Under review as a conference paper at ICLR 2025

VISUALAGENTBENCH: TOWARDS LARGE MULTI-
MODAL MODELS AS VISUAL AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Multimodal Models (LMMs) have ushered in a new era in artificial intelli-
gence, merging capabilities in both language and vision to form highly capable
visual agents that are postulated to excel across a myriad of tasks. However, ex-
isting benchmarks fail to sufficiently challenge or showcase the full potential of
LMMs as agents in complex, real-world environments. To address this gap, we
introduce VisualAgentBench (VAB), a comprehensive and unified benchmark
specifically designed to train and evaluate LMMs as visual agents across diverse
scenarios in one standard setting, including Embodied, Graphical User Interface,
and Visual Design, with tasks formulated to probe the depth of LMMSs’ under-
standing and interaction capabilities. Through rigorous testing across 9 proprietary
LMM APIs and 9 open models (18 in total), we demonstrate the considerable
yet still developing visual agent capabilities of these models. Additionally, VAB
explores the synthesizing of visual agent trajectory data through hybrid meth-
ods including Program-based Solvers, LMM Agent Bootstrapping, and Human
Demonstrations, offering insights into obstacles, solutions, and trade-offs one may
meet in developing open LMM agents. Our work not only aims to benchmark
existing models but also provides an instrumental playground for future develop-
ment into visual agents. Code, train, and test data will be available at https:

//anonymous.4open.science/r/VisualAgentBench—-AFAQ/L

VAB-OmniGibson !
gpt-4o : 36.2
gpt-4-vision-preview 1 i By

gpt-4-turbo 1 i
claude-3.5-sonnet H
claude-3-opus §
VAB- gpt-40-mini 4
Minecraft gemini-1.5-pro

gemini-1.0-pro
qwen-vl-max 1

VAB-CSS 19.8

|
1

6.3 |
27 |
1

InternVL2 (8B) 1 ; 16.0
Qwen2-VL (7B) 4 | 15.6
GLM-4V (13B) #12.0
LLaVA-NeXT (8B) 110.5
CogVLM2 (19B) 1 103 Open LMMs
CogAgent (18B) 1 819 (Fine-tuned)
VAB>Y ; CogVLM (17B) 1 8.4
WebArena-Lite VAB-AndroidLab LLaVA-1.5 (13B) 1 7.7
Qwen-VL (9B) 4 5.7 |
L
—e— gpt-40 -4 gemini-1.5-pro LLaVA-NeXT (8B) AV9'10‘6 T T
gpt-4-turbo-0409 MMM InternVL-2 (8B) MM Qwen-VL (9B) 0 10 20 30 40 50
~+— claude-3.5-sonnet WM GLM-4V (13B) VisualAgentBench Avg.

(a) Typical LMMs’ VAB performance (relative) (b) Average VAB Success Rates of tested LMMs across 5
against the best in each environment. environments. Dashed lines for two LMM types’ average.

Figure 1: Overview of Proprietary and Open LMMs on VISUALAGENTBENCH. After Behavior
Cloning (BC) on trajectories, Open LMMs demonstrate potential to serve as visual agents.

1 INTRODUCTION

Recent advancements in Foundation Models, particularly Large Language Models (LLMs) (Brown
et al., [2020; [Chowdhery et al., 2022 [Touvron et al.,|2023}; |Zeng et al., 2022)) and Large Multimodal
Models (LMMs) (Liu et al., [2024c; |OpenAlL [2023; 2024a}; |Anthropic), |2024), have showcased their
profound capabilities in understanding and processing vast amounts of world knowledge, factual
information, and common sense reasoning. Notably, these models have demonstrated potential as

https://anonymous.4open.science/r/VisualAgentBench-AFA0/
https://anonymous.4open.science/r/VisualAgentBench-AFA0/

Under review as a conference paper at ICLR 2025

Real-World Challenging Tasks

There is a banana and an apple | exarm
on the countertop. Put them -
into the compost bin.

Get a acacia_fence_gate in
your inventory in Minecraft

LMM-as-Visual-Agent

VAB-OmniGibson Running Example

% _l-_nmmd 1 1 _‘._nmma 2 1

&+,

Proprietary
LMM APl

Unified (Agent) grasp(2.banana) [Agent] move(1.countertop)
Prompts [+| [Ew] 2.banana is too far LEnv] Move successfully

& Round 3 Round N 9
Action . |
Spaces -=p = e ?@f
e
VS
[Agent] grasp(2.banana) [Agent] put_inside(3.apple, 4.bin Open
[Env] Grasp successfully [Env] Put successfully. DONE. LMMs

Figure 2: VISUALAGENTBENCH is the first systematic benchmark for training and evaluating LMM-
as-Visual-Agent with both proprietary and open LMMs across a diverse set of practical challenges.
Based on created tasks, we unify the benchmarking of both proprietary LMM APIs via prompting
and open LMMs via behavior cloning training in interactive environments.

intelligent agents (Searle, [1970; Maes|, (1994; |Wooldridge & Jennings| [1995), addressing a broad
spectrum of real-world challenges (Liu et al.|[2023a). LMMs, in particular, enhance the capabilities of
these agents by integrating visual inputs, thereby expanding the scope of intelligent agent applications.

Check the nearest IKEA, and
tell me how long it will take
to drive to the IKEA

Prompting

Open my latest updated issue
that has keyword "better" in its
title to check if it is closed

Visual
Design

The list items in the header are
not horizonally aligned as
expected. Please fix the CSS.

However, the setup for LMM-as-Visual-Agent remains underdeveloped. Most existing evaluations
on LMMs focus on traditional vision tasks (Singh et al., 2019} [Lu et al., [2022; [Liu et al., |2023b;
Kazemzadeh et al., [2014), or on performance in standardized human exams (Yue et al., {2023 [Lu
et al.,|2023). They rarely measure the models’ higher-level planning abilities or specific strengths
as visual agents. In contrast, the role of LLMs as agents in text environments has been extensively
explored and validated as a reliable measure of their capabilities (Yao et al., 2023} [Liu et al.| 2023al).

Recent benchmarks for multimodal agents, while valuable, do not adequately address the comprehen-
sive multitask evaluation required for LMM-as-Visual-Agent. These benchmarks often limit their
focus to single environments such as Household (Shridhar et al., [2020azb)), Gaming (Fan et al., 2022;
Wau et al.| [2023), Web (Deng et al., 2024} [Zhou et al., 2023} |[Koh et al.,|2024), or Desktop (Xie et al.,
2024; [Kapoor et al.,[2024). The narrow scope and varied settings prevents a holistic assessment of
LMMs’ multitask agent capabilities. Furthermore, the prevalent prompting-only evaluation in existing
benchmarks does not suffice for open LMMs (Liu et al., [2024c} [Bai et al., |2023)), which typically
show limited instruction-following capabilities so far, thus hindering a comprehensive evaluation.

To bridge this gap, we introduce VISUALAGENTBENCH (VAB)—the first systematic benchmark
to multitask train and evaluate visual agents across a diverse array of realistic vision-centric tasks.
We present three representative scenarios and develop five distinct datasets for this study: Embodied
(VAB-OmniGibson, VAB-Minecraft), Graphical User Interface (GUI) (VAB-AndroidLab (Anony-
mous, 2024), VAB-WebArena-lite (Zhou et al., 2023)), and Visual Design (VAB-CSS), enabling
comprehensive testing and development of agents that can navigate complex spaces, interact with
digital interfaces, and understand aesthetic and functional aspects of visual design. This diversity not
only challenges the agents’ capabilities across different settings but also enhances their adaptability
and utility in practical applications, paving the way for more robust and versatile visual agents.

Contributions. Our main contributions in VAB are as follow: Standardized Environments, LMM-
oriented Test Data Creation, Train Data Synthesis, Extensive Benchmarking, and Analytical Insights.

» Standardized Environments. VAB standardizes the interfaces, prompting, and data formats
to facilitate a consistent evaluation of LMM agents across environments. The efforts include
adapting previously LMM-irrelevant environment (OmniGibson) and creating new ones (VAB-
AndroidLab, VAB-CSS). Each task is assessed through interactive evaluation, where LMMs
engage directly with the environment, and their performance is measured by specific judge
functions. The feature substantially distinguishes VAB from many other benchmarks (Deng et al.|
2024; |[Rawles et al.,|2024; [Kapoor et al.,|2024) based on offline human-annotated trajectories.

* LMM-oriented Test Data Creation. Test set queries and judge functions are newly created
for all environments except for WebArena. To acquire massive tasks, we develop a “Prototype-
Instantiation” method to evolve valid task instructions and judge functions grounded on environ-
ments. We refer to task categories and prototypes in some previous study [Li et al.| (2023)); |Zhu
et al.| (2023) which unsatisfies the practical use for evaluating LMM agents or has no public data.

Train Data Synthesis. VAB strives to offer the first multitask multi-environment trajectory train
set for developing LMM agents, containing 4,482 high-quality training trajectories spanning 5

Under review as a conference paper at ICLR 2025

environments. It explores and investigate how to synthesize multimodal agent task instructions
and trajectory data via hybrid strategies of Program-based Solvers, LMM Agent Bootstrapping,
and Human Demonstrations. Thereby, it also for the first time enables a holistic agent evaluation
that includes many open LMMs with valid scores for meaningful comparison.

* Extensive Benchmarking & Analysis. Our extensive testing over 18 LMMs, including 9
proprietary LMM APIs and 9 open LMMs, demonstrates the impressive progress of LMM-
as-Visual-Agent. Top proprietary LMMs, such as gpt —4o, are solving 36.2% of challenging
problems with mere prompting. Behavior cloning (BC) on the VAB train set remarkedly enhances
the capabilities of open LMMs as visual agents, with most surpassing the performance of weaker
proprietary LMMs and approaching close towards the strong gemini-1.5-pro.

* Analytical Insights. VAB provides deep insights into the general status quo and detailed
dimensions of grounding and planning for LMM agents. For grounding, we quantitatively analyze
the use of object labels, set-of-marks, and visual difference ability. For planning, we study the
actual impact of Chain-of-Thought and error recovering ability for LMM agents.

2 VISUALAGENTBENCH: TASKS AND ENVIRONMENTS

In this section, we will first introduce the problem definition of LMM-as-Visual-Agent, and then the
detailed description of each environment and dataset.

LMM-as-Visual-Agent. An agentic problem could be generally formulated as a Partially Observable
Markov Decision Process (POMDP) problem, where S denotes the state space, A denotes the action
space, T denotes the transition function, R refers to the reward function, Z refers to the instruction
space, and O refers to the observation space. Compared to LLM-as-Agent (Liu et al.,[2023al), the
observation space O must incorporate visual inputs (e.g., images or videos) in LMM-as-Visual-Agent,
significantly extending the application scope but also casting a substantial challenge for LMM:s to
reconcile their multimodal understanding and high-level reasoning.

Overview of VAB. In VAB, we carefully select the most representative and promising tasks that
could be enabled by LMM-based agents. These tasks generally fall into three categories: embodied
agents, including household and game environments; GUI agents, covering mobile and web apps; and
visual design agents, focusing on frontend CSS debugging (Figure[2). They span diverse domains and
feature unique challenges, providing an ideal testbed for a comprehensive evaluation of LMM-based
agents. When constructing VAB, we strictly follow the principles outlined in Appendix [A.T] Our
efforts focus on addressing gaps in evaluating LMM-based agents while leveraging existing resources
to avoid redundancy, ensuring all our work is meaningful and avoids reinventing the wheel. For 4 out
of 5 tasks, we collect new data from scratch. For web agents, we adapt and clean WebArena (Zhou
et al.,[2023) as our test set, as it is already suitable for LMM-based evaluation. For household agents,
we use the OmniGibson environment from Behavior-1k (L1 et al.,[2023)) and create new tasks based
on high-level actions we defined, which are crucial for evaluating LMM-based agents and absent in
existing datasets. We similarly construct our tasks in Minecraft using the MineRL environmen with
our self-defined high-level actions. Finally, for our mobile app and CSS debugging tasks, we create
new interactive environments due to the lack of suitable resources in the literature and collect data
based on these environments. An overview of VAB is shown in Table 2l

2.1 EMBODIED AGENT

Embodied agents have been a central topic in Al, naturally involving multimodal sensory data,
including language and vision signals. The multimodal capabilities of LMMs could enable new
possibilities for embodied agents.

VAB-OmniGibson. One of the most actively researched environments in embodied Al is the
household environment due to its complexity and range of everyday tasks (Huang et al.,|2022; |Song
et al.,2023; Shridhar et al.,[2020a)). We build the household environment for embodied agents using
OmniGibson, a high-fidelity simulator based on Nvidia Omniverse that features diverse scenes and
realistic physical effectsE] An example activity in VAB-OmniGibson would be “Put all 8 plates from

"nttps://minerl.readthedocs.io
https://www.nvidia.com/en-us/omniverse/

https://minerl.readthedocs.io
https://www.nvidia.com/en-us/omniverse/

Under review as a conference paper at ICLR 2025

the countertops into the cabinet in the kitchen”, where agents should accomplish the tasks using

provided high-level actions (e.g.,“grasp”, “put_inside”). We adopt the task success rate as the
evaluation metric. (Cf. Appendix [B).

VAB-Minecraft. Minecraft has become a popular open-world environment for developing generalist
embodied agents due to its diverse tasks (e.g., survival, harvesting, crafting, combat, and creative
tasks), varied environments, and interactive mobs, necessitating generalized agent abilities (Fan et al.|
2022; |Lifshitz et al.| [2024). In VAB-Minecraft, the agent is expected to accomplish a wide range
of tasks, including item collection and killing hostile mobs. An example task in VAB-Minecraft
would be “Get a fishing rod in your inventory”, and the LMM agent need to interact with the game
environment using provided scripts (e.g.,“craft”, “smelt”) or calling a low-level controller Steve-
1 (Lifshitz et al.,2024) with prompt. We adopt the task success rate as metric. (Cf. Appendix |C)

2.2 GUI AGENT

GUI is another typical scenario where LMM agents may excel. Compared to embodied environments,
GUI environments are more information-intensive and require a good understanding of UI elements
and layouts. We provide two interactive and reproducible GUI environments, Mobile (i.e., Android)
and WebArena, to evaluate LMM GUI agents in a practical manner.

VAB-AndroidLab (Anonymous, 2024). Automated agents on Android GUI are instrumental.
Although pioneer works like (Burns et al., 2022; Rawles et al., 2024) have explored training and
evaluating these agents, they typically use Step Success Rate evaluated offline. Recent works (Yang
et al.l [2023b; [Wang et al, 2024a) leverage LMMs as Android GUI agents but lack reproducible
executive evaluation frameworks. We address this by creating tasks for LMM agents to perform
human-like actions (e.g., Tap, Swipe) on smartphones using Android Virtual Device (AVD). For
example, “Find a hotpot restaurant nearby and make a reservation for me tonight”” Agents must
understand the Android GUI and make decisions based on screen observations. (Cf. Appendix D)

VAB-WebArena-Lite (Zhou et al., 2023). Web browsing is an ideal testbed for evaluating LMMs
as GUI agents. Previous works (Shi et al 2017 [Liu et al., 2018; Deng et al., 2024; [Yao et al.,
2022) mainly focus on offline evaluation. We adopt WebArena (Zhou et al.,|[2023)), a benchmark for
text-based web GUI agents with 812 tasks across 5 websites. LMMs perform tasks based on user
instructions, such as finding and summarizing customer reviews on OneStopShop. We use HTML
SoM (Koh et al., [2024) to annotate operable HTML elements, enabling LMMs to generate actions
via playwright. WebArena-Lite is a subset of 165 tasks, refined and adapted for multimodal
evaluation, removing cross-website tasks and fixing implausible conditions. (Cf. Appendix [E)

2.3 VISUAL DESIGN AGENT

Visual design tasks demand a nuanced understanding of visual signals, which text-only LLMs cannot
handle with any easy augmentation, unlike embodied or GUI agent tasks that can rely on external
object detectors (Song et al., 2023 or textual representations like accessibility trees (Xie et al., [2024)).

VAB-CSS. We create a new task to evaluate LMMs on web frontend design, focusing on CSS style
adjustments. Fixing CSS styles is a labor-intensive task that often requires engineers to iteratively
adjust an element through trial and error. Such a task inherently entails fine-grained visual grounding
and reasoning across a series of rendering outcomes resulting from iterative CSS edits. In VAB-CSS,
the agent iteratively edits the CSS style using provided tools until it thinks the rendering matches
a given target design. We adopt success rate (SR) as the metric, which evaluates whether the final
rendering matches the target design. (Cf. Appendix

3 METHODOLOGY FOR VAB DATA COLLECTION

For agent tasks, it is known to be very challenging to design practical and verifiable task instances;
let alone creating high-quality training trajectories on top of them later. In constructing VAB, we
not only aim to deliver a high-quality agent benchmark but also endeavor to develop a systematic
methodology for the problem of LMM-as-Visual-Agent data curation. For task instance collection,
we follow a two-stage paradigm (prototyping and instantiation) for each new task instance to ensure
data quality and executability. Additionally, we harness a suite of hybrid strategies to collect training

Under review as a conference paper at ICLR 2025

Table 1: Recommendation levels for 3 strategies used in curating VAB’s agent-tuning trajectory data
on different dimensions. (Cf. Section@ for detailed explanation on each dimension)

Strategy Avg. Cost Adaptability Versatility Flexibility Adoption

Program-based Solvers VAB-OmniGibson, VAB-WebArena-Lite
LMM Agent Bootstrapping VAB-Minecraft, VAB-AndroidLab, VAB-CSS
Human Demonstrations VAB-AndroidLab

OmniGibson Tasks Interactive | |,
Evaluation 1

Task |

Al H

Help me tidy the floor in Jud.ge
<room> by putting all Functions Strategy 2: LMM Agent Bootstrapping
<object> to the <container> ===

Environments room (kitchen) (bedroom) (bathroom) <

object VAB

container Test Set

. Behavior Cloning
on Trajectories

ey

/

Figure 3: Data collection process in VAB. We follow a principled two-stage paradigm to collect task
instances and then adopt various methods to further collect training trajectories for them.

trajectories that can be used to tune open LMMs into better visual foundation agents. Our rigorous
data collection process in VAB is crucial for presenting a high-quality resource for LMM-based
agents (Figure[3). The statistics of different tasks in VAB are shown in Table 3]

3.1 TASK INSTANCE COLLECTION: PROTOTYPING AND INSTANTIATION

Curating meaningful and testable task instances for LMM agent tasks can be difficult. On one hand,
they should be diverse and useful to cover real-world applications. On the other hand, they should be
grounded to environments carefully to ensure feasibility and practicality. As a result, we collect all
our task instances in a two-stage paradigm:

* Prototyping: We gather many task prototypes representing high-level goals based on the func-
tionality provided by the environment. Related items are temporarily set to placeholders.

* Instantiation: Task prototypes are grounded to concrete items and conditions collected from the
environment. Judging functions are thereby set up by instantiated tasks. Instructions are then
rephrased by LLMs to enhance expression diversity.

Following the mentioned principles, we develop diverse task sets for all VAB environments. For
VAB-OmniGibbon, we source 89 prototypes of general household activities, instantiating them in
various scenes to create 992 instances, with 181 reserved for testing. In VAB-Minecraft, we focus
on object-collecting tasks, generating 628 instances from our defined prototypes, allocating 116 for
testing. For VAB-AndroidLab, we select 8 Android applications and create 119 test instructions,
while developing approximately 70 task prototypes from 18 common apps for training. In WebArena-
Lite, we refine 165 test samples and generate 1186 training instances from 40 task prototypes across
various web applications. For VAB-CSS, we design tasks around CSS rule corruptions, creating 1210
instances with 165 for testing, each annotated with natural language descriptions of visual changes.
This comprehensive approach ensures a rich and varied task environment across our selected domains.
For more details, please refer to Appendix [A3]

3.2 TRAINING TRAJECTORY COLLECTION: 3-LEVELED STRATEGIES

Recently, there has been a rise in benchmarks for interactively evaluating LLM or LMM agents (Liu
et al.,|2023a;|Zhou et al.} 2023} Xie et al.,|2024). Despite showcasing the substantial potential of LLM
and LMM as agents, they usually only provide the test set and thus fail to facilitate the improving of
open LLMs and LMMs on agent tasks. In light of the challenge, in VAB we are devoted to offering a
preliminary behavior cloning (BC) (Nakano et al., 2021} |Zeng et al., 2023) setup for training open
LMM agents. In VAB, we summarize our trajectory collecting into 3-leveled strategies:

1. Program-based Solvers: Trajectories are collected by prototype-specific programs written by
human experts (e.g., Playwright scripts for automating web browsing tasks).

Under review as a conference paper at ICLR 2025

Table 2: Comparison between VAB and related benchmarks. VAB is the first comprehensive multi-
domain agent benchmark offering interactive environments, supporting multimodal agent evaluation,
and providing a large and diverse set of training trajectories for visual agent tuning. “#Test Ins.”
refers to the number of test instances; “#Train Traj.” refers to the number of training trajectories
for SFT, “RL” means no training trajectory is available and only a reinforcement learning setup is
provided; “#Avg. Turns” refers to the average number of turns per training trajectory.

Category #Env. #Test Ins. #Train Traj. #Avg. Turns Multimodal Interactive Env.

ALFWorld Shridhar et al.|(2020b) Household 1 134 6,374 7.54 X

Alfred |Shridhar et al.|(2020a) Household 1 1,529 6,574 7.51

Behavior-1K]|Li et al.|(2023) Household 1 1,000 RL -

MineDojo Fan et al.|(2022) Game 1 3,141 RL -

SmartPlay Wu et al.|(2023) Game 6 20 - - X

Mind2Web |Deng et al.|(2024) Web 1 1,341 1,009 7.71 X
‘WebArena|Zhou et al.|(2023) ‘Web 1 812 - -

VisualWebArena|Koh et al.|(2024) Web 1 910 - -

META-GUI|Sun et al.|(2022) Mobile 1 483 3,692 7.64 X
OSWorld Xie et al.|(2024) Desktop 1 369 - -

OmniACT Kapoor et al.[(2024) Desktop & Web 2 9,802 - - X
AgentBench|Liu et al.|(2023a) Multi-domain 8 1,091 - - X
VISUALAGENTBENCH Multi-domain 5 746 4,482 11.22

Table 3: Statistics of all datasets in VAB.

VAB-OmniGibson VAB-Minecraft VAB-AndroidLab VAB-WebArena-Lite VAB-CSS

#Action Space 20 6 7 12 4
#Test Instance 181 116 119 165 165
#Train Trajectory 872 382 1,213 1,186 829
#Train Step 20,153 5,197 10,175 9,522 5,250
#Max Round Limit 100 100 25 20 10

2. LMM Agent Bootstrapping: Trajectories are collected by prompted LMM agents (e.g.,
gpt—40), with optional memory augmentations (Wang et al.,[2023c). For instance, in Minecraft
we allow agent to access memories for solving easier sub-goals (e.g., how to collect a stick) when
constructing trajectories for more complex goals (e.g., how to collect a hammer).

3. Human Demonstrations: Trajectories are annotated by human experts. It is necessary for
scenarios where humans are indispensable (e.g., mobile apps require logged-in human accounts).

These strategies are quite different from each other and present their own unique advantages in certain
environments. We summarize their recommendation levels on 4 dimensions (Cf. Table[T)):

» Average Cost: The most important dimension. Program-based solvers are most cost-effective,
followed by human demonstrations. LMM bootstrapping is currently the most expensive due to
proprietary API costs, but this may decrease as open LMMs improve.

* Adaptability: It indicates how easy we can implement a strategy to an environment. LMM
bootstrapping is highly adaptable with good prompts. Program-based solvers require moderate
implementation time. Human demonstrations need training and may face accessibility issues.

* Versatility: It refers to how versatile tasks a strategy could deal with. Human annotators can
handle the widest range of tasks, followed by LMM agents. Program-based solvers are limited to
predefined prototypes.

* Flexibility: It denotes the trial and error process in the solution trajectories. LMM bootstrapping
naturally incorporates trial-and-error processes. Program-based solvers struggle with this, while
human annotators are often discouraged from it for quality control reasons.

Considering all mentioned dimensions and their trade-offs, we adopt a hybrid set of strategies for each
of the 5 environments in VAB as shown in Table([I] In brief, we employ diverse strategies tailored to
each domain’s unique characteristics. For VAB-OmniGibson, we utilize program-based solvers due
to the platform’s high hardware requirements and the need for cost-effective, adaptable solutions. In
VAB-Minecraft, we opt for LMM agent bootstrapping to handle the game’s inherent randomness
and exploration requirements. For VAB-AndroidLab, we primarily rely on human demonstrations,
supplemented by LMM agent bootstrapping for offline apps, to address the challenges of XML
legibility and app-specific login requirements. In VAB-WebArena-Lite, we choose program-based
solvers, leveraging the mature P1aywright automation tool and addressing the difficulties faced by

Under review as a conference paper at ICLR 2025

Table 4: Main results on VISUALAGENTBENCH. The metric reported is success rate (SR), which
measures the proportion of successful tasks in all evaluated tasks. Open LMMs are evaluated using
multitask fine-tuning rather than direct prompting, as they were unable to effectively follow system
prompts from VAB in our preliminary trials. For # Params of open LMMs, we report the sizes of
their language and vision part respectively.

Type Model #Params ‘ AVG‘ Embodied GUI Visual Design
| |OmniGibson Minecraft AndroidLab WebArena-Lite ~ CSS
gpt-40-2024-05-13 N/A |36.2 41.4 55.2 31.9 18.2 34.5
gpt-4-vision-preview N/A |31.7 36.5 47.4 26.9 18.8 29.1
gpt-4-turbo-0409 N/A |29.9 26.5 50.0 26.9 18.2 27.9
Proprietary claude-3.5-sonnet N/A |26.9 24.3 56.0 31.1 7.2 15.8
LMMs claude-3-opus N/A 21.9 14.9 51.7 15.1 7.9 20.0
(Prompting) gpt-40-mini-2024-07-18 N/A 20.5 12.2 30.2 22.7 20.6 17.0
gemini-1.5-pro N/A 198 22.1 41.4 16.8 7.9 10.9
gemini-1.0-pro N/A 6.3 4.4 11.2 11.8 4.2 0.0
qwen-vl-max N/A 2.7 0.0 6.0 2.5 3.0 1.8
InternVL-2 (Chen et al.|[2024) 7B + 0.3B| 16.0 16.0 28.4 34 7.9 24.2
Qwen2-VL (Wang et al.[[2024b) 7B + 0.3B| 15.6 13.8 24.1 5.9 6.7 27.3
GLM-4V (GLM et al.|[2024) 9B +4B |12.0 8.8 19.8 2.5 5.5 23.6
LLaVA-NeXT (Liu et al.[[2024b) 8B + 0.3B|10.5 3.3 23.3 3.4 4.2 18.2
Open LMMs 3 . i . R
(Fine-tuning) CogVLM2 (Hong et al./|2024) : 8B +12B | 10.3 3.3 25.9 1.7 3.0 17.6
CogAgent (Hong et al.[|2023) 7B+ 11B| 8.9 6.6 20.7 2.5 0.6 13.9
CogVLM (Wang et al.|[2023b) 7B + 10B | 8.4 3.3 19.8 4.2 4.2 10.3
LLaVA-1.5(Liuetal.l2024a) 13B+1B| 7.7 1.7 25.9 0.8 2.4 7.9
Qwen-VL (Bai et al.|[2023) 7B +2B | 5.7 1.7 18.1 1.7 2.4 4.8

human annotators with unfamiliar interfaces. For VAB-CSS, we implement LMM agent bootstrapping
to accommodate the iterative nature of CSS debugging, using gpt—4o for initial trajectories and
providing hints to improve success rates. For more details, please refer to Appendix [A.4]

4 BASELINE EXPERIMENT

4.1 SETUP

Baselines. We evaluate on both proprietary LMM APIs and selected open LMMs. For proprietary
LMMs, we include models from OpenAl GPT (OpenAll [2024a; 2023} [2024b)), Anthropic Claude (An+
thropicl 2024), Google Gemini (Reid et al., 2024; Team et al.} 2023)), and Qwen-VL-Max (Bai et al.,
2023)). For open LMMs, we select nine state-of-the-art models as representative fine-tuning baselines
in VAB: InternVL-2 (Chen et al.,[2024)), Qwen2-VL (Wang et al.l 2024b), GLM-4V (GLM et al.|
2024), CogVLM2 (Wang et al.,|2023b)), CogAgent (Hong et al.,[2023), CogVLM (Wang et al.,2023b),
LLaVA-NeXT (Liu et al.,[2024b)), LLaVA-1.5 (Liu et al.} [2024a)), Qwen-VL (Bai et al., 2023).

Prompting. We format LMM-as-Visual-Agent as two roles (i.e., user and assistant) interacting
in multiple rounds. The task description, action spaces, few-shot demonstrations, and important
notices for each environment are formatted as the sy stem prompt at the beginning of the conversa-
tion. Task instruction is given in the first user round. Environmental observations and feedback are
passed via user in later rounds. Considering current LMM APIs’ poorer support of multi-image
and outrageous cost when interaction rounds soar up, in Embodied and GUI agents we only offer
the vision input of the latest user round (following (Koh et al.,[2024))) while reserving history text
contents. An exception is the CSS agent in Visual Design. In this case, comparing differences in
visual inputs is essential, and the interaction rounds are typically fewer than 10. Therefore, we retain
all image inputs in the conversation history for this task.

Training for Open LMMs. We generally follow the prompting format of proprietary LMM APIs in
each environment to organize our training trajectories, and make several minor modifications. In the
system prompt we remove the few-shot demonstrations as we would fine-tune models. In addition,
during fine-tuning, since open LMMs perform poorly on multi-image input (especially for CogVLM
and CogAgent, whose expert architecture disallows simple implementation of multi-image input),
we only use the vision input of the latest user turn, and concatenate histories together using role
tokens (i.e., “<|user|>") and linebreaks. For CSS agent where multi-image input is necessary, we

Under review as a conference paper at ICLR 2025

concatenate history images vertically into one as the input. To benchmark the potential of LMMs
to serve as visual foundation agents, we conduct multitask fine-tuning over the dataset aggregation
of all environments. To optimize performance, all LMMs undergo full-parameter fine-tuning, with
a batch size of 64 and 5k training steps. Other hyperparameters are configured using the default
ones provided by the model’s original repository or the third-party’s integrated training framework.
For data composition, we uniformly combine all training samples except for VAB-CSS, which we
duplicate an additional 2 times as the preliminary experiments show that the task requires more
extensive training for open LMMs to adapt to the screenshot concatenation format.

4.2 MAIN RESULTS

Table |4 shows the main results on VAB, including both prompting proprietary LMMs and fine-tuned
open LMMs. We have several important observations on the status quo of LMM-as-Visual-Agent.

VAB is challenging for existing LMMs. We observe that existing LMMs face significant challenges
when evaluated on VAB. The majority of proprietary LMMs, with mere prompting, achieve an overall
success rate above 20%, demonstrating their multimodal understanding and reasoning abilities.
The most capable LMM, gpt-4o0, achieves an overall success rate of 36.2%. However, these
performances are still far from satisfactory and not yet qualified for direct deployment. Notably,
despite its superiority on existing benchmarks, claude-3.5-sonnet still falls significantly
behind gpt-4o0. Additionally, we present the first systematic evaluation of gpt—4o-mini on
agent tasks, which reveals that its performance is considerably inferior to gpt —4o but comparable to
claude-3-opus and gemini-1.5-pro.

Trajectory SFT can improve LMM agents. For open LMMs, we find they can rarely follow the sys-
tem prompt’s instruction without fine-tuning in preliminary trials, resulting in 0% success rates. After
training on VAB, open LMMs present significant improvements. The strongest one, InternvVL-2,
even outperforms gemini-1.0-pro on all evaluated environments and claude—3-opus on
CSS agent task. These results suggest that learning from trajectories would be a promising direction
for us to build visual foundation agents.

Gaps between top proprietary and open LMMs are huge but likely to be narrowed. Despite the
improvement from training, the gap between proprietary and tested open LMMs is much wider than ex-
pected. While many of them have claimed competitive performance to gpt-4-vision-preview
on traditional vision benchmarks such as image captioning, VQA, and so on, their fundamental ability
to serve as practical visual foundation agents is far from comparable even after fine-tuning on VAB
datasets. It also demonstrates that VAB could serve as an ideal testbed for benchmarking the practical
performance of LMMs. With larger backbone LLMs (which are insufficiently tested in this work due
to limitations of our computing resources) and more high-quality trajectory data, it is likely that open
LMMs will be comparable or even outperform more proprietary LMMs.

5 ANALYSIS

Multimodal agent tasks encompass two critical challenges: visual grounding and planning. We
conduct fine-grained analyses to gain deeper insights into performance in these two aspects and offer
valuable perspectives for the future development of visual foundation agents based on LMM:s.

5.1 VISUAL GROUNDING ANALYSIS

Visual grounding refers to the ability to associate language concepts with content in visual percep-
tion (Fukui et al.| 20165 Zheng et al.||2024)), which is crucial for LMM-as-Visual-Agent. We look into
3 typical design choices in VAB related to visual grounding to show its current status and challenges.

The use of object labels in embodied environment. Despite the strong image caption and object
recognizing ability of LMMs, they do not seem to play well in the context of an embodied agent task.
In VAB-OmniGibson, we compare the LMM-as-Visual-Agent performance with and without object
labels annotated in the vision input. The result in Figure [4| shows that LMM agents significantly
underperform without object labels. It indicates that notwithstanding LMMSs’ strong performance on
downstream benchmarks, they can still struggle in the same task in the context of LMM-as-Visual-
Agent.

Under review as a conference paper at ICLR 2025

t-4-turbo-0409
30 9P 30

gemini-1.5-pro
26.5 30

gemini-1.0-pro

22.1

w/ Object Label

w/o Object Label

Figure 4: Compare w/ and w/o Object Labels.

GPT-40

VAB-AndroidLab* WebArena-Lite

17.4 20
15 15
10 8.7 10
5 5 4.2
0 0]

Figure 5: Compare SoM and REC in
GUI agent tasks, trained on CogVLM2.
VAB-AndroidLab* here is an earlier ver-
sion different from the one in Table ﬂ

GLM-4v

VAB-OmniGibson

32.5

41.4

SR
SR w/ error

5.7

SR
SR w/ error

VAB-Minecraft

VAB-Mobile

WebArena-Lite

VAB-CSS

15 20 25

30 10
Success Rate Success Rate

Figure 6: Comparison of overall success rates and success rates when incorrect actions are present in
trajectories for various tasks.

The use of Set-of-Marks (SoM) in GUI environment. For GUI tasks, we also augment the image
input with SoM by default because it is difficult to elicit accurate bounding box coordinates from the
LMM, which is essentially a referring expression comprehension (REC) task 2020). With
our training trajectories, we can evaluate whether LMMs can effectively perform visual grounding
by directly outputting a bounding box without relying on external SoM signals. Specifically, we
fine-tune CogVLM2 with and without SoM. The results in Figure[5]show that CogVLM2 struggles to
learn to directly output a bounding box, and SoM plays an instrumental role in visual grounding.

Visual difference grounding. Our new frontend design task offers a unique opportunity to examine
a specific type of visual grounding: visual difference grounding. Unlike traditional visual grounding
with a single scene involving associating a language concept to a static region or object in the image,
visual grounding in VAB-CSS requires the LMM to properly ground the “layout difference” (Cf.
Appendix [F:3) to the different areas of two images through comparison. All our current results on
VAB-CSS in Tablef]are based on a relatively lenient setting. Instead of requiring the LMM to directly
perceive the difference between two screenshots, we provide a language description that explicitly
states the adjustments to make to match the two input images (see an example in Appendix [F2).

5.2 PERFORMANCE ON PLANNING

The role of thought in ReAct. ReAct is one of the most commonly used
frameworks for language agents. The central concept emphasizes the importance of integrating the
agent’s reasoning and actions by intertwining the output with both thought and action components.
However, in our study, we find that the thought step may not be essential. When using gpt—4o and
claude-3.5-sonnet as the backbone of the agents, directly outputting an action field can yield
comparable or even superior performance compared to using the ReAct framework (see Table [6)).

Recovering from errors during planning. In real-world applications, agents require the error
recovery ability to dynamically adjust their actions and plans based on environmental feedback.
To understand it in LMMs, we analyze two representative models: gpt—4o0, the most powerful
model currently available, and glm—-4v, a prominent open LMM. Their performance, illustrated
in Figure[f] reveals that gpt -4 o exhibits robust error recovery across most tasks, with GUI tasks
being an exception due to their often irreversible nature. Importantly, we find that incorporating error
recovery scenarios in training data significantly enhances the performance of fine-tuned open LMMs,
as evidenced by results from VAB-OmniGibson and VAB-CSS (Cf. Appendix [B-T]and Appendix [F2]
for details about error recovery of training trajectories).

Under review as a conference paper at ICLR 2025

Table 5: LMM performances drop drastically on VAB-CSS when the language description is removed.

gpt-40-2024-05-13 gpt-4-turbo-0409 gpt-4-vision-preview

w/ NL 34.5 27.9 29.1
w/o NL 24.2 110.3% 1.9 126.1% 2.4 126.7%

Table 6: ReAct (w/ CoT) has varied (potentially positive or negative) impacts on visual agent tasks.

Model Prompting VAB-Minecraft ~ VAB-AndroidLab VAB-CSS
-4 w/ Thought 55.2 30.4 34.5
gp © w/o Thought 48.3 16.9% 31.9 11.5% 38.2 13.7%
B B w/ Thought 56.0 29.0 15.8
claude-3.5-sonnet w/o Thought 55.2 10.8% 31.1 12.1% 17.6 11.8%

6 RELATED WORK

LMM-as-Visual-Agent. In pre-LMM era, most visual agents are built with task specific train-
ing (Shridhar et al., 2020a)) and reinforcement learning (Kempka et al.l [2016). With the rapid
development of LMMs (OpenAl, 20244a; Reid et al., [2024; |OpenAl, 2023} |Bai et al., |2023; | Anthropic,
2024; Team et al.} 2023} |GLM et al.| 2024)), the study of LMM-based visual agents begins to thrive.
Leveraging the general capabilities of LMMs, these visual agents have the potential to perform com-
plex tasks in various scenarios, including embodied and game tasks (Brohan et al., 2022} |Yang et al.,
2023a; Driess et al., 2023} |Tan et al., 2024), GUI interaction (Zheng et al.| 2024} [Zhou et al.| 2023}
Koh et al., |[2024; Xie et al.} 2024; |Kapoor et al., [2024; Yang et al.,|2023b)), and visual design tasks (S1
et al., 2024} Laurencon et al., [2024). However, these complex scenarios pose several challenges
for LMM-based visual agents: basic visual understanding and grounding (Zheng et al.| 2024} [Yue
et al., [2023)), vision-text information comprehension (Kil et al., [2024), instruction following, and
long-term planning ability (Wu et al., 2023} |Liu et al.,|2023a). Most general-purpose LMMs still lack
strong zero-shot capabilities, leading to different application paradigms when deploying LMMs as
visual agents. While prompting methods offer great convenience, they may not achieve satisfactory
performance in many areas (Zhou et al., [2023; |Drouin et al.l [2024). Consequently, task-specific
training and alignment remain common practices in these applications (Lai et al.|[2024). In response,
VAB aims to establish a comprehensive benchmark for LMM-based visual agents, covering a wide
range of typical applications. In the meantime, VAB seeks to provide an in-depth evaluation of both
prompting and training approaches, ultimately fostering the development of LMM visual agents.

Benchmarking LMM-based visual agents. With the rapid development of LMM agents and their
impressive performance in various scenarios (Xie et al., [2024} [Kapoor et al., 2024} |Yang et al.|
2023bja; |Si1 et al.| [2024; Mu et al.| [2024), it has made the evaluation of LMM agent an urgent problem.
In the GUI interaction domain, recent works have proposed static datasets (Deng et al.||2024; |[Rawles
et al.| [2024; |Sun et al.| [2022) and interactive environments (Zhou et al.| 2023} Koh et al.| [2024; | Xie
et al., [2024)) to evaluate LMM agents in different applications, including web (Zhou et al.| 2023}
Koh et al., [2024; Deng et al.| 2024)), mobile phone (Rawles et al.| 2024} [Sun et al., [2022), and
desktop (Xie et al.,[2024)). In the embodied domain, previous works have proposed various game
environments (Guss et al., [2019; [Fan et al., [2022) and household environments (L1 et al.l 2023),
but few works have explored benchmarking LMM agents on these environments. Most existing
benchmarks are designed for relatively narrow domains and lack a comprehensive evaluation across
different applications of LMM agents. Additionally, many benchmarks focus solely on the prompting
evaluation of LMM agents. VAB aims to provide a training set for open-source foundation LMMs,
offering a new perspective on benchmarking these models and advancing their diverse applicabilition.

7 CONCLUSION

We present VisualAgentBench (VAB), a comprehensive benchmark for evaluating Large Multimodal
Models as visual agents across diverse scenarios. Our testing of 18 LMM models reveals their
developing capabilities in this domain. VAB also explores methods for synthesizing visual agent
trajectory data, providing insights for future advancements.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Anonymous. Developing and evaluating android agents in a reproducible environment. Underwork,
2024.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic,
com/news/claude—-3-family.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer. A
dataset for interactive vision-language navigation with unknown command feasibility. In European
Conference on Computer Vision, pp. 312-328. Springer, 2022.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multimodal

language model. In Proceedings of the 40th International Conference on Machine Learning, pp.
8469-8488, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
web agents at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343-18362, 2022.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach.
Multimodal compact bilinear pooling for visual question answering and visual grounding. In
Conference on Empirical Methods in Natural Language Processing, pp. 457-468. ACL, 2016.

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund,
Daniel LK Yamins, James J DiCarlo, Josh McDermott, Antonio Torralba, et al. The threedworld
transport challenge: A visually guided task-and-motion planning benchmark towards physically
realistic embodied ai. In 2022 International conference on robotics and automation (ICRA), pp.
8847-8854. IEEE, 2022.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Under review as a conference paper at ICLR 2025

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations, 2019.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm?2: Visual language models for image and video
understanding. arXiv preprint arXiv:2408.16500, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118-9147. PMLR, 2022.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2023.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
objects in photographs of natural scenes. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 787798, 2014.

Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1-8, 2016. URL jhttps:
//api.semanticscholar.org/CorpusID:430714.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view
visual contextualization for web navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14445-14454, June 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Hanyu Lai, Xiao Liu, Iat Long Tong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large
language model-based web navigating agent, 2024.

Hugo Laurengon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into
html code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martin-
Martin, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80-93. PMLR, 2023.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila Mcllraith. Steve-1: A generative
model for text-to-behavior in minecraft. Advances in Neural Information Processing Systems, 36,
2024.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

12

https://api.semanticscholar.org/CorpusID:430714
https://api.semanticscholar.org/CorpusID:430714

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 26296-26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https:
//1llava-vl.github.io/blog/2024-01-30-1lava—-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024c.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023a.

Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, Mingxin Huang, Dezhi Peng, Mingyu Liu,
Mingrui Chen, Chunyuan Li, Lianwen Jin, et al. On the hidden mystery of ocr in large multimodal
models. arXiv preprint arXiv:2305.07895, 2023b.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507-2521,
2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

Pattie Maes. Agents that reduce work and information overload. Commun. ACM, 37:30-40, 1994.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. Advances in Neural Information Processing Systems, 36, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAl New models and developer products announced
at devday, 2023. URL https://openai.com/index/
new-models—and-developer—-products—announced—-at—-devday/.

OpenAl Hello gpt-40, 2024a. URL https://openai.com/index/hello—-gpt-40o/l

OpenAl. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai,
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Yanyuan Qiao, Chaorui Deng, and Qi Wu. Referring expression comprehension: A survey of methods
and datasets. IEEE Transactions on Multimedia, 23:4426-4440, 2020.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for android device control. Advances in Neural Information Processing
Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini

1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

John R. Searle. Speech acts: An essay in the philosophy of language. Language, 46:217, 1970.

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/index/new-models-and-developer-products-announced-at-devday/
https://openai.com/index/new-models-and-developer-products-announced-at-devday/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Under review as a conference paper at ICLR 2025

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp- 3135-3144. PMLR, 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740-10749, 2020a.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations, 2020b.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far are
we from automating front-end engineering? arXiv preprint arXiv:2403.03163, 2024.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317-8326, 2019.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998-3009, 2023.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martin-Martin, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In Conference
on robot learning, pp. 477-490. PMLR, 2022.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 6699-6712, 2022.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chugiao Zong, Longtao Zheng, Yujie Wu,
Xiaoqgiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chaojie
Wang, Xinrun Wang, Borje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle: Em-
powering foundation agents towards general computer control. arXiv preprint arXiv:2403.03186,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,

Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023b.

14

Under review as a conference paper at ICLR 2025

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. /IEEE transactions on image processing, 13(4):600-612,
2004.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023c.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. The knowledge
engineering review, 10(2):115-152, 1995.

Yue Wu, Xuan Tang, Tom Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as intelligent
agents. In The Twelfth International Conference on Learning Representations, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. arXiv preprint arXiv:2310.08588, 2023a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744-20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2D1B.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In The Twelfth International Conference on Learning Representations, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144,2023.

15

https://openreview.net/forum?id=piecKJ2DlB

Under review as a conference paper at ICLR 2025

Part I
Appendix

Table of Contents

[A"Overviewl 17
JA.1 Design Featuresof VAB|. 17
1A.2_Details on Use of Visual Information in Each Environment 17

|A.4 " Details on Training Trajectory Collection| 18

B VA B-OmniGibsonl 19
IB.1 " Detailed Description| 19
BZ ACHODS. -« . o ottt e 20
IB.3 Program-based Solver for Training ITrajectory Collection| 20
B.4 PromptExample|. 20

|C__VAB-Minecraft 25
25
25
26

30
30
30
31
31

32
32
33
34
34
36

37
37
38
38
38
39

16

Under review as a conference paper at ICLR 2025

A OVERVIEW

A.1 DESIGN FEATURES OF VAB

Given that LMMs are still evolving rapidly, we adhere to several principles in our design of VAB to
accommodate the current capabilities and limitations of LMMs.

* Vision-Centric: VAB agent tasks are designed to primarily rely on visual inputs to solve problems.
While additional text inputs could be beneficial, VAB aims to evaluate how LMMs perform when
perceiving the environment as humans do in agent tasks. For example, while HTML is shown
useful for Web GUI Agent (Zhou et al., [2023; Deng et al., [2024)), humans typically browse the
internet from screens without reading HTMLs.

» High-Level Decision Making: VAB focuses on evaluating LMMs’ high-level decision-making
abilities. Compared to prior smaller visual-language models that specifically target low-level
policies (Lynch & Sermanet, 20205 Brohan et al.| 2022; [Lifshitz et al.| [2024)), LMMs excel at high-
level planning and interacting (Driess et al.,[2023)) in text response thanks to their commonsense,
knowledge, and flexible instruction following with mere prompting. Therefore, in VAB, we
simplify the low-level control by providing convenient action interfaces, and ask tested LMMs to
concentrate on delivering high-level decision sequences in text.

* Interactive Evaluation: Evaluating LLMs or LMMs on real-world agent tasks is challenging, as
task goals can be achieved by various means. As a result, it becomes a mainstream practice to
evaluate in an interactive manner (Liu et al., 2023a;|Zhou et al .l [2023;|Jimenez et al., 2023} |Xie
et al.,[2024). VAB also adheres to this principle.

* Trajectories for Behavior Cloning: Many previous execution-based agent benchmarks for
LLMs and LMMs, despite being realistic and challenging, often fail to provide effective training
sets for the community to use for improvement. LLMs and LMMs need behavior cloning training
on trajectories for better performance (Nakano et al.,|2021; Zeng et al., 2023 Lai et al., [2024).
However, creating such datasets consisting of valid instructions, trajectories, and reward functions
is costly and requires annotators’ good understanding of the environment. In response to the
challenge, for each VAB environment we endeavor to deliver instructions created with a hybrid
set of strategies (Cf. Section [3.2). Experiments show that our constructed training sets can
effectively improve the performance of open LMMs on VAB.

Note that as the field advances, some of the above principles may become obsolete and irrelevant.
We will continuously update VAB to accommodate the progress of LMM:s.

A.2 DETAILS ON USE OF VISUAL INFORMATION IN EACH ENVIRONMENT

Vision-centric design is a crucial feature for VAB with regard to planning and grounding. Here we
will give a brief look at the specific use of vision from both perspectives.

* VAB-OmniGibson: The agent perceives the simulated environment through egocentric vision.
It must interpret visual information to identify the affordances of objects within its view and
understand their spatial relationships (e.g., whether an object is reachable).

* VAB-Minecraft: Similar to VAB-OmniGibson, the agent must interpret the current scene in the
game environment to determine its next action. In addition, VAB-Minecraft includes moving
elements such as animals and monsters, which places greater demands on the agent’s visual
understanding to complete tasks.

* VAB-AndroidLab: The agent operates on the graphical interface of an Android system to
complete tasks without access to system APIs and relies solely on visual inputs. At each step, it
analyzes the current screenshot to predict an action—identifying interactive elements such as app
icons or buttons based solely on the screenshot. Executing the action generates a new screenshot
for the next iteration.

e WebArena-Lite: Similar to VAB-AndroidLab, WebArena-Lite is also a GUI-based environment.
In the original paper of WebArena (Zhou et al.| [2023)), they use HTML/Accessibility Tree as the
input, whereas in VAB, we focus on visual inputs and mainly focus on screenshots to predict
actions at each step.

17

Under review as a conference paper at ICLR 2025

* VAB-CSS: The agent must carefully adjust the CSS style file until the rendering matches the
given screenshot. It needs to perceive fine-grained visual differences between two screenshots,
which can often be minimal. This makes VAB-CSS a highly vision-intensive task.

A.3 DETAILS ON TASK INSTANCE COLLECTION

For VAB-OmniGibson, a prototype is a general household activity, such as recycling office papers.
We source these prototypes either by sampling from Behavior-1K or by annotating them ourselves.
Instantiating a prototype involves grounding it in a specific scene (e.g., specific rooms with office
papers and recycling bins) generated in OmniGibson. To increase task diversity, we instantiate each
prototype with multiple random scenes and various initializations of object positions in the room. In
total, we collect 992 instances using 89 prototypes. We sample 181 out of them as our test set.

For VAB-Minecraft, we target high-level task prototypes related to object collecting and then
instantiate them with game configurations using different world seeds or spawn points. We manually
check to ensure that each high-level goal is achievable within its configuration. In total, we collect
628 task instances using high-quality prototypes defined by us, with 116 instances designated as the
test set. Additionally, we sample 132 task prototypes from JARVIS-1, resulting in 596 task instances
that could be leveraged to collect our training trajectories later.

For VAB-AndroidLab, we first select 8 typical Android applications, from system services to third-
party applications (e.g., Maps, Music, etc.) that could be evaluated offline. We come up with 119
test instructions for them and prepare valid groundings in the AVD snapshot (e.g., an MP3 file to
play in the Music APP). For the training task construction, we filter 18 commonly used APPs and
summarize their major functions to around 70 task prototypes.

For WebArena-Lite, we filtered and cleaned 165 test samples from the original WebArena dataset and
collected new task instances for web applications to use in training trajectory collection. Specifically,
we summarize each website’s basic functions and valid items for synthetic queries, created 40 task
prototypes, and fill them with valid and invalid items (e.g., product categories, prices)to
generate specific instructions, resulting in 1,186 training task instances.

For VAB-CSS, a task prototype simply corresponds to one possible corruption of a CSS rule such as
adding or altering a CSS property. To instantiate a task for a specific website, we randomly select a
corruption that results in noticeable visual changes, determined by an SSIM (Wang et al., 2004) score
below O.SEI In addition, we manually annotate each instance with a natural language description of
the difference between the two images as an additional clue to the agent. In total, we collect 1,210
instances and use 165 to form the test set.

A.4 DETAILS ON TRAINING TRAJECTORY COLLECTION

For VAB-OmniGibson, we adopt the program-based solvers focusing on the cost and adaptability.
OmniGibson has no friendly interface for humans to operate on, and requires high-end laptops with
GPUs supporting ray tracing and large main memory (> 10 GB) to run. Thus it is unlikely for us to
find a large number of qualified annotators to label for OmniGibson. LMM agent bootstrapping is fine
but uneconomical, as the task usually takes more steps than others (i.e., up to 100). Program-based
solvers, instead, are suitable for collecting massive high-quality trajectories in OmniGibson.

For VAB-Minecraft, we adopt LMM agent bootstrapping considering adaptability. Minecraft requires
some flexible explorations (as environments are generated randomly), which is beyond the scope
of program-based solvers. Humans need to be well-trained for some time on playing Minecraft
before becoming qualified annotators. Since previous work has explored the usage of memory
augmentation (Wang et al.,|2023c)) for improving LMM agents in Minecraft, it becomes practical to
leverage the bootstrapping strategy by LMM APIs such as gpt —4o for creating training trajectories.

For VAB-AndroidLab, we primarily adopt human demonstrations, accompanied with some LMM
Agent Bootstrapping considering the versatility and flexibility. As android XMLs are less legible
and operable than HTMLs on web with existing automation tools, program-based solvers are not
applicable. Additionally, for many apps require login and internet connection, human demonstration

3This is an empirical choice based on our own experience.

18

Under review as a conference paper at ICLR 2025

is the best solution. LMM agent bootstrapping is employed in some offline APPs such as system
settings to enhance trajectory flexibility.

For VAB-WebArena-Lite, we adopt program-based solvers due to cost and adaptability. On the
one hand, there have been a mature web automation tool Playwright that supports Python. On
the other hand, although WebArena (Zhou et al.,|[2023) is adopting some mirror websites for their
real-world counterparts, their interfaces could be vastly different (e.g., OpenStreetMap in WebArena
vs. Google Maps in real-world). Consequently, human annotators struggle to label demonstrations
on these websites efficiently in our preliminary trials. For LMM agents, they tend to perform too
poorly under mere prompting on WebArena (with success rate less than 20%) for efficient trajectory
construction.

For VAB-CSS, we adopt LMM agent bootstrapping, mostly owing to concerns on flexibility. A
critical challenge for the agent in debugging CSS styles is to iteratively adjust the CSS rules through
a trial and error process, which can be flexibly achieved using the LMM agent bootstrapping scheme.
In particular, we first use gpt —4o to collect trajectories that finally resolve the CSS issue. However,
gpt—4o0 can only achieve a success rate lower than 40%. To collect additional trajectories, we hint
the agent with the target CSS rule to edit, after 5 steps of trials, on tasks where the agent initially
fails.

B VAB-OMNIGIBSON

In this section, we provide additional details about VAB-OmniGibson that are not covered in the
main paper due to space limitations.

B.1 DETAILED DESCRIPTION

Current household datasets or benchmarks are not originally designed for LMMs, making them
less suitable for evaluating today’s LMMs. Behavior-1K (Li e