
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE FOURIER ANALYSIS IN THE SO(3) SPACE :
THE EQUILOPO NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Analyzing volumetric data with rotational invariance or equivariance is currently
an active research topic. Existing deep-learning approaches utilize either group
convolutional networks limited to discrete rotations or steerable convolutional net-
works with constrained filter structures. This work proposes a novel equivariant
neural network architecture that achieves analytical Equivariance to Local Pattern
Orientation on the continuous SO(3) group while allowing unconstrained train-
able filters - EquiLoPO Network. Our key innovations are a group convolutional
operation leveraging irreducible representations as the Fourier basis and a local
activation function in the SO(3) space that provides a well-defined mapping from
input to output functions, preserving equivariance. By integrating these operations
into a ResNet-style architecture, we propose a model that overcomes the limita-
tions of prior methods. A comprehensive evaluation on diverse 3D medical imag-
ing datasets from MedMNIST3D demonstrates the effectiveness of our approach,
which consistently outperforms state of the art. This work suggests the benefits of
true rotational equivariance on SO(3) and flexible unconstrained filters enabled by
the local activation function, providing a flexible framework for equivariant deep
learning on volumetric data with potential applications across domains.

1 INTRODUCTION

Deep-learning methods have shown remarkable success in analyzing spatial data across various do-
mains. However, in many real-world scenarios, the data can be presented in arbitrary orientations.
Therefore, the output of the neural network should be invariant or equivariant to rotations of the
input. While data augmentation can partially address this requirement, it leads to increased compu-
tational demand, especially for volumetric data, which have three rotation angles.

To tackle this challenge, researchers have developed equivariant neural network architectures that
utilize rotationally equivariant operations. We can broadly categorize these methods into two classes:
group convolutional networks and steerable convolutional networks. Group convolutional networks
achieve rotational equivariance by convolving data in both translational and rotational spaces, but
they are typically limited to a discrete set of rotations. On the other hand, steerable convolutional
networks employ filters that are analytically equivariant to continuous rotations, but they impose
constraints on the filter structures.

In this work, we propose a novel equivariant neural network architecture that combines the strengths
of both approaches. Our key contributions are:

1. We present a group convolutional network that achieves analytical equivariance with re-
spect to the continuous rotational space SO(3) by leveraging irreducible representations as
the Fourier basis.

2. Contrary to steerable convolutional networks, our approach does not impose constraints on
the filter structures beyond the finite resolution limits.

3. We present a local activation function in the rotational space that provides a well-defined
mapping from input function values to output function values, ensuring the preservation
of equivariance properties while avoiding the reduction of the architecture to a steerable
convolutional network.
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By addressing the limitations of existing methods, our approach offers a powerful and flexible frame-
work for analyzing volumetric data in a rotationally equivariant manner without the need for data
augmentation or constraints on filter structures.

2 RELATED WORK

2.1 DEEP LEARNING FOR VOLUMETRIC DATA AND EQUIVARIANCE

In recent years, deep learning has firmly established its place in the analysis of spatial data. Neural
networks learn a hierarchy of features by recognizing spatial patterns at various levels. However,
in real-world scenarios, multidimensional data are often given in arbitrary orientation and shift,
as the coordinate system is not defined. In such cases, it is desirable for the output of the neural
network to be independent of the rotation or shift of the input data. While dealing with shifts
is straightforward through the use of convolution, which is inherently shift-equivariant, achieving
equivariance with respect to rotations requires additional efforts. A primary solution for achieving
this effect is augmentation of the training dataset with rotated samples (Krizhevsky et al., 2012).
Augmentation leads to an increase not only in the dataset size and consequently training time, but
also in the number of network parameters needed to memorize patterns in multiple orientations. In
volumetric cases, this increased demand for computational resources can be overwhelming, as there
are three angles of rotation in 3D, compared to just one in 2D. For some data types, a canonical
coordinate system may be defined (Pagès et al., 2019; Jumper et al., 2021; Igashov et al., 2021;
Zhemchuzhnikov et al., 2022). However, in most real-world scenarios, such a coordinate system
cannot be identified, and even within a canonical coordinate system, the same local patterns may
be encountered in different orientations. These circumstances have led the community to focus on
methods that are analytically invariant or equivariant to rotations, utilizing rotationally equivariant
operations.

Rotational equivariant methods for regular data can be divided into two groups: group convolution
networks and steerable convolutional networks. Our method formally belongs to the first group but
without a specific approach to activation in the Fourier space can be reduced to a method from the
second group as it is shown in Appendix A. Thus, we will briefly describe below group convolution
networks, spherical harmonic networks and activation in the Fourier space.

2.2 GROUP CONVOLUTION NETWORKS

The pioneering method from the first class was the Group Equivariant Convolutional Networks (G-
CNNs) introduced by Cohen and Welling (2016a), who proposed a general view on convolutions in
different group spaces. Many more methods were built up subsequently upon this approach (Wor-
rall and Brostow, 2018; Winkels and Cohen, 2018; Bekkers et al., 2018; Wang et al., 2019; Romero
et al., 2020; Dehmamy et al., 2021; Roth and MacDonald, 2021; Knigge et al., 2022; Liu et al.,
2022b; Ruhe et al., 2023). Several implementations of Group Equivariant Networks were specifi-
cally adapted for regular volumetric data, e.g., CubeNet(Worrall and Brostow, 2018) and 3D G-CNN
(Winkels and Cohen, 2018). Methods of this class achieve rotational equivariance by convolving
data not only in translational but also in the rotational space. The authors of these methods consider
a discrete set of 90-degree rotations, which exhaustively describe the possible positions of a cubic
pattern on a regular grid. However, equivariance with respect to this discrete group of rotations does
not guarantee equivariance on the continuous group SO(3). Separable SE(3)-equivariant network
(Kuipers and Bekkers, 2023) approximates equivariance in SO(3) but lacks analytical equivariance
since the authors sample only a finite set of points in the SO(3) space. Analytical rotational equiv-
ariance in 3D can be achieved by using irreducible representations in the O(2) or the SO(3) group.

2.3 SPHERICAL HARMONICS NETWORKS

Cohen and Welling (2016b) introduced steerable networks, a class of methods that use analytically
equivariant filters with respect to a particular group of transformations. The first two approaches
that applied analytically-equivariant filters to the 3D data are the Tensor Field Networks (TFN)
(Thomas et al., 2018) and the N-Body Networks (NBNs) (Kondor, 2018). Kondor et al. (2018)
presented a similar approach, the Clebsch-Gordan Nets, applied to data on a sphere. Weiler et al.
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(2018) presented steerable networks for the regular three-dimensional data. The authors deduced
a complete equivariant kernel basis where input and output irreducible features have arbitrary de-
grees. The filter must belong to the subspace of the equivariant kernels. This requirement may limit
the expressiveness of the network (Duval et al., 2023; Weiler et al., 2024). To summarize, group
convolutional networks do not put constraints on filters but provide equivariance only on a discrete
space of rotations. Spherical harmonics networks use irreducible representations to achieve analyti-
cal equivariance on the continuous rotational space but imply constraints on the filters. Our method
employs irreducible SO(3) representations (Wigner matrices) as the Fourier basis in a group convo-
lutional network. This approach allows us to obtain analytical equivariance and avoid constraints on
the filter shape. In a general setup, such a convolution can be reduced to a steerable network, shown
in Appendix A, because an SO(3) irrep can be seen as a set of O(2) irreps. However, we introduce a
novel activation function in SO(3) that prevents the reduction of the whole architecture to a steerable
network. Indeed, our activation is not permutationally invariant with respect to Wigner coefficients
of different orders and the same degree and thus cannot be reduced to a steerable network, as we
demonstrate in Appendix A.

2.4 ACTIVATION OPERATORS ON IRREDUCIBLE REPRESENTATIONS

Activation functions play a crucial role in neural network architectures as they introduce nonlinear
operations. When working with irreducible representations (irreps) in rotationally-equivariant neu-
ral networks, it is mandatory to choose activation functions that preserve the equivariance properties.
Several approaches, listed below, have been proposed to apply activation functions to irreps. Norm-
based activation functions operate on the norm (magnitude) of each irrep, preserving the equivari-
ance properties. The L2 norm of each irrep is computed, and a scalar activation function is applied
to the norm. The activated norm is then used to scale the original irrep (Thomas et al., 2018). The
same principle was used for the Fourier decomposition of a function in 3D by (Zhemchuzhnikov
et al., 2022). Gated activation functions introduce learnable parameters to control the activation of
each irrep (Weiler et al., 2018). A separate set of learnable weights is used to compute a gating
signal, which is then applied to the irrep using element-wise multiplication. Capsule networks use a
special type of activation function called the squashing function Sabour et al. (2017). The squashing
function scales the magnitude of the output vectors (irreps) to be between 0 and 1 while preserving
their direction. Tensor Product (TP) activation is a learnable activation function that operates on
the tensor product of irreps (Kondor et al., 2018). It applies a learnable set of weights to the tensor
product of the input irreps and then projects the result back onto the original irrep basis.

The listed activation functions introduce non-linearity in equivariant neural networks. Unlike tra-
ditional interpretations, we view irreducible representations (irreps) as Fourier coefficients of the
SO(3) space, offering a distinct perspective on their role in the network. From this viewpoint, we
can classify activation functions as either global or local. Let fin and fout represent the input and
output functions of an activation operation σ. We call an activation global if

fout = σ(fin), (1)

meaning that the value at any point in fout depends on the values at all points in fin. Conversely, an
activation is local if

fout(x) = σ(fin(x)), (2)

for any point x. This implies that the value at any point of the output function depends only on
the value at the same point in the input function, establishing a direct and unambiguous mapping
between input and output values in real space.

To the best of our knowledge, all the previously published activation methods in this domain are
global (Weiler and Cesa, 2019; Bekkers et al.). This is suboptimal and can lead to noncompact
representations and a lack of feature hierarchy learning, which our approach aims to address. By
integrating Wigner matrices within a Fourier function framework in SO(3), our method maps values
unambiguously in real rotational space, aiming to approximate the ReLU operator in real space. We
further support the significance of locality with computational experiments, showing that models
with local mapping significantly outperform those with global mapping in terms of accuracy.
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Figure 1: Comparison of invariant and equivariant networks, subplots A and B, respectively. A layer
with an invariant pattern recognition cannot distinguish some images, producing identical feature
maps for different inputs. In contrast, equivariant pattern recognition allows the discrimination of
these images by building feature maps in 6D.

3 SE(3) CONVOLUTION

One can think of a six-dimensional (6D) roto-translational convolution that outputs a three-
dimensional (3D) feature map using orientational pooling (Zhemchuzhnikov and Grudinin, 2024;
Andrearczyk et al., 2020; Kaba et al., 2023). This type of convolution is invariant to orientations
of patterns in the input map. However, such a convolution approach is not the most expressive, as
it cannot discriminate some input data. Figure 1 schematically demonstrates a toy example where
a layer with invariant pattern recognition produces identical feature maps for two smiling and sad
faces looking in different directions. A potential solution would be to maintain the output map in
6D: SE(3),

h0(r⃗,R) =

∫
R3

dr⃗0f(r⃗ + r⃗0)w(R−1r⃗0), (3)

where f(r⃗) and w(r⃗) are the input and the filter maps, respectively. This operation is equivariant
to both orientations of f(r⃗) and w(r⃗) (for more details please see Appendix B). It is worth noticing
that the equivariant property in the two cases above holds in different manners. In the first case,
both arguments r⃗ and R are rotated. In the second case, rotation R0 is applied only to the second
argument. Besides, the expression in Eq. B1 shows how to coordinate rotation of two components
of arguments of a 6D map. Introduction of such a 6-dimensional feature map leads to the question
how to treat such data. In this paper, we present a novel equivariant convolution in 6D where both
input and filter maps are in SE(3) and the set of rotations is continuous,

h(r⃗,R) =

∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(R−1r⃗0,R−1R0). (4)

The usage of a continuous space of rotations ensures analytical equivariance of the convolution.
Below we will show how the irreducible representation helps to perform an integration in the SO(3)
rotation space.

3.1 INTEGRATION IN THE SO(3) ROTATION SPACE

It is useful to express the rotational part of the convolution in the space of Wigner rotation matrices.
Appendix C provides an essential theory on rotational expansions. Let us substitute expansion
coefficients from Eq. C8 into the convolution operation h(r⃗,R) in Eq. 4 and compute its expansion
coefficients:

hl1
k1k2

(r⃗) =
2l1 + 1

8π2

∫
SO(3)

dR h(r⃗,R)Dl
k1k2

(R)

=
2l1 + 1

8π2

∫
SO(3)

dR Dl1
k1k2

(R)

∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(Rr⃗0,R0R−1). (5)

Let us now decompose functions f(r⃗) and w(r⃗) using Eq. C4, Eq. C2 and Eq. C7,

f(r⃗ + r⃗0,R0) =

Lin∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

f l2
k3k4

(r⃗ + r⃗0)D
l2
k3k4

(R0), (6)
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and

w(R−1r⃗0,R−1R0) =

Lin∑
l3=0

l3∑
k5=−l3

l3∑
k6=−l3

l3∑
k7=−l3

Lfilter∑
l4=0

l4∑
k8=−l4

l4∑
k9=−l4

wl3l4
k5k7k8

(r)Dl3
k5k6

(R0)D
l3
k7k6

(R)Dl4
k8k9

(R)Y k9

l4
(Ωr⃗0), (7)

where Lin and Lfilter are the maximum expansion orders of the filter in the rotational and the three-
dimensional Euclidean spaces, respectively.Eq. 7 also uses the unitarity property from Eq. C6. Eq.
5 then simplifies to

hl1
k1k2

(r⃗) =

∫
R3

dr⃗0

Lin∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

f l2
k3k4

(r⃗ + r⃗0)S
l1l2
k1k2k3k4

(r⃗0), (8)

where

Sl1l2
k1k2k3k4

(r⃗0) =
8π2

2l2 + 1

Lfilter∑
l4=0

(
l2∑

k5=−l2

l4∑
k8=−l4

⟨l1k2|l2k5l4k8⟩wl2l4
k5k4k8

(r0)

)
(

l4∑
k9=−l4

⟨l1k1|l2k3l4k9⟩Y k9

l4
(Ωr⃗0)

)
. (9)

Appendix D presents a more detailed derivation of Eq. ??. Parameters wl2l4
k3k7k8

(r0) are trainable.
The output map expansion coefficients hl1

k1k2
(r⃗) have the maximum degree of Lout. We shall also

stress that the values of Lfilter,Lin and Lout must satisfy the triangular inequality,

∥Lin − Lfilter∥ ≤ Lout ≤ Lin + Lfilter. (10)

The computational complexity of the convolution in Eq. 9 is O(N3L3
filterL

3
inL

3
outDinDout), where N

is the linear size of the input data, and Din and Dout are numbers of input and output channels. Ap-
pendix E proves the roto-translational equivariance with respect to the input data and the rotational
equivariance with respect to the filter.

4 NON-LINEAR OPERATIONS

In neural networks, linear layers detect patterns and their probabilities, whereas nonlinear layers,
specifically activations, selectively amplify these probabilities to form compact representations. We
can classify activation functions as either global or local. Let fin and fout represent the input and
output functions of an activation operation σ. We call an activation global if fout = σ(fin), meaning
that the value at any point in fout depends on the values at all points in fin. Conversely, an activation
is local if fout(x) = σ(fin(x)), for any point x. In our work, we aim to propose a local activation
function for the Fourier representation of the data in the SO(3) space. Appendix F discusses in more
detail why a local activation can be useful.

4.1 LOCAL ACTIVATION IN THE WIGNER SPACE

It has been demonstrated that in NN architectures, on a certain interval, the ReLU function can be
approximated by a polynomial of a low degree (Ali et al., 2020; Leshno et al., 1993; Gottemukkula,
2019). Even the quadratic polynomial of degree two showed competitive results in the ResNet archi-
tectures (Gottemukkula, 2019). However, as mentioned in Appendix G, the product of two functions
defined in the SO(3) space with Wigner coefficients, has a higher resolution than each of the initial
functions. Subsequently, to avoid the loss of information, we need to increase the maximum expan-
sion order of the product, given as the Wigner matrix expansion. For a function in SO(3) defined
with Wigner coefficients of the maximum degree L, the result of applying a polynomial of degree n
will have the maximum expansion order of nL − 1. Since the number of Wigner expansion coeffi-
cients grows as the cube of the expansion order, to approximate the activation function, we chose the
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activation polynomial of the second degree. This paper studies multiple approximation strategies to
this polynomial in the SO(3) space. Generally, the ReLU approximation expression can be written
down as

fact(r⃗) = DP2(
f(r⃗)

D
), (11)

where P2(x) = c0 + c1x + c2x
2 and D is a scaling factor. Below, we discuss several approaches

for this approximation in the Wigner space.

In the ”adaptive coefficients” approach, we approximate the ReLU operator on a [−3σ(f) +
µ(f), 3σ(f) + µ(f)] interval, where (µ, σ) are the mean and the standard deviation of f(R), re-
spectively,

µ =

∫
SO(3)

f(R)dR∫
SO(3)

dR
≡ f0

00; σ =

√√√√∫SO(3)
(f(R)− µ)2dR∫

SO(3)
dR

≡

√√√√ L∑
l=1

l∑
k1,k2=−l

(
f l
k1k2

)2
2l + 1

. (12)

There are three possible cases to consider. In the special case of 3σ+µ < 0, we make an assumption
that f(R) < 0,∀R. Then, we put the polynomial approximation to y = 0.01x, instead of y = 0
to avoid zero gradients. In the second special case of −3σ + µ > 0, we assume f(R) > 0,∀R
and set y = x. In the general case, the function f(R) ranges both positive and negative values.
For simplicity, we first divide the values of the function by 3σ and then apply a polynomial that
approximates ReLU on [−1+ k, 1+ k], where k = µ

3σ , k ∈ [−1, 1]. To find the optimal polynomial
coefficients in this case, we formulate the following minimization problem,

min
c0(k),c1(k),c2(k)

F (c0, c1, c2, k), (13)

where

F (c0, c1, c2, k) =

∫ 0

−1+k

dx(c0 + c1x+ c2x
2)2 +

∫ 1+k

0

dx(c0 + c1x+ c2x
2 − x)2. (14)

Then, we can consistently deduce (see details in Appendix H)

c2 =
15

32
(k4−2k2+1); c1 =

1

16
(−15k5+26k3−3k+8); c0 =

3

32
(5k6−9k4+3k2+1). (15)

Figure H1 in Appendix H shows the plot of these coefficients as a function of normalized mean k
and the error of this approximation, respectively. Finally, to obtain the polynomial activation, we
multiply the result by 3σ,

fact(R) = 3σP2

(
f(R)

3σ

)
. (16)

In the second strategy with constant coefficients, we consider the denominator D equal to the third
of the function norm ∥f∥2. In practice, this means that the function range lies in the [−1, 1] interval.
This is a special case of the interval from the previous approach at k = 0. Such a value of k leads to
the following polynomial coefficient values,

c2 =
15

32
; c1 =

1

2
; c0 =

3

32
→ P2 =

3

32
+

1

2
x+

15

32
x2. (17)

We then multiply the result of the polynomial function by ∥f∥2/3,

fact(R) = (∥f∥2/3)P2

(
f(R)

(∥f∥2/3)

)
. (18)

We have also studied an approach with trainable polynomial coefficients. Here, the denominator
D is the same as in the previous case, D = ∥f∥2/3. However, the three polynomial coefficients
(c0, c1, c2) are trainable values.

4.2 OTHER NON-LINEAR OPERATIONS

We incorporate additional non-linear operations essential for our framework, including SO(3) pool-
ing, global activation functions, and normalization adapted to rotational spaces. Detailed descrip-
tions are provided in Appendix I.

6
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Figure 2: A – Schematic representation of the EquiLoPO ResNet-18 architecture, with a sequence of
operations in the Initial and Basic blocks. L is the maximum expansion degree of the last operator
in the block, and D is the number of the block’s features. B – Correlation between the Sampled
Maximum and its SoftMax approximation of the output functions in the rotational space in the
trained model with locally adaptive coefficients on the Vessel dataset.

5 RESULTS

Our method is centered on applications involving regular volumetric data. Extending this method
to irregular data would necessitate significant modifications that are beyond the scope of this paper.
Consequently, we evaluated our method using a collection of voxelized 3D image datasets. For
this, we used MedMNIST v2, a vast MNIST-like collection of standardized biomedical images
(Yang et al., 2023). It is designed to support a variety of tasks, including binary and multi-class
classification, and ordinal regression. The dataset encompasses six sets comprising a total of 9,998
3D images. All images are resized to 28×28×28 voxels, each paired with its respective classification
label. We used the train-validation-text split provided by the authors of the dataset (the proportion
is 7 : 1 : 2).

We constructed multiple architectures with various activation methods, each reflecting the layer se-
quence of ResNet-18 (He et al., 2016). Figure 2A schematically illustrates our EquiLoPo model
along with its main components. These include the initial block, the repetitive building block, pool-
ing operators in SO(3) and 3D spaces, and a linear transformation at the end. Appendix J pro-
vides details on these blocks. We also specifically adapted the Batch Normalization process for 6D
(3D × SO(3)) data.

Table 1 lists a detailed comparison of our models’ performance against the baseline models: various
adaptations of ResNet (He et al., 2016), featuring 2.5D/3D/ACS (Yang et al., 2021) convolutional
layers, alongside open-source AutoML solutions such as auto-sklearn (Feurer et al., 2019), and
AutoKeras (Jin et al., 2019). We have also added results of the models that were tested on the
collection: FPVT (Liu et al., 2022a), Moving Frame Net (Sangalli et al., 2023), Regular SE(3) con-
volution (Kuipers and Bekkers, 2023) and ILPOResNet50 ((Zhemchuzhnikov and Grudinin, 2024)).
They are also discussed in Appendix J.

In MedMNIST, the classes are imbalanced, meaning that to measure the predictive precision of a
model, we need other metrics besides accuracy (ACC). Consequently, we also consider the AUC-
ROC (AUC) metric, which provides a more informative assessment of imbalanced datasets. Accord-
ing to the metrics, we can observe that our models either outperform or demonstrate state-of-the-art
levels rounded to the third significant digit on nearly all metrics, except for the accuracy on the organ
dataset. The organ dataset is largely resolved, with all tested methods achieving a very high level
of AUC. Additionally, the dataset might benefit from more channels (more than the four we used)
within the model’s layers for improved performance. However, one of our goals was to limit the
number of parameters in our model.

Among the state-of-the-art methods, only ILPOResNet (Zhemchuzhnikov and Grudinin, 2024) has
fewer parameters. The ILPOResNet model is based on the same principles of pattern definition and
detection but carries out recognition in an invariant manner while remaining in 3D. In contrast, the
presented equivariant model offers a more expressive architecture, as evidenced by its performance
on the collection datasets, but requires more parameters.
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When considering the various types of activation we tested, three stand out with the best perfor-
mance: local activation with trainable coefficients, local activation with adaptive coefficients, and
global activation with trainable coefficients. Tables K1, K2, and K3 in Appendix K show the results
of experiments on architectures with these types of activations but a smaller number of building
blocks (1 or 2 instead of 8). Local activation with adaptive coefficients demonstrates the highest
robustness since, even in small models, it performs relatively well.

Here, a reasonable question may arise whether the local activation is necessary if the global activa-
tion already demonstrates comparable results. We shall notice, however, that global activation, in the
current implementation, employs SoftMax in the argument of the multiplier function, which in turn
utilizes the ReLU approximation, a form of local activation. In Appendix L, we tested an alterna-
tive strategy for global activation, replacing SoftMax with the 2-norm. As evidenced by the results
presented in Table L1, this alternative strategy yields significantly inferior performance compared to
the original approach with SoftMax.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (He et al., 2016)
+ 2.5D(Yang et al., 2021)

11M 0.977 0.788 0.838 0.835 0.587 0.451 0.718 0.772 0.748 0.846 0.634 0.696

ResNet-18 (He et al.,
2016)+ 3D(Yang et al.,
2021)

33M 0.996 0.907 0.863 0.844 0.712 0.508 0.827 0.721 0.874 0.877 0.820 0.745

ResNet-18 (He et al.,
2016)+ ACS(Yang et al.,
2021)

11M 0.994 0.900 0.873 0.847 0.714 0.497 0.839 0.754 0.930 0.928 0.705 0.722

ResNet-50 (He et al.,
2016)+ 2.5D(Yang et al.,
2021)

15M 0.974 0.769 0.835 0.848 0.552 0.397 0.732 0.763 0.751 0.877 0.669 0.735

ResNet-50 (He et al.,
2016)+ 3D(Yang et al.,
2021)

44M 0.994 0.883 0.875 0.847 0.725 0.494 0.828 0.745 0.907 0.918 0.851 0.795

ResNet-50 (He et al.,
2016)+ ACS(Yang et al.,
2021)

15M 0.994 0.889 0.886 0.841 0.750 0.517 0.828 0.758 0.912 0.858 0.719 0.709

auto-sklearn∗ (Feurer et al.,
2019)

- 0.977 0.814 0.914 0.874 0.628 0.453 0.828 0.802 0.910 0.915 0.631 0.730

AutoKeras∗ (Jin et al.,
2019)

- 0.979 0.804 0.844 0.834 0.642 0.458 0.804 0.705 0.773 0.894 0.538 0.724

FPVT∗ (Liu et al., 2022a) - 0.923 0.800 0.814 0.822 0.640 0.438 0.801 0.704 0.770 0.888 0.530 0.712
SE3MovFrNet ∗ (Sangalli
et al., 2023)

- - 0.745 - 0.871 - 0.615 - 0.815 - 0.953 - 0.896

Regular SE(3) convolution
(Kuipers and Bekkers,
2023)

172k - 0.698 - 0.858 - 0.604 - 0.832 - - - 0.869

ILPOResNet-50 38k 0.992 0.879 0.912 0.871 0.767 0.608 0.869 0.809 0.829 0.851 0.940 0.923
Local trainable activation 418k 0.991 0.866 0.923 0.861 0.727 0.563 0.876 0.792 0.950 0.958 0.965 0.878
Local adaptive activation 418k 0.977 0.767 0.916 0.871 0.803 0.613 0.885 0.805 0.968 0.958 0.984 0.940
Local constant activation 418k 0.761 0.282 0.856 0.793 0.758 0.546 0.896 0.836 0.805 0.890 0.883 0.847
Global trainable activation 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
Global adaptive activation 113k 0.735 0.180 0.674 0.784 0.567 0.438 0.745 0.785 0.680 0.887 0.671 0.727
Global constant activation 113k 0.754 0.203 0.730 0.794 0.620 0.500 0.843 0.768 0.672 0.885 0.584 0.287
Local trainable activation,
const. resolution1

548k 0.944 0.598 0.739 0.794 0.624 0.379 0.507 0.768 0.709 0.885 0.620 0.345

Table 1: Comparison of different methods on MedMNIST’s 3D datasets. (∗) For these methods, the
number of parameters is unknown. (1) Here, we implemented the ResNet-50 architecture. In the
other designs, we used the ResNet-18 versions.

5.1 ACTIVATION ANALYSIS

We previously highlighted the necessity of ensuring that the activation coefficients of the output
possess a maximum degree higher than that of the input to prevent information loss when applying
the polynomial, specifically, Lout = 2Lin. However, investigating the scenario where high out-
put degrees are discarded, aligning the maximum output degree with the maximum input degree (
Lout = Lin) merits consideration. Figure 3 illustrates the impact of the increased resolution on the
approximation accuracy of the SO(3) ReLU function. For this plot, we analyzed one of the rotational
distributions from the last convolution of the trained model with local adaptive coefficients on the
Vessel dataset reported in Table 1 (Lin = 2) to observe how the activation operator, with constant
(subplots A-B) and adaptive (subplots C-D) polynomial coefficients, operates under two conditions:
Lout = Lin and Lout = 2Lin. We sampled 106 points in SO(3) and computed the values of both input
and output functions at these points, presenting the results on a density plot.
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Figure 3: Effect of the ReLU approximation with constant and adaptive polynomial coefficients in
the SO(3) space for two resolution strategies: A,C – low-resolution setup, Lout = Lin; B,D – high-
resolution setup, Lout = 2Lin. Plots A and B show results with constant activation coefficients. Plots
C and D show results with adaptive activation coefficients. The x and y axes represent the input and
output functions, respectively. The histograms above and to the right of the main plot display the
distribution of these functions’ values. The top histogram plots also compare the input distribution
(blue) with the output distribution (red). Opacity of the main plots indicate the density distributions,
overlaid with the ReLU functions.

Subplots A and C offer illustrations for the scenario with a reduced resolution (Lout = Lin). Here,
we note an inherent ambiguity between the values of the input and output signals. Indeed, each
input function value maps to multiple output values. Such an inadequate mapping is also evidenced
by the absence of a sharp negative value cutoff. Subplots B and D showcase the polynomial ap-
proximation with an enhanced output resolution. This setup eliminates the ambiguity in mapping in
the real space, as each input function value uniquely corresponds to a single output function value.
Moreover, this operator exhibits nonlinearity and closely approximates the ReLU function, depicted
by a black dashed line. Consequently, negative input values transform into near-zero output values,
a phenomenon clearly visible in the right-hand histogram, which features a prominent peak near
y = 0 and a sharp cutoff of negative values.

The extent to which increasing the resolution enhances the performance of the architecture is evident
in Table 1. We conducted additional tests using a single architecture with a reduced resolution. This
architecture employs local activation functions with trainable polynomial coefficients. As we can
see from the table, the model with reduced resolution consistently underperforms across all datasets
compared to the full-resolution model that also utilizes locally trainable coefficients.

In the case when the input function’s mean is close to zero, the adaptive coefficients are almost
identical to the constant ones and the two strategies have very similar effect as suggested by Eq.
17. In practice, zero-mean functions are frequent but there are also cases when the mean is shifted.
Figure 3 demonstrates how the activation acts on a function with the mean significantly shifted to
the negative values.

Subplots A and B demonstrate distribution of the input function defined in SO(3). The center of
the distribution is clearly shifted to the left. In this case, the polynomial with adaptive coefficients
(subplot D) approximates the ReLU function more precisely than the polynomial with constant
coefficients (subplot B) because the approximation is closer to the ReLU function. Indeed, according
to Eq. 14, the adaptive coefficients strategy gives twofold less approximation error than the constant
coefficients one.

Table 1 presents the performance metrics for both strategies across the dataset collection. The choice
between local and global activation significantly influences the performance. Therefore, our compar-
ative analysis focuses more on contrasting local activations with adaptive versus constant polynomial
coefficients. The strategy employing adaptive coefficients outperforms the one with constant coef-
ficients on all the datasets, except for Adrenal. This outcome is expected, as adaptive coefficients
typically provide a superior approximation of the activation function.

We evaluated global and local activation layers across three distinct strategies for the coefficients
of the approximating activation polynomial. Table 1 indicates that for the trainable coefficients,
the performance of global activation is comparable to that of the local activation. However, for
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both constant and adaptive coefficients, the local activation demonstrates superior results across all
datasets.

5.2 ANALYSIS OF THE SOFTMAX POOLING IN SO(3)

To examine the behavior of the SoftMax operation, we analyzed the outputs from the last convolution
layer of the trained model with locally adaptive coefficients on the Vessel dataset reported in Table
1. We extracted the SO(3) function coefficients for all the maps, voxels, and channels, and then
computed the SoftMax for these functions using Eq. I2. We sampled 106 points in the SO(3) space
and reconstructed the functions at these points. Figure 2B demonstrates the relationship between
SoftMax and the sampled maximum. It is evident that there is high correlation between the two
functions in the positive region of the sampled maximum.

Negative values in the sampled maximum lead to SoftMax values of zero. Near zero, uncertainty
increases along with a wide range of SoftMax values. This phenomenon appears due to the poly-
nomial approximation error. Specifically, the accuracy of the SoftMax approximation hinges on the
condition that the mean of the output of the ReLU operation approximation must be greater or equal
to zero. Additionally, the mean of the SO(3) distribution, or its L1-norm, should be substantially
smaller than the L2-norm. While this condition holds in most instances, there are exceptions where
it does not. These cases are clearly visible in Figure 2B as those providing high uncertainty in the
SoftMax estimation near zero sampled maximum.

6 CONCLUSION

This work introduces a novel equivariant neural network architecture that achieves analytical rota-
tional equivariance on the continuous SO(3) group while retaining the flexibility of unconstrained
trainable filters. Our key innovations are a group convolutional operation that leverages irreducible
representations as the Fourier basis and a local activation function in the SO(3) space that provides
a well-defined mapping from input to output function values in the real space.

Key Takeaways:

• Enhanced Performance through Rotational Equivariance: By incorporating rotational
equivariance, our models consistently outperformed or matched state-of-the-art methods
across various datasets in the MedMNIST collection. This underscores the importance of
respecting rotational symmetries in volumetric data.

• Importance of Activation Function Design: The use of higher-resolution local activation
functions with adaptive coefficients significantly improved the network’s ability to learn
complex patterns, leading to better performance. This highlights the need for carefully
designed activation functions in equivariant architectures.

• Effectiveness of SO(3) Pooling Operations: The SoftMax pooling operation in SO(3)
proved effective in summarizing rotational features, which is essential for global and local
prediction tasks.

Our findings emphasize the crucial role of rotation-equivariant operations and appropriate activation
functions in deep learning models dealing with 3D data. Future work may explore extending these
concepts to irregular data structures or integrating them with other forms of equivariance.
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APPENDIX

A COMPARISON WITH STEERABLE NETWORKS AND IMPORTANCE OF
ACTIVATION

As we have indicated above, the EquiLoPo convolution is defined as

hl1dout
k1k2

(r⃗) =

∫
R3

dr⃗0

Lin∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

f l2din
k3k4

(r⃗ + r⃗0)[SEquiLoPo]
l1l2dindout
k1k2k3k4

(r⃗0), (A1)

where

[SEquiLoPo]
l1l2dindout
k1k2k3k4

(r⃗0) =
8π2

2l2 + 1

Lfilter∑
l4=0

[pEquiLoPo]
l1l2l4dindout
k1k3

(r0)

(
l4∑

k9=−l4

⟨l1k2|l2k4l4k9⟩Y k9

l4
(Ωr⃗0)

)
,

(A2)
and

[pEquiLoPo]
l1l2l4dindout
k1k3

(r0) =

l2∑
k7=−l2

l4∑
k8=−l4

⟨l1k1|l2k7l4k8⟩[wEquiLoPo]
l2l4dindout
k3k7k8

(r0). (A3)

In our implementation, we set coefficients [wEquiLoPo]
l2l4dindout
k3k7k8

(r0) to be trainable but it is equivalent
to the case when [pEquiLoPo]

l1l2l4dindout
k1k3

(r0) is trainable because

l2+l4∑
l1=|l2−l4|

l1∑
k1=−l1

⟨l1k1|l2k7l4k8⟩[pEquiLoPo]
l1l2l4dindout
k1k3

(r0) = [wEquiLoPo]
l2l4dindout
k3k7k8

(r0). (A4)

Steerable Networks in the 3-dimensional case (Weiler et al., 2018) employ the following convolution
operator:

hl1dout
k2

(r⃗) =

∫
R3

dr⃗0

Lin∑
l2=0

l2∑
k4=−l2

f l2din
k4

(r⃗ + r⃗0)[SSteerable]
l1l2dindout
k2k4

(r⃗0), (A5)

where

[SSteerable]
l1l2dindout
k2k4

(r⃗0) =

Lfilter∑
l4=0

[pSteerable]
l1l2l4dindout(r0)

(
l4∑

k9=−l4

⟨l1k2|l2k4l4k9⟩Y k9

l4
(Ωr⃗0)

)
, (A6)

and coefficients [pSteerable]
l1l2l4dindout(r0) are trainable.

If we consider convolution in isolation from other operations in a network, then our convolution
operator is equivalent to the Steerable network convolution where the number of input and output
degree features are Dl1

in = Din(2l1 + 1) and Dl2
out = Dout(2l2 + 1) respectively:

[pSteerable]
l1l2l4(din(2l1+1)+k1)(dout(2l2+1)+k1)(r0) = [pEquiLoPo]

l1l2l4dindout
k1k3

(r0). (A7)

The difference between our method and Steerable Networks lies in the interpretation of the coef-
ficients, namely we treat them as expansion coefficients in SO(3). This interpretation results in a
special approach to activation. We propose such operation on the expansion coefficients that would
correspond to the ReLU operator in the rotational space.

B EQUIVARIANCE OF THE CONVOLUTION WITH ROTATED FILTER IN 3D

Below we demonstrate equivariance of the 6D convolution to the orientations of the input f(r⃗) map
and the filter w(r⃗) map. If f(r⃗) → f(R−1

0 r⃗), then the convolution output

h0(r⃗,R) →
∫
R3

f(R−1
0 (r⃗ + r⃗0))w(R−1r⃗0)dr⃗0

=

∫
R3

f(R−1
0 r⃗ + r⃗0)w(R−1R0r⃗0)dr⃗0 = h0(R−1

0 r⃗,R−1
0 R). (B1)
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Consequently, if w(r⃗) → w(R−1
0 r⃗), then the convolution output

h0(r⃗,R) →
∫
R3

f(r⃗ + r⃗0)w(R−1R−1
0 r⃗0)dr⃗0 = h0(r⃗,R0R). (B2)

C THEORETICAL FRAMEWORK ON SPHERICAL HARMONICS, WIGNER, AND
CLEBSCH-GORDAN COEFFICIENTS

This section provides an overview of spherical harmonics, Wigner coefficients, and Clebsch-Gordan
coefficients, essential mathematical tools in the field of quantum mechanics for the analysis of an-
gular momentum.

C.1 SPHERICAL HARMONICS

Real spherical harmonics Y m
l (Ω) : S2 → R are a set of orthogonal functions defined on the surface

of a sphere, denoted as S2. They are useful in expanding functions defined over the sphere and
appear extensively in the solution of partial differential equations in spherical coordinates. The
orthogonality of spherical harmonics is expressed as∫

S2

dΩY k
l (Ω)Y k′

l′ (Ω) = δll′δkk′ , (C1)

where δ stand for the Kronecker delta, signifying that spherical harmonics are orthogonal with re-
spect to both the degree l and the order m. Any square-integrable function f(Ω) : S2 → R can be
decomposed into real spherical harmonics as

f(Ω) =

∞∑
l=0

l∑
k=−l

fk
l Y

k
l (Ω), (C2)

where
fk
l =

∫
f(Ω)Y k

l (Ω)dΩ (C3)

are the spherical harmonic expansion coefficients. In practice, we use a fixed maximum expansion
order L defined by the resolution of input data.

C.2 WIGNER COEFFICIENTS

Wigner matrices, denoted as Dl
mm′(R), form the irreducible representations of SO(3), the group of

rotations in three-dimensional Euclidean space. These matrices are rotation operations for spherical
harmonics,

Y k1

l (RΩ) =

l∑
k2=−l

Dl
k1k2

(R)Y k2

l (Ω), (C4)

highlighting the transformation properties of spherical harmonics under rotation. The orthogonality
of Wigner coefficients is held due to the following property,∫

SO(3)

dRDl
k1k2

(R)Dl′

k′
1k

′
2
(R) =

8π2

2l + 1
δll′δk1k′

1
δk2k′

2
. (C5)

Another property of a Wigner matrix is its unitarity,

Dl
k1k2

(R−1) = Dl
k2k1

(R). (C6)
Any square-integrable function f(R) : SO(3) → R can be decomposed into Wigner matrices as

f(R) =

∞∑
l=0

l∑
k1=−l

l∑
k2=−l

f l
k1k2

Dl
k1k2

(R), (C7)

where
f l
k1k2

=
2l + 1

8π2

∫
f(R)Dl

k1k2
(R)dR (C8)

are Wigner matrix decomposition coefficients. Again, for practical considerations in Eq. C7 we will
use a fixed maximum expansion order L .
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C.3 CLEBSCH-GORDAN COEFFICIENTS

The Clebsch-Gordan coefficients facilitate the coupling of two angular momenta in quantum me-
chanics, leading to composite states with well-defined total angular momentum. The interconnec-
tion between Clebsch-Gordan coefficients, spherical harmonics, and Wigner matrices is illustrated
through the integration of products of spherical harmonics and the transformation properties under
rotation: ∫

S2

dΩY K
L (Ω)Y k

l (Ω)Y k′

l′ (Ω) =

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
⟨l0l′0|L0⟩⟨lkl′k′|LK⟩ (C9)

∫
SO(3)

dRDl
k1k2

(R)Dl′

k′
1k

′
2
(R)DL

K1K2
(R) =

8π2

2L+ 1
⟨LK1|lk1l′k′1⟩⟨LK2|lk2l′k′2⟩. (C10)

D FILTER EXPRESSION

In this section, we reveal how the expression in Eq. 9 is obtained:

Sl1l2
k1k2k3k4

(r⃗0) =
2l1 + 1

8π2

Lin∑
l3=0

l3∑
k5=−l3

l3∑
k6=−l3

l3∑
k7=−l3

Lfilter∑
l4=0

l4∑
k8=−l4

l4∑
k9=−l4

(∫
SO(3)

dR0D
l2
k3k4

(R0)D
l3
k6k7

(R0)

)
(∫

SO(3)

dRDl1
k1k2

(R)Dl3
k6k5

(R)Dl4
k9k8

(R)

)
wl3l4

k5k7k8
(r)Y k9

l4
(Ωr⃗) =

2l1 + 1

8π2

8π2

2l2 + 1

8π2

2l1 + 1

Lin∑
l3=0

l3∑
k5=−l3

l3∑
k6=−l3

l3∑
k7=−l3

Lfilter∑
l4=0

l4∑
k8=−l4

l4∑
k9=−l4

δl2l3δk3k6
δk4k7

⟨l1k1|l3k6l4k9⟩⟨l1k2|l3k5l4k8⟩wl3l4
k5k7k8

(r)Y k9

l4
(Ωr⃗)

=
8π2

2l2 + 1

Lfilter∑
l4=0

(
l2∑

k5=−l2

l4∑
k8=−l4

⟨l1k2|l2k5l4k8⟩wl2l4
k5k4k8

(r0)

)(
l4∑

k9=−l4

⟨l1k1|l2k3l4k9⟩Y k9

l4
(Ωr⃗0)

)
.

(D1)

E EQUIVARIANCE OF THE SE(3) CONVOLUTION

Here we prove the roto-translational equivariance of the convolution operator to the input data and
the rotational equivariance to the filter.

E.1 EQUIVARIANCE WITH RESPECT TO THE INPUT FUNCTION

Let f(r⃗,R) be rotated by R1. Then consider the output of the convolution in Eq. 4:∫
SO(3)

dR0

∫
R3

dr⃗0f(R−1
1 r⃗ +R−1

1 r⃗0,R−1
1 R0)w(R−1r⃗0,R−1R0)

=

∫
SO(3)

dR0

∫
R3

dr⃗0f(R−1
1 r⃗ + r⃗0,R−1

1 R0)w(R−1R1r⃗0,R−1R0)

=

∫
SO(3)

dR0

∫
R3

dr⃗0f(R−1
1 r⃗ + r⃗0,R0)w(R−1R1r⃗0,R−1R1R0) = h(R−1

1 r⃗,R−1
1 R). (E1)

E.2 EQUIVARIANCE WITH RESPECT TO THE FILTER FUNCTION

Let w(r⃗,R) be rotated by R1. Then consider the output of the convolution in Eq. 4:∫
SO(3)

dR0

∫
R3

dr⃗0f(r⃗ + r⃗0,R0)w(R−1R−1
1 r⃗0,R−1R−1

1 R0) = h(r⃗,R1R). (E2)
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F THE NEED FOR LOCAL ACTIVATION FUNCTION

In neural networks, linear operations typically alternate with nonlinear ones; the latter are often
referred to as activations. Nonlinear operations are necessary to approximate complex dependen-
cies in the data. However, from the perspective of learning hierarchies of patterns, the two types
of operations have different purposes. Indeed, linear layers are tasked with detecting patterns and
fetching a quantity proportional to the probability of finding a certain pattern. Nonlinear layers, in
turn, penalize low pattern probabilities, allowing only high ones to pass and often serve to learn
compact representations. An incorrectly chosen activation can lead to noise accumulation when
passing through multiple layers and also suboptimal latent representations. A classical activation
solution is ReLU and its variants, which, despite some drawbacks, are the most intuitively under-
standable activation functions. The vanilla ReLU operator passes only positive values of its input.
In convolutional and other networks dealing with spatial data, the critical property that differentiates
activation operations from the rest of the network is their locality, i.e., the activation is applied to
different points in the Euclidean space independently.

In our case, as we have already mentioned, the output of the linear convolution is six-dimensional:
R3 × SO(3). Since the R3 dimension discretizes into voxels, we apply the activation to each voxel
separately. The most interesting question, however, is how to design the activation function for the
SO(3) data dimension. We define the distribution of values in SO(3) in our architecture with Wigner
matrix decomposition coefficients. Each coefficient, similarly to the Fourier series, represents the
global properties of the entire SO(3) distribution rather than an individual point in SO(3). However,
we aim to design a local activation for SO(3) in the space of Wigner coefficients.

A previously used approach (Zhemchuzhnikov and Grudinin, 2024; Cohen et al., 2018) consists in
sampling the SO(3) space and requires a transformation from the Wigner representation into the ro-
tation space, an activation in the SO(3) space, and an inverse transformation into the Wigner space.
However, this approach loses the analytical SO(3) equivariance. It may not be a problem since
sampling a sufficiently large number of points in the rotation SO(3) space can guarantee effective
equivariance. However, this strategy inevitably leads to an increased computational complexity.
Conversely, the proposed Wigner coefficient representation, allows using few values to define a
function in SO(3) and retaining analytical equivariance at the same time. There are no analytical
expressions for the decomposition coefficients of ReLU(f(R)) given the spherical harmonics coef-
ficients of f(R). However, we will use the analytical expression of the coefficients of a product of
two functions, given in Eq. G1 in Appendix G. It enables us to find an analytical expression for the
spherical harmonics coefficients for a polynomial applied to a function in SO(3).

G PRODUCT OF TWO FUNCTIONS IN SO(3)

The Wigner matrix decomposition coefficients of a product of two functions defined in SO(3) can
be expressed through coefficients of two multiplier functions.

Let functions f1(R) and f2(R) have coefficients [f1]l1k1k2
and [f1]

l1
k1k2

and fprod(R) be the product
of f1(R) and f2(R):

fprod(R) = f1(R)f2(R).

Then

[fprod]
l3
k5k6

=

L1∑
l1=0

L2∑
l2=0

l1∑
k1=−l1

l1∑
k2=−l1

l2∑
k3=−l2

l2∑
k4=−l2

⟨l3k5|l1k1l2k3⟩⟨l3k6|l1k2l2k4⟩[f1]l1k1k2
[f2]

l2
k3k4

(G1)
where [fprod]

l3
k5k6

are coefficients of fprod(R), L1 and L2 are maximal degrees of f1 and f2 respec-
tively. In order to avoid loss of information the maximal degree of fprod is L3 = L1 +L2. Thus, the
product operation requires increase of resolution of data.
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H DERIVATION OF EXPRESSIONS FOR ADAPTIVE COEFFICIENTS

The solution of Eq. 14 satisfies the following conditions,
∂F/∂c0 = 4c0 + 4c1k + 4c2(k

2 + 1
3 )− (k + 1)2 = 0

∂F/∂c1 = 4c0k + 4c1(k
2 + 1

3 ) + 4c2(k
3 + k)− 2

3 (k + 1)3 = 0

∂F/∂c2 = 4c0(k
2 + 1

3 ) + 4c1(k
3 + k) + 4c2(k

4 + 2k2 + 1
5 )−

1
2 (k + 1)4 = 0

. (H1)

Multiplying the first equation by k and (k2 + 1/3) and subtracting it from the second and third
equations, respectively, we get{

c1 + 2c2k = − 1
4 (k

3 − 3k − 2)

c1k + 2c2(k
2 + 1

15 ) = − 1
16 (3k

4 − 10k2 − 8k + 1)
. (H2)

Figure H1 shows the plot of these coefficients as a function of normalized mean k and the error of
this approximation, respectively.
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Figure H1: Left: Coefficients of the polynomial as functions of µ
3σ . Right: Approximation error as

a function of µ
3σ .

I OTHER NON-LINEAL OPERATIONS

I.1 MAX POOLING OPERATION IN THE CONTINUOUS SO(3) SPACE

For a wide range of tasks, whether they involve global or local (voxel-wise) prediction, it is necessary
to design an operation that reduces the representation of the function in the rotation space to a single
value. For brevity, we may call it a pooling operation in SO(3). The most straightforward approach,
average pooling of a function in the SO(3) space, entails discarding Wigner coefficients of all degrees
higher than zero. However, we aim to design an operation analogous to max pooling.

Let us note that the polynomial approximation from Eq. 11 allows for the simulation of the SoftMax
effect in SO(3). More precisely, we can define SoftMax as

SoftMax(f) =
∫

SO(3)

w(R)ReLU(f(R))dR, (I1)

where weight w(R) = ReLU(f(R))/
∫

SO(3)
ReLU(f(R′))dR′. The weight function estimates the

ratio of ReLU(f(R)) to the positive part of the function f(R). Thus, we can also define the SoftMax
function in SO(3) using only the Wigner matrix expansion coefficients of f(R) as

SoftMaxpoly(f) =

∫
SO(3)

act(f(R))2dR∫
SO(3)

act(f(R))dR
=

∥fa∥22
∥fa∥1

=

∑
l′,k′

1,k
′
2

8π2

2l′+1 ([fa]
l
k1k2

)2

[fa]000
. (I2)

We should note that there can be different approaches to SoftMax simulation, even with the usage
of polynomial coefficients. In scenarios where the pooling operation follows the ReLU operation,
there is no need to apply the activation function again. Instead, we can directly calculate the ratio of
the 2-norm squared of the input function to the pooling operation to its 1-norm.
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I.2 GLOBAL ACTIVATION

Above, we introduced a local activation function that requires a higher resolution and, consequently,
an increased number of coefficients. This raises the question of whether the performance improve-
ment offered by this operation justifies the associated rise in the computational cost. As a baseline
for the activation, we explored an operation where the output resolution is identical to that of the
input. The formalism presented above allows us to define the global activation,

fGlobAct(R) = GlobAct(f(R)) = σ(WSoftMax(f) + b)f(R), (I3)

where we use SoftMax from Eq. I2, apply σ = sigmoid, and then multiply the result by the function
f(R). W and b are trainable parameters. Linearity of the Wigner matrix decomposition gives us the
following expression for the Wigner coefficients of the global activation function,

[fGlobAct]
l
k1k2

= σ(WSoftMax(f) + b)[f ]lk1k2
. (I4)

This expression can be seen as a gating mechanism that only passes SO(3)-distributions with suf-
ficiently high trainable positive values, at least for a single point in SO(3). Although the input and
output resolutions of this operation are identical, we still employ a higher resolution (expansion
order) in the ReLU approximation within the SoftMax operation.

I.3 NORMALIZATION

The fact that the mean and the standard deviation of a function in the rotational space can be ex-
pressed in terms of Wigner coefficients allows us to introduce an expression for the normalization
of a function in SO(3):

fn(R) = γ
f(R)− µ

σ
+ β, (I5)

where µ and σ are the mean and the standard deviation of function f , respectively, and γ and β are
trainable coefficients. We can also extend this operation for data in R3×SO(3), where the Euclidean
component is discretized and characterized by a set of functions fijk(R), where i, j, and k are voxel
indices. The batch normalization is then defined as follows:

[fijk]n(R) = γ
fijk(R)− µijk

σijk
+ β, (I6)

where µijk and σijk are the mean and the standard deviation of a function fijk, respectively, and
µ = 1

N

∑
i,j,k µijk and σ2 = 1

N

∑
i,j,k σ

2
ijk, with N being the number of voxels.

J DATASETS, ARCHITECTURES AND TECHNICAL DETAILS

Our method is centered on applications involving regular volumetric data. Extending this method
to irregular data would necessitate significant modifications that are beyond the scope of this paper.
Consequently, we evaluated our method using a collection of voxelized 3D image datasets.

J.1 DATASETS

We assessed our designs on MedMNIST v2, a vast MNIST-like collection of standardized biomed-
ical images (Yang et al., 2023). It is designed to support a variety of tasks, including binary and
multi-class classification, and ordinal regression. The dataset encompasses six sets comprising a to-
tal of 9,998 3D images. All images are resized to 28×28×28 voxels, each paired with its respective
classification label. We used the train-validation-text split provided by the authors of the dataset (the
proportion is 7 : 1 : 2).

J.2 BASELINE ARCHITECTURES

For our baselines, we employed the same model configurations that the creators of the dataset uti-
lized for testing on MedMNIST3D datasets(Yang et al., 2023). These include various adaptations of
ResNet (He et al., 2016), featuring 2.5D/3D/ACS (Yang et al., 2021) convolutional layers, alongside
open-source AutoML solutions such as auto-sklearn (Feurer et al., 2019), and AutoKeras (Jin et al.,
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2019). We have also added results of the models that were tested on the collection: FPVT (Liu
et al., 2022a), Moving Frame Net (Sangalli et al., 2023), Regular SE(3) convolution (Kuipers and
Bekkers, 2023) and ILPOResNet50 ((Zhemchuzhnikov and Grudinin, 2024)). Table 1 lists all the
tested architectures.

J.3 TRAINED MODELS

We developed multiple architectures with various activation methods, each reflecting the layer se-
quence of ResNet-18 (He et al., 2016). The final architecture, featuring reduced-resolution activa-
tion, is inspired by ResNet-50 (He et al., 2016). Figure J1 schematically illustrates our EquiLoPo
architecture along with its main components. These include the initial block, the repetitive building
block, pooling operators in SO(3) and 3D spaces, and a linear transformation at the end. Table J3
details the basic block for SE(3) data in ResNet-18. The initial convolutional block, outlined in
Table J2, initiates the architecture. We also specifically adapted the Batch Normalization process for
6D (3D × SO(3)) data.

It is important to note that the Bottleneck block in ResNet-50 (the simplest building block of the
architecture), which increases activation resolution, results in an eightfold increase in the maximum
degree. This surge is attributed to triple consecutive activations without an intervening convolu-
tion, potentially escalating computational demands. Consequently, our exploration was limited to
the ResNet-18 architecture, where the activation operation enhances output resolution. Figure J1
illustrates the EquiLoPO ResNet-18 architecture.

Basic Block

EquiLoPO ResNet Architecture

Initial Block

Input 
(L=0, D=1)

Convolution
(L=2, D=2)

Activation
(L=4, D=4)

Convolution
(L=1, D=4)

Activation
(L=2, D=4)

Initial Block
(L=2, D=4)

Basic Block
(L=2, D=4) SoftMax AvgPool Linear Output

Activation
(L=2, D=4)

Convolution
(L=1, D=4)

Activation
(L=2, D=4)

Convolution
(L=1, D=4)

×8

Figure J1: Schematic representation of the EquiLoPO ResNet-18 architecture, with a sequence of
operations in the Initial and Basic blocks. L is the maximum expansion degree of the last operator
in the block and D is the number of the block’s features.

Every filter in our trained networks is confined within a 3 × 3 × 3 volume in 3D. Filters are
parameterized by weights wl2l4

k3k7k8
(ri), where ri ∈ 0, 1,

√
2,
√
3 represents all possible radii from

the center in the cubic space. We used the ADAM optimizer (Kingma and Ba, 2014). In order to
avoid overfitting, we apply the dropout operation after each activation operation. The learning rate
of the optimizer and the dropout rate are hyperparameters. All the models are trained for 100 epochs.
Table J1 lists hyperparameters optimized for validation data performance. Table J4 presents memory
and time consumption metrics for EquiLoPOResNet-18, ILPOResNet-18 and ResNet-18 models in
the inference mode. The current implementation consumes significantly more memory than the
vanilla ResNet architecture and requires longer execution time because the activation is coded in
Python rather than C++. Transitioning the implementation to C++ could significantly reduce both
memory and CPU footprints.

Methods Organ Nodule Fracture Adrenal Vessel Synapse
Local trainable activation lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.00 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.00
Local adaptive activation lr = 0.01, dr = 0.01 lr = 0.0005, dr = 0.01 lr = 0.0005, dr = 0.00 lr = 0.0005, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.01
Local constant activation lr = 0.01, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.0005, dr = 0.01 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.01
Global trainable activation lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.00
Global adaptive activation lr = 0.005, dr = 0.01 lr = 0.01, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.01, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.005, dr = 0.01
Global constant activation lr = 0.005, dr = 0.01 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.005, dr = 0.00 lr = 0.01, dr = 0.00 lr = 0.0005, dr = 0.00
Local trainable activation,
const. resolution .(1)

lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01 lr = 0.01, dr = 0.01

Table J1: Optimal hyperparameters for the trained networks: learning rate (lr) and dropout rate (dr)
of the trained networks.(1) Here, we implemented the ResNet-50 architecture. In the other designs,
we used the ResNet-18 versions.
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Step Operation Details (size of the filter in 3D; output, in-
put and filter maximum degrees)

1 Convolution, Eq. 8 3x3x3, Lin = 0, Lout = 2, Lfilter = 2
2 Batch Normalization, Eq. I6 Lin = 2, Lout = 2
3 Local Activation, Eq. 11 Lin = 2, Lout = 4
4 Convolution, Eq. 8 3x3x3, Lin = 4, Lout = 1, Lfilter = 2
5 Batch Normalization, Eq. I6 Lin = 1, Lout = 1
6 Local Activation, Eq. 11 Lin = 1, Lout = 2

Table J2: Sequence of operations in the Initial convolutional block of EquiLoPOResNet-18.

Step Operation Details (size of the filter in 3D; output, in-
put and filter maximum degrees)

1 Convolution, Eq. 8 3x3x3, Lin = 2, Lout = 1, Lfilter = 2
2 Batch Normalization, Eq. I6 Lin = 1, Lout = 1
3 Local Activation, Eq.11 Lin = 1, Lout = 2
4 Convolution, Eq. 8 3x3x3, Lin = 2, Lout = 1, Lfilter = 2
5 Batch Normalization, Eq. I6 Lin = 1, Lout = 1
6 Addition Add input (l = 0, 1) to the output
7 Local Activation, Eq. 11 Lin = 1, Lout = 2

Table J3: Sequence of operations in the Basic block of EquiLoPOResNet-18.

Model Memory, GB GFLOPs Inference
time per batch
of 32 sam-
ples, seconds

ResNet-18 2.47 35.5245 0.03
ILPONet-18 7.14 19.5849 0.3
EquiLoPO
(local activa-
tion)

27.02 68.4352 2.49

EquiLoPO
(global acti-
vation)

30.05 53.7492 2.13

Table J4: Memory, FLOPs and Time consumption for EquiLoPOResNet-18, ILPOResNet-18 and
ResNet-18 inference.

K PERFORMANCE WITH FEWER BUILDING BLOCKS

In the main experiments, we evaluated the proposed neural network architecture using the standard
ResNet-18 configuration with 8 building blocks. To further investigate the method’s performance
and scalability, we conducted additional experiments by reducing the number of building blocks to
1 and 2, respectively, for the three activation functions that demonstrated the best performance in the
main experiments. These were local activation with trainable coefficients(Table K1), local activation
with adaptive coefficients(Table K2), and global activation with trainable coefficients(Table K3).

As the number of building blocks decreases from 8 to 2 and then to 1, there is a general trend of
degrading the performance across all datasets and activation functions. The extent of performance
degradation varies across datasets. For example, the OrganMNIST3D dataset exhibits a more sig-
nificant drop in accuracy (ACC) when reducing the number of blocks compared to other datasets
like NoduleMNIST3D or VesselMNIST3D.

The three activation functions (local activation with trainable coefficients, local activation with adap-
tive coefficients, and global activation with trainable coefficients) show different levels of robustness
to the reduction in building blocks. Local activation with adaptive coefficients (Table 5) maintains
relatively high performance even with fewer blocks, compared to the other two activation functions.
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Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 418k 0.991 0.866 0.923 0.861 0.727 0.563 0.876 0.792 0.950 0.958 0.965 0.878
2 Blocks 176k 0.968 0.705 0.902 0.855 0.716 0.525 0.892 0.785 0.962 0.927 0.838 0.832
1 Block 136k 0.936 0.489 0.872 0.861 0.726 0.508 0.885 0.846 0.963 0.914 0.876 0.861

Table K1: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with local
activation and trainable coefficients.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 418k 0.977 0.767 0.916 0.871 0.803 0.613 0.885 0.805 0.968 0.958 0.984 0.940
2 Blocks 176k 0.970 0.689 0.929 0.871 0.725 0.513 0.885 0.832 0.970 0.935 0.946 0.866
1 Block 136k 0.961 0.659 0.914 0.852 0.786 0.596 0.909 0.862 0.963 0.932 0.920 0.824

Table K2: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with local
activation and adaptive coefficients.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

8 Blocks 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
2 Blocks 43k 0.960 0.643 0.894 0.858 0.746 0.533 0.887 0.829 0.929 0.916 0.816 0.810
1 Block 32k 0.939 0.546 0.894 0.852 0.722 0.538 0.875 0.842 0.923 0.911 0.841 0.813

Table K3: Performance comparison for ResNet-like architecture with 1, 2 and 8 blocks with global
activation and trainable coefficients.

L ALTERNATIVE STRATEGY FOR THE GLOBAL ACTIVATION

In this section, we test an alternative strategy for global activation. Instead of using Eq. I3, we use

fGlobAct(R) = GlobAct(f(R)) = σ(W |f |2 + b)f(R), (L1)

where we replace the SoftMax function with the 2-norm of the function. Table L1 compares the
performance of the ResNet-18-like architecture with global activation using trainable coefficients
and the two different strategies: SoftMax and 2-norm. The results show that using the SoftMax
function consistently outperforms the 2-norm alternative across all datasets.

Methods # of Organ Nodule Fracture Adrenal Vessel Synapse
prms AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

SoftMax 113k 0.960 0.654 0.904 0.881 0.751 0.600 0.828 0.768 0.958 0.945 0.848 0.807
2-norm 113k 0.733 0.220 0.584 0.794 0.602 0.383 0.711 0.768 0.609 0.550 0.539 0.730

Table L1: Performance comparison for the ResNet-18-like architecture with global activation using
trainable coefficients and different aggregation functions.
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