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Abstract

Although Long Reasoning Models (LRMs) have achieved superior performance
on various reasoning scenarios, they often suffer from increased computational
costs and inference latency caused by overthinking. To address these limitations,
we propose an Adaptive Dual Reasoner, which supports two reasoning modes: fast
thinking and slow thinking. ADR dynamically alternates between these modes
based on the contextual complexity during reasoning. ADR is trained in two stages:
(1) A cold-start stage using supervised fine-tuning (SFT) to equip the model with
the ability to integrate both fast and slow reasoning modes, in which we construct
a hybrid reasoning dataset through a dedicated pipeline to provide large-scale
supervision. (2) A reinforcement learning stage for optimizing reasoning effort,
where we introduce Entropy-guided Hybrid Policy Optimization (EHPO), an
RL training framework employing an entropy-guided dynamic rollout strategy for
branching at high-entropy units and a difficulty-aware penalty to balance fast and
slow reasoning. Across challenging mathematical reasoning benchmarks, ADR
achieves an effective balance between reasoning performance and efficiency among
state-of-the-art approaches. Specifically, ADR yields a performance gain of up to
6.1%, while reducing the reasoning output length by 49.5% to 59.3%.

1 Introduction

With the recent emergence of Long Reasoning Models (LRMs) [1, 2, 3], the Chain-of-Thought (CoT)
[4] reasoning has been further popularized as the mainstream paradigm for tackling complex tasks
such as mathematical or logical problems. However, LRMs are notorious for over-thinking [5, 6],
wherein the model unnecessarily generates redundant reasoning. Recently, a surge of research has
focused on addressing the overthinking problem in LRMs. One of the simplest approaches [7, 8, 9]
is prompt engineering, which aims to make the model’s output steps more concise through specific
prompts. Other methods, such as probability manipulation [10], token budget [11, 9, 12, 13], early
exiting [14, 15, 16], and CoT compression [17, 18], focus on avoiding frequent shifts in thought
or shorten the output length. However, these length-driven approaches may lead to insufficient
exploration of complex reasoning steps that require deeper thinking. To further refine the control
of reasoning length in LRMs for different problems, a variety of reinforcement learning methods
have been proposed [19, 20, 21, 22, 23] to perform various length or difficulty-based rewards. To
control reasoning behaviors, a range of approaches [24, 25, 26, 27, 28, 29, 30] has introduced the
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concept of hybrid reasoning modes (e.g., fast thinking, and slow thinking). Some hybrid reasoning
methods utilize a router to select appropriate models [31] or reasoning modes [32, 33] according to
the estimated difficulty of the query. Subsequent works have sought to eliminate the dependency on
routers by adopting reinforcement learning frameworks, enabling autonomously routing to select the
appropriate reasoning mode [28, 29, 30]. Nevertheless, actual reasoning trajectories often comprise
sub-problems of varying complexity, and coarse-grained control over reasoning modes is unable to
adaptively allocate cognitive resources for each reasoning path. To tackle this issue, recent approaches
[34, 35, 36] decompose reasoning steps into smaller units for fine-grained control, but they rely
on static rollout strategies that restrict deeper exploration on hard subproblems.To overcome this
limitation, we propose the Adaptive Dual Reasoner, which dynamically switches between fast and
slow reasoning modes according to contextual complexity. ADR is trained in two stages: first, a
supervised fine-tuning stage equips the model with both reasoning modes; second, we introduce
Entropy-guided Hybrid Policy Optimization (EHPO), a reinforcement learning framework that
leverages entropy trends for dynamic rollout strategy and a difficulty-aware penalty to balance
efficiency and accuracy. Our contributions are summarized as follows:

• ADR, a novel reasoning paradigm, which enables large reasoning models to adaptively
switch between fast reasoning for straightforward cases and slow reasoning for complex
dependencies, laying the foundation for flexible allocation of reasoning effort.

• An automated hybrid reasoning data construction curator. We build a scalable pipeline
that automatically constructs hybrid reasoning data, enabling existing LRMs to transition
smoothly into the new hybrid reasoning paradigm.

• EHPO, a reinforcement learning framework that integrates entropy trends for dynamic
rollout strategy and a difficulty-aware penalty to balance efficiency and accuracy, thereby
optimizing reasoning under the hybrid paradigm.

2 Methodology

0.30 0.55

0.31

0.10 0.41

 S
pl

itt
in

g 
Bo

un
da

ry

 Length Boundary (Max Tokens) 

0.11 0.23

0.34

0.45 0.11

SP=0.5+0.25

(a)

(b) (c)

Easy Unit Hard UnitCoD UnitRaw Output

Unit Splitting 

<unit>...</unit>

<unit>......</unit>

<unit>...</unit>

<unit>...</unit>

<easy>...</easy>

<hard>......</hard>

<easy>...</easy>CoD Rewriting

Final OutputOkay, so I need to find all prime 
numbers p and q such that p 
cubed minus q cubed equals p 
times q cubed minus 1. 

The equation is p³ - q³ = p q³ - 1.
Hmm, let's see. Both p and q are
 primes, so they're positive 
integers greater than 1. 

Maybe I should start by 
rearranging the equation to see 
if I can simplify it or factor it ...... 

Easy Unit

First 20 tokens
Last 20 tokens

0.23

0.27

0.37

0.21

Hard Unit

Easy Unit E Hard Unit with Entropy Unit Expanding

M
ea

n 
En

tro
py

ΔH = 0.25

0.34 0.25

0.130.14

Figure 1: (a) Hybrid Reasoning Data Construction. (b) Entropy Analysis of Two Reasoning Units:
Transitions from easy to hard mode exhibit higher entropy. (c) Entropy-Guided Dynamic Rollout
Strategy: Branching occurs with probability SP = α+∆H when transitioning from easy mode to
hard mode, where ∆H denotes the normalized entropy difference.

2.1 Aligning the Model to the Adaptive Dual Reasoning Paradigm

To align the model with the adaptive dual reasoning paradigm that supports both fast and slow
reasoning modes, we conduct cold-start training via supervised fine-tuning (SFT) and construct
hybrid reasoning data from an open-source reasoning dataset. Inspired by the observation that higher
entropy is associated with keywords related to reflection, verification, and exploration[37, 38], we
propose a data construction process based on CoT decomposition and rewriting, as shown in Figure
1(a). Specifically, we decompose reasoning trajectories into reasoning units, labeling those with
high-entropy content as hard and others as easy. Easy units are compressed using CoD-style to

2



minimize token usage, while hard units remain uncompressed to retain reasoning depth. These units
are then annotated with special tokens to form the final reasoning format as following:

<think> <easy> u1 </easy> <hard> u2 </hard> · · · <easy> un </easy> </think> a (1)

2.2 Entropy-Guided Hybrid Policy Optimization

To further improve reasoning efficiency while preserving accuracy, we propose EHPO, a reinforce-
ment learning framework that updates the model using a GRPO-based objective. EHPO combines
mode control reward with entropy-guided dynamic rollout to suppress unnecessary deep reasoning
while retaining essential hard units across problems of varying difficulty.

2.2.1 Reward Design

We design a reward function with four signals to jointly optimize the allocation of reasoning effort:

R = Rformat ∗ Raccuracy ∗ Runit ∗ Rmode (2)

While the first two rewards enforce structural compliance and correctness, we highlight the latter two
below.

Unit semantic Reward To encourage the model to distinguish between two modes of reasoning
rather than collapsing into the original paradigm, we define a unit semantic reward based on keyword
matching. Each reasoning unit ui is semantically correct only if (i) ui is easy and contains no
reflection/verification keywords such as "Wait", "However" and "Alternatively", or (ii) ui is hard and
contains at least one such keyword. Then, the overall unit semantic reward is defined as follows:

Runit =

{
1, if all units are semantic correct,
0, otherwise (3)

Mode Control Reward To optimize the model’s utilization of reasoning effort, we introduce a
difficulty-aware mode control reward, which encourages the preferential use of the easy mode on
lower-difficulty tasks while promoting deeper reasoning in the hard mode for challenging ones:

Rmode = β + (1− β) ·
(
Npass

N
· peasy + (1− Npass

N
) · phard

)
, (4)

where N and Npass denote total and correct samples, peasy and phard are the token ratios of the easy
mode and hard mode, respectively, and β is a hyperparameter controlling the reward scale within the
range [β, 1]. We set β = 0.7 by default.

2.2.2 Entropy-Guided Dynamic Rollout Strategy

In pilot training experiments, we found that Rmode, which discourages deep reasoning, compresses the
exploration space and undermines response accuracy. To analyze the model’s exploration behavior,
we measure the entropy at the beginning and end of each reasoning unit. As demonstrated in Figure 1
(b), the terminal entropy values of easy units are generally higher than their initial entropy values,
whereas hard units exhibit the opposite trend, which indicates that transitions from easy to hard mode
exhibit higher entropy, consistent with the requirement for deeper exploration.

Based on this observation, we propose an Entropy-guided Dynamic Rollout (EDR) strategy: when
transitioning from easy to hard mode, model generates multiple branches to expand its exploration
space, compensating for reduced reasoning depth by increasing reasoning breadth.Specifically, we
record the entropy of the first k tokens as the initial entropy H0 when generating the first hard unit.
Upon transitioning from an easy to a hard unit, the model branches with probability α+∆H , where
α = 0.5 is the base probability and ∆H is the normalized entropy difference, as illustrated in 1(c).

3



Table 1: Performance comparison of various baselines and our method. The bold and underlined
values denote the best and second-best results, respectively. Accuracy-Efficiency Score (AES), intro-
duced by O1-Pruner [44], measures efficiency by rewarding shorter outputs without compromising
accuracy. The Avg AES is computed over benchmarks with reported results, excluding tasks where
outcomes are unavailable. The accuracy (Acc.) is measured by the pass@1, which is estimated as the
average correctness over 16 sampled generations.

AIME2025 AIME2024 MATH500
Acc. Tokens AES Acc. Tokens AES Acc. Tokens AES Avg. AES

Baseline 23.5 12119 — 30.4 12290 — 81.7 4802 — —

O1-Pruner 23.2 8731↓28.0% 0.22 — — — 84.3 2913↓39.3% 0.49 0.35
DRP — — — 33.3 6135↓50.1% 0.79 82.0 2122↓55.8% 0.57 0.68
ES 24.2 7458↓38.5% 0.47 28.3 9024↓26.6% -0.08 83.0 2400↓50.0% 0.55 0.31
ACPO — — — 30.0 6670↓45.7% 0.39 81.0 1679↓65.0% 0.61 0.50

ADR w/o EDR 21.5 5890↓51.4% 0.09 33.8 5971↓51.4% 0.85 81.6 1992↓58.5% 0.58 0.51
ADR 23.3 6126↓49.5% 0.45 36.5 6110↓50.3% 1.10 81.0 1955↓59.3% 0.55 0.70

3 Experiments

3.1 Experimental Setup

We build the cold-start dataset with 300k examples sampled from the OpenMathReasoning [39]
dataset, then conduct our EHPO training on the DeepScaleR-Preview [40] dataset and adopt a two-
stage training procedure with max response length limits of 8k and 16k tokens following DeepScaleR.
Note that the 8k stage is intended to rapidly strengthen the model’s foundational capabilities, and thus
the entropy-guided dynamic rollout strategy is applied exclusively in the 16k stage. For evaluation,
we use four mathematical reasoning benchmarks: AIME25 [41], AIME24 [42], and MATH500 [43].

We use DeepSeek-R1-Distill-Qwen-1.5B as the base model and compare against the following
baselines: (1) O1-Pruner [44], a fine-tuning method that uses pre-sampling and RL-style optimization
to reduce reasoning length while preserving accuracy in LRMs; (2) DRP [45], a distillation–pruning
framework that reduces token usage via teacher-guided step pruning; (3) Efficiency Steering (ES) [46],
leveraging large models’ intrinsic potential to produce concise reasoning while preserving accuracy;(4)
ACPO [36] also trains models to switch reasoning modes; but in contrast to our approach, it adopts
standard GRPO with a customized reward function, without enforcing a strict distinction between the
two modes during RL training.

3.2 Results

Balancing Reasoning Efficiency and Accuracy As shown in Table 1, our method achieves strong
performance across datasets. On challenging tasks, it attains the highest accuracy on AIME2024
(36.5%, 6.1% higher than baseline) with 50.3% shorter outputs, yielding the best efficiency score
of 1.10, and maintains competitive accuracy on AIME2025 with 49.5% fewer tokens with AES of
0.45. On MATH500, it preserves accuracy while reducing token usage by nearly 60% with AES of
0.55. Overall, our approach achieves the best average AES of 0.70. Note that as DRP and ACPO did
not provide results on the most challenging AIME2025, their average AES is likely upward-biased,
whereas ADR still outperforms the strongest baseline DRP (0.68).

Ablation of Entropy-Guided Dynamic Rollout Strategy Unoptimized RL training (ADR w/o
EDR) brings only limited benefits, reaching 33.8% accuracy on AIME2024 with an average AES
of just 0.51. In contrast, adding EDR significantly improves both accuracy and efficiency: on
AIME2024, accuracy rises to 36.5% (2.7% higher than ADR w/o EDR) with the highest AES of 1.10,
and similar efficiency gains are observed across tasks. Overall, EDR boosts the Avg. AES from 0.51
to 0.70, confirming that EDR enables more effective accuracy–efficiency trade-offs.
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3.3 Conclusions

In this work, we present ADR, a new reasoning paradigm for large reasoning models, enabling model
dynamically switches between fast reasoning for straightforward cases and intensive reasoning for
complex dependencies. To optimize reasoning allocation, we introduce EHPO, which combines
mode control reward with entropy-guided dynamic rollout to expand the exploration space while
maintaining accuracy. Extensive experiments on multiple mathematical reasoning benchmarks
show that our approach achieves an effective balance between reasoning efficiency and accuracy,
demonstrating robust performance across tasks of varying difficulty.
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A Details of Cold-Start Data Construction

A.1 Datasets

We construct the cold-start dataset based on the open-source mathematical reasoning corpus [39],
which comprises 306k math problems and 3.2 million long CoT responses generated by Deepseek-R1
and QwQ-32B. From this corpus, we extract and reformulate 300k examples for cold-start SFT
training.

A.2 Prompts

Prompt for ADR Generating We provide the prompt we use for ADR-paradigm reasoning:

Prompt for ADR Generating

{QUESTION}
Let's think step by step and output the final answer within \boxed{}. But 
switch between two modes based on the difficulty of each thought process:
In normal scenarios, complete each step with minimal tokens as quickly as
possible. Wrap the thinking content in <easy></easy> tags.When encountering
difficult steps requiring reflection, verification, or iterative exploration, prioritize
correctness without token limitations. Wrap the thinking content in <hard>
</hard> tags. Once resolved and subsequent steps no longer require deep
thinking, revert to easy mode.

Figure 2: Prompt for ADR Generating
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Prompt for CoD-Style Shortening We use Deepseek-R1-0528 to shorten the content of easy units
in CoD-style [7]. As shown in 3, we provide a paired comparison example between a real CoD-style
output and the original R1-style output as a reference.

Prompt for CoD-style Shortening

Given an LLM output, carefully compare the writing styles in the example texts.
Refer to the concise style example to rewrite this output, but make sure no
useful information may be omitted. Output only the fully revised text as plain 
text. Do not include explanations. Do not wrap the text in any form.

Example original version:

First, since he's making deposits at the end of each year, and interest is
compounded annually, I need to calculate the future value of an annuity. An
annuity is a series of equal payments made at regular intervals. Here, it's an
ordinary annuity because payments are at the end of each period.
The future value FV of an ordinary annuity is given by:
F V=P \times \frac{(1+r)^{n}-1}{r}
Where:
P is the payment amount per period,
r is the interest rate per period,
n is the number of periods.

Example concise version:

First, since the deposits are made at the end of each year, this is an ordinary
annuity problem. The future value of an ordinary annuity formula is:
FV = P * [(1 + r)^n - 1]/r
where P is the annual payment, r is the interest rate, and n is the number of
periods.

Current original output:
{text}

Revised version:

Figure 3: Prompt for CoD-Style Shortening

B Case Study

As illustrated in Figure 4, we observe a striking contrast between the baseline model and our ADR-
trained model. The baseline (Deepseek-R1-Distill-Qwen1.5B) produced an output of 4344 tokens,
reflecting an almost exclusive reliance on the deep reasoning. Its reasoning process was verbose and
exploratory: the model repeatedly attempted factorization, re-derived discriminants, and engaged in
extensive verification, even when the solution path had already been established. While correct, this
exhaustive style incurred substantial inefficiency.

By contrast, the ADR-trained model (ADR 1.5B) completed the same task in only 1900 tokens. The
improvement stems from ADR’s ability to dynamically switch between fast and slow thinking. Most
steps were carried out in the easy mode—directly computing discriminants, deriving closed-form
solutions, and quickly mapping integer constraints, exhibiting higher information density. Compared
with the baseline, ADR reaches the same intermediate conclusions using fewer tokens. The model
switched into hard mode only at crucial junctures, such as verifying overlaps between solution
families in this case. This selective use of deeper reasoning preserved correctness while avoiding
unnecessary elaboration.
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Overall, ADR does not merely compress outputs; rather, it strategically allocates slow thinking
only where needed, yielding concise yet rigorous reasoning. This case study highlights ADR’s
effectiveness in substantially improving inference efficiency without sacrificing accuracy.

Prompt: Find the number of ordered pairs $(x,y)$, where both $x$ and $y$ are integers between $-100$ and $100$, inclusive,
such that $12x^{2}-xy-6y^{2}=0$.

<think>
<easy>
Find the number of ordered pairs (x, y) with integers x and y between -100 and 100 inclusive that
satisfy the equation 12x² - xy - 6y² = 0.

First, the equation is quadratic in both x and y. The equation is:
12x² - xy - 6y² = 0.

To solve for x in terms of y, treat the equation as quadratic in x: 12x² - yx - 6y² = 0. Applying the
quadratic formula:
x = [y ± √(y² - 4*12*(-6y²))]/(2*12)
The discriminant is:
y² - 4*12*(-6y²) = y² + 288y² = 289y² = (17y)²
Thus, the solutions are:
x = [y ± 17y]/24

First solution: (y + 17y)/24 = 18y/24 = (3/4)y  
Second solution: (y - 17y)/24 = (-16y)/24 = (-2/3)y  
Thus, x = (3/4)y or x = (-2/3)y.  
Since x and y are integers, (3/4)y and (-2/3)y must be integers.  
For x = (3/4)y, y must be divisible by 4.

If y = 4k, then x = 3k. Thus, x and y must both be multiples of 4.

For x = (-2/3)y, y must be divisible by 3. Let y = 3k, then x = -2k. Thus, y must be divisible by 3 and
x by 3. Possible pairs are (3k, 4k) or (3k, -2k) for integer k.

Since x and y are between -100 and 100, find possible k values for each case.

For x = (3/4)y, y must be a multiple of 4. Let y = 4k, then x = 3k. With y between -100 and 100, k
ranges from -25 to 25 inclusive (since 4×25=100). Thus, k ranges from -25 to 25, giving 51
possible values (25 negative, 25 positive, and 0).

For x = (-2/3)y, y must be a multiple of 3. Let y = 3k, then x = -2k. With y between -100 and 100, k
ranges from -33 to 33 inclusive (since 3×33=99). Thus, k ranges from -33 to 33, giving 67 possible
values (33 negative, 33 positive, and 0).

The cases x = (3/4)y and x = (-2/3)y are mutually exclusive since y cannot be both a multiple of 4
and 3. Thus, the total number of ordered pairs is 51 + 67 = 118.
</easy>

<hard>
Wait, but let me verify this.
Let me check if there's any overlap between these two cases.
Suppose a pair (x, y) satisfies both x = (3/4)y and x = (-2/3)y.
Then, (3/4)y = (-2/3)y.
Multiply both sides by 12: 9y = -8y => 17y = 0 => y = 0.
Then x = 0.
So the only overlapping solution is (0, 0).
So we need to check if (0, 0) is included in both cases.

For x = (3/4)y, y must be a multiple of 4. When y = 0, x = 0, giving the solution (0, 0).

Similarly, for x = (-2/3)y, y must be a multiple of 3. Thus (0, 0) is a solution in both cases. When
counting solutions, (0, 0) is counted twice. Therefore, subtract 1 to remove the duplicate.

Wait, so the total solutions would be 51 + 67 - 1 = 117.
Let me confirm.
So (0, 0) is in both cases, so if we add 51 and 67, we get 118, but since (0, 0) is counted twice, we
subtract 1.
Therefore, the total is 117.
So the answer is 117.
</hard>

<easy>
For y = 0, the equation 12x² - xy - 6y² = 0 becomes 12x² = 0, so x = 0. Thus, (0, 0) is the only
solution when y = 0, which is included in both cases.

For y=4k, x=3k. At k=0, (0,0). The k range from -25 to 25, giving 51 solutions.

For y=3k, x=-2k. At k=0, (0,0). The k range from -33 to 33, giving 67 solutions.

The overlap is only (0,0), so the total number of solutions is 51 + 67 - 1 = 117.
The answer is 117.
</easy>
</think>
To find the number of ordered pairs \((x, y)\) where both \(x\) and \(y\) are integers between \(-100\)
and \(100\) inclusive, and they satisfy the equation \(12x^2 - xy - 6y^2 = 0\), we start by solving the
equation for \(x\) in terms of \(y\).

The given equation is:
\[ 12x^2 - xy - 6y^2 = 0 \]

This is a quadratic equation in \(x\). Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}
{2a}\), where \(a = 12\), \(b = -y\), and \(c = -6y^2\), we get:
\[ x = \frac{y \pm \sqrt{y^2 + 288y^2}}{24} = \frac{y \pm \sqrt{289y^2}}{24} = \frac{y \pm 17y}{24} \]

This gives us two solutions:
\[ x = \frac{18y}{24} = \frac{3y}{4} \]
\[ x = \frac{-16y}{24} = -\frac{2y}{3} \]

For \(x\) and \(y\) to be integers, \(\frac{3y}{4}\) and \(-\frac{2y}{3}\) must be integers. This implies
that \(y\) must be a multiple of 4 for the first solution and a multiple of 3 for the second solution.

### Case 1: \(x = \frac{3y}{4}\)
Here, \(y\) must be a multiple of 4. Let \(y = 4k\), then \(x = 3k\). Since \(y\) ranges from \(-100\) to \
(100\), \(k\) ranges from \(-25\) to \(25\) (inclusive). This gives us 51 possible values for \(k\).

### Case 2: \(x = -\frac{2y}{3}\)
Here, \(y\) must be a multiple of 3. Let \(y = 3k\), then \(x = -2k\). Since \(y\) ranges from \(-100\) to
\(100\), \(k\) ranges from \(-33\) to \(33\) (inclusive). This gives us 67 possible values for \(k\).

### Overlap
The only overlap occurs when both conditions are satisfied simultaneously. This happens when \(y
= 0\), which gives the pair \((0, 0)\). This pair is counted in both cases, so we must subtract 1 to
avoid double-counting.

Thus, the total number of ordered pairs is:
\[ 51 + 67 - 1 = 117 \]

Therefore, the number of ordered pairs \((x, y)\) that satisfy the equation is:
\[
\boxed{117}
\]

<think>
Alright, so I've got this problem here: I need to find the number of ordered pairs (x, y)
where both x and y are integers between -100 and 100, inclusive. The condition is that
12x² - xy - 6y² = 0. Hmm, okay. Let me try to figure out how to approach this.

First off, the equation given is a quadratic in terms of both x and y. Maybe I can factor it
somehow. Let me write it down again: 12x² - xy - 6y² = 0. Hmm. Quadratic in two
variables, so maybe I can factor it as a product of two linear terms.

Let me think about factoring. If I can express this as (ax + by)(cx + dy) = 0, then either ax
+ by = 0 or cx + dy = 0. Let me try to find such a and b, c, d.

So, the equation is 12x² - xy - 6y². Let's see. The coefficients are 12, -1, and -6. Let me try
to factor this.

Looking for factors of 12x² and -6y². Let me try to write it as (ax + by)(cx + dy) = 0. The
product would be acx² + (ad + bc)xy + bdy². Comparing with 12x² - xy - 6y².

So, ac = 12, bd = -6, and ad + bc = -1.

Let me try to find integers a, b, c, d such that these are satisfied.

First, let's list possible pairs for a and c such that ac = 12. The possible pairs (a,c) could
be (1,12), (2,6), (3,4), (4,3), (6,2), (12,1). Similarly, for b and d, bd = -6. The possible pairs
(b,d) are (1,-6), (2,-3), (3,-2), (6,-1), (-1,6), (-2,3), (-3,2), (-6,1).

Now, I need to find a combination where ad + bc = -1.

Let me try (a,c) = (3,4). Then, let's see what (b,d) could be.

If a=3, c=4. Then, we have:

ad + bc = 3d + 4b = -1.

Also, bd = -6.

So, let's list possible (b,d) pairs and check if 3d + 4b = -1.

Possible (b,d) pairs:

1. (1,-6): Then 3*(-6) + 4*1 = -18 + 4 = -14 ≠ -1
2. (2,-3): 3*(-3) + 4*2 = -9 + 8 = -1. That works!
3. (3,-2): 3*(-2) + 4*3 = -6 + 12 = 6 ≠ -1
4. (6,-1): 3*(-1) + 4*6 = -3 + 24 = 21 ≠ -1
5. (-1,6): 3*6 + 4*(-1) = 18 - 4 = 14 ≠ -1
6. (-2,3): 3*3 + 4*(-2) = 9 - 8 = 1 ≠ -1
7. (-3,2): 3*2 + 4*(-3) = 6 - 12 = -6 ≠ -1
8. (-6,1): 3*1 + 4*(-6) = 3 - 24 = -21 ≠ -1

So, only (2,-3) works. Therefore, when a=3, c=4, b=2, d=-3.

Therefore, the factorization is (3x + 2y)(4x - 3y) = 0.

So, 12x² - xy - 6y² = (3x + 2y)(4x - 3y) = 0.

So, the equation is satisfied if either 3x + 2y = 0 or 4x - 3y = 0.

Therefore, the solutions are all integer pairs (x, y) such that either 3x + 2y = 0 or 4x - 3y =
0.

So, now, to find all integer pairs (x, y) between -100 and 100 inclusive, such that either 3x
+ 2y = 0 or 4x - 3y = 0.

Therefore, the problem reduces to finding the number of integer solutions to each
equation within the given range and then combining them, making sure not to double-
count the cases where both equations are satisfied.

</think>

To find the number of ordered pairs \((x, y)\) where both \(x\) and \(y\) are integers
between \(-100\) and \(100\), inclusive, such that \(12x^2 - xy - 6y^2 = 0\), we start by
factoring the equation. 

The equation can be factored as:
\[
(3x + 2y)(4x - 3y) = 0
\]
This gives us two separate equations to solve:
1. \(3x + 2y = 0\)
2. \(4x - 3y = 0\)

For the first equation \(3x + 2y = 0\), we express \(y\) in terms of \(x\):
\[
y = -\frac{3}{2}x
\]
Since \(x\) and \(y\) must be integers, \(x\) must be even. Let \(x = 2k\), then \(y = -3k\).
The values of \(k\) range from \(-33\) to \(33\) to ensure \(x\) and \(y\) are within the range \
([-100, 100]\). This gives us 67 solutions.

For the second equation \(4x - 3y = 0\), we express \(y\) in terms of \(x\):
\[
y = \frac{4}{3}x
\]
Since \(x\) and \(y\) must be integers, \(x\) must be a multiple of 3. Let \(x = 3k\), then \(y =
4k\). The values of \(k\) range from \(-25\) to \(25\) to ensure \(x\) and \(y\) are within the
range \([-100, 100]\). This gives us 51 solutions.

We check for overlapping solutions by solving both equations simultaneously. The only
solution is \((0, 0)\), which is counted in both sets. Therefore, we subtract 1 to avoid
double-counting.

Thus, the total number of solutions is:
\[
67 + 51 - 1 = 117
\]

The number of ordered pairs is \(\boxed{117}\).

Deepseek-R1-Distill-Qwen1.5B: 4344 Tokens ADR 1.5B: 1900 Tokens

Figure 4: A case study comparing the reasoning process of DeepSeek-R1-Distill-Qwen-1.5B and
ADR in AIME2025.
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