

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNMASKING AND EXPLOITING HIDDEN STRATA FOR ROBUST AND INCLUSIVE POSITIVE UNLABELED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Positive–Unlabeled (PU) learning aims to train a binary classifier using only labeled positive data and a large set of unlabeled samples. Although effective, the state of the art PU learning methods focus on coarse-grained separation between positive and negative classes. In real-world datasets, however, *hidden stratification* frequently occurs, where the positive class comprises multiple fine-grained subclasses with varying prevalence. Ignoring these latent subclasses biases PU classifiers toward dominant subclasses of the positive class, leading to systematic misclassification of rare subclasses. To address this challenge, we propose a subclass-aware PU learning method that first discovers the hidden subclasses through a fully automatic and adaptive graph-based approach. It then leverages the hidden subclasses to select the potential negative examples from the unlabeled set. Comprehensive experimental results demonstrate that the method consistently outperforms the existing PU learning methods on a range of datasets under various distributional settings of the subclasses. A noteworthy property of the proposed method is that it does not require any input about the number of hidden subclasses, thereby making it remarkably robust. To the best of our knowledge, our approach is the first which addresses the hidden subclass issue in PU learning.

1 INTRODUCTION

Learning a Positive–Unlabeled (PU) classifier is inherently challenging because the negative class information is completely unavailable during training. Unlike conventional supervised classification, where both positive and negative examples are labeled explicitly, PU learning relies only on labeled positive data and a large set of unlabeled samples, which is a mixture of positive and negative instances. Most existing PU learning methods assume that each class is internally homogeneous, focusing on separating positive and negative samples in a coarse-grained manner. However, this assumption rarely holds true in real-world scenarios.

Real datasets are frequently composed of *fine-grained subclasses* within each coarse class. For example, in medical imaging, a single disease label may encompass multiple subtypes with distinct pathological patterns (Dunnmon et al., 2019). Similarly, in object recognition, a high-level label such as “vehicle” may consist of cars, buses, and trucks, each forming a unique subclass (Krizhevsky & Hinton, 2009). This phenomenon, referred to as *hidden stratification*, occurs when training and evaluation samples belonging to the same class do not come from a uniform distribution, but rather from multiple latent subsets with varying prevalence.

Ignoring these subclass structures in PU learning can have consequences. Since negative class information is entirely absent, the classifier is typically biased toward dominant subclasses of the positive class and may fail to generalize to rare or unseen subclasses. If certain fine-grained positive subclasses are missing in the labeled data but appear in the unlabeled data or at test time, the classifier may incorrectly assign them low positive probabilities, causing systematic misclassification. Such biased decision boundaries undermine the robustness and reliability of PU classifiers, particularly in safety-critical domains where consistent performance across data from all subclasses is crucial.

Therefore, addressing hidden stratification in PU learning is essential by explicitly modeling or uncovering fine-grained subclasses within the positive data. This helps to capture diverse and repre-

054 sentative samples, safeguard rare subclasses from being ignored, and enhance both interpretability
 055 and robustness of the PU classifier. To mitigate the effects of hidden stratification, we propose
 056 a novel method, **Positive-Unlabeled Learning method with Self-correcting Regularized Risk and**
 057 **Connected Components (PU-ScRR-CC)**, which explicitly incorporates subclass structure into the
 058 PU learning framework. *PU-ScRR-CC* enforces the concept of connected components that refine
 059 subclass discovery and enhance label propagation in the labeled positive data. This approach en-
 060 ables a subclass-aware potential negative selection mechanism that better reflects the underlying
 061 data distribution in labeled positive dataset.

062 The principal observations regarding the performance of *PU-ScRR-CC* are: particularly effective
 063 under *skewed positive distributions*, where rare subclasses are sparsely represented in the labeled
 064 data and maintain competitive performance in almost all cases, even when subclass prevalence is
 065 uniform, ensuring the best performing model compared to the state-of-the-art (SOTA) PU methods.

066 Finally, by aligning subclass-aware representations with decision boundaries, these approaches pro-
 067 duce more robust models that generalizes better to unseen positive data distributions.

069 2 THE PROPOSED *PU-ScRR-CC* METHOD

071 In this work, we introduce a subclass-aware strategy into the PU learning framework and propose
 072 ***PU-ScRR-CC***, which systematically analyzes latent subclass structures and integrates them into
 073 the training process of the proposed *PU-ScRR-CC* PU classifier. By doing so, we enhance the
 074 model’s ability to generalize beyond dominant subclasses, mitigate the adverse effects of hidden
 075 stratification, and achieve more reliable coarse-grained classification in complex real-world datasets.

077 2.1 PROBLEM SETUP

079 Let \mathcal{X} be the input space. A binary classifier f maps \mathcal{X} consisting of a set of input feature vectors
 080 (x_i) to an output space $\mathcal{Y} = \{0, 1\}$ consisting of the binary class labels (y_i). We consider a labeled
 081 positive dataset \mathcal{X}_p consisting of n samples $x_1^p, x_2^p, \dots, x_n^p \in \mathcal{X}$, each annotated with a coarse
 082 (superclass) label $y_i^p = 0, \forall i \in \{1, \dots, n\}$. In addition to these observed labels, each sample x_i^p
 083 is associated with an unobserved fine-grained subclass label $z_i^p \in \{1, 2, \dots, K\}$. Also, there is an
 084 unlabeled dataset \mathcal{X}_u consisting of m samples $x_1^u, x_2^u, \dots, x_m^u \in \mathcal{X}$. The coarse label y_i^u of each x_i^u
 085 is unknown, but it must be either 0 or 1. The subclass label z_i^u of each x_i^u is also not available.

086 Therefore the labeled positive dataset \mathcal{X}_p and the unlabeled dataset \mathcal{X}_u are constructed from the
 087 associated distribution \mathcal{D}_p and \mathcal{D}_u respectively and $\mathcal{X} = \mathcal{X}_p \cup \mathcal{X}_u$.

$$089 \mathcal{X}_p = \{x_i^p\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_p, \quad \mathcal{X}_u = \{x_i^u\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_u$$

091 Our objective is to assign each example from \mathcal{X} to its correct superclass. Given a function class \mathcal{F} ,
 092 the standard approach is to select a classifier $f^* \in \mathcal{F}$ that maximizes overall accuracy under the data
 093 distribution \mathcal{D} :

$$094 f^* = \arg \max_{f \in \mathcal{F}} \mathbb{E}_{(x, y) \sim \mathcal{D}} [\mathbb{1}_{(f(x) = y)}] \quad (1)$$

095 In addition to overall classification performance, we focus on worst-case test accuracy, which corre-
 096 sponds to the accuracy measured exclusively on samples belonging to the rarest subclass within \mathcal{X}_p .
 097 The objective of this analysis is to evaluate the effectiveness of mitigating hidden stratification by
 098 explicitly identifying hidden subclasses in PU learning. Specifically, we seek to determine whether
 099 such subclass-aware approaches yield tangible benefits in terms of robustness. Furthermore, we
 100 examine whether worst-case test accuracy remains stable or exhibits significant fluctuations under
 101 skewed and uniformly distributed subclass scenarios.

102 2.2 *PU-ScRR-CC*

105 The initial stage of the framework is dedicated to discovering the latent organization embedded
 106 within the labeled positive dataset \mathcal{X}_p . In this step, \mathcal{X}_p is converted into an enriched representation
 107 $\widehat{\mathcal{X}}_p$, where every positive instance x_i^p receives an inferred hidden subclass label z_i^p . This subclass
 annotation is essential for revealing fine-scale structures inside the positive class and for mitigating

108 hidden stratification effects. The subclass labels z_i^p are assigned by constructing a similarity graph
 109 among the labeled positive samples and extracting its connected components. This graph-based pro-
 110 cedure naturally groups data points that are strongly linked in feature space, yielding coherent sub-
 111 class partitions without imposing spherical or centroid-based assumptions. By incorporating these
 112 connectivity-driven clusters, the framework captures subclass-level diversity prior to PU classifier
 113 training, enhancing resilience to intra-class variation and subclass imbalance.

114

115 HIDDEN SUBCLASS IDENTIFICATION FROM \mathcal{X}_p

116 Let $\mathcal{X}_p = [x_1^p, x_2^p, \dots, x_n^p]^\top \in \mathbb{R}^{n \times d}$ be the data matrix of labeled positive class with rows $x_i^p \in \mathbb{R}^d$.
 117 Define the cosine similarity between points x_i^p and x_j^p as

$$119 \quad s_{ij} = \frac{\langle x_i^p, x_j^p \rangle}{\|x_i^p\|_2 \|x_j^p\|_2} \quad \text{for } i \neq j$$

120 Set $s_{ii} = -\infty$ enforces exclusion of self-neighbors. Let $\mathcal{S} = (s_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$ denote the
 121 resulting similarity matrix.

122 For each index $i \in \{1, \dots, n\}$, define its (cosine) 1-nearest neighbor(NN),

$$123 \quad \pi(i) \in \arg \max_{j \in \{1, \dots, n\} \setminus \{i\}} s_{ij},$$

124 with an arbitrary but fixed tie-breaking rule if the maximizer is not unique.

125 Define an undirected graph $G = (V, E)$ with vertex set $V = \{1, \dots, n\}$ and edges given by the
 126 *symmetrized* 1-NN relation:

$$127 \quad \{i, j\} \in E \iff (\pi(i) = j) \text{ or } (\pi(j) = i).$$

128 Equivalently, the adjacency matrix $A \in \{0, 1\}^{n \times n}$ is

$$129 \quad A_{ij} = \mathbb{1}_{\{\pi(i)=j \text{ or } \pi(j)=i\}}, \quad A_{ii} = 0.$$

130 Let the connected components of G be $\mathcal{C}_1, \dots, \mathcal{C}_K$, where $\mathcal{C}_k \subseteq V$, $\mathcal{C}_k \cap \mathcal{C}_{k'} = \emptyset$ for $k \neq k'$, and
 131 $\bigcup_{k=1}^K \mathcal{C}_k = V$. Define the cluster-label map $\mathcal{I} : \{1, \dots, n\} \rightarrow \{1, \dots, K\}$ by

$$132 \quad \mathcal{I}(i) = k \text{ iff } i \in \mathcal{C}_k.$$

133 The final clustering assignment $\mathcal{Z} = (z_1^p, \dots, z_n^p)^\top$ yields the subclass-aware labeled set $\widehat{\mathcal{X}}_p$, explicitly
 134 capturing fine-grained structure in the positive class. This refined representation is combined
 135 with \mathcal{X}_u to form \mathcal{X}^* , on which *PU-ScRR* is applied. Incorporating subclass information enables
 136 balanced learning across both common and rare subclasses, improving robustness and worst-case
 137 performance.

138

139 2.3 *PU-ScRR*

140

141 The proposed *PU-ScRR-CC* builds on the *PU-ScRR* framework to mitigate hidden stratification
 142 in the labeled positive set \mathcal{X}_p . It clusters \mathcal{X}_p via similarity-based connected-component analysis,
 143 assigning inferred subclass labels to obtain $\widehat{\mathcal{X}}_p$. In the warm-start phase, high-confidence negatives
 144 from \mathcal{X}_u form the candidate negative set $\widehat{\mathcal{X}}_n$. A deep classifier g_θ is then trained on $\widehat{\mathcal{X}}_p$ and $\widehat{\mathcal{X}}_n$ to
 145 learn robust decision boundaries under the PU setting. The details of each phase are discussed in the
 146 subsequent sections.

147

148 **WARM-START PHASE: SELECTING POTENTIAL NEGATIVES FROM \mathcal{X}_u**

149

150 The first phase of *PU-ScRR* focuses on gathering reliable information about the negative class by
 151 extracting representative samples from the unlabeled dataset. The intuition is to identify data points
 152 in \mathcal{X}_u that are least similar to the clustered labeled positive set $\widehat{\mathcal{X}}_p$ and thus most likely to be negative.
 153 This step provides a “warm start” for training the PU classifier in the subsequent phase.

154

155 It is well-known that neural networks tend to learn “easy” samples—those with clearly separable
 156 features—more rapidly than “hard” samples that exhibit subtle or ambiguous characteristics (Chat-
 157 terjee, 2020). Leveraging this property, we design a mechanism to preferentially identify easy neg-
 158 ative examples from the unlabeled data.

162 **Algorithm 1** Potential negative sample selection algorithm
 163
 164 **Input:** Clustered labeled positive data $\widehat{\mathcal{X}}_p$, unlabeled data \mathcal{X}_u , number of epochs k , potential negative
 165 sampler model $h_{\bar{\theta}}$. $S_K = \{1, 2, \dots, K\}$ be the set of all possible hidden subclass labels in $\widehat{\mathcal{X}}_p$
 166 **Output:** Trained potential negative sampler $h_{\bar{\theta}}^*$, potential negative sample set $\widetilde{\mathcal{X}}_n$.

167 1: Initialize $\widetilde{\mathcal{X}}_n \leftarrow \emptyset$.
 168 2: Treat all unlabeled data as negatives: $\mathcal{X}_n \leftarrow \mathcal{X}_u$.
 169 3: Initialize model $h_{\bar{\theta}}$ and optimization routine \mathcal{A} .
 170 4: **for** $i = 1$ to k **do**
 171 5: Shuffle $(\mathcal{X}_p, \mathcal{X}_n)$ into B mini-batches: $(\mathcal{X}_p^j, \mathcal{X}_n^j)$, $j = 1, \dots, B$.
 172 6: **for** $j = 1$ to B **do**
 173 7: Compute gradient:
 174
 175
$$\nabla_{\bar{\theta}} \left(\frac{1}{|\mathcal{X}_p^j|} \sum_{\substack{x_p \in \mathcal{X}_p^j \\ z_p \in S_K}} \ell(h_{\bar{\theta}}(x_p), z_p) + \frac{1}{|\mathcal{X}_n^j|} \sum_{x_n \in \mathcal{X}_n^j} \ell(h_{\bar{\theta}}(x_n), (C + 1)) \right)$$

 176 and update $\bar{\theta}$ with algorithm \mathcal{A} .
 177 8: **end for**
 178 9: **end for**

182
 183 Let $\widehat{\mathcal{X}}_p = \{x_i^p\}_{i=1}^n$ denote the set of labeled positives associated with a hidden subclass label z_i^p ,
 184 and $\mathcal{X}_u = \{x_i^u\}_{i=1}^m$ denote the set of unlabeled samples. $z_i^p \in \{1, 2, \dots, K\}$, where K is the total
 185 number of possible hidden subclasses in \mathcal{X}_p . Initially, we treat \mathcal{X}_u as if it were entirely negative and
 186 train a $(K + 1)$ -ary classifier $h_{\bar{\theta}}$ for k epochs (with k chosen empirically). This short training period
 187 emphasizes the easy-to-learn negative samples while limiting the influence of ambiguous ones.
 188

189 The classifier $h_{\bar{\theta}}$ consists of a feature extractor $\varphi(\cdot)$ for generating representations $\varphi(x)$ and a feed-
 190 forward head $\varsigma(\cdot)$ trained with cross-entropy loss. After warm-start training, each unlabeled sample
 191 x_i^u is assigned a confidence score $\beta_i = h_{\bar{\theta}}^*(x_i^u)$. The top-scoring samples form the candidate negative
 192 set $\widetilde{\mathcal{X}}_n$ with $|\widetilde{\mathcal{X}}_n| = |\widehat{\mathcal{X}}_p|$, while low-confidence samples are treated as unreliable. The warm-start
 193 procedure is detailed in Algorithm 1.

194

195 TRAINING PHASE: LEARNING PU CLASSIFIER IN SUPERVISED PARADIGM

196

197 In the second phase, the PU classifier g_{θ} is trained using \mathcal{X}_p as positives and $\widetilde{\mathcal{X}}_n$ as negatives. It
 198 reuses the pre-trained feature extractor $\varphi(\cdot)$ from the warm start, feeding representations $v_i = \varphi(x_i)$
 199 into two heads: $\omega_1(\cdot)$ for classification and $\omega_2(\cdot)$ for confidence estimation.

200

201 The overall classifier output is given by $g_{\theta}(x) = (\mu, \kappa)$, $\mu = \omega_1(v)$, $\kappa = \omega_2(v)$, where κ_i quantifies
 202 the likelihood that an unlabeled sample belongs to the negative class. Formally, the classifier
 203 is a mapping $g_{\theta}: \mathcal{X}^* \rightarrow [0, 1] \times \mathbb{R}$, $\mathcal{X}^* = \mathcal{X}_p \cup \widetilde{\mathcal{X}}_n$.

204

205 To train g_{θ} , we define empirical risks associated with partially labeled data. For a given sample set
 206 $X = \{x_1, \dots, x_n\}$ and classifier output $\mu_i = \omega_1(\varphi(x_i))$,

207
$$\widehat{L}_+(g_{\theta}; X) = \frac{1}{n} \sum_{i=1}^n \ell(\mu_i, 1), \quad (2)$$

208
 209
$$\widehat{L}_-(g_{\theta}; X) = \frac{1}{n} \sum_{i=1}^n \kappa_i^+ \ell(\mu_i, 0), \quad (3)$$

210

211 where $\ell(\mu_i, y_i) = -[y_i \ln \mu_i + (1 - y_i) \ln(1 - \mu_i)]$ is the binary cross-entropy loss and $\kappa_i^+ =$
 212 $\max(\kappa_i, 0)$ ensures negative confidence scores of an unlabeled data. The first term \widehat{L}_+ measures
 213 the risk under the assumption that samples are truly positive, while \widehat{L}_- evaluates the risk assuming
 214 they are truly negative. Combining these, the objective function for PU classification in *PU-ScRR* is
 215

216 **Algorithm 2** PU classification algorithm (*PU-ScRR*)217 **Input:** Labeled positive data \mathcal{X}_p , potential negative data $\widetilde{\mathcal{X}}_n$, hyperparameter $\delta \in (0, 1)$, PU classifier218 g_θ .219 **Output:** Trained PU classifier g_θ^* .

220

221 1: Form the combined training set $\mathcal{X}^* \leftarrow \mathcal{X}_p \cup \widetilde{\mathcal{X}}_n$. Initialize the classifier g_θ and a stochastic
222 optimizer \mathcal{A} .

223 2: **while** training error is not converged **do**

224 3: Partition the combined dataset \mathcal{X}^* into B mini-batches, denoting the i -th mini-batch as
225 $\mathcal{X}_i^* = (\mathcal{X}_p^{(i)}, \widetilde{\mathcal{X}}_n^{(i)})$.

226 4: $\widehat{L}_+(g_\theta; \mathcal{X}_i^*) \leftarrow \frac{1}{|\mathcal{X}_p^{(i)}|} \sum_{x_p \in \mathcal{X}_p^{(i)}} \ell(\mu_p, 1), \quad \mu_p = \omega_1(\varphi(x_p))$ for each $x_p \in \mathcal{X}_p^{(i)}$

227 5: $\widehat{L}_-(g_\theta; \mathcal{X}_i^*) \leftarrow \frac{1}{|\mathcal{X}_n^{(i)}|} \sum_{x_n \in \widetilde{\mathcal{X}}_n^{(i)}} \kappa_n^+ \ell(\mu_n, 0)$, where $\kappa_n^+ = \max(\omega_2(\varphi(x_n)), 0)$ for each $x_n \in$
228 $\widetilde{\mathcal{X}}_n^{(i)}$.

229 6: $\text{Reg}(g_\theta; \mathcal{X}_i^*) \leftarrow \delta \sum_{x_i \in \mathcal{X}_i^*} |1 - \kappa_i^+|$

230 7: Set the gradient
231 $\nabla_\theta(\widehat{L}_+(g_\theta; \mathcal{X}_i^*) + \widehat{L}_-(g_\theta; \mathcal{X}_i^*) + \text{Reg}(g_\theta; \mathcal{X}_i^*))$

232 8: **end while**

238 defined as:

239
$$\widehat{R}_{\text{PU-ScRR}}(\theta; g_\theta) = \frac{1}{|\mathcal{X}_p|} \sum_{x_p \in \mathcal{X}_p} \ell(\mu_p, 1) + \frac{1}{|\widetilde{\mathcal{X}}_n|} \sum_{x_n \in \widetilde{\mathcal{X}}_n} \lambda_n^+ \ell(\mu_n, 0) + \delta \sum_{x_i \in \mathcal{X}^*} |1 - \kappa_i^+|, \quad (4)$$

240 where δ is a regularization coefficient encouraging confidence scores to remain close to unity for
241 high-confidence negative samples. Algorithm 2 summarizes the training procedure for the PU clas-
242 sifier g_θ based on the above risk formulation.

246 3 EXPERIMENTS

248 To evaluate the efficiency of the proposed algorithm *PU-ScRR-CC*, we implement the algorithms on
249 the CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), Fashion-
250 MNIST (Xiao et al., 2017) and STL-10 (Coates et al., 2011) datasets.

252 3.1 DETAILS OF CLASSIFICATION TASKS

254 We have designed and performed several classification experiments on the CIFAR-10, CIFAR-100,
255 Fashion-MNIST, and STL-10 datasets. We have conducted a total of 8 distinct binary classification
256 tasks depending on the chosen classes in labeled positive dataset.257 The binary classification tasks span CIFAR-10, CIFAR-100, Fashion-MNIST, and STL-10, differ-
258 ing mainly in the subclass composition of the labeled positive set (\mathcal{X}_p) and unlabeled set (\mathcal{X}_u).
259 CIFAR-10-1 uses two animal subclasses in \mathcal{X}_p and one non-animal subclass in \mathcal{X}_u , while CIFAR-
260 10-2 swaps all animal and non-animal subclasses between the sets. CIFAR-100 tasks classify aquatic
261 mammals vs. fish, with CIFAR-100-1 using 2 vs. 1 subclasses and CIFAR-100-2 using all 5 sub-
262 classes for both classes. Fashion-MNIST tasks classify topwear vs. others, varying only in the
263 number of subclasses per class. STL-10-1 and STL-10-2 define vehicle-animal and animal-vehicle
264 tasks, each with two subclasses in \mathcal{X}_p and one in \mathcal{X}_u .

266 3.2 ANALYSIS OF EXPERIMENTAL RESULTS

268 To comprehensively evaluate the effectiveness of *PU-ScRR-CC*, we conduct eight controlled ex-
269 periments across four widely used benchmark datasets: CIFAR-10, CIFAR-100, Fashion-MNIST,
and STL-10. For comparison, we include several state-of-the-art (SOTA) PU learning approaches.

Table 1: Comparison of mean overall test accuracies (with standard deviations) of *PU-ScRR-CC* against other SOTA methods on CIFAR-10 and CIFAR-100 datasets.

Dataset	Task Name	α_p	Class label ratio in \mathcal{X}_p	Methods					
				<i>uPU</i>	<i>nnPU</i>	$(TED)^n$	<i>HolisticPU</i>	<i>LaGAM</i>	<i>PU-ScRR</i>
CIFAR-10	CIFAR-10-1	0.8	9:1	80.8 ± 1.3	74.1 ± 1.7	68.1 ± 0.9	80.1 ± 0.8	79.4 ± 1.5	80.5 ± 0.5
			1:1	84.1 ± 0.8	83.8 ± 0.7	82.4 ± 0.1	83.0 ± 2.8	84.6 ± 0.9	85.8 ± 0.8
			1:9	82.1 ± 0.8	83.1 ± 2.2	81.3 ± 1.2	72.1 ± 6.0	80.9 ± 0.7	82.4 ± 0.9
		0.5	9:1	77.4 ± 2.0	81.7 ± 0.8	78.6 ± 1.7	85.8 ± 1.8	86.3 ± 0.8	86.1 ± 0.4
			1:1	83.7 ± 0.9	85.7 ± 0.4	88.8 ± 0.6	86.5 ± 1.2	88.8 ± 0.5	88.5 ± 0.6
			1:9	83.0 ± 1.0	85.4 ± 0.8	87.5 ± 0.6	86.6 ± 1.2	87.0 ± 1.0	88.4 ± 0.3
		0.2	9:1	77.4 ± 1.8	83.4 ± 1.0	87.8 ± 0.4	86.6 ± 0.2	87.2 ± 0.9	88.0 ± 0.4
			1:1	83.0 ± 1.4	88.3 ± 0.4	88.7 ± 0.3	87.6 ± 0.8	89.9 ± 0.2	90.0 ± 0.7
			1:9	78.0 ± 2.2	86.0 ± 0.9	89.0 ± 0.7	86.8 ± 0.8	88.2 ± 0.3	88.0 ± 0.6
	CIFAR-10-2	0.8	8:4:2:1	81.6 ± 1.9	81.4 ± 1.9	76.3 ± 0.8	83.0 ± 0.4	84.3 ± 0.6	84.5 ± 0.8
			4:2:1:1	82.0 ± 1.8	83.4 ± 1.3	77.8 ± 0.5	81.8 ± 0.3	84.4 ± 0.4	87.6 ± 0.5
		0.5	8:4:2:1	82.6 ± 1.4	83.0 ± 0.7	85.3 ± 0.9	87.5 ± 0.9	87.0 ± 0.5	87.4 ± 0.4
			4:2:1:1	81.7 ± 2.2	83.3 ± 2.0	86.7 ± 1.3	85.7 ± 0.3	87.2 ± 0.1	91.7 ± 0.6
	CIFAR-100	0.8	8:4:2:1	88.0 ± 0.3	90.2 ± 0.2	90.7 ± 0.2	89.0 ± 5.7	90.8 ± 0.4	91.3 ± 0.1
			4:2:1:1	88.9 ± 0.5	91.1 ± 0.4	91.5 ± 0.3	87.7 ± 3.5	91.2 ± 0.2	93.6 ± 0.9
			9:1	59.2 ± 0.9	59.3 ± 0.5	60.0 ± 0.2	55.5 ± 0.8	51.1 ± 0.5	58.5 ± 0.6
		0.5	1:1	63.0 ± 0.5	50.0 ± 0.0	64.3 ± 0.4	61.4 ± 0.8	60.0 ± 0.8	67.9 ± 0.2
			1:9	63.6 ± 0.7	68.9 ± 0.9	68.5 ± 0.4	63.0 ± 0.6	67.2 ± 0.5	69.0 ± 0.2
			9:1	63.6 ± 0.8	67.1 ± 0.4	66.3 ± 0.8	63.1 ± 0.5	56.8 ± 0.7	65.0 ± 0.6
		0.2	1:1	64.1 ± 0.6	69.8 ± 0.1	71.4 ± 0.8	66.4 ± 0.1	70.2 ± 0.6	72.3 ± 0.2
			1:9	70.1 ± 0.6	70.1 ± 0.4	72.3 ± 0.3	69.8 ± 0.5	70.2 ± 0.4	71.3 ± 0.8
			9:1	66.9 ± 0.1	70.4 ± 0.4	71.5 ± 0.4	71.3 ± 0.9	66.4 ± 0.6	67.6 ± 0.9
	CIFAR-100-2	0.8	1:1	68.4 ± 0.3	50.0 ± 0.0	72.4 ± 0.5	72.5 ± 0.9	71.9 ± 0.5	73.5 ± 0.1
			1:9	72.6 ± 0.8	71.1 ± 0.6	72.8 ± 0.5	73.9 ± 0.7	73.5 ± 0.3	74.2 ± 0.2
		0.5	5:4:3:2:1	75.4 ± 0.9	77.6 ± 0.1	77.5 ± 0.3	71.0 ± 0.8	65.1 ± 0.1	76.0 ± 0.7
			1:1:1:1:1	77.0 ± 0.7	78.0 ± 0.1	78.4 ± 0.5	69.6 ± 0.1	66.1 ± 0.5	81.1 ± 0.6
		0.2	5:4:3:2:1	74.5 ± 0.2	75.8 ± 0.7	74.7 ± 0.6	65.0 ± 0.2	74.0 ± 0.8	75.8 ± 0.8
			1:1:1:1:1	69.6 ± 0.9	72.8 ± 0.5	75.1 ± 0.3	75.4 ± 0.8	74.5 ± 0.5	78.6 ± 0.2
			5:4:3:2:1	77.0 ± 0.6	72.3 ± 0.4	76.7 ± 0.6	80.1 ± 0.2	77.2 ± 0.5	80.3 ± 0.4
			1:1:1:1:1	73.0 ± 0.6	71.5 ± 0.6	78.6 ± 0.7	80.3 ± 0.5	77.4 ± 0.6	81.9 ± 0.6

Specifically, *uPU* and *nnPU* assume prior knowledge of the positive class prior α_p , whereas $(TED)^n$ relies on its estimation. *HolisticPU* takes a different route by estimating trend scores for unlabeled samples to identify and resample potential negatives. In contrast, *PU-ScRR-CC* avoids both class prior estimation and heuristic resampling, making it more broadly applicable in real-world scenarios where subclass distributions and priors are unknown.

Table 1 presents the mean overall test accuracy values of *PU-ScRR-CC* and other SOTA PU classifiers with standard deviations on CIFAR-10 and CIFAR-100 datasets. *PU-ScRR-CC* surpasses SOTA methods by an approx margin of 1% – 7% in almost all cases, regardless of the α_p values and the non-uniform subclass distribution in \mathcal{X}_p on CIFAR-10 and CIFAR-100 datasets. When subclasses are uniformly represented, *PU-ScRR* outperforms *PU-ScRR-CC* by 0% – 6% approximately. The best performing results are indicated in **bold**.

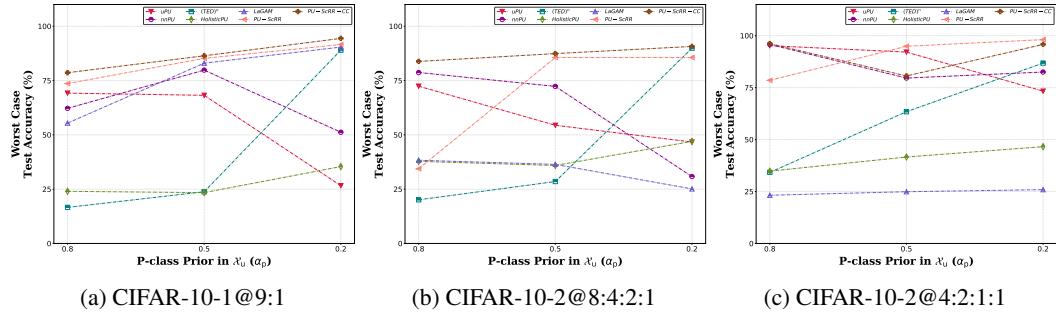


Figure 1: Comparison of worst-case test accuracies of *PU-ScRR-CC* against other SOTA methods under varying proportions of positive data in the unlabeled set \mathcal{X}_u on CIFAR-10 dataset.

The worst-case test accuracies of *PU-ScRR-CC* and other SOTA methods on the CIFAR-10 dataset are presented in Figure 1. *PU-ScRR-CC* outperforms almost all the cases with a minimum of 4.4%

average guaranteed improved worst-case test accuracy. Figure 1c indicates that *PU-ScRR* surpasses *PU-ScRR-CC* as the top-performing model. It is noteworthy that the ship subclass samples are uniformly represented in \mathcal{X}_p .

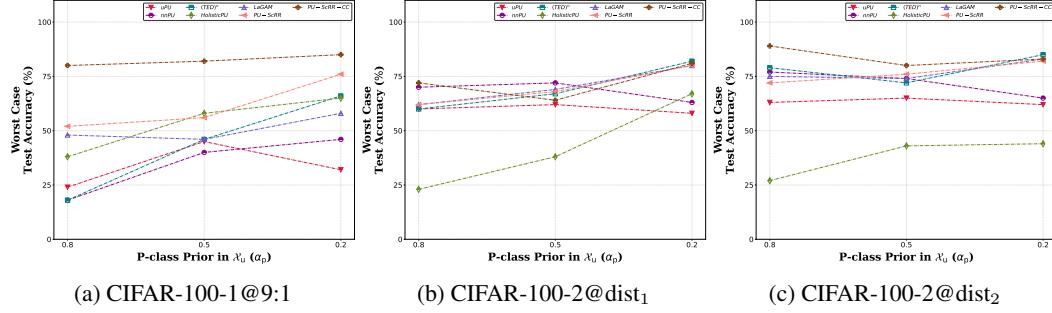


Figure 2: Comparison of worst-case test accuracies of *PU-ScRR-CC* against other SOTA methods under varying proportions of positive data in the unlabeled set \mathcal{X}_u on CIFAR-100 datasets.

PU-ScRR-CC achieves significant improvement in worst-case test accuracy across nearly all scenarios. The highest improvement margin is observed in figure 2a, which is approx. 37% on average across all considered α_p . Figure 2c demonstrates the superior performance of *PU-ScRR-CC*, even when all subclasses are uniformly represented in \mathcal{X}_p .

Table 2 reports the mean test accuracies (with standard deviations) of *PU-ScRR-CC* and other state-of-the-art PU classifiers on Fashion-MNIST and STL-10 datasets. *PU-ScRR-CC* surpasses SOTA methods by approximately 1%–6% across most cases, regardless of α_p values or subclass imbalance in \mathcal{X}_p , with best results highlighted in **bold**. When subclasses are uniformly represented, *PU-ScRR* outperforms *PU-ScRR-CC* by 0%–2% approximately.

Table 2: Comparison of mean overall test accuracies (with standard deviations) of *PU-ScRR-CC* against other SOTA methods on Fashion-MNIST and STL-10 datasets.

Dataset	Task Name	α_p	Class label ratio in \mathcal{X}_p	Methods						
				<i>uPU</i>	<i>nnPU</i>	<i>(TED)ⁿ</i>	<i>HolisticPU</i>	<i>LaGAM</i>	<i>PU-ScRR</i>	<i>PU-ScRR-CC</i>
Fashion-MNIST	F-MNIST-1	0.8	9:1	89.2 \pm 2.9	95.5 \pm 0.4	76.8 \pm 2.7	80.3 \pm 1.7	87.1 \pm 3.4	96.6 \pm 0.8	97.4 \pm 1.0
			1:1	94.5 \pm 0.1	96.5 \pm 0.2	90.1 \pm 1.5	79.1 \pm 2.5	97.7 \pm 0.3	98.5 \pm 0.3	98.6 \pm 0.2
			1:9	88.3 \pm 5.1	94.7 \pm 1.8	91.6 \pm 2.3	78.6 \pm 3.6	84.7 \pm 1.1	97.8 \pm 0.5	98.4 \pm 0.1
		0.5	9:1	92.3 \pm 2.9	97.2 \pm 0.1	86.0 \pm 1.0	95.4 \pm 1.2	97.0 \pm 0.2	97.7 \pm 0.1	98.1 \pm 0.3
			1:1	95.9 \pm 0.2	98.1 \pm 0.2	96.7 \pm 0.3	97.5 \pm 1.5	98.2 \pm 0.5	98.9 \pm 0.2	98.7 \pm 0.1
			1:9	83.1 \pm 2.6	97.8 \pm 0.3	97.5 \pm 0.3	97.9 \pm 1.0	95.0 \pm 0.7	98.7 \pm 0.2	98.9 \pm 0.2
	F-MNIST-2	0.2	9:1	87.1 \pm 2.7	96.0 \pm 0.3	96.9 \pm 0.2	95.0 \pm 0.2	96.9 \pm 0.3	98.6 \pm 0.3	98.9 \pm 0.2
			1:1	90.9 \pm 0.8	97.8 \pm 0.1	97.0 \pm 0.1	96.1 \pm 0.3	97.4 \pm 0.2	98.9 \pm 0.4	98.3 \pm 0.5
			1:9	83.5 \pm 2.1	96.1 \pm 0.6	96.8 \pm 0.1	96.7 \pm 0.4	95.7 \pm 0.4	98.0 \pm 0.3	98.6 \pm 0.3
		0.8	8:4:2:1	92.1 \pm 0.2	93.3 \pm 0.9	84.1 \pm 2.0	77.7 \pm 2.0	86.1 \pm 1.3	94.1 \pm 0.4	95.7 \pm 0.6
			4:2:1:1	94.2 \pm 0.4	93.6 \pm 0.2	84.1 \pm 2.1	74.3 \pm 2.4	86.0 \pm 0.5	95.2 \pm 0.8	95.5 \pm 0.3
			0.5	8:4:2:1	93.8 \pm 0.4	93.4 \pm 0.2	92.9 \pm 0.4	73.6 \pm 1.9	93.4 \pm 0.2	94.2 \pm 1.0
		4:2:1:1	9:1	91.2 \pm 0.4	91.4 \pm 0.3	91.1 \pm 1.6	73.1 \pm 1.6	91.6 \pm 0.4	93.8 \pm 0.9	93.8 \pm 0.5
			1:1	90.2 \pm 0.3	92.7 \pm 0.2	92.8 \pm 0.4	80.1 \pm 2.7	93.8 \pm 0.1	95.3 \pm 1.8	96.2 \pm 0.5
			1:9	92.1 \pm 0.7	93.9 \pm 0.4	94.8 \pm 0.6	82.7 \pm 1.9	94.0 \pm 0.1	98.0 \pm 0.1	97.1 \pm 0.3
STL-10	STL-10-1	0.8	9:1	73.6 \pm 1.7	62.9 \pm 0.3	74.4 \pm 1.6	74.5 \pm 1.2	73.2 \pm 1.4	79.6 \pm 0.1	80.9 \pm 0.6
			1:1	83.0 \pm 0.9	70.0 \pm 0.1	85.4 \pm 0.6	79.2 \pm 2.5	80.0 \pm 0.7	88.9 \pm 0.6	88.1 \pm 0.4
			1:9	82.7 \pm 1.1	67.0 \pm 0.3	83.8 \pm 1.4	74.1 \pm 1.3	78.1 \pm 1.0	84.1 \pm 1.3	87.9 \pm 0.4
		0.5	9:1	80.4 \pm 2.4	82.1 \pm 1.0	83.4 \pm 2.8	74.9 \pm 2.5	83.7 \pm 1.7	86.3 \pm 0.8	91.3 \pm 0.8
			1:1	87.1 \pm 1.4	88.1 \pm 0.2	91.9 \pm 0.7	87.0 \pm 0.9	91.6 \pm 0.9	96.1 \pm 0.8	93.9 \pm 0.9
			1:9	85.8 \pm 2.1	86.8 \pm 1.1	90.6 \pm 1.0	76.8 \pm 0.8	90.4 \pm 1.6	88.9 \pm 0.7	92.6 \pm 0.2
	STL-10-2	0.2	9:1	84.0 \pm 1.6	85.4 \pm 1.1	88.9 \pm 0.4	83.9 \pm 1.7	88.0 \pm 0.8	89.1 \pm 0.6	91.4 \pm 0.2
			1:1	86.1 \pm 0.8	88.9 \pm 1.0	92.4 \pm 0.7	90.0 \pm 1.1	91.6 \pm 0.4	96.8 \pm 0.8	96.5 \pm 0.1
			1:9	79.4 \pm 1.5	86.2 \pm 1.2	91.3 \pm 0.2	82.8 \pm 0.6	90.1 \pm 0.5	93.1 \pm 0.8	95.4 \pm 0.4
		0.8	9:1	71.0 \pm 1.3	73.1 \pm 1.8	75.9 \pm 1.8	79.5 \pm 1.6	82.6 \pm 1.2	82.3 \pm 0.9	83.6 \pm 0.2
			1:1	80.5 \pm 1.1	83.3 \pm 0.8	84.9 \pm 1.7	84.6 \pm 0.4	86.0 \pm 1.8	89.9 \pm 0.6	88.5 \pm 0.6
			1:9	76.0 \pm 1.5	77.6 \pm 0.6	87.3 \pm 1.2	82.5 \pm 1.9	84.0 \pm 1.8	86.5 \pm 0.3	92.3 \pm 0.9
STL-10	0.5	9:1	84.4 \pm 2.0	90.9 \pm 1.1	92.9 \pm 1.5	79.7 \pm 1.8	89.5 \pm 1.7	93.4 \pm 0.5	94.0 \pm 1.7	
		1:1	91.0 \pm 1.5	93.1 \pm 0.5	94.1 \pm 1.7	85.9 \pm 1.6	92.0 \pm 0.3	96.2 \pm 0.8	95.0 \pm 0.2	
		1:9	88.2 \pm 1.3	92.1 \pm 1.4	93.3 \pm 0.7	85.2 \pm 1.1	90.7 \pm 1.3	94.5 \pm 0.3	95.4 \pm 0.2	
	0.2	9:1	78.0 \pm 1.3	80.0 \pm 0.4	84.2 \pm 0.9	86.8 \pm 1.6	93.7 \pm 1.8	93.1 \pm 1.3	96.1 \pm 0.6	
		1:1	85.8 \pm 0.6	88.6 \pm 0.4	95.5 \pm 0.6	92.4 \pm 1.0	95.7 \pm 1.0	96.6 \pm 0.6	96.8 \pm 0.6	
		1:9	84.1 \pm 0.2	84.0 \pm 0.9	92.7 \pm 0.2	91.4 \pm 0.6	92.5 \pm 1.3	94.4 \pm 0.3	95.0 \pm 0.4	

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 3 represents the worst-case test accuracies of *PU-ScRR-CC* and other SOTA methods on Fashion-MNIST & STL-10 datasets. *PU-ScRR-CC* outperforms almost all the cases with a minimum of 1.3% average improved worst-case test accuracy. The highest improvement margin is observed in fig. 3i, which is approx. 10.67% on average across all considered α_p . Figure 3d and figure 3e indicate that *PU-ScRR* surpasses *PU-ScRR-CC* by 2.6% and 2.1% respectively as the top-performing model. It is noteworthy that, in both cases, the coat and shirt subclass samples are uniformly represented in \mathcal{X}_p .

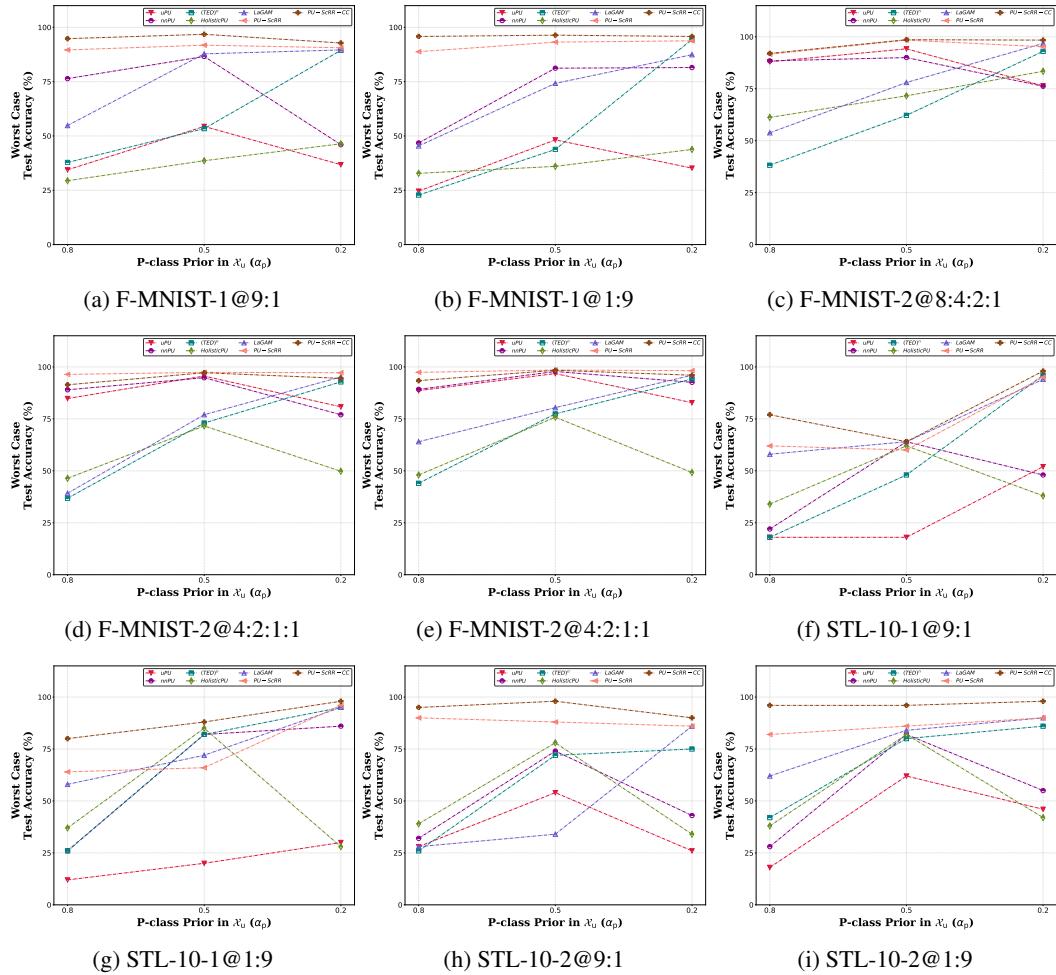


Figure 3: Comparison of worst-case test accuracies of *PU-ScRR-CC* against other SOTA methods under varying proportions of positive data in the unlabeled set \mathcal{X}_u on Fashion-MNIST and STL-10 datasets.

4 RELATED WORK

This section presents a review of representative studies on PU learning, with particular emphasis on those most pertinent to *PU-ScRR-CC*. Furthermore, we provide a brief discussion on the related research on the concept of hidden stratification and its applications across different domains.

4.1 PU LEARNING

PU learning has been actively investigated for several decades due to its broad range of applications. Bekker and Davis (Bekker & Davis, 2020) provided a comprehensive survey summarizing the key developments and practical use cases of PU learning.

432 Early research predominantly adopted the *two-step approach* for solving PU learning problems,
 433 particularly in text classification. This strategy first identifies reliable negative samples from the
 434 unlabeled set and subsequently uses them in a supervised learning setup. Representative methods
 435 following this paradigm include (Li & Liu, 2003; Yu et al., 2004; Shunxiang et al., 2023). However,
 436 the performance of such methods is highly sensitive to misidentified negatives, which can severely
 437 degrade classifier accuracy.

438 Recent approaches formulate PU learning by assigning weights to unlabeled instances, which rep-
 439 resent the probability of belonging to the positive or negative class (Lee & Liu, 2003; Liu et al.,
 440 2005; Zhang & Lee, 2005). Accurate estimation of the class-prior probability α_p is critical for
 441 reliable weighting, yet its empirical estimation is error-prone, often degrading performance. To ad-
 442 dress these limitations, recent works have introduced *unbiased risk estimators* (Du Plessis et al.,
 443 2015; Kiryo et al., 2017; Garg et al., 2021), which bypass manual weight tuning and provide im-
 444 proved results. Later, abs-PU (Hammoudeh & Lowd, 2020) replaced the max-term with an absolute
 445 value penalty, simplifying optimization while achieving comparable or slightly superior accuracy.
 446 (*TED*)ⁿ (Garg et al., 2021) integrates class-prior estimation (BBE) with a simple CVIR objective in
 447 an iterative manner, showing consistent improvements across benchmarks. Other recent advances
 448 include *HolisticPU* (Xinrui et al., 2023), which resamples positive data and tracks predictive trends
 449 to refine labels, *LaGAM* (Long et al., 2024), which uses hierarchical contrastive learning and meta-
 450 learning for robust label refinement.

451 4.2 HIDDEN STRATIFICATION

452 The phenomenon of **hidden stratification** arises when coarse class labels conceal semantically
 453 meaningful subclasses that exhibit highly variable performance. Oakden-Rayner et al. (Oakden-
 454 Rayner et al., 2020) first demonstrated that models achieving high overall accuracy may still under-
 455 perform on rare yet clinically critical subclasses. They proposed three complementary strategies to
 456 *measure* hidden stratification: *schema completion*, which exhaustively labels fine-grained subclasses
 457 on the test set, *error auditing*, which manually inspects systematic failure patterns, and *algo-
 458 rithmic discovery*, which applies unsupervised clustering in the learned feature space. These methods
 459 revealed substantial subclass-level performance gaps in medical imaging and vision benchmarks.
 460 While schema completion and auditing offer precise assessments, they require costly expert anno-
 461 tation, whereas clustering can miss subclasses that are not well separated in feature representations.
 462 This work underscored the need for principled mitigation methods beyond mere diagnosis.

463 Several methods address underrepresented subpopulations. SBL (Chen et al., 2019) preserves accu-
 464 racy on user-defined slices but assumes known subgroups. SKD (Sajedi et al., 2022) distils subclass
 465 knowledge from teacher to student models but needs subclass labels. PromptAttack (Metzen et al.,
 466 2023) synthesizes rare subgroup examples using text-to-image generation but is prompt-sensitive
 467 and computationally expensive.

468 Hidden stratification is crucial in medical applications. Zeng et al. (Zeng et al., 2023) study lung
 469 nodule malignancy classification using spiculation-, clustering-, and malignancy-based stratifica-
 470 tion. Poles et al. (Poles et al., 2024) propose a Convolutional AutoEncoder K -means approach for
 471 osteoporosis grading, effective but domain-specific and less generalizable to other modalities

472 5 CONCLUSION

473 This work introduced the subclass-aware PU learning method *PU-ScRR-CC*, designed to address
 474 hidden stratification in positive–unlabeled classification. By explicitly modeling latent subclass
 475 structures within the labeled positive data, the approach delivers superior performance compared to
 476 state-of-the-art PU methods—not only in terms of overall accuracy but also in terms of worst-case
 477 accuracy with respect to rare positive subclasses. *PU-ScRR-CC* avoids the need for any hyperparam-
 478 eter tuning and is computationally more efficient, making it attractive in large-scale applications.

479 The method is particularly effective under skewed subclass distributions, where rare subclasses are
 480 underrepresented in the labeled positive data, yet it also maintains competitive performance when
 481 subclass prevalence is uniform. The results demonstrate that incorporating subclass-aware potential
 482 negative sample extraction significantly improves the robustness and reliability of PU classifiers
 483 across diverse real-world scenarios.

486 AUTHOR CONTRIBUTIONS

487

488 ACKNOWLEDGMENTS

489

490 REFERENCES

491 Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. *Machine*
492 *Learning*, 109:719–760, 2020.

493

494 Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
495 descent-based optimization. In *International Conference on Learning Representations*, 2020.496 Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng, and Christopher Ré. Slice-based learning: A
497 programming model for residual learning in critical data slices. *Advances in neural information*
498 *processing systems*, 32, 2019.499 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
500 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-*
501 *gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

502

503 Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for learning from
504 positive and unlabeled data. In *International conference on machine learning*, pp. 1386–1394.
505 PMLR, 2015.506 Jared A. Dunnmon, Darvin Yi, Curtis P. Langlotz, Christopher Ré, Daniel L. Rubin, and Matthew P.
507 Lungren. Assessment of convolutional neural networks for automated classification of chest ra-
508 diographs. *Radiology*, 290(2):537–544, 2019.509 Saurabh Garg, Yifan Wu, Alexander J Smola, Sivaraman Balakrishnan, and Zachary Lipton. Mixture
510 proportion estimation and pu learning: A modern approach. In *Advances in Neural Information*
511 *Processing Systems*, volume 34, pp. 8532–8544, 2021.512 Zayd Hammoudeh and Daniel Lowd. Learning from positive and unlabeled data with arbitrary
513 positive shift. In *Advances in Neural Information Processing Systems*, volume 33, pp. 13088–
514 13099, 2020.515 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
516 *nition*. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
517 770–778, 2016.518 Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, and Masashi Sugiyama. Positive-unlabeled
519 learning with non-negative risk estimator. In *Advances in Neural Information Processing Systems*,
520 volume 30, pp. 1674–1684, 2017.521 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
522 nical report, University of Toronto, 2009.523 Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic
524 regression. In *Proceedings of the Twentieth International Conference on International Conference*
525 *on Machine Learning (ICML 2003)*, pp. 448—455, 2003.526 Xiaoli Li and Bing Liu. Learning to classify texts using positive and unlabeled data. In *Proceedings*
527 *of the 18th International Joint Conference on Artificial Intelligence*, pp. 587—592, 2003.528 Zhigang Liu, Wenzhong Shi, Deren Li, and Qianqing Qin. Partially supervised classification –
529 based on weighted unlabeled samples support vector machine. In *Advanced Data Mining and*
530 *Applications*, pp. 118–129, 2005.531 Lin Long, Haobo Wang, Zhijie Jiang, Lei Feng, Chang Yao, Gang Chen, and Junbo Zhao. Positive-
532 unlabeled learning by latent group-aware meta disambiguation. In *Proceedings of the IEEE/CVF*
533 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 23138–23147, 2024.534 Jan Hendrik Metzen, Robin Hutmacher, N. Grace Hua, Valentyn Boreiko, and Dan Zhang. Iden-
535 tification of systematic errors of image classifiers on rare subgroups. In *Proceedings of the*
536 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5064–5073, 2023.

540 Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Re. Hidden stratification
 541 causes clinically meaningful failures in machine learning for medical imaging. In *Proceedings of*
 542 *the ACM Conference on Health, Inference, and Learning*, CHIL '20, pp. 151–159, 2020.

543 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 544 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 545 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 546 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 547 learning library. In *Advances in Neural Information Processing Systems*, volume 32, 2019.

548 Isabella Poles, Eleonora D’Arnese, Federica Buccino, Laura Vergani, and Marco D. Santambrogio.
 549 A novel approach to unveil hidden stratification in osteoporosis sr-microct image classification.
 550 In *2024 IEEE International Symposium on Biomedical Imaging (ISBI)*, pp. 1–5, 2024.

551 Ahmad Sajedi, Yuri A Lawryshyn, and Konstantinos N Plataniotis. Subclass knowledge distillation
 552 with known subclass labels. In *2022 IEEE 14th Image, Video, and Multidimensional Signal*
 553 *Processing Workshop (IVMSP)*, pp. 1–5. IEEE, 2022.

554 Zhang Shunxiang, Zhu Aoqiang, Zhu Guangli, Wei Zhongliang, and Li KuanChing. Building fake
 555 review detection model based on sentiment intensity and pu learning. *IEEE Transactions on*
 556 *Neural Networks and Learning Systems*, 34(10):6926–6939, 2023.

557 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 558 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

559 Wang Xinrui, Wenhui Wan, Chuanxing Geng, Shao-Yuan Li, and Songcan Chen. Beyond myopia:
 560 Learning from positive and unlabeled data through holistic predictive trends. In *Advances in*
 561 *Neural Information Processing Systems*, volume 36, pp. 67589–67602, 2023.

562 Hwanjo Yu, Jiawei Han, and K.C.-C. Chang. PEBL: Web page classification without negative
 563 examples. *IEEE Transactions on Knowledge and Data Engineering*, 16(1):70–81, 2004.

564 Thomas Zeng, Elias Furst, Yiyang Wang, Roselyne Tchoua, Jacob Furst, and Daniela Raicu. No
 565 nodule left behind: evaluating lung nodule malignancy classification with different stratification
 566 schemes. In *Medical Imaging 2023: Computer-Aided Diagnosis*, volume 12465, pp. 385–399.
 567 SPIE, 2023.

568 Dell Zhang and Wee Sun Lee. A simple probabilistic approach to learning from positive and unla-
 569 beled examples. In *Proceedings of the 5th annual UK workshop on computational intelligence*
 570 (*UKCI*), pp. 83–87, 2005.

A APPENDIX

A.1 DETAILS OF THE STATE-OF-THE-ART (SOTA) METHODS

571 We have performed experiments to compare *PU-ScRR-CC* with 5 SOTA and open-source PU learn-
 572 ing approaches. The compared PU learning approaches include *uPU* (Du Plessis et al., 2015), *nnPU*
 573 (Kiryo et al., 2017), *(TED)ⁿ* (Garg et al., 2021), *HolisticPU* (Xinrui et al., 2023), and *LaGAM* (Long
 574 et al., 2024). A brief description of those compared PU learning algorithms is provided here.

575 Du Plessis et al. introduced an unbiased risk estimator based on non-convex loss functions satisfying
 576 a specific symmetry condition, which requires the mixture proportion α_p , and later Du Plessis et al.
 577 extended this approach to convex loss functions, which is known as *uPU* in PU learning literature.
 578 Recognizing the risk of overfitting in modern overparameterized models, Kiryo et al. proposed
 579 *nnPU* a regularized approach that suppresses the loss on unlabeled data by clipping it at zero.

580 *(TED)ⁿ* is a combination of two methods: (i) *BBE*—used to determine the ratio of positive examples
 581 in the unlabeled data; (ii) *CVIR*—a simple and efficient objective for PU-learning. *(TED)ⁿ* combines
 582 these two methods in an iterative manner and outperforms across various benchmarks.

583 *HolisticPU* monitors prediction dynamics during training to compute a predictive trend score. This
 584 score is used to resample positive data and infer labels for unlabeled examples, addressing class

594 imbalance and noisy supervision. Extensive experiments show improved accuracy and robustness
 595 over existing PU learning methods, narrowing the gap to fully supervised learning.
 596

597 **LaGAM** framework uses hierarchical contrastive learning to extract latent group semantics for better
 598 feature representation. It applies meta-learning-based iterative label refinement to reduce label noise
 599 and improve robustness in PU learning.

600 The source codes of these 5 SOTA PU learning algorithms *i.e.*, *uPU*¹, *nnPU*¹, *(TED)*ⁿ², *HolisticPU*³, and *LaGAM*⁴ are publicly available online.
 601

602 A.2 EXPERIMENTAL SETUP

603 In this section, we discuss the following things:
 604

- 606 1. the strategy used to construct the labeled positive set \mathcal{X}_p and the unlabeled set \mathcal{X}_u for each
 607 classification task, and
 608
- 609 2. the evaluation metrics that are used to assess the PU learning algorithms

610 CONSTRUCTION OF \mathcal{X}_p AND \mathcal{X}_u

612 The training dataset consists of a labeled positive set \mathcal{X}_p , containing $|\mathcal{X}_p|$ labeled positive samples,
 613 and an unlabeled set \mathcal{X}_u , comprising $|\mathcal{X}_u|$ samples drawn from both positive and negative classes. In
 614 the subsequent analysis, the class labels within \mathcal{X}_u are intentionally discarded. The labeled positive
 615 samples, denoted by $\{x_i^p\}_{i=1}^{|\mathcal{X}_p|}$, are randomly selected from the overall population of positive exam-
 616 ples. The *positive class prior* in \mathcal{X}_u , denoted by α_p , represents the proportion of positive samples
 617 within the unlabeled set. To construct \mathcal{X}_u , a random selection of $\alpha_p \cdot |\mathcal{X}_u|$ positive samples and
 618 $(1 - \alpha_p) \cdot |\mathcal{X}_u|$ negative samples is drawn from their respective populations.

619 The sizes of the training set ($\mathcal{X}^* = \mathcal{X}_p \cup \mathcal{X}_u$) and the test set for all considered experiments are
 620 summarized in Table 3. To better reflect practical scenarios, we evaluate performance using three
 621 different values of α_p , defined as $\mathcal{D}_{\alpha_p} = \{0.8, 0.5, 0.2\}$. These values are chosen to analyze how
 622 the classifier behaves when \mathcal{X}_u is dominated by positive samples ($\alpha_p = 0.8$), balanced ($\alpha_p = 0.5$),
 623 or dominated by negative samples ($\alpha_p = 0.2$).

624 The objective also requires how the classifier’s performance is affected by the different distributional
 625 presence of the hidden subclasses in \mathcal{X}_p . Hence, we have considered 3 different class label ratios for
 626 all the experiments where only 2 hidden subclasses (z_1, z_2) are present in \mathcal{X}_p .
 627

- 628 1. **Ratio 1** (9: 1): Dominating subclass is z_1 and z_2 is the rare subclass.
 629 2. **Ratio 2** (1: 1): Both z_1 and z_2 are uniformly present.
 630 3. **Ratio 3** (1: 9): Dominating subclass is z_2 and z_1 is the rare subclass.

632 Classification tasks as CIFAR-10-3, CIFAR-100-2, and F-MNIST-2 involve 4, 5, 4 subclasses re-
 633 spectively in \mathcal{X}_p . The considered class label ratios for CIFAR-10-3 and F-MNIST-2 are 8: 4: 2: 1
 634 and 4: 2: 1: 1. Similarly, the class label ratios for CIFAR-100-2 are considered as 5: 4: 3: 2: 1
 635 and 1: 1: 1: 1: 1. These varying subclass ratios are chosen to evaluate the classifier’s performance
 636 under scenarios where certain subclasses dominate, others are rare, and all subclasses are equally
 637 represented.

639 METRIC USED FOR EVALUATION

640 To assess the performance of *PU-ScRR-CC* and other SOTA methods, we use test accuracy consid-
 641 ering all subclasses as the evaluation metric. This metric is termed as **overall test accuracy**, which
 642 is standard for binary classification tasks. The reported results correspond to the mean overall test
 643 accuracy over four random seeds, along with the standard deviation.

644 ¹<https://github.com/kiryor/nnPUlearning>

645 ²https://github.com/acmi-lab/PU_learning

646 ³<https://github.com/wxr99/HolisticPU>

647 ⁴<https://github.com/llong-cs/LaGAM>

648 We introduce another evaluation metric, termed **worst-case test accuracy**, which measures the clas-
 649 sifier’s accuracy on the rarest subclass. Assessing performance on such underrepresented subclasses
 650 is a key focus of this work, as worst-case test accuracy provides a more reliable indication of the
 651 model’s behaviour on rare but critical cases than the average overall test accuracy across the dataset.
 652

653 MODEL ARCHITECTURE

654 In PU learning, various classifiers effectively handle benchmark datasets. Our method uses a hybrid
 655 model based on feed-forward neural networks (FFNN) with ReLU activations. We employ a pre-
 656 trained ResNet18 (He et al., 2016) for all datasets. A 5-layer FFNN $\varsigma(\cdot)$ with architecture d -1024-
 657 512-1024-256-($k+1$), where d is the feature dimension from the base model, is appended during
 658 the *Warm-Start* phase. The k -value for *PU-ScRR* is fixed at 1. In *PU-ScRR-CC*, k corresponds to
 659 the number of connected components in \mathcal{X}_p , where each component represents a group of strong
 660 neighbouring samples under a chosen distance metric. After extracting potential negatives, both
 661 labeled positive and potential negative samples are reprocessed through the same base model and
 662 passed to two FFNNs: $\omega_1(\cdot)$ (same as ς) and $\omega_2(\cdot)$. To ensure fairness, all PU algorithms use features
 663 from the same pre-trained backbone.
 664

665 CONFIGURATION

666 All experiments are implemented in PyTorch (Paszke et al., 2019) and executed on an NVIDIA A100
 667 GPU. *PU-ScRR-CC* require a warm start to identify potential negative samples and are pretrained for
 668 5 epochs in each experiment. According to (Xinrui et al., 2023), *HolisticPU* uses 15 warm-up epochs
 669 to estimate unlabeled sample trend scores for resampling, while (Long et al., 2024) reports that
 670 *LaGAM* uses 20 warm-up epochs to stabilize representation learning before applying meta-learning.
 671 Stochastic Gradient Descent with a 0.9 momentum is used as the optimizer for all experiments on
 672 CIFAR-10, CIFAR-100, Fashion-MNIST, and STL-10. The learning rate is selected via grid search
 673 in [0.001, 0.1], and the hyperparameter γ in $\hat{R}_{PU-ScRR}$ is tuned independently over [0.001, 1]. For
 674 CIFAR-10 and Fashion-MNIST, training runs for 50 epochs per seed with a batch size of 32; CIFAR-
 675 100 and STL-10 use the same setup with a batch size of 16. We report mean overall test accuracy
 676 with standard deviation as well as the worst-case test accuracy across all seeds.
 677

678 CLASSIFICATION TASKS

679 The detailed specifications of the conducted experiments are listed in Table 3.
 680

681 Dataset	682 Task Name	683 Pos. Class	684 Neg. Class	685 Train Set		686 # samples
				687 $ \mathcal{X}_p $	688 $ \mathcal{X}_u $	
689 CIFAR-10	690 CIFAR-10-1	691 Bird (2), 692 Cat (3)	693 Airplane (0)	694 1000	695 5000	696 2000
	697 CIFAR-10-2	698 Non-animal	699 Animal	700 3750	701 15000	702 10000
703 CIFAR-100	704 CIFAR-100-1	705 Dolphin (30), 706 Seal (72)	707 Shark (73)	708 100	709 600	710 200
	711 CIFAR-100-2	712 Aquatic mammals (0)	713 Fish (1)	714 1000	715 1500	716 1000
718 Fashion-MNIST	719 F-MNIST-1	720 T-shirt/top (0), 721 Pullover (2)	722 Trouser (1)	723 1000	724 6000	725 2000
	726 F-MNIST-2	727 Topwear	728 Others	729 4800	730 15000	731 5000
733 STL-10	734 STL-10-1	735 Airplane (0), 736 Car (2)	737 Bird (1)	738 200	739 600	740 200
	741 STL-10-2	742 Bird (1), 743 Cat (3)	744 Airplane (0)	745 200	746 600	747 200

700 Table 3: Specification of datasets for different classification tasks
 701

702 B DECLARATION ON THE USE OF LARGE LANGUAGE MODELS (LLMs)
703

704 The authors acknowledge the assistance of **Grammarly** for grammatical assistance to prepare the
705 manuscript.
706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755