random Diffusion	300k 300k	80.5 80.7	95.1 95.2	71.2 71.9	88.8 <u>89.4</u>	68.1 68.9	78.6 79.3	89.6 89.3	95.7 <u>95.8</u>
	DocSynth	300k	82.1	95.8	<u>71.5</u>	88.5	69.3	79.6	90.3	95.5

As for inference speed, we carefully evaluate the FPS of various DLA methods, and results show that (3) DocLayout-YOLO is significantly more efficient than current DLA methods. Although there is a slight decrease compared to the baseline YOLO-v10, DocLayout-YOLO still demonstrates an obvious advantage in speed. For example, compared with best multimodal methods DIT-Cascade-L, DocLayout-YOLO achieves $14.3 \times$ faster FPS. For the best unimodal method DINO, DocLayout-YOLO also shows $3.2 \times$ faster FPS.

5.5 ABLATION STUDIES

394

395

396 397

409

410

411

412

413 414 415

416

417 418

5.5.1 COMPARISONS WITH DIFFERENT DOCUMENT SYNTHETIC METHODS

Table 5: Data used in LACE.

419	Tuble 5. Di	ata useu fi	I LI ICL.
420	Data	Туре	Volume
	DSSE200	Academic	271
421	CHN	Wikipedia	10K
422	DocBank	Academic	400K
400	PubLayNet	Academic	300K
423	DocLayNet	Multiple	80K
424	D^4LA	Multiple	9K
425	Prima-LAD	Multiple	478
	-		

In this section, we compare DocSynth-300K with different document synthetic methods to evaluate the quality of synthetic document data. Specifically, we generate documents using different methods while keeping the rendering elements consistent with DocSynth-300K. Consequently, the performance of pre-trained models is evaluated on downstream fine-tuning datasets. The comparative layout generation methods include two approaches: Random and Diffusion. Random involves arbitrarily arranging the document layouts, whereas, for Diffusion, we train SOTA diffusion-

426 based layout generation method LACE (Chen et al., 2024) using 1M document images from seven 427 downstream datasets to generate layouts (training data used shown in Table 5). Results are con-428 ducted on the baseline YOLO-v10 model and the experimental results are shown in Table 4. 429

From results, we can conclude that: (1) Random layouts is unsuitable for document pre-training. 430 Though certain improvements are observed, the performance of random layout is suboptimal due 431 to large misalignments with real documents. (2) Diffusion layout is limited to certain document

Figure 7: Visualization of generated document images using different document synthetic methods.

types. Models pre-trained with Diffusion layouts outperform Random, likely because Diffusion produces layouts that more closely resemble actual documents. However, these layouts exhibited limited diversity, leading to improvement on limited types such as Academic and Textbook. (3) DocSynth-300K shows superior generalization ability across various document types. Compared to both Diffusion and Random, model pre-trained with DocSynth-300K leads to improvement on all four subsets and shows superior generalization ability. Both quantitative and visualization results (as shown in Figure 7) demonstrate that our proposed synthetic pipeline can generate documents with much greater diversity and higher quality.

452 5.5.2 COMPARISONS WITH PUBLIC DOCUMENT PRE-TRAINING DATASETS 453

454 Comparison results with public document pre-training datasets are shown in Table 4. It can be con-455 cluded that DocSynth-300K features a more effective document pre-training dataset compared 456 with public datasets. Firstly, for M⁶Doc test dataset, where the elements of DocSynth-300K come 457 from, suffers from severe overfitting due to its limited size. Secondly, for PubLayNet and DocBank, 458 although they feature large volumes of data, the limited element diversity (less than 10 element cat-459 egories) and layout diversity (only academic paper) lead to a less diversified feature representation 460 in the pre-trained models, which constrain further improvement (though certain improvements are observed) and fail to consistently enhance generalization ability on all downstream datasets. In con-461 trast, for DocSynth-300K, the pre-trained model achieves comprehensive improvements and outper-462 forms PubLayNet and DocBank on most downstream datasets, demonstrating that DocSynth-300K 463 is much more effective for improvement on various downstream documents. 464

ABLATIONS ON EFFECTS OF GL-CRM 5.5.3

Table 6	Ablation	studies	on (GL-0	CRM
Table 0.	Ablation	studies	onv	UL-	

Abla	D ⁴ LA						
Global-level	Block-level	mAP	AP50	AP_s	AP_m	AP_l	
		68.6	80.7	47.0	53.2	68.8	
\checkmark		69.2 ↑0.6	81.2 ↑0.5	47.1 ↑0.1	53.9 ↑0.7	69.6 ↑0. 8	
	\checkmark	69.3 ↑0.7	81.5 ↑0.8	47.2 ↑0.2	55.0 ↑ 1.8	69.4 † 0.6	
\checkmark	\checkmark	69.8 ↑1.2	81.7 ↑1.0	47.2 ↑0.2	55.3 ↑2.1	70.2 †1.4	

Finally, we conduct ablation study on the proposed GL-CRM, with the results shown in Table 6. The experiments demonstrate that the inclusion of the Global level significantly enhances detection accuracy for medium and large objects. Furthermore, incorporating the Block-level results in the most substantial improvement for medium objects, corresponding to sub-blocks existing in documents. Experiments validate the effectiveness of global to local design of GL-CRM.

6 CONCLUSION

442 443 444

445

446

447

448

449

450

451

465

466 467

468

469

470

471

472

473

474

475

476 477 478

479

480 In this paper, we propose DocLayout-YOLO, which excels in both speed and accuracy. DocLayout-481 YOLO incorporates improvements from both pre-training and model optimization perspectives: For 482 pre-training, we propose the Mesh-candidate BestFit methodology, which synthesizes a high-quality, diverse DLA pretraining dataset, DocSynth-300K. For model optimization, we introduce the GL-483 CRM, enhancing the network's perception of document images from a hierarchical global-block-484 local manner. Experimental results on extensive downstream datasets demonstrate that DocLayout-485 YOLO significantly outperforms existing DLA methods in both speed and accuracy.

486 REFERENCES

500

522

527

528

529

- 488 Apostolos Antonacopoulos, David Bridson, Christos Papadopoulos, and Stefan Pletschacher. A 489 realistic dataset for performance evaluation of document layout analysis. In *ICDAR*, 2009.
- 490
 491 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and 491 Sergey Zagoruyko. End-to-end object detection with transformers. In *ECCV*, 2020.
- Jian Chen, Ruiyi Zhang, Yufan Zhou, and Changyou Chen. Towards aligned layout generation via
 diffusion model with aesthetic constraints. *arXiv preprint arXiv:2402.04754*, 2024.
- Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. *arXiv*, 2019.
- Hiuyi Cheng, Peirong Zhang, Sihang Wu, Jiaxin Zhang, Qiyuan Zhu, Zecheng Xie, Jing Li, Kai
 Ding, and Lianwen Jin. M⁶doc: A large-scale multi-format, multi-type, multi-layout, multi-language, multi-annotation category dataset for modern document layout analysis. In *CVPR*, 2023.
- 505
 506
 507
 Cheng Da, Chuwei Luo, Qi Zheng, and Cong Yao. Vision grid transformer for document layout analysis. In *ICCV*, 2023.
- Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 and Jonathan Larson. From local to global: A graph rag approach to query-focused summariza tion. arXiv preprint arXiv:2404.16130, 2024.
- Jiuxiang Gu, Xiangxi Shi, Jason Kuen, Lu Qi, Ruiyi Zhang, Anqi Liu, Ani Nenkova, and Tong Sun.
 ADoPD: A large-scale document page decomposition dataset. In *ICLR*, 2024.
- Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry Davis, Vijay Mahadevan, and Abhinav
 Shrivastava. Layouttransformer: Layout generation and completion with self-attention. In *ICCV*, 2021.
- Adam W. Harley, Alex Ufkes, and Konstantinos G. Derpanis. Evaluation of deep convolutional nets for document image classification and retrieval. In *ICDAR*, 2015.
- Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
 document AI with unified text and image masking. In *ACM Multimedia*, 2022.
- Mude Hui, Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, Yuwang Wang, and Yan Lu. Unifying layout generation with a decoupled diffusion model. In *CVPR*, 2023.
- Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
 Discrete diffusion model for controllable layout generation. In *CVPR*, 2023.
 - Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu, Vuksan Mijovic, Zijiang James Yang, Jian-Guang Lou, and Dongmei Zhang. Layoutformer++: Conditional graphic layout generation via constraint serialization and decoding space restriction. In *CVPR*, 2023.
- Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, 2023. URL https://github.
 com/ultralytics/ultralytics.
- Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Constrained graphic layout generation via latent optimization. In *ACM Multimedia*, 2021.
- Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, and Irfan Essa. BLT:
 bidirectional layout transformer for controllable layout generation. In *ECCV*, 2022.
- 539 David D. Lewis, Gady Agam, Shlomo Argamon, Ophir Frieder, David A. Grossman, and Jefferson Heard. Building a test collection for complex document information processing. In *SIGIR*, 2006.

540 541 542 543	Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. <i>Advances in Neural Information Processing Systems</i> , 33: 9459–9474, 2020.
544 545 546	Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu, Christina Wang, and Tingfa Xu. Attribute- conditioned layout GAN for automatic graphic design. <i>IEEE Trans. Vis. Comput. Graph.</i> , 2021.
547 548	Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. Dit: Self-supervised pre-training for document image transformer. In <i>ACM Multimedia</i> , 2022.
549 550 551	Kai Li, Curtis Wigington, Chris Tensmeyer, Handong Zhao, Nikolaos Barmpalios, Vlad I. Morariu, Varun Manjunatha, Tong Sun, and Yun Fu. Cross-domain document object detection: Benchmark suite and method. In <i>CVPR</i> , 2020a.
552 553 554	Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou. Docbank: A benchmark dataset for document layout analysis. In <i>COLING</i> , 2020b.
555 556	Tsung-Yi Lin, Michael Maire, Serge Belongie, and et al. Microsoft coco: Common objects in context. In <i>ECCV</i> , 2014.
557 558 559	Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter W. J. Staar. Doclaynet: A large human-annotated dataset for document-layout segmentation. In <i>KDD</i> , 2022.
560 561 562	Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. In-context retrieval-augmented language models. <i>Transactions of the Association for Computational Linguistics</i> , 11:1316–1331, 2023.
563 564	Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. <i>NIPS</i> , 2015.
565 566 567	Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10: Real-time end-to-end object detection. <i>arXiv</i> , 2024a.
568 569 570 571	Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu, Yuan Qu, Fukai Shang, Bo Zhang, Liqun Wei, Zhihao Sui, Wei Li, Botian Shi, Yu Qiao, Dahua Lin, and Conghui He. Mineru: An open-source solution for precise document content extraction, 2024b. URL https://arxiv.org/abs/2409.18839.
572 573 574	Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of CNN. In <i>CVPR Workshops</i> , 2020.
575 576 577	Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019.
578 579 580	Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei A. F. Florêncio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. Layoutlmv2: Multi-modal pre-training for visually-rich document understanding. In <i>ACL</i> , 2021.
581 582 583	Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre- training of text and layout for document image understanding. In <i>KDD</i> , 2020.
584 585 586	Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C Lee Giles. Learning to extract semantic structure from documents using multimodal fully convolutional neural networks. In <i>CVPR</i> , 2017.
587 588 589	Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, and Heung-Yeung Shum. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In <i>ICLR</i> , 2023a.
590 591 592	Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion: Improving graphic layout generation by discrete diffusion probabilistic models. In <i>ICCV</i> , 2023b.
593	Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes. Publaynet: Largest dataset ever for document layout analysis. In <i>ICDAR</i> , 2019.

594 A APPENDIX

596

597

598

600

601

602 603

604 605

607

608

609

610

611 612

625

626

633

634

635

636

641

642

In the appendix, we provide detailed information on our proposed in-house evaluation dataset Doc-StructBench (Appendix A.1), as well as details of Mesh-candidate BestFit and more visualization examples of generated documents (Appendix A.2). Next, we give a quantitative evaluation of DocSynth-300K data from a design principle perspective (Appendix A.3.1), as well as ablation studies on pre-training data volume (Appendix A.3.2). Finally, the detection examples of DocLayout-YOLO on multiple kinds of real-world documents are demonstrated (Appendix A.4).

A.1 DOCSTRUCTBENCH DETAILS

Tab	e 7: Document source and train/test
spli	of Docstructbench.

Туре	Source		Training	Testing
Academic	Academic papers	1	1605	402
Textbook	Textbooks & Test papers		2345	587
Analysis Report	Industry & market analysis report		2660	651
Financial	Financial business document	1	2472	592

Docstructbench is a diverse and complex document structure dataset comprising 9,082 training images and 2,232 test images. It includes four subsets: Academic, Textbook, Market Analysis, and Financial. The distribution and sources of documents in each subset are detailed in Table 7. The instances of each document component category are detailed in Table 8.

Table 8: Fine-grained category and number of instances annotated in Docstructbench.

Category	Interpretation	Training	Testing
Title	Includes multi-level headings, separate lines, bolded, and in a distinct font from the text.	11384	2943
Plain text	Main body text of the document.	45243	12455
Abandon	Includes headers, footers, page numbers, page footnotes, and marginal notes.	16640	4379
Figure	Isolate figure floating in the document.	5164	1296
Figure caption	Corresponding caption interpreting the figure.	2660	715
Table	Isolate table floating in the document.	1389	407
Table caption	Corresponding caption interpreting the table.	911	271
Table footnote	The footnote of a table, typically provides additional explanations and clarifications about the table.	1490	370
Isolate formula	A standalone equation (excluding equations embedded within the text)	795	221
Formula caption	The caption of a formula, typically refers to the label or numbering of the formula.	385	86

A.2 MESH-CANDIDATE BESTFIT

A.2.1 Algorithm of Layout Generation

The algorithm of layout generation is detailed as Algorithm 1, which iteratively searches for the best matches between the candidate and all grids (bins). After the best matching pair is found, the candidate is inserted into the document and continues to iteratively search for the optimal match until the number of elements reaches a threshold N (empirically set to 15). The matching threshold fr_{thr} is set to 10^{-4} .

A.2.2 DATA AUGMENTATION PIPELINE

In the preprocessing phase, we conduct a specifically designed augmentation pipeline for rare categories that have few elements in the element pool. The details are as follows:

- 637
 638
 639
 640
 640
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 7638
 <l
 - 2. *Random Brightness & Contrast* We simulate the real-world environments under a wide variety of lighting conditions and brightness levels by randomly altering the brightness and contrast of elements at a probability of 0.5.
- 643 3. *Random Cropping* To guide the model to concentrate more on local features, we employ a 644 probability of 0.7 to perform random cropping on the elements within the area range of $0.5 \sim$ 645 0.9.
- 646647647648649<l
 - 12

648	-	
649	I	Algorithm 1: Mesh-candidate BestFit Algorithm
650]	Input: Element pool $P, C_{set} = \{e_1, e_2,, e_N\}$ sampled from P , matching threshold fr_{thr} ;
651	(Dutput: Generated layout L;
652	1 8	sample e^* from C_{set} and insert into L;
653	2	while $ L < N$ do
	3	$M_g = \text{MeshEngine}(L);$
654	4	foreach candidate $e_i \in C_{set}$ do
655	5	foreach meshgrid $g_i \in M_{set}$ do
656	6	$fr = \operatorname{match}(e_i, g_i);$
657	7	if $fr > fr_{max}$ then
658	8	$fr_{max} \leftarrow fr, C_{best} \leftarrow e_i, M_{best} \leftarrow g_j;$
659	9	end
660	10	end
661	11	end
662	12	if $fr_{max} < fr_{thr}$ then
663	13	break
664	14	else
665	15	remove C_{best} from C_{set} and insert C_{best} into L;
	16	end
666	17 🤅	end
667		return L;
668	-	

5. *Elastic Transformation & Gaussian Noisification* We distort and blur the original data through a slight elastic transformation and a Gaussian noise addition process to simulate jitter or resolution-induced distortion in reality.

A.2.3 OTHER DETAILS

676 In the layout generation phase, we iteratively perform the best matching to search for the candidate-677 grid pair with the highest fill rate until no valid pair satisfies the size requirement. Furthermore, we 678 add an additional restriction, namely that the number of small elements must not exceed $Mini_{num}$, 679 since a surplus of small elements leads to a layout that does not adhere to conventional aesthetic 680 standards. Specifically, $Mini_{num}$ is set to 5.

681 682 A.2.4 More Visualization Examples

Here, a richer visualization of the generated data is shown in Figure 8. S, M, L respectively denote
small, medium, and large elements, indicating the components that are relatively abundant on the
page. It is evident that the data we generate is rich in categories and possesses strong diversity. It
can not only generate dense layouts containing many small elements but also produce sparse layouts
composed of a few large elements, similar to the layouts generated by diffusion-based models.

688 689 690

691

669 670

671

672

673 674

675

640

A.3 MORE EVALUATION EXPERIMENTS

A.3.1 EVALUATION OF SYNTHETIC DOCUMENT FROM DESIGN PRINCIPLE PERSPECTIVE

In this section, we quantitatively evaluate whether the synthetic document data aligns with the human
design principle. The evaluation employs the *Align* and *Density* metrics, which respectively measure
the aesthetic quality of layouts in terms of document alignment and density. For *Align*, we utilize
the LayoutGAN++ (Kikuchi et al., 2021; Li et al., 2021) metric which measures the alignment of
elements in the document:

$$L_{alg} = \sum_{i=1}^{N} \min \left(\begin{array}{c} g(\Delta x_i^L), g(\Delta x_i^C), g(\Delta x_i^R) \\ g(\Delta y_i^T), g(\Delta y_i^C), g(\Delta y_i^B) \end{array} \right).$$
(5)

699 700

697

where x_i^* (* = L, C, R), y_i^* (* = T, C, B) denotes the x-axis left/center/right and y-axis top/center/bottom of *i*-th elements in document, $g(x) = -\log(1-x)$, and Δx_i^* (* = L, C, R)

Figure 8: Visualization of generated diverse layouts and corresponding pages after rendering. S, M, L respectively denote small, medium, and large elements, indicating the components that are relatively abundant on the page.

is computed as:

$$\Delta x_i^* = \min_{\forall j \neq i} |x_i^* - x_j^*| \tag{6}$$

 $\Delta y_i^*(* = T, C, B)$ can be computed similarly. For *Density*, we calculate the ratio of filled area in the layout:

$$L_{dst} = \frac{\sum_{i=1}^{N} |e_i|}{|L|}$$
(7)

Table 9: Quantative comparison between different layout generation methods. Where $|e_i|$ denotes area of element e_i in L, and |L| denotes area of the whole layout. For Align,

Layout Generation	Align↓	Density ↑
Random	0.0171 0.0032	0.259
Diffusion (LACE)	0.0032	0.476
Mesh-candidate BestFit (ours)	0.0009	0.645

where $|e_i|$ denotes area of element e_i in L, and |L| denotes area of the whole layout. For *Align*, a lower value denotes a more aligned document. For *Density*, a larger value denotes a more compact and dense layout. The experimental results, as shown in Table 9, indicate that the Mesh-candidate BestFit method significantly outperforms diffusion and random meth-

ods in both alignment and density. Visual results further confirm that the layouts produced by Mesh-candidate BestFit better conform to the standards of human aesthetics and design.

A.3.2 ABLATIONS ON PRETRAINING DATA VOLUME

We conduct ablation experiments on pre-training data volume. We pretrain basic YOLO-v10 using
 0-500K Mesh-candidate BestFit generated pre-training data and fine-tune on D⁴LA dataset subsequently. Results are shown in Figure 9. In our experiments, we observe a distinct correlation betw-

een pre-training data volume and model performance.
Specifically, for data less than 100k, there is a consistent improvement in model performance correlating with an increase in data volume. However, model performance shows noticeable fluctuations when the data volume reaches 200k. Notably, model performance reaches its top when the data volume increases to 300k.

764 A.4 DETECTION EXAMPLES

Figure 9: Ablations on pre-training data volume.

In Figures 10 and Figure 11, we demonstrate the detection examples of DocLayout-YOLO after fine-tuning with the DocStructBench dataset on various types of downstream documents. Examples show that the model, fine-tuned using the DocStructBench dataset, effectively adapts to multiple document types, showcasing considerable practicality and coverage.

Figure 10: Detection results of DocLayout-YOLO on Academic and Textbook subsets.

Figure 11: Detection results of DocLayout-YOLO on Market Analysis and Financial subsets.