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ABSTRACT

Document Layout Analysis is crucial for real-world document understanding sys-
tems, but it encounters a challenging trade-off between speed and accuracy: mul-
timodal methods leveraging both text and visual features achieve higher accuracy
but suffer from significant latency, whereas unimodal methods relying solely on
visual features offer faster processing speeds at the expense of accuracy. To ad-
dress this dilemma, we introduce DocLayout-YOLO, a novel approach that en-
hances accuracy while maintaining speed advantages through document-specific
optimizations in both pre-training and model design. For robust document pre-
training, we introduce the Mesh-candidate BestFit algorithm, which frames doc-
ument synthesis as a two-dimensional bin packing problem, generating the large-
scale, diverse DocSynth-300K dataset. Pre-training on the resulting DocSynth-
300K dataset significantly improves fine-tuning performance across various doc-
ument types. In terms of model optimization, we propose a Global-to-Local Con-
trollable Receptive Module that is capable of better handling multi-scale varia-
tions of document elements. Furthermore, to validate performance across differ-
ent document types, we introduce a complex and challenging benchmark named
DocStructBench. Extensive experiments on downstream datasets demonstrate that
DocLayout-YOLO excels in both speed and accuracy. Code, data, and models will
be made publicly available.

1 INTRODUCTION

With the rapid advancement of large language models and retrieval-augmented generation (RAG)
research Lewis et al. (2020); Ram et al. (2023); Edge et al. (2024), the demand for high-quality
document content parsing Wang et al. (2024b) has become increasingly critical. A central step in
document parsing is Document Layout Analysis (DLA), which aims to precisely locate different
types of regions (text, titles, tables, graphics, etc.) within a document. Over the past few years, DLA
algorithms have made significant progress, performing well on common document types. However,
when faced with diverse document formats, existing layout analysis algorithms Huang et al. (2022);
Li et al. (2022) still struggle with speed and accuracy.

Currently, there are two main approaches to document parsing: multimodal methods that combine
visual and textual information, and unimodal methods that rely solely on visual features. Multi-
modal methods, which typically involve pretraining on document images using unified text-image
encoders, generally achieve higher accuracy but are often slower due to the complexity of their
architectures. In contrast, unimodal methods, which rely only on visual features, offer faster pro-
cessing speeds but tend to lack accuracy due to the absence of specialized pretraining and model
design for document data. To achieve robust performance on diverse real-world documents while
meeting the demands of real-time applications, this paper introduces the DocLayout-YOLO layout
detection algorithm. This method leverages the strengths of both multimodal and unimodal ap-
proaches to quickly and accurately identify various regions within documents. As illustrated in Fig-
ure 1, DocLayout-YOLO matches the speed of the mainstream unimodal method YOLOv10 (Wang
et al., 2024a) and surpasses all existing methods, including the unimodal DINO-4scale (Zhang et al.,
2023a) and YOLO-v10, as well as the multimodal LayoutLMv3 (Huang et al., 2022) and DiT-
Cascade (Li et al., 2022), in terms of accuracy on diverse evaluation datasets. Specifically, we
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Figure 1: Comparisons between DocLayout-YOLO and existing state-of-the-art (SOTA) DLA meth-
ods. DocLayout-YOLO surpasses unimodal and multimodal methods in both speed and accuracy.

optimize the YOLOv10 algorithm along two dimensions: pretraining on diverse document data with
visual annotations and refining the target detection network structure for document layout analysis.

We observe that multimodal layout analysis methods such as LayoutLMv3 and DiT-Cascade sig-
nificantly enhance model generalization by pretraining on large-scale unsupervised document data.
However, for unimodal layout analysis methods, existing datasets predominantly comprise single
document types such as PubLayNet (Zhong et al., 2019) and DocBank (Li et al., 2020b). Models
fine-tuned on such datasets tend to overfit to a single distribution, failing to generalize to the diverse
layouts encountered in real-world scenarios. To address this, we propose an automated pipeline
for constructing diverse document layout data, introducing the Mesh-candidate BestFit algorithm.
This algorithm synthesizes document layouts by leveraging principles from the two-dimensional bin
packing problem, using a rich set of base components (text, images, tables) to generate a large-scale,
diverse pretraining corpus, DocSynth-300K.

YOLO (Jocher et al., 2023; Wang et al., 2024a), a leading algorithm in object detection, excels
in both accuracy and speed on natural images. To further enhance YOLO’s performance on doc-
ument images, we adapt the network to the specific characteristics of document data. In diverse
documents, the scale of different elements can vary significantly, from small single-line titles to
full-page paragraphs, images, and tables. To better handle these multi-scale variations, we introduce
the Global-to-Local Controllable Receptive Module (GL-CRM), enabling the model to effectively
detect targets of varying scales. The contributions of this paper can be summarized as follows:

• This paper proposes DocLayout-YOLO, a novel model for diverse layout analysis tasks, which
leverages the large-scale and diverse document layout dataset DocSynth-300K, and incorporates
the GL-CRM to enhance detection performance.

• This paper introduces the Mesh-candidate BestFit algorithm, which synthesizes diverse layout
documents from various components (text, images, tables) to create the DocSynth-300K dataset.
This dataset will be open-sourced to support further research in document layout analysis.

• This work designs the GL-CRM, which enhances the model’s capability to detect elements of
varying scales, thereby improving detection accuracy.

• Extensive experiments are conducted on the D4LA, DocLayNet, and our in-house diverse evalua-
tion datasets (DocStructBench). The proposed DocLayout-YOLO model achieves state-of-the-art
mAP scores of 70.3%, 79.7%, and 78.8% respectively, along with an inference speed of 85.5
frames per second (FPS), thus enabling real-time layout analysis on diverse documents.
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2 RELATED WORK
2.1 DOCUMENT LAYOUT ANALYSIS APPROACHES
Document Layout Analysis (DLA) focuses on identifying and locating different components within
documents, like text and images. DLA approaches are divided into unimodal and multimodal meth-
ods. Unimodal methods treat DLA as a special object detection problem, using generic off-the-shelf
detectors (Ren et al., 2015; Zhong et al., 2019; Carion et al., 2020; Jocher et al., 2023; Zhang et al.,
2023a). Multimodal methods improve DLA by aligning text-visual features through pre-training.
For example, LayoutLM (Xu et al., 2020; 2021; Huang et al., 2022) offers a unified approach with
various pre-training goals, achieving impressive results on various document tasks. DiT (Li et al.,
2022) boosts performance via self-supervised pre-training on extensive document datasets. VGT
(Da et al., 2023) introduces grid-based textual encoding for extracting text features.
2.2 DOCUMENT LAYOUT ANALYSIS DATASETS
Current document layout analysis datasets, such as the IIT-CDIP (Lewis et al., 2006) with 42 million
low-resolution, unannotated images, and its subset RVL-CDIP (Harley et al., 2015), which catego-
rizes 400,000 images into 16 classes, suffer from limitations in annotation detail. PubLayNet (Zhong
et al., 2019) includes 360,000 pages from PubMed journals, significantly scaling up the dataset size
for document layout analysis. DocBank (Li et al., 2020b) annotates 500,000 arXiv pages using weak
supervision, while DocLayNet (Pfitzmann et al., 2022) focuses on 80,863 pages from magazine-type
documents. D4LA (Da et al., 2023) manually annotates 11,092 images from RVL-CDIP across 27
categories, and M6Doc (Cheng et al., 2023) offers a diverse collection of 9,080 images annotated
with 74 types but is not open source due to copyright restrictions. Additional datasets such as
DEES200 (Yang et al., 2017), CHN (Li et al., 2020a), Prima-LAD (Antonacopoulos et al., 2009),
and ADOPD (Gu et al., 2024) are either not open-sourced or primarily suitable for fine-tuning. As
for document generation methods (Zhang et al., 2023b; Inoue et al., 2023; Hui et al., 2023; Jiang
et al., 2023; Kong et al., 2022; Gupta et al., 2021), most approaches focuses on academic papers.
Overall, current document layout analysis datasets have significant limitations in diversity, volume,
and annotation granularity, leading to sub-optimal pre-training models.
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Figure 2: Illustration of Mesh-candidate BestFit. Initially, in (A) Preprocessing, a category-wise
element pool is created from a small initial dataset. During (B) Layout Generation, Mesh-candidate
BestFit iteratively searches for the optimal candidate-grid match.

3 DIVERSE DOCSYNTH-300K DATASET CONSTRUCTION

Existing unimodal pre-training datasets are characterized by significant homogeneity, primarily
comprising academic papers. This limitation substantially hinders the generalization capabilities
of pre-trained models. To enhance adaptability to diverse downstream document types, it is impera-
tive to develop a more varied pre-training document dataset.

The diversity of pre-training data can be primarily manifested in two dimensions: (1) Element diver-
sity: This includes a variety of document elements, such as text in different font sizes, tables in var-
ious forms, and more. (2) Layout diversity: This encompasses various document layouts, including
single-column, double-column, multi-column, and formats specific to academic papers, magazines,
and newspapers. In this paper, we propose a novel methodology termed Mesh-candidate BestFit,
which automatically synthesizes diverse and well-organized documents by leveraging both element
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and layout diversity. The resulting dataset, termed DocSynth-300K, significantly enhances model
performance across various real-world document types. The overall pipeline of Mesh-candidate
BestFit is illustrated in Figure 2 and detailed as follows:

3.1 PREPROCESSING: ENSURING ELEMENT DIVERSITY

In the preprocessing phase, to ensure the inclusion of a diverse range of document elements, we
utilize M6Doc test (Cheng et al., 2023), which consists of 74 different document elements coming
from about 2800 diverse document pages, as our initial data. Consequently, we fragment the pages,
extracting and constructing an element pool by each fine-grain category. Meanwhile, to maintain
diversity within elements of the same category, we design an augmentation pipeline that enlarges
the data pool of rare categories that have quantities less than 100 elements (Appendix A.2.2).

3.2 LAYOUT GENERATION: ENSURING LAYOUT DIVERSITY

In addressing the challenge of synthesizing diverse layouts, the most straightforward approach is
random arrangement. However, random arrangement yields disorganized and confusing layouts,
which severely hampers the improvement on real-world documents. Regarding the layout generation
models based on Diffusion (Chen et al., 2024; Inoue et al., 2023) or GAN (Jiang et al., 2023; Gupta
et al., 2021), existing methods are limited to producing homogeneous layouts such as academic
papers, which is insufficient to cover various real-world document layouts.

To ensure layout diversity and consistency with real-world documents, inspired by the 2D bin-
packing problem, we regard available grids built by the current layout as “bins” of different sizes
and iteratively perform the best matching to generate more diverse and reasonable document layouts,
balancing both the layout diversity (randomness) and aesthetics (such as fill rate and alignment). De-
tailed steps of layout generation are demonstrated as follows:

1. Candidate Sampling For each blank page, a subset is obtained through stratified sampling from
the element pool based on element size, serving as candidate set. Then, randomly sample an
element from the candidate set and place it at a certain position on the page.

2. Meshgrid Construction Construct the meshgrid based on the layout and filter out the invalid
grids that overlaps with inserted elements. Only the remaining grids will be able to participate in
matching with the candidate in subsequent steps.

3. BestFit Pair Search For each candidate, traverse all grids that meet the size requirement and
search for the Mesh-candidate pair with the maximum fill rate. Subsequently, remove the optimal
candidate from the candidate set and update the layout.

4. Iterative Layout Filling Repeat step 2∼ 3 until no valid Mesh-candidate satisfy the size require-
ment. Ultimately, random central scaling will be applied to all filled elements separately.

One Column Two Columns Multiple Columns Newspaper Paper Magazine

Figure 3: Examples of synthetic document data. Synthetic documents demonstrate comprehensive
layout diversity (multiple layout formats) and element diversity (incorporating varied elements).
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Through the above process, elements are continuously filled in at optimal positions, ultimately cre-
ating a well-organized and visually appealing document image, as shown in Figure 3. The generated
documents exhibit a high degree of diversity, which enables the pre-trained models to adapt to a vari-
ety of real-world document types effectively. Meanwhile, quantitative analysis demonstrates that the
generated document closely adheres to human design principles such as alignment and density (Ap-
pendix A.3.1). The detailed algorithm of the above layout generation is shown in Algorithm 1.

4 GLOBAL-TO-LOCAL MODEL ARCHITECTURE
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Figure 4: Illustration of Controllable Receptive
Module (CRM), which extracts and fuses features
of varying scales and granularities.

Unlike natural images, different elements in
document images can vary significantly in
scale, such as one-line title and whole-page ta-
ble. To handle this scale-varying challenge, we
introduce a hierarchical architecture called GL-
CRM, which consists of two main components:
the Controllable Receptive Module (CRM) and
the Global-to-Local Design (GL). CRM flexi-
bly extracts and integrates features with mul-
tiple scales and granularities, while GL archi-
tecture features a hierarchical perception pro-
cess from global context (whole-page scale), to
sub-block areas (medium-scale), and finally lo-
cal semantics information.

4.1 CONTROLLABLE RECEPTIVE MODULE

CRM is illustrated in Figure 5. To elaborate, for each layer’s feature X , we start by extracting fea-
tures using a weight-shared convolution layer w with kernel size k. To capture features of different
granularities, we employ a set of varying dilation rates d = [d1, d2, ..., dn]. This approach allows us
to obtain a set of features of different granularities, denoted as F = [F1, F2, . . . , Fn]:

Fi = GELU(BN(Conv(X,w, di))) (1)

After extracting features F = [F1, F2, . . . , Fn] of different granularities, we proceed to integrate
these features and allow the network to learn to fuse different feature components autonomously:

F̂ = Concat([F1, F2, . . . , Fn]) (2)

M = σ(GELU(BN(Convgate(F̂ )))) (3)

Global	Context	
(Whole-page	scale)

Block	Area
(Medium	scale)

Local	Semantic

Global-level

Block-level

Local-level

@ = 5 C = 1,2,3

@ = 3 C = 1,2,3

@

C Down 2x

Down 2x

Down 2x

Figure 5: Illustration of
Global-to-local design.

A lightweight convolutional layer Convgate with a kernel size of 1 and
groups of nC is used to extract a mask M with values ranging between
0 and 1. M can be considered importance weights for different features.
Finally, M is applied to the fused features F̂ , followed by a lightweight
output projector Convout. Additionally, a shortcut connection is used to
merge the integrated feature with the initial feature X:

XCRM = X +GELU(BN(Convout(M ⊗ F̂ ))) (4)

The CRM is plugged into the conventional CSP bottleneck (Wang et al.,
2020) for extracting and enhancing features of different granularities, as
shown in Figure 5. The functionality of the CRM is controlled by two
parameters k and d, which control the granularity and scale of extracted
features.

4.2 GLOBAL-TO-LOCAL DESIGN

Global-level. For the shallow stage, which contains rich texture details, we use CRM with enlarged
kernel size and dilation rates (k = 5, d = 1, 2, 3). A large kernel helps capture more texture details
and preserve local patterns for whole-page elements.
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Academic Textbook Market Analysis Financial

Figure 6: Examples of complex documents with different formats and structures in DocStructBench.

Block-level. For the intermediate stage, where the feature map is downsampled and texture feature
is reduced, we employ CRM with smaller kernel (k = 3, d = 1, 2, 3). In this case, expanded dilation
rates are sufficient for the perception of medium-scale elements, such as document sub-blocks.

Local-level. For the deep stage, where semantic information is predominant, we use a basic bottle-
neck that serves as a lightweight module which focuses on local semantic information.

5 EXPERIMENTS

5.1 EXPERIMENTAL METRICS AND DATASETS

For evaluation metrics, we report COCO-style mAP (Lin et al., 2014) for accuracy and FPS (pro-
cessed images per second) for speed. For evaluation datasets, experiments are conducted on the two
most complex public DLA datasets D4LA (Da et al., 2023) and DocLayNet (Pfitzmann et al., 2022).
D4LA consists of 11,092 noisy images annotated with 27 categories from IIT-CDIP (Lewis et al.,
2006) across different 12 document types. The training set consists of 8,868 images and the testing
set consists of 2,224 images. As for DocLayNet, DocLayNet contains 80,863 pages from 7 docu-
ment types and is manually annotated with 11 categories. Images are split into 69,103/6,480/4,994
for training/validation/testing, respectively. DocLayNet validation set is used for evaluation.

Meanwhile, to quantitatively evaluate model performance across different document types, we cu-
rate an in-house dataset termed DocStructBench, which is a comprehensive dataset designed for
evaluation across various real-world scenario documents. It consists of four subsets categorized by
the source of the documents: Academic, Textbooks, Market Analysis, and Financial (examples of
these documents are illustrated in Figure 6). The data sources of DocStructBench are notably di-
verse, encompassing a broad range of domains from various institutions, publishers, and websites.
DocStructBench consists of 7,310 training images and 2,645 testing images. Each image has been
manually annotated across 10 distinct categories: Title, Plain Text, Abandoned Text, Figure, Figure
Caption, Table, Table Caption, Table Footnote, Isolated Formula, and Formula Caption. For exper-
iments on DocStructBench, we perform training on a mixture of all four subsets and report results
on each subset separately. Other details about DocStructBench can be found at Appendix A.1.

5.2 COMPARISON DLA METHODS & DATASETS

DocLayout-YOLO is compared with both multimodal and unimodal methods. Multimodal methods
include LayoutLMv3 (Huang et al., 2022), DiT-Cascade (Li et al., 2022), VGT (Da et al., 2023).
For unimodal comparison methods we use robust object detector DINO-4scale-R50 (Zhang et al.,
2023a). For DLA pre-training datasets, we compare DocSynth-300K with public DLA pre-training
datasets PubLayNet (Zhong et al., 2019) and DocBank (Li et al., 2020b).

5.3 IMPLEMENTATION DETAILS

For DocLayout-YOLO, we conduct pre-training on DocSynth-300K with image longer side resized
at 1600 and use a batch size of 128 and learning rate of 0.02 for 30 epochs. For fine-tuning on
DocLayNet, longer side is resized to 1120 and learning rate is set to 0.02. For fine-tuning on D4LA,
the longer side is set to 1600 and learning rate is set to 0.04. For fine-tuning on DocStructBench, the

6
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Table 1: Results of DocLayout-YOLO with different optimization strategies. Pretrain denotes
DocSynth-300K pre-training. Resulting DocLayout-YOLO significantly outperforms the baseline
model. ↑ ∆ denotes improvements compared with baseline YOLO-v10 model.

Improvement D4LA DocLayNet Academic Textbook Market Analysis Financial
GL-CRM Pretrain mAP AP50 mAP AP50 mAP AP50 mAP AP50 mAP AP50 mAP AP50

68.6 80.7 76.7 93.4 80.5 95.0 70.2 88.0 68.9 79.2 89.8 95.9

! 69.8 81.7 77.7 93.0 81.4 95.4 71.5 88.8 70.2 80.0 90.0 95.8
! 69.8 82.1 79.3 93.6 82.1 95.8 71.5 88.5 69.3 79.6 90.3 95.5

! ! 70.3 82.4 79.7 93.4 81.8 95.8 73.7 90.3 69.4 79.4 90.1 95.9

↑ ∆ 1.7 1.7 3.0 - 1.3 0.8 3.5 2.3 0.5 0.2 0.3 -

Table 2: Performance comparison on D4LA and DocLayNet. v10m++ denotes the original v10m
bottleneck enhanced by our proposed GL-CRM bottleneck. Best and second best are highlighted.

Methods Backbone Pretrain Dataset D4LA DocLayNet
mAP AP50 mAP AP50

Unimodal YOLO-v10 v10m - 68.6 80.7 76.2 93.0
DINO-4scale R50 ImageNet1K 64.7 76.9 77.7 93.5

Multimodal

VGT ViT-B IIT-CDIP, 42M 68.8 - - -
LayoutLMv3-B ViT-B IIT-CDIP, 42M 60.0 72.6 75.4 92.1
DiT-Cascade-B ViT-B IIT-CDIP, 42M 67.7 79.8 73.2 87.6
DiT-Cascade-L ViT-L IIT-CDIP, 42M 68.2 80.1 72.6 84.9

Ours DocLayout-YOLO v10m++ DocSynth, 300K 70.3 82.4 79.7 93.4

longer side is set to 1280 and learning rate is set to 0.04. Training performs with a patience of 100
epochs on 8×A100 GPUs. As for comparison models, DINO employs MMDetection (Chen et al.,
2019), using a multi-scale training with an image longer side of 1280 and an AdamW optimizer at
1.0× 10−4. LayoutLMv3 and DiT use Detectron2 Cascade R-CNN (Wu et al., 2019) training with
an image longer side of 1333, SGD optimizer of 2.0× 10−4 for 60k iterations.

5.4 MAIN RESULTS

5.4.1 EFFECTIVENESS OF PROPOSED OPTIMIZATION STRATEGIES

We start by analyzing the effects of different improvement strategies implemented in DocLayout-
YOLO, with the experimental results presented in Table 1. Results indicate that (1) DocSynth-300K
largely enhances performance across various document types, DocSynth-300K pre-trained model
achieves 1.2 and 2.6 improvement on D4LA and DocLayNet, which encompasses multiple doc-
ument types. Meanwhile, DocSynth-300K pre-trained model also leads to improvement on four
subsets of DocStructBench. (2) The resulting DocLayout-YOLO achieves significant improve-
ment, by combining both CRM and DocSynth-300K pre-training, the resulting DocLayout-YOLO
achieves 1.7/2.6/1.3/3.5/0.5/0.3 improvements compared with baseline YOLO-v10 model.

5.4.2 COMPARISON WITH CURRENT DLA METHODS

Next, we conduct the comparison with existing DLA methods across multiple datasets. Results of
D4LA and DocLayNet are shown in Table 2. We can conclude that (1) DocLayout-YOLO outper-
forms robust unimodal DLA methods. For instance, it shows an improvement of 2.0 over DINO,
which is the second best on DocLayNet. (2) DocLayout-YOLO also outperforms SOTA multimodal
methods. For example, on the D4LA dataset, DocLayout-YOLO achieves 70.3 mAP, surpassing
second-best VGT’s 68.8. Meanwhile, we conduct experiments on DocStructBench and results are
presented in Table 3. DocLayout-YOLO achieves superior performance in three out of four subsets,
surpassing existing SOTA unimodal (DINO) and multimodal approaches (DIT-Cascade-L). As for
Market Analysis, DocLayout-YOLO is second best compared to DIT-Cascade-L, we suspect this is
because DocSynth-300K pre-training is still not sufficient for most complex layouts.
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Table 3: Performance comparison on DocStructBench. v10m++ denotes original v10m bottleneck
enhanced by our proposed GL-CRM bottleneck. FPS is tested on the same single A100 GPU ma-
chine. LayoutLMv3-BC denotes pre-trained on additional Chinese document data. ∗ denotes FPS
tested under Detectron2, † denotes FPS tested under Ultralytics (Jocher et al., 2023) and ‡ denotes
tested under MMDetection. Best and second best are highlighted.

Method Backbone Academic Textbook Market Analysis Financial FPSmAP AP50 mAP AP50 mAP AP50 mAP AP50

Unimodal YOLO-v10 v10m 80.5 95.0 70.2 88.0 68.9 79.2 89.9 95.9 144.9†
DINO-4scale R50 80.5 95.4 70.5 85.6 68.6 79.2 89.1 95.6 26.7‡

Multimodal

DiT-Cascade-B ViT-B 79.7 95.1 69.7 86.1 63.7 71.0 88.7 94.1 14.1∗
DiT-Cascade-L ViT-L 81.0 96.0 70.8 86.8 70.8 80.8 89.3 94.5 6.0∗

LayoutLMv3-B ViT-B 76.5 94.9 66.0 82.3 65.7 75.2 85.7 90.4 9.0∗

LayoutLMv3-BC ViT-B 77.7 93.5 68.0 82.8 67.9 75.7 87.6 92.1 9.0∗

Ours DocLayout-YOLO v10m++ 81.8 95.8 73.7 90.3 69.4 79.4 90.1 95.9 85.5†

Table 4: Donwstream fine-tuning performance of different document dataset pre-trained
model (baseline YOLO-v10m is utilized). baseline row indicates from scratch training results. Re-
sults show that compared with public and synthetic document datasets, DocSynth-300K shows better
adaptability across all document types. Best and second best are highlighted.

Data Type Pretrain Dataset Volume Academic Textbook Market Analysis Financial
mAP AP50 mAP AP50 mAP AP50 mAP AP50

baseline 80.5 95.0 70.2 88.0 68.9 79.2 89.9 95.9

Public
M6Doc 2k 80.4 94.9 70.0 87.7 68.9 79.1 89.7 95.8

DocBank 400k 81.6 95.5 70.9 89.6 69.1 79.5 90.1 95.9
PubLayNet 300k 81.0 95.3 71.5 88.8 69.1 78.8 89.7 95.7

Synthetic
Random 300k 80.5 95.1 71.2 88.8 68.1 78.6 89.6 95.7
Diffusion 300k 80.7 95.2 71.9 89.4 68.9 79.3 89.3 95.8

DocSynth 300k 82.1 95.8 71.5 88.5 69.3 79.6 90.3 95.5

As for inference speed, we carefully evaluate the FPS of various DLA methods, and results show that
(3) DocLayout-YOLO is significantly more efficient than current DLA methods. Although there
is a slight decrease compared to the baseline YOLO-v10, DocLayout-YOLO still demonstrates an
obvious advantage in speed. For example, compared with best multimodal methods DIT-Cascade-L,
DocLayout-YOLO achieves 14.3× faster FPS. For the best unimodal method DINO, DocLayout-
YOLO also shows 3.2× faster FPS.

5.5 ABLATION STUDIES

5.5.1 COMPARISONS WITH DIFFERENT DOCUMENT SYNTHETIC METHODS

Table 5: Data used in LACE.
Data Type Volume

DSSE200 Academic 271
CHN Wikipedia 10K

DocBank Academic 400K
PubLayNet Academic 300K
DocLayNet Multiple 80K

D4LA Multiple 9K
Prima-LAD Multiple 478

In this section, we compare DocSynth-300K with different docu-
ment synthetic methods to evaluate the quality of synthetic doc-
ument data. Specifically, we generate documents using differ-
ent methods while keeping the rendering elements consistent with
DocSynth-300K. Consequently, the performance of pre-trained
models is evaluated on downstream fine-tuning datasets. The com-
parative layout generation methods include two approaches: Ran-
dom and Diffusion. Random involves arbitrarily arranging the doc-
ument layouts, whereas, for Diffusion, we train SOTA diffusion-

based layout generation method LACE (Chen et al., 2024) using 1M document images from seven
downstream datasets to generate layouts (training data used shown in Table 5). Results are con-
ducted on the baseline YOLO-v10 model and the experimental results are shown in Table 4.

From results, we can conclude that: (1) Random layouts is unsuitable for document pre-training.
Though certain improvements are observed, the performance of random layout is suboptimal due
to large misalignments with real documents. (2) Diffusion layout is limited to certain document

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Layout Generation

Random Diffusion Ours

Rendering

Random Diffusion Ours

Figure 7: Visualization of generated document images using different document synthetic methods.

types. Models pre-trained with Diffusion layouts outperform Random, likely because Diffusion
produces layouts that more closely resemble actual documents. However, these layouts exhibited
limited diversity, leading to improvement on limited types such as Academic and Textbook. (3)
DocSynth-300K shows superior generalization ability across various document types. Compared
to both Diffusion and Random, model pre-trained with DocSynth-300K leads to improvement on all
four subsets and shows superior generalization ability. Both quantitative and visualization results (as
shown in Figure 7) demonstrate that our proposed synthetic pipeline can generate documents with
much greater diversity and higher quality.

5.5.2 COMPARISONS WITH PUBLIC DOCUMENT PRE-TRAINING DATASETS

Comparison results with public document pre-training datasets are shown in Table 4. It can be con-
cluded that DocSynth-300K features a more effective document pre-training dataset compared
with public datasets. Firstly, for M6Doc test dataset, where the elements of DocSynth-300K come
from, suffers from severe overfitting due to its limited size. Secondly, for PubLayNet and DocBank,
although they feature large volumes of data, the limited element diversity (less than 10 element cat-
egories) and layout diversity (only academic paper) lead to a less diversified feature representation
in the pre-trained models, which constrain further improvement (though certain improvements are
observed) and fail to consistently enhance generalization ability on all downstream datasets. In con-
trast, for DocSynth-300K, the pre-trained model achieves comprehensive improvements and outper-
forms PubLayNet and DocBank on most downstream datasets, demonstrating that DocSynth-300K
is much more effective for improvement on various downstream documents.

5.5.3 ABLATIONS ON EFFECTS OF GL-CRM

Table 6: Ablation studies on GL-CRM.
Ablation D4LA

Global-level Block-level mAP AP50 APs APm APl

68.6 80.7 47.0 53.2 68.8

!
69.2 81.2 47.1 53.9 69.6
↑0.6 ↑0.5 ↑0.1 ↑0.7 ↑0.8

!
69.3 81.5 47.2 55.0 69.4
↑0.7 ↑0.8 ↑0.2 ↑1.8 ↑0.6

! !
69.8 81.7 47.2 55.3 70.2
↑1.2 ↑1.0 ↑0.2 ↑2.1 ↑1.4

Finally, we conduct ablation study on the pro-
posed GL-CRM, with the results shown in Ta-
ble 6. The experiments demonstrate that the in-
clusion of the Global level significantly enhances
detection accuracy for medium and large ob-
jects. Furthermore, incorporating the Block-level
results in the most substantial improvement for
medium objects, corresponding to sub-blocks ex-
isting in documents. Experiments validate the ef-
fectiveness of global to local design of GL-CRM.

6 CONCLUSION

In this paper, we propose DocLayout-YOLO, which excels in both speed and accuracy. DocLayout-
YOLO incorporates improvements from both pre-training and model optimization perspectives: For
pre-training, we propose the Mesh-candidate BestFit methodology, which synthesizes a high-quality,
diverse DLA pretraining dataset, DocSynth-300K. For model optimization, we introduce the GL-
CRM, enhancing the network’s perception of document images from a hierarchical global-block-
local manner. Experimental results on extensive downstream datasets demonstrate that DocLayout-
YOLO significantly outperforms existing DLA methods in both speed and accuracy.
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Florêncio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. Layoutlmv2: Multi-modal
pre-training for visually-rich document understanding. In ACL, 2021.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-
training of text and layout for document image understanding. In KDD, 2020.

Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C Lee Giles. Learning to
extract semantic structure from documents using multimodal fully convolutional neural networks.
In CVPR, 2017.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, and Heung-Yeung
Shum. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In
ICLR, 2023a.

Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion:
Improving graphic layout generation by discrete diffusion probabilistic models. In ICCV, 2023b.

Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes. Publaynet: Largest dataset ever for document
layout analysis. In ICDAR, 2019.

11

https://arxiv.org/abs/2409.18839
https://github.com/facebookresearch/detectron2


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

In the appendix, we provide detailed information on our proposed in-house evaluation dataset Doc-
StructBench (Appendix A.1), as well as details of Mesh-candidate BestFit and more visualization
examples of generated documents (Appendix A.2). Next, we give a quantitative evaluation of
DocSynth-300K data from a design principle perspective (Appendix A.3.1), as well as ablation stud-
ies on pre-training data volume (Appendix A.3.2). Finally, the detection examples of DocLayout-
YOLO on multiple kinds of real-world documents are demonstrated (Appendix A.4).

A.1 DOCSTRUCTBENCH DETAILS

Table 7: Document source and train/test
split of Docstructbench.

Type Source Training Testing
Academic Academic papers 1605 402

Textbook Textbooks & Test papers 2345 587

Analysis
Report

Industry & market
analysis report 2660 651

Financial Financial business document 2472 592

Docstructbench is a diverse and complex document struc-
ture dataset comprising 9,082 training images and 2,232
test images. It includes four subsets: Academic, Text-
book, Market Analysis, and Financial. The distribution
and sources of documents in each subset are detailed in
Table 7. The instances of each document component cat-
egory are detailed in Table 8.

Table 8: Fine-grained category and number of instances annotated in Docstructbench.

Category Interpretation Training Testing

Title Includes multi-level headings, separate lines, bolded, and in a distinct font from the text. 11384 2943
Plain text Main body text of the document. 45243 12455
Abandon Includes headers, footers, page numbers, page footnotes, and marginal notes. 16640 4379
Figure Isolate figure floating in the document. 5164 1296
Figure caption Corresponding caption interpreting the figure. 2660 715
Table Isolate table floating in the document. 1389 407
Table caption Corresponding caption interpreting the table. 911 271
Table footnote The footnote of a table, typically provides additional explanations and clarifications about the table. 1490 370
Isolate formula A standalone equation (excluding equations embedded within the text) 795 221
Formula caption The caption of a formula, typically refers to the label or numbering of the formula. 385 86

A.2 MESH-CANDIDATE BESTFIT

A.2.1 ALGORITHM OF LAYOUT GENERATION

The algorithm of layout generation is detailed as Algorithm 1, which iteratively searches for the
best matches between the candidate and all grids (bins). After the best matching pair is found, the
candidate is inserted into the document and continues to iteratively search for the optimal match
until the number of elements reaches a threshold N (empirically set to 15). The matching threshold
frthr is set to 10−4.

A.2.2 DATA AUGMENTATION PIPELINE

In the preprocessing phase, we conduct a specifically designed augmentation pipeline for rare cate-
gories that have few elements in the element pool. The details are as follows:

1. Random Flip Considering the various possibilities of text orientation in different documents,
we enhance the original data with random flips in both the horizontal and vertical directions at a
probability of 0.5.

2. Random Brightness & Contrast We simulate the real-world environments under a wide variety
of lighting conditions and brightness levels by randomly altering the brightness and contrast of
elements at a probability of 0.5.

3. Random Cropping To guide the model to concentrate more on local features, we employ a
probability of 0.7 to perform random cropping on the elements within the area range of 0.5 ∼
0.9.

4. Edge Extraction We use the Sobel filter to perform edge detection and extract the contour
information within the elements with a probability of 0.2, thereby enhancing the richness of the
features.
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Algorithm 1: Mesh-candidate BestFit Algorithm
Input: Element pool P , Cset = {e1, e2, ..., eN} sampled from P , matching threshold frthr;
Output: Generated layout L;

1 sample e∗ from Cset and insert into L;
2 while |L| < N do
3 Mg = MeshEngine(L);
4 foreach candidate ei ∈ Cset do
5 foreach meshgrid gj ∈Mset do
6 fr = match(ei, gj);
7 if fr > frmax then
8 frmax ← fr, Cbest ← ei, Mbest ← gj ;
9 end

10 end
11 end
12 if frmax < frthr then
13 break
14 else
15 remove Cbest from Cset and insert Cbest into L;
16 end
17 end
18 return L;

5. Elastic Transformation & Gaussian Noisification We distort and blur the original data through a
slight elastic transformation and a Gaussian noise addition process to simulate jitter or resolution-
induced distortion in reality.

A.2.3 OTHER DETAILS

In the layout generation phase, we iteratively perform the best matching to search for the candidate-
grid pair with the highest fill rate until no valid pair satisfies the size requirement. Furthermore, we
add an additional restriction, namely that the number of small elements must not exceed Mininum,
since a surplus of small elements leads to a layout that does not adhere to conventional aesthetic
standards. Specifically, Mininum is set to 5.

A.2.4 MORE VISUALIZATION EXAMPLES

Here, a richer visualization of the generated data is shown in Figure 8. S, M, L respectively denote
small, medium, and large elements, indicating the components that are relatively abundant on the
page. It is evident that the data we generate is rich in categories and possesses strong diversity. It
can not only generate dense layouts containing many small elements but also produce sparse layouts
composed of a few large elements, similar to the layouts generated by diffusion-based models.

A.3 MORE EVALUATION EXPERIMENTS

A.3.1 EVALUATION OF SYNTHETIC DOCUMENT FROM DESIGN PRINCIPLE PERSPECTIVE

In this section, we quantitatively evaluate whether the synthetic document data aligns with the human
design principle. The evaluation employs the Align and Density metrics, which respectively measure
the aesthetic quality of layouts in terms of document alignment and density. For Align, we utilize
the LayoutGAN++ (Kikuchi et al., 2021; Li et al., 2021) metric which measures the alignment of
elements in the document:

Lalg =

N∑
i=1

min

(
g(∆xL

i ), g(∆xC
i ), g(∆xR

i )
g(∆yTi ), g(∆yCi ), g(∆yBi )

)
. (5)

where x∗
i (∗ = L,C,R), y∗i (∗ = T,C,B) denotes the x-axis left/center/right and y-axis

top/center/bottom of i-th elements in document, g(x) = − log(1 − x), and ∆x∗
i (∗ = L,C,R)
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Layout Generation Rendering

S

M

L

S

M

L

Figure 8: Visualization of generated diverse layouts and corresponding pages after rendering. S,
M, L respectively denote small, medium, and large elements, indicating the components that are
relatively abundant on the page.

is computed as:
∆x∗

i = min
∀j ̸=i
|x∗

i − x∗
j | (6)

∆y∗i (∗ = T,C,B) can be computed similarly. For Density, we calculate the ratio of filled area in
the layout:

Ldst =

∑N
i=1 |ei|
|L|

(7)

Table 9: Quantative comparison between different
layout generation methods.

Layout Generation Align↓ Density↑
Random 0.0171 0.259

Diffusion (LACE) 0.0032 0.476

Mesh-candidate BestFit (ours) 0.0009 0.645

where |ei| denotes area of element ei in L, and
|L| denotes area of the whole layout. For Align,
a lower value denotes a more aligned docu-
ment. For Density, a larger value denotes a
more compact and dense layout. The experi-
mental results, as shown in Table 9, indicate
that the Mesh-candidate BestFit method signifi-
cantly outperforms diffusion and random meth-

ods in both alignment and density. Visual results further confirm that the layouts produced by
Mesh-candidate BestFit better conform to the standards of human aesthetics and design.

A.3.2 ABLATIONS ON PRETRAINING DATA VOLUME

We conduct ablation experiments on pre-training data volume. We pretrain basic YOLO-v10 using
0-500K Mesh-candidate BestFit generated pre-training data and fine-tune on D4LA dataset subse-
quently. Results are shown in Figure 9. In our experiments, we observe a distinct correlation betw-
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Figure 9: Ablations on pre-training data
volume.

een pre-training data volume and model performance.
Specifically, for data less than 100k, there is a consis-
tent improvement in model performance correlating with
an increase in data volume. However, model perfor-
mance shows noticeable fluctuations when the data vol-
ume reaches 200k. Notably, model performance reaches
its top when the data volume increases to 300k.

A.4 DETECTION EXAMPLES

In Figures 10 and Figure 11, we demonstrate the detection examples of DocLayout-YOLO after
fine-tuning with the DocStructBench dataset on various types of downstream documents. Examples
show that the model, fine-tuned using the DocStructBench dataset, effectively adapts to multiple
document types, showcasing considerable practicality and coverage.

Academic

TextBook

Figure 10: Detection results of DocLayout-YOLO on Academic and Textbook subsets.

Market Analysis

Financial

Figure 11: Detection results of DocLayout-YOLO on Market Analysis and Financial subsets.
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