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ABSTRACT

Positive–Unlabeled (PU) learning aims to train a binary classifier using only la-
beled positive data and a large set of unlabeled samples. Although effective, the
state of the art PU learning methods focus on coarse-grained separation between
positive and negative classes. In real-world datasets, however, hidden stratifica-
tion frequently occurs, where the positive class comprises multiple fine-grained
subclasses with varying prevalence. Ignoring these latent subclasses biases PU
classifiers toward dominant subclasses of the positive class, leading to system-
atic misclassification of rare subclasses. To address this challenge, we propose
a subclass-aware PU learning method that first discovers the hidden subclasses
through a fully automatic and adaptive graph-based approach. It then leverages
the hidden subclasses to select the potential negative examples from the unlabeled
set. Comprehensive experimental results demonstrate that the method consistently
outperforms the existing PU learning methods on a range of datasets under various
distributional settings of the subclasses. A noteworthy property of the proposed
method is that it does not require any input about the number of hidden subclasses,
thereby making it remarkably robust. To the best of our knowledge, our approach
is the first which addresses the hidden subclass issue in PU learning.

1 INTRODUCTION

Learning a Positive-Unlabeled (PU) classifier is inherently challenging because the negative class in-
formation is completely unavailable during training. Unlike conventional supervised classification,
where both positive and negative examples are labeled explicitly, PU learning relies only on la-
beled positive data and a large set of unlabeled samples, which is a mixture of positive and negative
instances. Most existing PU learning methods assume that each class is internally homogeneous,
focusing on separating positive and negative samples in a coarse-grained manner. However, this
assumption rarely holds true in real-world scenarios.

Real datasets are frequently composed of fine-grained subclasses within each coarse class. For
example, in medical imaging, a single disease label may encompass multiple subtypes with distinct
pathological patterns (Dunnmon et al., 2019). Similarly, in object recognition, a high-level label such
as ”vehicle” may consist of cars, buses, and trucks, each forming a unique subclass (Krizhevsky &
Hinton, 2009). This phenomenon, referred to as hidden stratification, occurs when training and
evaluation samples belonging to the same class do not come from a uniform distribution, but rather
from multiple latent subsets with varying prevalence.

Ignoring these subclass structures in PU learning can have consequences. Since negative class infor-
mation is entirely absent, the classifier is typically biased toward dominant subclasses of the positive
class and may fail to generalize to rare or unseen subclasses. If certain fine-grained positive sub-
classes are missing in the labeled data but appear in the unlabeled data or at test time, the classifier
may incorrectly assign them low positive probabilities, causing systematic misclassification. Such
biased decision boundaries undermine the robustness and reliability of PU classifiers, particularly in
safety-critical domains where consistent performance across data from all subclasses is crucial.

Therefore, addressing hidden stratification in PU learning is essential by explicitly modeling or
uncovering fine-grained subclasses within the positive data. This helps to capture diverse and repre-
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sentative samples, safeguard rare subclasses from being ignored, and enhance both interpretability
and robustness of the PU classifier. To mitigate the effects of hidden stratification, we propose
a novel method, Positive-Unlabeled Learning method with Self-correcting Regularized Risk and
Connected Components (PU-ScRR-CC), which explicitly incorporates subclass structure into the
PU learning framework. PU-ScRR-CC enforces the concept of connected components that refine
subclass discovery and enhance label propagation in the labeled positive data. This approach en-
ables a subclass-aware potential negative selection mechanism that better reflects the underlying
data distribution in labeled positive dataset.

The principal observations regarding the performance of PU-ScRR-CC are: particularly effective
under skewed positive distributions, where rare subclasses are sparsely represented in the labeled
data and maintain competitive performance in almost all cases, even when subclass prevalence is
uniform, ensuring the best performing model compared to the state-of-the-art (SOTA) PU methods.

Finally, by aligning subclass-aware representations with decision boundaries, these approaches pro-
duce more robust models that generalizes better to unseen positive data distributions.

2 THE PROPOSED PU-ScRR-CC METHOD

In this work, we introduce a subclass-aware strategy into the PU learning framework and propose
PU-ScRR-CC, which systematically analyzes latent subclass structures and integrates them into
the training process of the proposed PU-ScRR-CC PU classifier. By doing so, we enhance the
model’s ability to generalize beyond dominant subclasses, mitigate the adverse effects of hidden
stratification, and achieve more reliable coarse-grained classification in complex real-world datasets.

2.1 PROBLEM SETUP

Let X be the input space. A binary classifier f maps X consisting of a set of input feature vectors
(xi) to an output space Y = {0, 1} consisting of the binary class labels (yi). We consider a labeled
positive dataset Xp consisting of n samples xp

1, x
p
2, . . . , x

p
n ∈ X , each annotated with a coarse

(superclass) label ypi = 0, ∀i ∈ {1, . . . , n}. In addition to these observed labels, each sample xp
i

is associated with an unobserved fine-grained subclass label zpi ∈ {1, 2, . . . ,K}. Also, there is an
unlabeled dataset Xu consisting of m samples xu

1, x
u
2, . . . , x

u
m ∈ X . The coarse label yui of each xu

i
is unknown, but it must be either 0 or 1. The subclass label zui of each xu

i is also not available.

Therefore the labeled positive dataset Xp and the unlabeled dataset Xu are constructed from the
associated distribution Dp and Du respectively and X = Xp ∪ Xu.

Xp = {xp
i }

n
i=1

i.i.d.∼ Dp, Xu = {xu
i }mi=1

i.i.d.∼ Du

Our objective is to assign each example from X to its correct superclass. Given a function class F ,
the standard approach is to select a classifier f∗ ∈ F that maximizes overall accuracy under the data
distribution D:

f∗ = argmax
f∈F

E
(x,y)∼D

[
1(f(x)=y)

]
(1)

In addition to overall classification performance, we focus on worst-case test accuracy, which corre-
sponds to the accuracy measured exclusively on samples belonging to the rarest subclass within Xp.
The objective of this analysis is to evaluate the effectiveness of mitigating hidden stratification by
explicitly identifying hidden subclasses in PU learning. Specifically, we seek to determine whether
such subclass-aware approaches yield tangible benefits in terms of robustness. Furthermore, we
examine whether worst-case test accuracy remains stable or exhibits significant fluctuations under
skewed and uniformly distributed subclass scenarios.

2.2 PU-ScRR-CC

The initial stage of the framework is dedicated to discovering the latent organization embedded
within the labeled positive dataset Xp. In this step, Xp is converted into an enriched representation
X̂p, where every positive instance xp

i receives an inferred hidden subclass label zpi . This subclass
annotation is essential for revealing fine-scale structures inside the positive class and for mitigating
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hidden stratification effects. The subclass labels zpi are assigned by constructing a similarity graph
among the labeled positive samples and extracting its connected components. This graph-based pro-
cedure naturally groups data points that are strongly linked in feature space, yielding coherent sub-
class partitions without imposing spherical or centroid-based assumptions. By incorporating these
connectivity-driven clusters, the framework captures subclass-level diversity prior to PU classifier
training, enhancing resilience to intra-class variation and subclass imbalance.

HIDDEN SUBCLASS IDENTIFICATION FROM Xp

Let Xp = [xp
1, x

p
2, . . . , x

p
n]

⊤ ∈ Rn×d be the data matrix of labeled positive class with rows xp
i ∈ Rd.

Define the cosine similarity between points xp
i and xp

j as

sij =
⟨xp

i , x
p
j⟩

∥xp
i ∥2 ∥x

p
j∥2

for i ̸= j

Set sii = −∞ enforces exclusion of self-neighbors. Let S = (sij)
n
i,j=1 ∈ Rn×n denote the

resulting similarity matrix.

For each index i ∈ {1, . . . , n}, define its (cosine) 1-nearest neighbor(NN),

π(i) ∈ arg max
j∈{1,...,n}\{i}

sij ,

with an arbitrary but fixed tie-breaking rule if the maximizer is not unique.

Define an undirected graph G = (V,E) with vertex set V = {1, . . . , n} and edges given by the
symmetrized 1-NN relation:

{i, j} ∈ E ⇐⇒
(
π(i) = j

)
or
(
π(j) = i

)
.

Equivalently, the adjacency matrix A ∈ {0, 1}n×n is

Aij = 1{π(i)=j or π(j)=i}, Aii = 0.

Let the connected components of G be C1, . . . , CK , where Ck ⊆ V , Ck ∩ Ck′ = ∅ for k ̸= k′, and⋃K
k=1 Ck = V . Define the cluster-label map I : {1, . . . , n} → {1, . . . ,K} by

I(i) = k iff i ∈ Ck.

The final clustering assignment Z = (zp1, . . . , z
p
n)

⊤ yields the subclass-aware labeled set X̂p, explic-
itly capturing fine-grained structure in the positive class. This refined representation is combined
with Xu to form X ∗, on which PU-ScRR is applied. Incorporating subclass information enables
balanced learning across both common and rare subclasses, improving robustness and worst-case
performance.

2.3 PU-ScRR

The proposed PU-ScRR-CC builds on the PU-ScRR framework to mitigate hidden stratification
in the labeled positive set Xp. It clusters Xp via similarity-based connected-component analysis,
assigning inferred subclass labels to obtain X̂p. In the warm-start phase, high-confidence negatives
from Xu form the candidate negative set X̃n. A deep classifier gθ is then trained on X̂p and X̃n to
learn robust decision boundaries under the PU setting. The details of each phase are discussed in the
subsequent sections.

WARM-START PHASE: SELECTING POTENTIAL NEGATIVES FROM Xu

The first phase of PU-ScRR focuses on gathering reliable information about the negative class by
extracting representative samples from the unlabeled dataset. The intuition is to identify data points
inXu that are least similar to the clustered labeled positive set X̂p and thus most likely to be negative.
This step provides a “warm start” for training the PU classifier in the subsequent phase.

It is well-known that neural networks tend to learn “easy” samples—those with clearly separable
features—more rapidly than “hard” samples that exhibit subtle or ambiguous characteristics (Chat-
terjee, 2020). Leveraging this property, we design a mechanism to preferentially identify easy neg-
ative examples from the unlabeled data.
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Algorithm 1 Potential negative sample selection algorithm

Input: Clustered labeled positive data X̂p, unlabeled dataXu, number of epochs k, potential negative
sampler model hθ̄. SK = {1, 2, . . . ,K} be the set of all possible hidden subclass labels in X̂p

Output:Trained potential negative sampler h∗
θ̄
, potential negative sample set X̃n.

1: Initialize X̃n ← ∅.
2: Treat all unlabeled data as negatives: Xn ← Xu.
3: Initialize model hθ̄ and optimization routine A.
4: for i = 1 to k do
5: Shuffle (Xp,Xn) into B mini-batches: (X j

p ,X j
n ), j = 1, . . . , B.

6: for j = 1 to B do
7: Compute gradient:

∇θ̄

(
1

|X j
p |

∑
xp∈X j

p

zp∈SK

ℓ(hθ̄(xp), zp) +
1

|X j
n |

∑
xn∈X j

n

ℓ(hθ̄(xn), (C + 1))

)

and update θ̄ with algorithm A.
8: end for
9: end for

Let X̂p = {xp
i }ni=1 denote the set of labeled positives associated with a hidden subclass label zpi ,

and Xu = {xu
i }mi=1 denote the set of unlabeled samples. zpi ∈ {1, 2, . . . ,K}, where K is the total

number of possible hidden subclasses in Xp. Initially, we treat Xu as if it were entirely negative and
train a (K+1)-ary classifier hθ̄ for k epochs (with k chosen empirically). This short training period
emphasizes the easy-to-learn negative samples while limiting the influence of ambiguous ones.

The classifier hθ̄ consists of a feature extractor φ(·) for generating representations φ(x) and a feed-
forward head ς(·) trained with cross-entropy loss. After warm-start training, each unlabeled sample
xu
i is assigned a confidence score βi = h∗

θ̄
(xu

i ). The top-scoring samples form the candidate negative
set X̃n with |X̃n| = |X̂p|, while low-confidence samples are treated as unreliable. The warm-start
procedure is detailed in Algorithm 1.

TRAINING PHASE: LEARNING PU CLASSIFIER IN SUPERVISED PARADIGM

In the second phase, the PU classifier gθ is trained using Xp as positives and X̃n as negatives. It
reuses the pre-trained feature extractor φ(·) from the warm start, feeding representations vi = φ(xi)
into two heads: ω1(·) for classification and ω2(·) for confidence estimation.

The overall classifier output is given by gθ(x) = (µ, κ), µ = ω1(v), κ = ω2(v), where κi quan-
tifies the likelihood that an unlabeled sample belongs to the negative class. Formally, the classifier
is a mapping gθ : X ∗ → [0, 1]× R, X ∗ = Xp ∪ X̃n.

To train gθ, we define empirical risks associated with partially labeled data. For a given sample set
X = {x1, . . . , xn} and classifier output µi = ω1(φ(xi)),

L̂+(gθ;X) =
1

n

n∑
i=1

ℓ(µi, 1), (2)

L̂−(gθ;X) =
1

n

n∑
i=1

κ+
i ℓ(µi, 0), (3)

where ℓ(µi, yi) = −
[
yi lnµi + (1 − yi) ln(1 − µi)

]
is the binary cross-entropy loss and κ+

i =

max(κi, 0) ensures negative confidence scores of an unlabeled data. The first term L̂+ measures
the risk under the assumption that samples are truly positive, while L̂− evaluates the risk assuming
they are truly negative. Combining these, the objective function for PU classification in PU-ScRR is

4
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Algorithm 2 PU classification algorithm (PU-ScRR)

Input: Labeled positive dataXp, potential negative data X̃n, hyperparameter δ ∈ (0, 1), PU classifier
gθ.
Output:Trained PU classifier g∗θ.

1: Form the combined training set X ∗ ← Xp ∪ X̃n. Initialize the classifier gθ and a stochastic
optimizer A.

2: while training error is not converged do
3: Partition the combined dataset X ∗ into B mini-batches, denoting the i-th mini-batch as
X ∗

i = (X (i)
p , X̃ (i)

n ).

4: L̂+(gθ;X ∗
i )←

1

|X i
p |
∑

xp∈X i
p

ℓ(µp, 1), µp = ω1(φ(xp)) for each xp ∈ X i
p

5: L̂−(gθ;X ∗
i ) ← 1

|X̃ i
n |

∑
xn∈X̃ i

n
κ+
n ℓ(µn, 0), where κ+

n = max
(
ω2(φ(xn)), 0

)
for each xn ∈

X̃ i
n .

6: Reg(gθ;X ∗
i )← δ

∑
xi∈X∗

i

|1− κ+
i |

7: Set the gradient
∇θ(L̂+(gθ;X ∗

i ) + L̂−(gθ;X ∗
i ) + Reg(gθ;X ∗

i ))
8: end while

defined as:

R̂PU-ScRR(θ; gθ) =
1

|Xp|
∑

xp∈Xp

ℓ(µp, 1) +
1

|X̃n|

∑
xn∈X̃n

λ+
n ℓ(µn, 0) + δ

∑
xi∈X∗

∣∣1− κ+
i

∣∣, (4)

where δ is a regularization coefficient encouraging confidence scores to remain close to unity for
high-confidence negative samples. Algorithm 2 summarizes the training procedure for the PU clas-
sifier gθ based on the above risk formulation.

3 EXPERIMENTS

To evaluate the efficiency of the proposed algorithm PU-ScRR-CC, we implement the algorithms on
the CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), Fashion-
MNIST (Xiao et al., 2017) and STL-10 (Coates et al., 2011) datasets.

3.1 DETAILS OF CLASSIFICATION TASKS

We have designed and performed several classification experiments on the CIFAR-10, CIFAR-100,
Fashion-MNIST, and STL-10 datasets. We have conducted a total of 8 distinct binary classification
tasks depending on the chosen classes in labeled positive dataset.

The binary classification tasks span CIFAR-10, CIFAR-100, Fashion-MNIST, and STL-10, differ-
ing mainly in the subclass composition of the labeled positive set (Xp) and unlabeled set (Xu).
CIFAR-10-1 uses two animal subclasses in Xp and one non-animal subclass in Xu, while CIFAR-
10-2 swaps all animal and non-animal subclasses between the sets. CIFAR-100 tasks classify aquatic
mammals vs. fish, with CIFAR-100-1 using 2 vs. 1 subclasses and CIFAR-100-2 using all 5 sub-
classes for both classes. Fashion-MNIST tasks classify topwear vs. others, varying only in the
number of subclasses per class. STL-10-1 and STL-10-2 define vehicle–animal and animal–vehicle
tasks, each with two subclasses in Xp and one in Xu.

3.2 ANALYSIS OF EXPERIMENTAL RESULTS

To comprehensively evaluate the effectiveness of PU-ScRR-CC, we conduct eight controlled ex-
periments across four widely used benchmark datasets: CIFAR-10, CIFAR-100, Fashion-MNIST,
and STL-10. For comparison, we include several state-of-the-art (SOTA) PU learning approaches.
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Table 1: Comparison of mean overall test accuracies (with standard deviations) of PU-ScRR-CC
against other SOTA methods on CIFAR–10 and CIFAR–100 datasets.

Dataset Task
Name αp

Class label
ratio in Xp

Methods

uPU nnPU (TED)n HolisticPU LaGAM PU-ScRR PU-ScRR-CC

CIFAR–10

CIFAR-10-1

0.8
9:1 80.8± 1.3 74.1± 1.7 68.1± 0.9 80.1± 0.8 79.4± 1.5 80.5± 0.5 82.9± 0.3
1:1 84.1± 0.8 83.8± 0.7 82.4± 0.1 83.0± 2.8 84.6± 0.9 85.8± 0.8 85.5± 0.5
1:9 82.1± 0.8 83.1± 2.2 81.3± 1.2 72.1± 6.0 80.9± 0.7 82.4± 0.9 84.0± 0.5

0.5
9:1 77.4± 2.0 81.7± 0.8 78.6± 1.7 85.8± 1.8 86.3± 0.8 86.1± 0.4 87.2± 0.3
1:1 83.7± 0.9 85.7± 0.4 88.8± 0.6 86.5± 1.2 88.8± 0.5 89.7± 0.6 88.5± 0.6
1:9 83.0± 1.0 85.4± 0.8 87.5± 0.6 86.6± 1.2 87.0± 1.0 87.5± 0.7 88.4± 0.3

0.2
9:1 77.4± 1.8 83.4± 1.0 87.8± 0.4 86.6± 0.2 87.2± 0.9 88.0± 0.4 88.6± 0.6
1:1 83.0± 1.4 88.3± 0.4 88.7± 0.3 87.6± 0.8 89.9± 0.2 90.0± 0.7 89.5± 0.3
1:9 78.0± 2.2 86.0± 0.9 89.0± 0.7 86.8± 0.8 88.2± 0.3 88.0± 0.6 89.0± 0.2

CIFAR-10-2

0.8 8:4:2:1 81.6± 1.9 81.4± 1.9 76.3± 0.8 83.0± 0.4 84.3± 0.6 84.5± 0.8 86.5± 0.3
4:2:1:1 82.0± 1.8 83.4± 1.3 77.8± 0.5 81.8± 0.3 84.4± 0.4 87.6± 0.5 88.2± 0.5

0.5 8:4:2:1 82.6± 1.4 83.0± 0.7 85.3± 0.9 87.5± 0.9 87.0± 0.5 87.4± 0.4 89.2± 0.3
4:2:1:1 81.7± 2.2 83.3± 2.0 86.7± 1.3 85.7± 0.3 87.2± 0.1 91.7± 0.6 89.5± 1.0

0.2 8:4:2:1 88.0± 0.3 90.2± 0.2 90.7± 0.2 89.0± 5.7 90.8± 0.4 91.3± 0.1 91.6± 0.6
4:2:1:1 88.9± 0.5 91.1± 0.4 91.5± 0.3 87.7± 3.5 91.2± 0.2 93.6± 0.9 92.5± 0.3

CIFAR–100

CIFAR-100-1

0.8
9:1 59.2± 0.9 59.3± 0.5 60.0± 0.2 55.5± 0.8 51.1± 0.5 58.5± 0.6 65.5± 0.1
1:1 63.0± 0.5 50.0± 0.0 64.3± 0.4 61.4± 0.8 60.0± 0.8 67.9± 0.2 61.8± 0.6
1:9 63.6± 0.7 68.9± 0.9 68.5± 0.4 63.0± 0.6 67.2± 0.5 69.0± 0.2 69.9± 0.7

0.5
9:1 63.6± 0.8 67.1± 0.4 66.3± 0.8 63.1± 0.5 56.8± 0.7 65.0± 0.6 68.6± 0.1
1:1 64.1± 0.6 69.8± 0.1 71.4± 0.8 66.4± 0.1 70.2± 0.6 72.3± 0.2 71.6± 0.2
1:9 70.1± 0.6 70.1± 0.4 72.3± 0.3 69.8± 0.5 70.2± 0.4 71.3± 0.8 74.5± 0.4

0.2
9:1 66.9± 0.1 70.4± 0.4 71.5± 0.4 71.3± 0.9 66.4± 0.6 67.6± 0.9 72.4± 0.1
1:1 68.4± 0.3 50.0± 0.0 72.4± 0.5 72.5± 0.9 71.9± 0.5 73.5± 0.1 73.5± 0.7
1:9 72.6± 0.8 71.1± 0.6 72.8± 0.5 73.9± 0.7 73.5± 0.3 74.2± 0.2 74.8± 0.8

CIFAR-100-2

0.8 5:4:3:2:1 75.4± 0.9 77.6± 0.1 77.5± 0.3 71.0± 0.8 65.1± 0.1 76.0± 0.7 79.0± 0.8
1:1:1:1:1 77.0± 0.7 78.0± 0.1 78.4± 0.5 69.6± 0.1 66.1± 0.5 81.1± 0.6 80.1± 1.0

0.5 5:4:3:2:1 74.5± 0.2 75.8± 0.7 74.7± 0.6 65.0± 0.2 74.0± 0.8 75.8± 0.8 76.8± 0.5
1:1:1:1:1 69.6± 0.9 72.8± 0.5 75.1± 0.3 75.4± 0.8 74.5± 0.5 78.6± 0.2 77.7± 0.1

0.2 5:4:3:2:1 77.0± 0.6 72.3± 0.4 76.7± 0.6 80.1± 0.2 77.2± 0.5 80.3± 0.4 81.1± 0.8
1:1:1:1:1 73.0± 0.6 71.5± 0.6 78.6± 0.7 80.3± 0.5 77.4± 0.6 81.9± 0.6 81.7± 0.1

Specifically, uPU and nnPU assume prior knowledge of the positive class prior αp, whereas (TED)n
relies on its estimation. HolisticPU takes a different route by estimating trend scores for unlabeled
samples to identify and resample potential negatives. In contrast, PU-ScRR-CC avoids both class
prior estimation and heuristic resampling, making it more broadly applicable in real-world scenarios
where subclass distributions and priors are unknown.

Table 1 presents the mean overall test accuracy values of PU-ScRR-CC and other SOTA PU clas-
sifiers with standard deviations on CIFAR–10 and CIFAR–100 datasets. PU-ScRR-CC surpasses
SOTA methods by an approx margin of 1%−7% in almost all cases, regardless of the αp values
and the non-uniform subclass distribution in Xp on CIFAR–10 and CIFAR–100 datasets. When sub-
classes are uniformly represented, PU-ScRR outperforms PU-ScRR-CC by 0%−6% approximately.
The best performing results are indicated in bold.
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(c) CIFAR-10-2@4:2:1:1

Figure 1: Comparison of worst-case test accuracies of PU-ScRR-CC against other SOTA methods
under varying proportions of positive data in the unlabeled set Xu on CIFAR–10 dataset.

The worst-case test accuracies of PU-ScRR-CC and other SOTA methods on the CIFAR–10 dataset
are presented in Figure 1. PU-ScRR-CC outperforms almost all the cases with a minimum of 4.4%
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average guaranteed improved worst-case test accuracy. Figure 1c indicates that PU-ScRR surpasses
PU-ScRR-CC as the top-performing model. It is noteworthy that the ship subclass samples are
uniformly represented in Xp.
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(a) CIFAR-100-1@9:1
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(b) CIFAR-100-2@dist1
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(c) CIFAR-100-2@dist2

Figure 2: Comparison of worst-case test accuracies of PU-ScRR-CC against other SOTA methods
under varying proportions of positive data in the unlabeled set Xu on CIFAR–100 datasets.

PU-ScRR-CC achieves significant improvement in worst-case test accuracy across nearly all scenar-
ios. The highest improvement margin is observed in figure 2a, which is approx. 37% on average
across all considered αp. Figure 2c demonstrates the superior performance of PU-ScRR-CC, even
when all subclasses are uniformly represented in Xp.

Table 2 reports the mean test accuracies (with standard deviations) of PU-ScRR-CC and other state-
of-the-art PU classifiers on Fashion–MNIST and STL–10 datasets. PU-ScRR-CC surpasses SOTA
methods by approximately 1%−6% across most cases, regardless of αp values or subclass imbalance
in Xp, with best results highlighted in bold. When subclasses are uniformly represented, PU-ScRR
outperforms PU-ScRR-CC by 0%−2% approximately.

Table 2: Comparison of mean overall test accuracies (with standard deviations) of PU-ScRR-CC
against other SOTA methods on Fashion–MNIST and STL–10 datasets.

Dataset Task
Name αp

Class label
ratio in Xp

Methods

uPU nnPU (TED)n HolisticPU LaGAM PU-ScRR PU-ScRR-CC

Fashion–MNIST

F-MNIST-1

0.8
9:1 89.2± 2.9 95.5± 0.4 76.8± 2.7 80.3± 1.7 87.1± 3.4 96.6± 0.8 97.4± 1.0
1:1 94.5± 0.1 96.5± 0.2 90.1± 1.5 79.1± 2.5 97.7± 0.3 98.5± 0.3 98.6± 0.2
1:9 88.3± 5.1 94.7± 1.8 91.6± 2.3 78.6± 3.6 84.7± 1.1 97.8± 0.5 98.4± 0.1

0.5
9:1 92.3± 2.9 97.2± 0.1 86.0± 1.0 95.4± 1.2 97.0± 0.2 97.7± 0.1 98.1± 0.3
1:1 95.9± 0.2 98.1± 0.2 96.7± 0.3 97.5± 1.5 98.2± 0.5 98.9± 0.2 98.7± 0.1
1:9 83.1± 2.6 97.8± 0.3 97.5± 0.3 97.9± 1.0 95.0± 0.7 98.7± 0.2 98.9± 0.2

0.2
9:1 87.1± 2.7 96.0± 0.3 96.9± 0.2 95.0± 0.2 96.9± 0.3 98.6± 0.3 98.9± 0.2
1:1 90.9± 0.8 97.8± 0.1 97.0± 0.1 96.1± 0.3 97.4± 0.2 98.9± 0.4 98.3± 0.5
1:9 83.5± 2.1 96.1± 0.6 96.8± 0.1 96.7± 0.4 95.7± 0.4 98.0± 0.3 98.6± 0.3

F-MNIST-2

0.8 8:4:2:1 92.1± 0.2 93.3± 0.9 84.1± 2.0 77.7± 2.0 86.1± 1.3 94.1± 0.4 95.7± 0.6
4:2:1:1 94.2± 0.4 93.6± 0.2 84.1± 2.1 74.3± 2.4 86.0± 0.5 95.2± 0.8 95.5± 0.3

0.5 8:4:2:1 93.8± 0.4 93.4± 0.2 92.9± 0.4 73.6± 1.9 93.4± 0.2 94.2± 1.0 96.8± 0.6
4:2:1:1 91.2± 0.4 91.4± 0.3 91.1± 1.6 73.1± 1.6 91.6± 0.4 93.8± 0.9 93.8± 0.5

0.2 8:4:2:1 90.2± 0.3 92.7± 0.2 92.8± 0.4 80.1± 2.7 93.8± 0.1 95.3± 1.8 96.2± 0.5
4:2:1:1 92.1± 0.7 93.9± 0.4 94.8± 0.6 82.7± 1.9 94.0± 0.1 98.0± 0.1 97.1± 0.3

STL–10

STL-10-1

0.8
9:1 73.6± 1.7 62.9± 0.3 74.4± 1.6 74.5± 1.2 73.2± 1.4 79.6± 0.1 80.9± 0.6
1:1 83.0± 0.9 70.0± 0.1 85.4± 0.6 79.2± 2.5 80.0± 0.7 88.9± 0.6 88.1± 0.4
1:9 82.7± 1.1 67.0± 0.3 83.8± 1.4 74.1± 1.3 78.1± 1.0 84.1± 1.3 87.9± 0.4

0.5
9:1 80.4± 2.4 82.1± 1.0 83.4± 2.8 74.9± 2.5 83.7± 1.7 86.3± 0.8 91.3± 0.8
1:1 87.1± 1.4 88.1± 0.2 91.9± 0.7 87.0± 0.9 91.6± 0.9 96.1± 0.8 93.9± 0.9
1:9 85.8± 2.1 86.8± 1.1 90.6± 1.0 76.8± 0.8 90.4± 1.6 88.9± 0.7 92.6± 0.2

0.2
9:1 84.0± 1.6 85.4± 1.1 88.9± 0.4 83.9± 1.7 88.0± 0.8 89.1± 0.6 91.4± 0.2
1:1 86.1± 0.8 88.9± 1.0 92.4± 0.7 90.0± 1.1 91.6± 0.4 96.8± 0.8 96.5± 0.1
1:9 79.4± 1.5 86.2± 1.2 91.3± 0.2 82.8± 0.6 90.1± 0.5 93.1± 0.8 95.4± 0.4

STL-10-2

0.8
9:1 71.0± 1.3 73.1± 1.8 75.9± 1.8 79.5± 1.6 82.6± 1.2 82.3± 0.9 83.6± 0.2
1:1 80.5± 1.1 83.3± 0.8 84.9± 1.7 84.6± 0.4 86.0± 1.8 89.9± 0.6 88.5± 0.6
1:9 76.0± 1.5 77.6± 0.6 87.3± 1.2 82.5± 1.9 84.0± 1.8 86.5± 0.3 92.3± 0.9

0.5
9:1 84.4± 2.0 90.9± 1.1 92.9± 1.5 79.7± 1.8 89.5± 1.7 93.4± 0.5 94.0± 1.7
1:1 91.0± 1.5 93.1± 0.5 94.1± 1.7 85.9± 1.6 92.0± 0.3 96.2± 0.8 95.0± 0.2
1:9 88.2± 1.3 92.1± 1.4 93.3± 0.7 85.2± 1.1 90.7± 1.3 94.5± 0.3 95.4± 0.2

0.2
9:1 78.0± 1.3 80.0± 0.4 84.2± 0.9 86.8± 1.6 93.7± 1.8 93.1± 1.3 96.1± 0.6
1:1 85.8± 0.6 88.6± 0.4 95.5± 0.6 92.4± 1.0 95.7± 1.0 96.6± 0.6 96.8± 0.6
1:9 84.1± 0.2 84.0± 0.9 92.7± 0.2 91.4± 0.6 92.5± 1.3 94.4± 0.3 95.0± 0.4
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Figure 3 represents the worst-case test accuracies of PU-ScRR-CC and other SOTA methods on
Fashion–MNIST & STL–10 datasets. PU-ScRR-CC outperforms almost all the cases with a min-
imum of 1.3% average improved worst-case test accuracy. The highest improvement margin is
observed in fig. 3i, which is approx. 10.67% on average across all considered αp. Figure 3d and
figure 3e indicate that PU-ScRR surpasses PU-ScRR-CC by 2.6% and 2.1% respectively as the top-
performing model. It is noteworthy that, in both cases, the coat and shirt subclass samples are
uniformly represented in Xp.
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(a) F-MNIST-1@9:1
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(b) F-MNIST-1@1:9
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(c) F-MNIST-2@8:4:2:1
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(d) F-MNIST-2@4:2:1:1
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(e) F-MNIST-2@4:2:1:1
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(f) STL-10-1@9:1
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(g) STL-10-1@1:9
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(h) STL-10-2@9:1
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(i) STL-10-2@1:9

Figure 3: Comparison of worst-case test accuracies of PU-ScRR-CC against other SOTA methods
under varying proportions of positive data in the unlabeled set Xu on Fashion–MNIST and STL–10
datasets.

4 RELATED WORK

This section presents a review of representative studies on PU learning, with particular emphasis
on those most pertinent to PU-ScRR-CC. Furthermore, we provide a brief discussion on the related
research on the concept of hidden stratification and its applications across different domains.

4.1 PU LEARNING

PU learning has been actively investigated for several decades due to its broad range of applications.
Bekker and Davis (Bekker & Davis, 2020) provided a comprehensive survey summarizing the key
developments and practical use cases of PU learning.
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Early research predominantly adopted the two-step approach for solving PU learning problems,
particularly in text classification. This strategy first identifies reliable negative samples from the
unlabeled set and subsequently uses them in a supervised learning setup. Representative methods
following this paradigm include (Li & Liu, 2003; Yu et al., 2004; Shunxiang et al., 2023). However,
the performance of such methods is highly sensitive to misidentified negatives, which can severely
degrade classifier accuracy.

Recent approaches formulate PU learning by assigning weights to unlabeled instances, which rep-
resent the probability of belonging to the positive or negative class (Lee & Liu, 2003; Liu et al.,
2005; Zhang & Lee, 2005). Accurate estimation of the class-prior probability αp is critical for
reliable weighting, yet its empirical estimation is error-prone, often degrading performance. To ad-
dress these limitations, recent works have introduced unbiased risk estimators (Du Plessis et al.,
2015; Kiryo et al., 2017; Garg et al., 2021), which bypass manual weight tuning and provide im-
proved results. Later, abs-PU (Hammoudeh & Lowd, 2020) replaced the max-term with an absolute
value penalty, simplifying optimization while achieving comparable or slightly superior accuracy.
(TED)n (Garg et al., 2021) integrates class-prior estimation (BBE) with a simple CVIR objective in
an iterative manner, showing consistent improvements across benchmarks. Other recent advances
include HolisticPU (Xinrui et al., 2023), which resamples positive data and tracks predictive trends
to refine labels, LaGAM (Long et al., 2024), which uses hierarchical contrastive learning and meta-
learning for robust label refinement.

4.2 HIDDEN STRATIFICATION

The phenomenon of hidden stratification arises when coarse class labels conceal semantically
meaningful subclasses that exhibit highly variable performance. Oakden-Rayner et al. (Oakden-
Rayner et al., 2020) first demonstrated that models achieving high overall accuracy may still under-
perform on rare yet clinically critical subclasses. They proposed three complementary strategies to
measure hidden stratification: schema completion, which exhaustively labels fine-grained subclasses
on the test set, error auditing, which manually inspects systematic failure patterns, and algorith-
mic discovery, which applies unsupervised clustering in the learned feature space. These methods
revealed substantial subclass-level performance gaps in medical imaging and vision benchmarks.
While schema completion and auditing offer precise assessments, they require costly expert anno-
tation, whereas clustering can miss subclasses that are not well separated in feature representations.
This work underscored the need for principled mitigation methods beyond mere diagnosis.

Several methods address underrepresented subpopulations. SBL (Chen et al., 2019) preserves accu-
racy on user-defined slices but assumes known subgroups. SKD (Sajedi et al., 2022) distils subclass
knowledge from teacher to student models but needs subclass labels. PromptAttack (Metzen et al.,
2023) synthesizes rare subgroup examples using text-to-image generation but is prompt-sensitive
and computationally expensive.

Hidden stratification is crucial in medical applications. Zeng et al. (Zeng et al., 2023) study lung
nodule malignancy classification using spiculation-, clustering-, and malignancy-based stratifica-
tion. Poles et al. (Poles et al., 2024) propose a Convolutional AutoEncoder K-means approach for
osteoporosis grading, effective but domain-specific and less generalizable to other modalities

5 CONCLUSION

This work introduced the subclass-aware PU learning method PU-ScRR-CC, designed to address
hidden stratification in positive–unlabeled classification. By explicitly modeling latent subclass
structures within the labeled positive data, the approach delivers superior performance compared to
state-of-the-art PU methods—not only in terms of overall accuracy but also in terms of worst-case
accuracy with respect to rare positive subclasses. PU-ScRR-CC avoids the need for any hyperparam-
eter tuning and is computationally more efficient, making it attractive in large-scale applications.

The method is particularly effective under skewed subclass distributions, where rare subclasses are
underrepresented in the labeled positive data, yet it also maintains competitive performance when
subclass prevalence is uniform. The results demonstrate that incorporating subclass-aware potential
negative sample extraction significantly improves the robustness and reliability of PU classifiers
across diverse real-world scenarios.
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A APPENDIX

A.1 DETAILS OF THE STATE-OF-THE-ART (SOTA) METHODS

We have performed experiments to compare PU-ScRR-CC with 5 SOTA and open-source PU learn-
ing approaches. The compared PU learning approaches include uPU (Du Plessis et al., 2015), nnPU
(Kiryo et al., 2017), (TED)n (Garg et al., 2021), HolisticPU (Xinrui et al., 2023), and LaGAM (Long
et al., 2024). A brief description of those compared PU learning algorithms is provided here.

Du Plessis et al. introduced an unbiased risk estimator based on non-convex loss functions satisfying
a specific symmetry condition, which requires the mixture proportion αp, and later Du Plessis et al.
extended this approach to convex loss functions, which is known as uPU in PU learning literature.
Recognizing the risk of overfitting in modern overparameterized models, Kiryo et al. proposed
nnPU a regularized approach that suppresses the loss on unlabeled data by clipping it at zero.

(TED)n is a combination of two methods: (i) BBE—used to determine the ratio of positive examples
in the unlabeled data; (ii) CVIR-a simple and efficient objective for PU-learning. (TED)n combines
these two methods in an iterative manner and outperforms across various benchmarks.

HolisticPU monitors prediction dynamics during training to compute a predictive trend score. This
score is used to resample positive data and infer labels for unlabeled examples, addressing class
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imbalance and noisy supervision. Extensive experiments show improved accuracy and robustness
over existing PU learning methods, narrowing the gap to fully supervised learning.

LaGAM framework uses hierarchical contrastive learning to extract latent group semantics for better
feature representation. It applies meta-learning–based iterative label refinement to reduce label noise
and improve robustness in PU learning.

The source codes of these 5 SOTA PU learning algorithms i.e., uPU1, nnPU1, (TED)n2, Holis-
ticPU3, and LaGAM4 are publicly available online.

A.2 EXPERIMENTAL SETUP

In this section, we discuss the following things:

1. the strategy used to construct the labeled positive set Xp and the unlabeled set Xu for each
classification task, and

2. the evaluation metrics that are used to assess the PU learning algorithms

CONSTRUCTION OF Xp AND Xu

The training dataset consists of a labeled positive set Xp, containing |Xp| labeled positive samples,
and an unlabeled set Xu, comprising |Xu| samples drawn from both positive and negative classes. In
the subsequent analysis, the class labels within Xu are intentionally discarded. The labeled positive
samples, denoted by {xp

i }
|Xp|
i=1 , are randomly selected from the overall population of positive exam-

ples. The positive class prior in Xu, denoted by αp, represents the proportion of positive samples
within the unlabeled set. To construct Xu, a random selection of αp · |Xu| positive samples and
(1− αp) · |Xu| negative samples is drawn from their respective populations.

The sizes of the training set (X ∗ = Xp ∪ Xu) and the test set for all considered experiments are
summarized in Table 3. To better reflect practical scenarios, we evaluate performance using three
different values of αp, defined as Dαp = {0.8, 0.5, 0.2}. These values are chosen to analyze how
the classifier behaves when Xu is dominated by positive samples (αp = 0.8), balanced (αp = 0.5),
or dominated by negative samples (αp = 0.2).

The objective also requires how the classifier’s performance is affected by the different distributional
presence of the hidden subclasses in Xp. Hence, we have considered 3 different class label ratios for
all the experiments where only 2 hidden subclasses (z1, z2) are present in Xp.

1. Ratio 1 (9: 1): Dominating subclass is z1 and z2 is the rare subclass.

2. Ratio 2 (1: 1): Both z1 and z2 are uniformly present.

3. Ratio 3 (1: 9): Dominating subclass is z2 and z1 is the rare subclass.

Classification tasks as CIFAR-10-3, CIFAR-100-2, and F-MNIST-2 involve 4, 5, 4 subclasses re-
spectively in Xp. The considered class label ratios for CIFAR-10-3 and F-MNIST-2 are 8: 4 : 2 : 1
and 4: 2 : 1 : 1. Similarly, the class label ratios for CIFAR-100-2 are considered as 5: 4 : 3 : 2 : 1
and 1: 1 : 1 : 1 : 1. These varying subclass ratios are chosen to evaluate the classifier’s performance
under scenarios where certain subclasses dominate, others are rare, and all subclasses are equally
represented.

METRIC USED FOR EVALUATION

To assess the performance of PU-ScRR-CC and other SOTA methods, we use test accuracy consid-
ering all subclasses as the evaluation metric. This metric is termed as overall test accuracy, which
is standard for binary classification tasks. The reported results correspond to the mean overall test
accuracy over four random seeds, along with the standard deviation.

1https://github.com/kiryor/nnPUlearning
2https://github.com/acmi-lab/PU_learning
3https://github.com/wxr99/HolisticPU
4https://github.com/llong-cs/LaGAM
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We introduce another evaluation metric, termed worst-case test accuracy, which measures the clas-
sifier’s accuracy on the rarest subclass. Assessing performance on such underrepresented subclasses
is a key focus of this work, as worst-case test accuracy provides a more reliable indication of the
model’s behaviour on rare but critical cases than the average overall test accuracy across the dataset.

MODEL ARCHITECTURE

In PU learning, various classifiers effectively handle benchmark datasets. Our method uses a hybrid
model based on feed-forward neural networks (FFNN) with ReLU activations. We employ a pre-
trained ResNet18 (He et al., 2016) for all datasets. A 5-layer FFNN ς(·) with architecture d-1024-
512-1024-256-(k + 1), where d is the feature dimension from the base model, is appended during
the Warm-Start phase. The k-value for PU-ScRR is fixed at 1. In PU-ScRR-CC, k corresponds to
the number of connected components in Xp, where each component represents a group of strong
neighbouring samples under a chosen distance metric. After extracting potential negatives, both
labeled positive and potential negative samples are reprocessed through the same base model and
passed to two FFNNs: ω1(·) (same as ς) and ω2(·). To ensure fairness, all PU algorithms use features
from the same pre-trained backbone.

CONFIGURATION

All experiments are implemented in PyTorch (Paszke et al., 2019) and executed on an NVIDIA A100
GPU. PU-ScRR-CC require a warm start to identify potential negative samples and are pretrained for
5 epochs in each experiment. According to (Xinrui et al., 2023), HolisticPU uses 15 warm-up epochs
to estimate unlabeled sample trend scores for resampling, while (Long et al., 2024) reports that
LaGAM uses 20 warm-up epochs to stabilize representation learning before applying meta-learning.
Stochastic Gradient Descent with a 0.9 momentum is used as the optimizer for all experiments on
CIFAR-10, CIFAR-100, Fashion–MNIST, and STL-10. The learning rate is selected via grid search
in [0.001, 0.1], and the hyperparameter γ in R̂PU−ScRR is tuned independently over [0.001, 1]. For
CIFAR-10 and Fashion–MNIST, training runs for 50 epochs per seed with a batch size of 32; CIFAR-
100 and STL-10 use the same setup with a batch size of 16. We report mean overall test accuracy
with standard deviation as well as the worst-case test accuracy across all seeds.

CLASSIFICATION TASKS

The detailed specifications of the conducted experiments are listed in Table 3.

Dataset Task
Name

Pos.
Class

Neg.
Class

Train Set Test Set

|Xp| |Xu| # samples

CIFAR-10
CIFAR-10-1 Bird (2),

Cat (3) Airplane (0) 1000 5000 2000

CIFAR-10-2 Non-animal Animal 3750 15000 10000

CIFAR-100
CIFAR-100-1 Dolphin (30),

Seal (72) Shark (73) 100 600 200

CIFAR-100-2 Aquatic
mammals (0) Fish (1) 1000 1500 1000

Fashion–MNIST
F-MNIST-1 T-shirt/top (0),

Pullover (2) Trouser (1) 1000 6000 2000

F-MNIST-2 Topwear Others 4800 15000 5000

STL-10
STL-10-1 Airplane (0),

Car (2) Bird (1) 200 600 200

STL-10-2 Bird (1),
Cat (3) Airplane (0) 200 600 200

Table 3: Specification of datasets for different classification tasks
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