

000 001 002 003 004 005 TOWARDS W2A4 LLM INFERENCE: HYBRID SQ-VQ 006 FRAMEWORK WITH ADAPTIVE ERROR COMPENSATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035 Quantization presents a powerful approach for reducing the memory footprint and
036 accelerating the inference of Large Language Models (LLMs). However, it faces
037 a fundamental dilemma: computation-friendly Scalar Quantization (SQ) suffers
038 performance degradation at ultra-low bit-widths, whereas memory-friendly Vector
039 Quantization (VQ) maintains higher accuracy but fails to reduce computational
040 demand. As a result, achieving both computational efficiency and high-fidelity
041 compression in ultra-low-bit regimes (e.g. W2A4) remains a tough challenge. To
042 address this, we propose **AEC-SVQ**, a hybrid framework that synergistically inte-
043 grates SQ, VQ for high-performance, ultra-low-bit LLM inference. The framework
044 is built on three innovations. ① To simultaneously address the disparate distribu-
045 tional challenges presented by weight VQ, activation SQ, and codebook integer
046 quantization, we introduce a **learned rotation-smooth transformation** that adap-
047 tively promotes quantization-friendly distributions for weights, activations, and
048 codebooks within the hybrid SQ-VQ scheme. ② To mitigate the compounding
049 errors caused by the independent quantization of weights and activations, we pro-
050 pose the **Cumulative-Error-Aware Vector Quantization (CEAVQ) algorithm**.
051 CEAVQ adjusts weights to compensate for the cumulative error from upstream
052 quantized layers, thereby proactively aligning with the full-precision output distri-
053 bution. ③ To ensure robustness against statistical noise from limited calibration data,
054 we introduce a closed-form, data-driven **Adaptive Compensation**. It modulates the
055 compensation strength for cumulative errors, preventing overfitting to calibration
056 set statistics and guaranteeing stable generalization. AEC-SVQ enables a W2A4
057 pipeline that achieves the memory footprint of a 2-bit model while exploiting the
058 computational efficiency of 4-bit integer arithmetic. On LLaMA-30B, it delivers
059 a $3.6 \times$ speedup and $7.1 \times$ memory saving, establishing a practical frontier for
060 ultra-low-bit LLM deployment.

1 INTRODUCTION

038 Large Language Models (LLMs) (Dettmers et al., 2022a; Touvron et al., 2023a;b) have unlocked
039 remarkable capabilities across diverse domains (Achiam et al., 2023; Chen et al., 2024), yet their
040 immense computational and memory footprints present a significant barrier to widespread deployment.
041 The prohibitive cost of serving these models, particularly on resource-constrained edge devices, has
042 catalyzed intensive research into model compression. Among various techniques, quantization—
043 reducing the numerical precision of weights and activations to lower bits—stands out as one of the
044 most promising avenues for dramatically cutting memory usage, bandwidth, and energy consumption.

045 As shown in Figure 1(c), LLM quantization is primarily driven by two approaches: Scalar Quantiza-
046 tion (SQ) Ashkboos et al. (2024) and Vector Quantization (VQ) (Liu et al., 2024a). SQ, particularly
047 in INT8 and INT4 settings, has gained wide adoption due to its seamless compatibility with com-
048 modity hardware, which offers highly optimized integer arithmetic pipelines for efficient computa-
049 tion. However, at sub-4-bit precision, the limited representational capacity of SQ causes severe accuracy
050 loss. In contrast, VQ demonstrates distinct advantages in the ultra-low bit regime (< 4 bits). By
051 mapping weight parameters to high-dimensional floating-point (FP) codewords, it preserves key
052 information while further improving the compression ratio. Despite its efficacy in reducing memory
053 and bandwidth, current VQ methods are restricted to weight-only quantization and remain in costly
054 FP arithmetic, stemming from two core issues: the prohibitive complexity of quantizing runtime

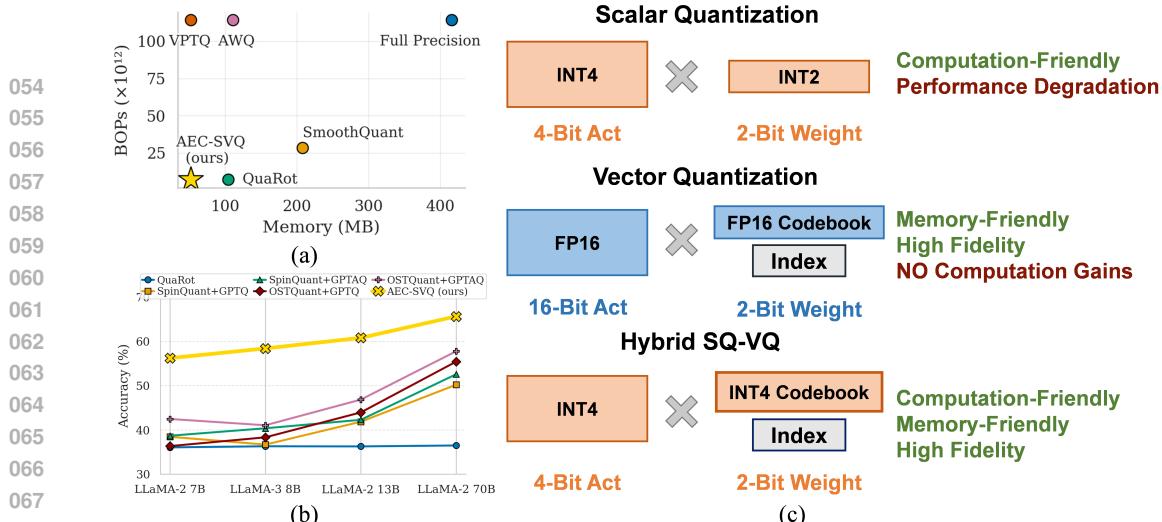


Figure 1: **Motivation and performance overview of our proposed hybrid W2A4 quantization framework, AEC-SVQ.** (a) Comparison of Bit Operations (BOPs) and memory footprint for recent quantization methods, demonstrating that AEC-SVQ achieves a superior integration of computation and memory efficiency. (b) Accuracy of various methods on the LLaMA family, where AEC-SVQ consistently outperforms existing PTQ techniques. (c) Conceptual comparison of quantization schemes. Our hybrid approach synergizes SQ and VQ, using an INT4 codebook to enable memory-friendly 2-bit weight storage while executing computation with efficient 4-bit integer arithmetic.

activations online and the incompatibility of its non-linear output with accelerated integer arithmetic. Taken together, the characteristics of VQ and SQ reveal a fundamental computation–memory trade-off and raise a key challenge: **How can we synergistically integrate the hardware-friendly efficiency of SQ with the high-fidelity representation of VQ into a unified framework to enable practical, high-performance ultra-low-bit inference?**

Building upon the characteristics of common hardware architectures and the requirements of LLM inference, we first explore a hybrid quantization scheme. This initial approach, which employs SQ for runtime activations and VQ for model weights, offers a promising balance of computational efficiency and compression. To align with low-precision compute units such as INT4 Tensor Cores and achieve practical speedups, the codebook in VQ are also quantized using SQ. However, the practical implementation of this strategy faces several critical challenges: **① Suboptimal data distributions for quantization.** The intrinsic data distributions in LLMs are challenging for standard quantization methods. For weights, VQ performs best on isotropic, spherical clusters (Yue et al., 2025), but the typically anisotropic nature of weight distributions often leads to suboptimal representations. For activations, scalar quantization requires a narrow dynamic range to maintain high fidelity (Dettmers et al., 2022b). Yet, outliers in LLM activations drastically widen this range, forcing most values into coarse, low-information bins. For VQ codebook, the few codewords representing high-magnitude outliers skew the dynamic range, forcing subsequent SQ to collapse most other codewords into coarse bins and degrade overall fidelity. **② Coupled quantization errors.** Conventional approaches quantize weights and activations independently, overlooking critical error interactions within and across layers. Distortions from weight quantization can shift data distributions, amplifying activation errors. Conversely, activation quantization alters the input statistics of downstream layers, rendering pre-calibrated weight reconstructions suboptimal. Under ultra-low bit widths, these uncompensated and accumulated errors become the main bottleneck, making simple independent schemes ineffective. A promising solution is to explicitly model and correct the coupled distortions and cumulative error. However, in contrast to independent optimization, holistic modeling and collaborative optimization are often compromised by **③ Statistical instability.** PTQ relies on small calibration datasets to estimate correction statistics. Limited sample sizes inevitably introduce noise into these estimates. Applying such noisy corrections indiscriminately can destabilize inference and degrade generalization. Therefore, a central challenge for practical deployment is to design a robust method that leverages beneficial corrections while mitigating the impact of statistical noise.

In response, we propose **AEC-SVQ** a Hybrid SQ-VQ framework to unlock an efficient W2A4 (2-bit weight, 4-bit activation) pipeline. We first construct a **Hybrid SQ-VQ scheme with Learned Transformation** designed to correct suboptimal data distributions for quantization, thereby making them more amenable to subsequent quantization. The effectiveness of this transformation is

108 validated through both theoretical derivation(Equation 4) and intuitive illustration(Figure 2(b, c)).
 109 By simultaneously satisfying the distributional requirements of activation SQ, weight VQ, and
 110 codebook quantization, the transformation reduces overall quantization error and integrates these
 111 three components into a unified optimization process, ultimately realizing a cohesive and efficient
 112 hybrid scheme. Building on this foundation, we tackle the coupled distortions and cumulative errors
 113 of independent quantization with our **Cumulative-Error-Aware Vector Quantization (CEAVQ)**.
 114 Unlike conventional approaches that treat layers in isolation and minimize local reconstruction error,
 115 CEAVQ pursues a global objective: aligning each layer’s output with its full-precision distribution.
 116 To this end, it introduces a novel corrective term that proactively adjusts the weights. This adjustment
 117 compensates not only for the imminent activation quantization error but also for the accumulated
 118 distortions propagated from upstream quantized layers. Finally, to address the practical issue of
 119 statistical instability, we propose **Adaptive Compensation via Bias–Variance Shrinkage**, which
 120 formalize the problem by modeling the application of the corrective term as a classical bias–variance
 121 trade-off. Based on this formulation, we derive a closed-form, data-driven solution that adaptively
 122 adjusts the strength of cumulative error correction at the granularity of individual columns. Acting
 123 as a theoretically grounded shrinkage mechanism, it suppresses unreliable correction signals and
 ensures stable, generalizable performance.

124 Specifically, our work makes the following three core contributions:

- 125 • **Hybrid SQ-VQ scheme with Learned Transformation.** We introduce a hybrid scheme built
 126 around a learned transformation that reshapes data distributions into quantization-friendly forms.
 127 This transformation simultaneously meets the distributional requirements of activation SQ, weight
 128 VQ, and codebook quantization, reducing overall quantization error and integrating the three
 129 components into a unified optimization process. As a result, the scheme enables a synergistic hybrid
 130 scheme that achieves the **memory footprint of a 2-bit model** while **retaining the computational**
 131 **efficiency of 4-bit integer arithmetic.**
- 132 • **Cumulative-Error-Aware VQ (CEAVQ) algorithm.** We propose a post-training quantization
 133 algorithm that aligns each layer’s output with its full-precision reference. CEAVQ introduces a
 134 corrective term that proactively adjusts the weight vectors, compensating for both activation quan-
 135 tization errors and the accumulated distortions propagated from upstream layers. This coordinated
 136 optimization alleviates the compounding effects of independent quantization and enables more
 137 accurate ultra-low-bit inference.
- 138 • **Adaptive Compensation via Bias-Variance Shrinkage.** To improve the robustness of CEAVQ
 139 under statistical noise from limited calibration sets, we formalize the instability as a bias–variance
 140 trade-off. From this formulation, we derive a closed-form, data-driven compensation method that
 141 applies shrinkage to the corrective term. This adaptive mechanism balances correction strength
 142 against estimation noise, ensuring stable and generalizable performance.

144 2 RELATED WORK AND BACKGROUND

145 **Scalar Quantization for LLM Compression.** SQ converts weights and activations of pretrained
 146 neural networks from high precision (e.g., 16-bit floating point numbers) to lower precision (e.g., 4-bit
 147 integers). Given a weight \mathbf{W} , it is typically implemented with symmetric and uniform quantization
 148 as:

$$149 \text{SQ}(\mathbf{W}) = \text{clamp}\left(\lfloor \frac{\mathbf{W}}{s} \rfloor, -2^{b-1}, 2^{b-1} - 1\right), \quad s = \frac{\max(|\mathbf{W}|)}{2^{b-1} - 1}, \quad (1)$$

150 where s is the scale factor, $\lfloor \cdot \rfloor$ denotes the rounding-to-nearest operator, b is the quantization bit-
 151 width, and clamp is the clipping function. SQ remains the workhorse of LLM compression due to its
 152 compatibility with integer arithmetic on commodity accelerators. In the weight-only regime, methods
 153 such as GPTQ (Frantar et al., 2022) leverage second-order error models to minimize rounding errors,
 154 while AWQ (Lin et al., 2023) and OWQ (Lee et al., 2023) employ activation-aware scaling to protect
 155 salient weights from quantization loss. To obtain end-to-end speedups, recent work pushes SQ to
 156 both weights and activations, where the key difficulty is that activation outliers dominate the dynamic
 157 range and lead to insufficient precision representation for most data points. ZeroQuant (Yao et al.,
 158 2022) proposes fine-grained, hardware-friendly schemes; SmoothQuant (Xiao et al., 2022) shifts
 159 dynamic range from activations to weights via an equivalent rescaling; OmniQuant (Shao et al., 2023)
 160 further learns quantization and transformation parameters; and I-LLM (Hu et al., 2024) redesigns
 161 blocks and operators to enable fully integer inference. Orthogonal transforms have emerged as a

complementary strategy to make SQ viable at 4 bits: QuaRot (Ashkboos et al., 2024) uses random rotations to deconcentrate outliers, while SpinQuant (Liu et al., 2024b) learns rotations to adaptively regularize distributions. OSTQuant (Hu et al., 2025) unified learnable rotations and scaling, providing additional flexibility and consistently outperforming previous methods. FlatQuant (Sun et al., 2024) employed layer-wise learned online matrix transforms to improve quantized linears, at the cost of increased inference overhead.

Vector Quantization for LLM Compression. VQ has emerged as a powerful technique for achieving higher compression ratios. The core idea of VQ is to map a large set of vectors to a smaller, finite set of representative vectors—commonly referred to as a codebook. Each original vector is then represented simply by the index of its closest counterpart in the codebook, achieving compression by storing this compact index instead of the full-precision vector. Exploiting inter-channel correlation to attain lower distortion at the same bit budget than scalar quantization. Given a weight \mathbf{W} with m rows and n columns to be quantized, VQ reshapes it into \mathbf{W}' with dimensions $(m * n/v, v)$. For each v -dimensional row vector, VQ replaces it with the $\log_2 k$ -bit index of the nearest vector from the codebook $\mathbf{C} \in \mathbb{R}^{k \times v}$. The compression ratio of VQ is $(16mn)/(16kv + \log_2 k * mn/v)$. Typically, the Euclidean distance (calculated by the Frobenius normalization $\|\cdot\|_F$) is taken to measure similarities. In this case, the quantization process can be expressed as:

$$\text{VQ}(\mathbf{W}') = \{\underset{j \in k}{\operatorname{argmin}} \|\mathbf{W}'_{i,:} - \mathbf{C}_{j,:}\|_F \mid i = 1, \dots, m * n/v\}. \quad (2)$$

The codebook \mathbf{C} has shape (k, v) , where each row vector represents a cluster center. Codebook design is central to VQ methods. QuIP# (Tseng et al., 2024), leverage structured, data-independent codebooks for extreme compression. In contrast, a more common approach is to learn data-dependent codebooks. VPTQ (Liu et al., 2024a) and GPTVQ (Van Baalen et al., 2024) optimize codebooks using clustering algorithms like K-Means and Expectation-Maximization, respectively, with AQLM (Egiazarian et al., 2024) further refining this via layer-wise training. To mitigate error accumulation, both VPTQ and AQLM incorporate residual quantization. Another line of work exploits the geometric properties of weight vectors to improve quantizability: PCDVQ (Yue et al., 2025) decouples vector magnitude and direction, while PVQ (van der Ouderaa et al., 2024) constrains codewords onto a sphere to better match the weights’ natural distribution.

3 METHODOLOGY

3.1 HYBRID SQ-VQ SCHEME WITH LEARNED TRANSFORMATION

We introduce a hybrid quantization scheme that synergistically combines VQ for weights and SQ for activations. This approach addresses their disparate statistical properties, as SQ is well-suited for the dynamic distributions of activations, while VQ offers superior rate-distortion performance for static weight tensors. However, a naive implementation of this method is suboptimal due to a misalignment between the intrinsic data distributions in LLMs and the ideal operating conditions for each quantization scheme. The effectiveness of VQ is predicated on isotropic, spherical data clusters. This condition is violated by the anisotropic geometry of weight tensors, as visualized in Figure 2(c, left) leading to inefficient codebook representations. The fidelity of SQ depends on a minimal dynamic range. This is severely undermined by emergent outliers in activations (Figure 2(b, left)), which drastically expand the quantization range and compel the majority of values into coarse, low-information bins.

To reconcile these requirements, we introduce a Learnable Rotation-Smooth Transformation, an equivalent transformation pair that reshapes the distributions of both weights and activations to be simultaneously amenable to their respective quantization schemes. We theoretically prove that this single transformation systematically benefits not only the weight VQ and activation SQ but also the subsequent integer quantization of the VQ codebook itself. This unification enables a highly efficient inference pipeline. By quantizing the VQ codebook to 4-bit integers (INT4), we convert the primary matrix multiplication (MatMul) into an INT4 table lookup and multiply-accumulate operation. Consequently, our framework achieves the storage and bandwidth advantages of 2-bit weights (W2) while leveraging the computational speedups of 4-bit arithmetic (W4A4), a complete workflow visualized in Figure 2(a).

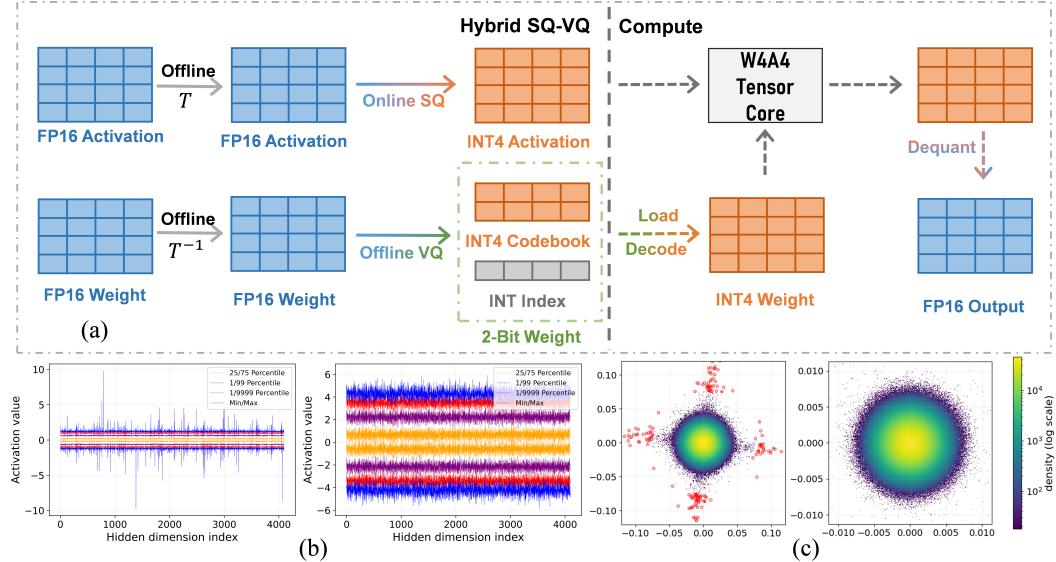


Figure 2: **Overview of Hybrid SQ-VQ scheme and the distributional effect of the learned transformation.** (a) W2A4 inference pipeline. Offline learned transformation pair $(\mathbf{T}, \mathbf{T}^{-1})$ reshapes data distribution. Activations subsequently undergo online 4-bit SQ, while weights are quantized offline using 2-bit VQ with an INT4 codebook. This scheme enables efficient computation on W4A4 tensor cores. (b) The transformation mitigates outliers in the raw activation distribution (left), producing a uniform and compact distribution (right) that is ideal for SQ. (c) PCA distribution of vectorized weights. The initially anisotropic weight distribution with outliers (left) is transformed into a dense, isotropic cluster (right), creating an optimal geometry for k-means-based VQ.

Consider a linear layer defined by $\mathbf{y} = \mathbf{W}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{d_{\text{in}}}$ is the input activation and $\mathbf{W} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ is the weight matrix. We introduce an *equivalent transformation pair* $(\mathbf{T}, \mathbf{T}^{-1})$ that preserves the layer’s function:

$$\mathbf{y} = \mathbf{W}\mathbf{x} = (\mathbf{W}\mathbf{T}^{-1})(\mathbf{T}\mathbf{x}) = \mathbf{W}'\mathbf{x}'. \quad (3)$$

The transformation \mathbf{T} is parameterized as a learnable rotation-smooth operator, explicitly defined as $\mathbf{T} = \mathbf{\Lambda}\mathbf{O}$. Here, $\mathbf{O} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ is a learnable orthogonal matrix (rotation) that mixes input channels, and $\mathbf{\Lambda}$ is a learnable diagonal matrix (smoothing) that adjusts the variance of each resulting channel.

Modeling the errors from activations $\text{SQ}(\eta_x)$, weights $\text{VQ}(\eta_w)$, and codebook integer quantization(η_c) as additive noise. we derive a unified approximation for the layer’s output Mean Squared Error (MSE):

$$\mathbb{E}\|\tilde{\mathbf{y}} - \mathbf{y}\|_2^2 \approx \underbrace{\text{tr}(\mathbf{W}^T \mathbf{W}' \Sigma_{\eta_x})}_{\text{Activation Error}} + \underbrace{\text{tr}(\mathbf{x}' \mathbf{x}^T (\Sigma_{\eta_w} + \Sigma_{\eta_c}))}_{\text{Weight \& Codebook Error}} \quad (4)$$

, where Σ represent the error covariances. This model reveals that the transformation \mathbf{T} jointly influences all error sources by modifying both the activation statistics and the effective weight geometry.

Our core theoretical claim is that the proposed \mathbf{T} systematically reduce all three constituent error terms in Equation 4, as empirically demonstrated in Figure 2(b, c). Theoretical analysis can be referred to Appendix A.2

3.2 CUMULATIVE-ERROR-AWARE VECTOR QUANTIZATION

Conventional PTQ methods that treat weight and activation quantization as independent, locally-optimized problems are fundamentally suboptimal. This approach overlooks the crucial coupling of their respective errors, which fosters a reciprocal error amplification. Specifically, quantizing activations shifts the input statistics for weights, while weight quantization error perturbs the output, magnifying errors in subsequent layers. This cascade of uncompensated, compounding error, visualized in Figure 3 (bottom), becomes the primary performance bottleneck in ultra-low-bit regimes. An effective weight quantization strategy must therefore abandon this decoupled approach and instead actively compensate for the error induced by activation quantization.

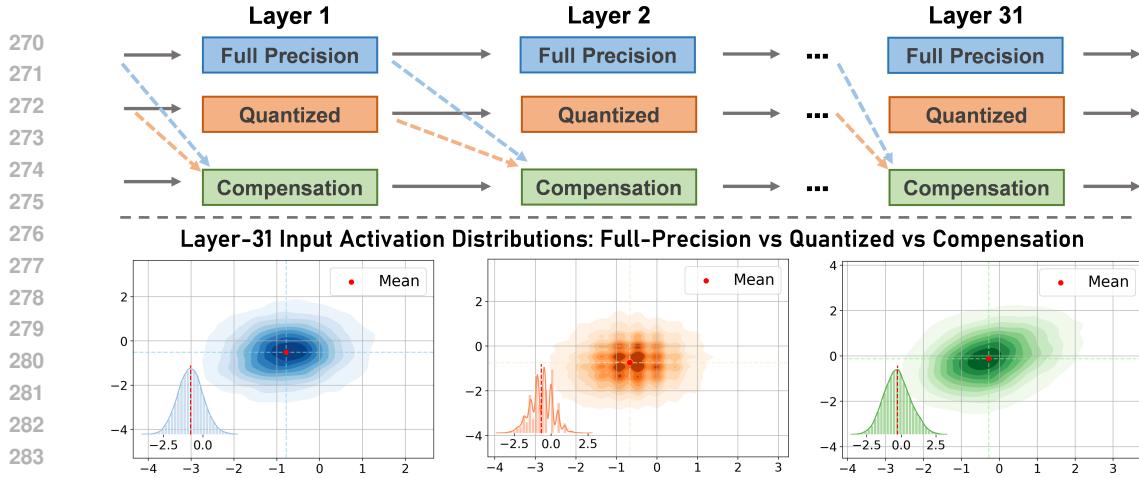


Figure 3: **Conceptual illustration of our Cumulative-Error-Aware Vector Quantization (CEAVQ).** (Top) A schematic of the layer-wise compensation mechanism. Error information from the quantization process in one layer is used to apply a corrective adjustment to the subsequent layer, proactively mitigating the accumulation of cascading errors. (Bottom) A comparison of the input activation distributions for Layer 31. The leftmost plot shows the ideal distribution under a full-precision model. The center plot reveals a significant distributional shift caused by standard quantization. The rightmost plot demonstrates that our CEAVQ method successfully preserves the statistical integrity of the original distribution, even deep within the network.

To this end, we propose a sequential, layer-wise compensation strategy, conceptually illustrated in Figure 3 (top). We reformulate the weight quantization problem from a foundational perspective. Our goal is to find the quantized weight matrix \hat{W} that minimizes the following principled objective:

$$\ell(\hat{W}) = \mathbb{E}_x \left[\left\| \hat{W}X - W\tilde{X} \right\|_F^2 \right] = \mathbb{E}_x \left[\left\| (\hat{W} - W)X - W(\tilde{X} - X) \right\|_F^2 \right] \quad (5)$$

where X are the quantized activations corresponding to the full-precision inputs \tilde{X} .

As detailed in Appendix A.3, minimizing this objective reveals that the optimal, unquantized solution is not W , but rather an error-compensated matrix $W_{opt} = W + WGH^{-1}$. The term WGH^{-1} serves as a corrective pre-shift to the weights. Here, $H = \mathbb{E}_x[XX^T]$ is the input covariance and $G = \mathbb{E}_x[(\tilde{X} - X)X^T]$ is a cross-correlation matrix capturing the interaction between activation and weight errors.

Inspired by this finding, we develop a sequential column-wise quantization algorithm. For each column k , the quantized weight vector \hat{W}_k is obtained by quantizing a corrected target that integrates our novel term with a standard error feedback mechanism:

$$\hat{W}_k = Q \left(W_k + (W_{1:(k-1)} - \hat{W}_{1:(k-1)})a_k + (WGH^{-1})_k \right) \quad (6)$$

where $Q(\cdot)$ is the quantization operator and a_k are feedback coefficients. The derivation details can be found in Appendix A.3. The crucial Cumulative Error Correction term directly injects the corrective bias into the quantization process. This forces the weight quantizer $Q(\cdot)$ to be explicitly aware of the downstream activation error, steering the solution towards a global minimum of the joint error landscape. Consequently, the quantized weights are not only locally accurate but also robust to activation perturbations, preserving the feature distributions as shown in Figure 3 (bottom).

3.3 ADAPTIVE CORRECTION VIA BIAS-VARIANCE REGULARIZATION

While the activation-error correction term WGH^{-1} is theoretically optimal, its practical application presents a critical bias-variance trade-off. As illustrated in Figure 4, a fixed, global α is suboptimal. Any choice $\alpha < 1$ introduces a systematic bias by under-compensating for the activation error. Conversely, an unregularized correction ($\alpha = 1$) overfits to estimation noise in the statistics G and H derived from finite calibration data, leading to high variance and unstable weights. We therefore

324 propose an adaptive method to determine an optimal regularization strength $\hat{\alpha}$ that minimizes the
 325 weight reconstruction error.

327 Our goal is to learn an optimal correction factor α_k
 328 that minimizes the layer’s reconstruction loss. As
 329 detailed in Appendix A.4, by modeling the quantizer
 330 with a linear approximation, the expected loss can
 331 be decomposed into a sum of per-column objectives.
 332 Optimizing for α_k becomes equivalent to minimizing
 333 the following for each column:

$$\alpha_k^* = \arg \min_{\alpha \in \mathbb{R}} \sum_k \|(\alpha - 1)v_k + r_{0,k} + b_k\|_H^2 \quad (7)$$

337 where, $v_k \triangleq (WGH^{-1})_k$ is the ideal correction, $r_{0,k}$
 338 is the propagated error from previous columns, b_k is
 339 the quantization bias.

340 While this objective yields a closed-form solution
 341 α_k^* , its sensitivity to estimation noise necessitates
 342 regularization. We therefore introduce a shrinkage:

$$\hat{\alpha}_k = (1 - \lambda_k)\alpha_k^*, \quad \lambda_k \in [0, 1], \quad (8)$$

345 where λ_k is a data-driven shrinkage factor that enhances robustness. This is implemented by
 346 introducing a data-driven ridge term γ_k into the denominator of the solution. The final, regularized
 347 correction factor is:

$$\hat{\alpha}_k = \frac{v_k^\top (v_k - r_{0,k})}{v_k^\top v_k + \gamma_k}. \quad (9)$$

350 The shrinkage intensity $\lambda_k = \gamma_k / (v_k^\top v_k + \gamma_k)$ is determined automatically by the regularizer γ_k ,
 351 which adaptively estimates the variance from propagated errors and baseline estimation noise. (see
 352 Appendix A.4). This adaptive regularization balances correction strength against estimation noise,
 353 ensuring stable and generalizable performance.

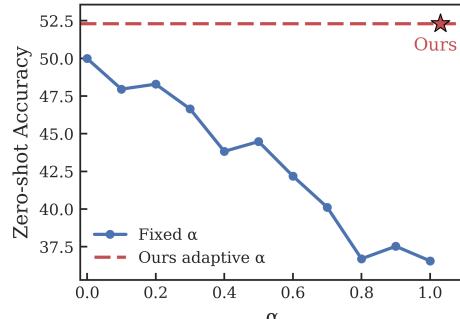
355 4 EXPERIMENTS

356 **Models and Datasets.** We apply our method to the LLaMA-2 (Touvron et al., 2023b), LLaMA-
 357 3 family and Qwen3 (Yang et al., 2025) family(8b, 14b). Following previous work, we report
 358 WikiText2 (Merity et al., 2016) perplexity (PPL) on language modeling tasks. We also perform the
 359 common sense QA evaluation on up to eight zero-shot tasks using the 1m-evaluation-harness (Gao
 360 et al., 2024), including BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA,
 361 OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
 362 WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and ARC-Challenge (Boratko et al., 2018).

363 **Baselines and Implementation Details.** We benchmark our approach, AEC-SVQ, against
 364 SmoothQuant (Xiao et al., 2022), GPTQ (Frantar et al., 2022), OmniQuant (Shao et al., 2023),
 365 Quarot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024b), OSTQuant (Hu et al., 2025) and
 366 GPTAQ (Li et al., 2025). In AEC-SVQ, all activations are quantized using per-token asymmetric
 367 scalar quantization, while weights are quantized using vector quantization configured with 4096
 368 centroids and a vector length of 6. We leverage the optimization methodology presented in OSTQuant
 369 to obtain the transformation \mathbf{T} by minimizing the end-to-end distributional error of the hybrid SQ-VQ
 370 framework. Following established practices in weight-only vector quantization, we further fine-tune
 371 the normalization operator and the VQ codebook to enhance quantization performance. As these
 372 fine-tuned parameters constitute only a small fraction of the total layer parameters, this process is
 373 both rapid and memory-efficient.

374 4.1 OVERALL RESULTS

375 **Quantization Performance.** As shown in Table 1, AEC-SVQ consistently and substantially out-
 376 performs all previous state-of-the-art approaches across a diverse range of models and scales. The
 377 performance gains are particularly evident on large-scale models. For instance, On LLaMA-3 70B,



378 Figure 4: Model accuracy exhibits high sensitivity
 379 to the selection of a fixed, global correction factor α . A suboptimal choice leads
 380 to significant performance degradation. Our
 381 adaptive method automatically determines a
 382 near-optimal shrinkage factor, thereby consistently
 383 outperforming any fixed α setting.

378 AEC-SVQ achieves a perplexity of 6.33—orders of magnitude lower than competitors like Quarot
 379 (5e4)—while simultaneously recovering over 89% of the full-precision zero-shot accuracy, showcasing
 380 a significant advance in preserving language modeling capabilities. This superiority holds across
 381 diverse architectures. On Qwen3 14B, AEC-SVQ effectively halves the perplexity error of previous
 382 SOTA while maintaining a clear lead in task accuracy.

383 Unlike prior methods that often trade language modeling fidelity for task performance, our approach
 384 excels at both, drastically narrowing the gap to the full-precision baseline on all fronts. Crucially,
 385 AEC-SVQ’s design proves superior not only to classic methods like SmoothQuant and GPTQ but
 386 also to recent, highly sophisticated approaches such as OSTQuant and SpinQuant. These findings
 387 confirm that our hybrid scalar-vector quantization framework generalizes robustly, underscoring its
 388 broad effectiveness and applicability. More detailed results can be seen in Appendix A.5

389 **Table 1: Comparison of perplexity on WikiText2 and averaged accuracy on eight Zero-Shot tasks
 390 under W2A4 quantization setting.** The table shows our proposed AEC-SVQ against prominent
 391 baselines. AEC-SVQ significantly outperforms all prior methods across all models.

Method	LLaMA-3 8B		LLaMA-3 70B		LLaMA-2 7B		LLaMA-2 13B		LLaMA-2 70B		Qwen3 7B		Qwen3 14B	
	0-shot ⁸	Wiki	0-shot ⁸	Wiki										
(W2A4)	Avg.(↑)	(↓)	Avg.(↑)	(↓)										
Full Precision	67.13	6.14	70.59	3.32	64.15	5.47	66.48	4.88	70.59	3.32	67.28	9.72	70.32	8.65
SmoothQuant	35.22	1e6	34.28	7e5	34.41	5e5	34.88	2e5	34.18	2e5	34.98	3e5	35.48	6e5
OmniQuant	36.46	2e6	34.11	6e5	33.69	4e5	35.36	1e5	34.89	9e4	34.63	3e5	36.23	5e5
QuaRot	36.31	3e5	35.42	5e4	36.06	1e5	36.28	8e5	34.17	8e3	35.52	1e5	37.04	3e5
SpinQuant ₊ GPTQ	36.69	96.94	35.72	3e5	38.45	124.79	41.85	23.64	45.91	656.00	44.16	24.57	41.61	41.57
SpinQuant ₊ GPTAQ	40.37	48.31	36.80	4e5	38.69	7e3	42.28	33.21	52.57	200.00	43.20	25.24	47.49	17.04
OSTQuant ₊ GPTQ	38.33	36.20	38.33	618.90	36.35	41.15	43.95	15.85	49.99	11.31	42.82	27.49	52.90	17.55
OSTQuant ₊ GPTAQ	41.05	20.20	38.29	559.68	42.47	12.46	46.84	8.90	57.17	7.71	46.12	24.62	51.77	17.51
AEC-SVQ	58.39	8.65	63.11	6.33	56.20	6.29	60.78	5.49	65.63	4.41	60.52	11.27	63.70	10.38

406 **Speedup and memory savings.** Our AEC-SVQ framework yields substantial improvements in
 407 inference efficiency, as detailed in Table 2. The method dramatically reduces the memory foot-
 408 print, with savings factors peaking at over 7.0x for common short sequence lengths. While this
 409 advantage naturally moderates with longer contexts, the memory reduction remains highly effec-
 410 tive, exceeding 3.5x across all models even at a sequence length of 8192, underscoring its value in
 411 memory-constrained scenarios.

412 In addition to memory optimization, AEC-SVQ provides robust prefill acceleration. The speedup
 413 consistently surpasses 2.2x across most configurations and scales positively with model size, reaching
 414 up to 3.612x for the 30B model. This sustained acceleration, combined with the significant memory
 415 savings, confirms that our method makes the deployment of large models more computationally
 416 practical and efficient without compromising performance.

417 **Table 2: Prefill speedup and memory saving factor of AEC-SVQ.** Measurements are conducted on
 418 LLaMA models with different parameter sizes and sequence lengths. All tests were conducted on a
 419 Transformer block with batch size 4 on a 3090 GPU. Refer to Appendix A.5.2 for more details.

Model Size	Prefill Speedup (Seqlen)						Memory Saving Factor (Seqlen)					
	256	512	1024	2048	4096	8192	256	512	1024	2048	4096	8192
7B	2.420x	2.334x	2.235x	2.224x	2.207x	1.730x	6.266x	5.902x	5.367x	4.728x	4.103x	3.615x
8B	2.666x	2.575x	2.621x	2.462x	2.375x	2.263x	6.317x	6.051x	5.613x	4.991x	4.273x	3.593x
13B	2.806x	2.909x	2.764x	2.566x	2.848x	2.333x	6.686x	6.326x	5.730x	5.096x	4.372x	3.799x
30B	3.612x	3.177x	3.054x	3.450x	2.860x	2.682x	7.082x	6.699x	6.197x	5.493x	4.697x	4.029x

426 4.2 ABLATION STUDY

427 **Ablation on AEC-SVQ.** We conduct a comprehensive ablation study to validate the effectiveness
 428 of each component in our proposed AEC-SVQ framework, as shown in Table 3. The study confirms
 429 the superiority of an optimized transformation matrix, as our proposed learned transformation
 430 improves perplexity to 12.13 and boosts accuracy to 48.24. Building upon this, the introduction
 431 of CEAVQ and the adaptive correction factor α provides further incremental refinements to both

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: **Ablation study on the components of AEC-SVQ.** Starting from a baseline weight-activation scalar quantization (W-A-SQ), we progressively integrate our key contributions. Avg Acc denotes the average accuracy over zero-shot⁵. All results are reported on the LLaMA-3 8B model.

Method	Wiki(\downarrow)	Avg Acc (\uparrow)
W-A-SQ	<i>NaN</i>	34.49
+ Weight VQ	2348.20	35.83
+ Codebook Quantization	2519.75	35.50
+ Local Reconstruction	1405.55	35.70
+ Hadamard Transformation	14.97	46.79
+ Learned Transformation	12.13	48.24
+ CEAVQ ($\alpha=0.25$)	11.42	49.94
+ Adaptive α	10.46	52.31
+ Fine-tune	8.65	58.39

Table 4: **Performance of AEC-SVQ on 2-bit weight-only quantization.** To highlight the general applicability of our framework, we adapt it to a weight-only quantization setting. AEC-SVQ outperforms methods designed specifically for this task, demonstrating its superior performance.

Method	Wiki(\downarrow)	Avg Acc(\uparrow)
Full Precision	6.14	72.81
GPTQ	210.00	36.16
DB-LLM	13.60	51.74
QuIP	85.10	36.81
QuIP#	9.11	-
VPTQ	9.29	60.22
PCDVQ	8.77	58.60
AEC-SVQ (ours)	8.02	64.01

metrics. Subsequently, the final fine-tuning step delivers another substantial performance leap. This step-by-step analysis demonstrates that each component of AEC-SVQ plays a crucial and cumulative role in achieving its final state-of-the-art performance.

AEC-SVQ for weight only quantization. To demonstrate its versatility, we adapt the AEC-SVQ framework to the 2-bit weight-only quantization setting. As shown in Table 4, our method outperforms specialized state-of-the-art techniques in this domain. AEC-SVQ achieves a leading average accuracy of 64.01, while attaining the lowest perplexity of 8.02. This strong performance in a distinct quantization paradigm, achieved without fundamental modifications, underscores the robustness and generality of our core framework for minimizing quantization error.

Table 5: **Ablation study on the fine-tuning process for our W2A4 model.** Starting from a no-FT baseline, we systematically explore the impact of tuning different parameters, using different optimizers, and applying various learning rate schedules.

Method	Bits	FT params	FT LR	Dataset	Wiki-PPL \downarrow	Zero-shot ⁸ \uparrow
FP32 (full precision)	FP32	-	-	-	6.14	67.13
no FT	W2A4	-	-	-	10.46	52.31
+ FT (Adam)	W2A4	layernorm	5e-5	Wiki+C4	9.62	51.50
+ FT (Adam)	W2A4	layernorm	5e-5	RedPajama	10.05	52.36
+ FT (AdamW)	W2A4	layernorm	5e-5	Wiki+C4	9.34	54.58
+ FT (AdamW)	W2A4	layernorm + VQ codebook	LN=5e-5; CB=5e-5	Wiki+C4	10.19	53.95
+ FT (AdamW)	W2A4	layernorm + VQ codebook	LN=5e-5; CB=1e-5	Wiki+C4	8.81	58.18
+ FT (AdamW)	W2A4	layernorm + VQ codebook	LN=1e-5; CB=5e-6	Wiki+C4	8.65	58.39

Ablation on Fine-tuning. We perform a detailed ablation on the post-quantization fine-tuning (FT) process to identify the optimal strategy, with results in Table 5. Our analysis reveals that while tuning only the LayerNorm offers moderate gains, co-tuning the VQ codebook is critical, providing a substantial boost to zero-shot accuracy. Furthermore, we found that applying distinct learning rates—specifically was superior to a uniform schedule.

5 CONCLUSION

In this paper, we introduce AEC-SVQ, a novel hybrid framework designed to resolve the fundamental trade-off between computational efficiency and memory compression for ultra-low-bit W2A4 LLM inference. Our approach is built on three synergistic innovations. First, we propose a **hybrid SQ-VQ scheme** centered on a single learned transformation that simultaneously optimizes data distributions for weight VQ, activation SQ, and codebook quantization. Second, our **Cumulative-Error-Aware VQ (CEAVQ)** algorithm introduces a principled method to proactively compensate for compounding errors by aligning the quantized layer’s output with its full-precision distribution. Finally, we develop an **Adaptive Compensation** mechanism that uses a closed-form, data-driven shrinkage factor to ensure robustness against statistical noise from limited calibration data. Extensive experiments demonstrate that AEC-SVQ consistently outperforms existing state-of-the-art quantization methods. These results validate the effectiveness of our integrated approach and establish a new frontier for LLM quantization, making high-performance, ultra-low-bit models practical for deployment in resource-constrained environments.

486

6 ETHICS STATEMENT

487
488 This work does not involve human subjects, personal data, or sensitive content. It focuses solely
489 on optimization of LLM compression and inference. Therefore, we believe it does not raise ethical
490 concerns.
491492

7 REPRODUCIBILITY STATEMENT

493
494 We provide complete details of our algorithms and evaluation protocols in the main paper and
495 appendix. All models are evaluated on publicly available benchmarks (Wikitext-2, ARC, BoolQ,
496 PIQA, HellaSwag, OBQA, SIQA, and WinoGrande). The code for our algorithms and reproducing
497 experiments will be released upon publication. These resources will ensure full reproducibility of the
498 reported results.
499500

REFERENCES

501
502 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
503 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
504 *arXiv preprint arXiv:2303.08774*, 2023.
505
506 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
507 Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. *arXiv*
508 *preprint arXiv:2404.00456*, 2024.
509
510 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
511 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
512 volume 34, pp. 7432–7439, 2020.
513
514 Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
515 McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al.
516 A systematic classification of knowledge, reasoning, and context within the arc dataset. *arXiv*
517 *preprint arXiv:1806.00358*, 2018.
518
519 Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny
520 Birch, Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality
521 for explainable autonomous driving. In *2024 IEEE International Conference on Robotics and*
522 *Automation (ICRA)*, pp. 14093–14100. IEEE, 2024.
523
524 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
525 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
526 *arXiv:1905.10044*, 2019.
527
528 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
529 multiplication for transformers at scale. *Advances in Neural Information Processing Systems*, 35:
530 30318–30332, 2022a.
531
532 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
533 multiplication for transformers at scale. *arXiv preprint arXiv:2208.07339*, 2022b.
534
535 Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
536 Alistarh. Extreme compression of large language models via additive quantization. *arXiv preprint*
537 *arXiv:2401.06118*, 2024.
538
539 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
540 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
541
542 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
543 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
544 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
545 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
546 language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.

540 Xing Hu, Yuan Chen, Dawei Yang, Sifan Zhou, Zhihang Yuan, Jiangyong Yu, and Chen Xu. I-llm:
 541 Efficient integer-only inference for fully-quantized low-bit large language models. *arXiv preprint*
 542 *arXiv:2405.17849*, 2024.

543 Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
 544 and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
 545 transformations for better distribution fitting. *arXiv preprint arXiv:2501.13987*, 2025.

546 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
 547 learned from activation outliers for weight quantization in large language models. *arXiv preprint*
 548 *arXiv:2306.02272*, 2023.

549 Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, and Priyadarshini Panda. Gptaq: Efficient
 550 finetuning-free quantization for asymmetric calibration. *arXiv preprint arXiv:2504.02692*, 2025.

551 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
 552 aware weight quantization for llm compression and acceleration. *arXiv preprint arXiv:2306.00978*,
 553 2023.

554 Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyra Zhang, Ting Cao, Cheng Li, and Mao
 555 Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. *arXiv*
 556 *preprint arXiv:2409.17066*, 2024a.

557 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 558 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant-llm quantization
 559 with learned rotations. *arXiv preprint arXiv:2405.16406*, 2024b.

560 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 561 models. *arXiv preprint arXiv:1609.07843*, 2016.

562 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 563 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 564 2018.

565 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 566 adversarial winograd schema challenge at scale. *Communications of the ACM*, 2021.

567 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 568 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

569 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 570 Peng Gao, Yu Qiao, and Ping Luo. Omnipquant: Omnidirectionally calibrated quantization for large
 571 language models. *CoRR*, abs/2308.13137, 2023.

572 Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
 573 Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. *arXiv preprint*
 574 *arXiv:2410.09426*, 2024.

575 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 576 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 577 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

578 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 579 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 580 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

581 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
 582 Even better llm quantization with hadamard incoherence and lattice codebooks. *arXiv preprint*
 583 *arXiv:2402.04396*, 2024.

584 Mart Van Baalen, Andrey Kuzmin, Ivan Koryakovskiy, Markus Nagel, Peter Couperus, Cedric
 585 Bastoul, Eric Mahurin, Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of
 586 dimensionality for llm quantization. *arXiv preprint arXiv:2402.15319*, 2024.

594 Tycho FA van der Ouderaa, Maximilian L Croci, Agrin Hilmkil, and James Hensman. Pyramid vector
 595 quantization for llms. *arXiv preprint arXiv:2410.16926*, 2024.
 596

597 Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
 598 and efficient post-training quantization for large language models. *arXiv preprint arXiv:2211.10438*,
 599 2022.

600 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 601 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 602 2025.

603 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
 604 Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. *arXiv
 605 preprint arXiv:2206.01861*, 2022.

606 Yuxuan Yue, Zukang Xu, Zhihang Yuan, Dawei Yang, Jianlong Wu, and Liqiang Nie. Pcdvq:
 607 Enhancing vector quantization for large language models via polar coordinate decoupling. *arXiv
 608 preprint arXiv:2506.05432*, 2025.

609 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 610 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

611

612 A APPENDIX

613 A.1 LLM DISCLAIMER

614 The authors hereby declare the role of large language model (LLM) tools in the preparation of this
 615 manuscript: LLMs were solely utilized to assist with text polishing (including refining sentence
 616 structure, optimizing lexical expression, and enhancing language fluency) and **writing optimization**
 617 of the paper’s narrative content.

618 It is explicitly emphasized that all core components of this research, which determine the originality,
 619 scientific validity, and academic value of the work, were independently completed by the research
 620 team through manual efforts. These components include, but are not limited to:

- 621 • The formulation and development of the overall research framework, core ideas, and logical
 622 structure of the study;
- 623 • The design, coding, debugging, and validation of all algorithms and program codes involved in the
 624 research;
- 625 • The design of experimental protocols, collection and preprocessing of experimental data, execution
 626 of experiments, analysis and interpretation of experimental results, and verification of conclusions.

627 The use of LLM tools did not involve any participation in the conception of research content,
 628 generation of technical solutions, implementation of experimental processes, or derivation of research
 629 conclusions. All content of this paper adheres to academic integrity standards, and the research team
 630 assumes full responsibility for the scientificity, authenticity, and originality of the work.

631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A.2 THEORETICAL ANALYSIS OF HYBRID SQ-VQ FRAMEWORK WITH LEARNED
649 TRANSFORMATION
650651 A.2.1 PRELIMINARIES AND NOTATION
652

653 Consider a single linear layer

654
$$y = Wx \in \mathbb{R}^{d_{\text{out}}}, \quad x \in \mathbb{R}^d (d = d_{\text{in}}),$$

655

656 with input second moment (covariance) $H = \mathbb{E}[xx^\top] \succ 0$. We analyze three sources of quantization
657 error applied around this layer: (i) *activation scalar quantization* (SQ) of x , (ii) *weight vector*
658 *quantization* (VQ) of W after reshaping into length- p vectors (with $p = \text{vec_len}$), and (iii) *codebook*
659 *integer quantization* of the learned VQ codewords.660 We insert a *function-preserving equivalent transformation pair*

661
$$T = \Lambda O, \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_d) \succ 0, O \in \mathbb{O}(d),$$

662

663 in the sense that we work in the primed coordinates

664
$$x' = Tx, \quad W' = WT^{-1},$$

665

666 so that $Wx = W'x'$ in floating point. Quantization is performed in the primed coordinates and the
667 pair can be fused away at deployment. Throughout, we adopt the standard high-resolution/small-
668 noise approximation and assume independence between signals and quantization noises when taking
669 second-order moments.670
671 **Weight reshaping for VQ.** Following the setting in the main paper, we reshape the weight matrix
672 $W' \in \mathbb{R}^{d_{\text{out}} \times d}$ along the input dimension into an i.i.d.-like collection of vectors $\{z'_i \in \mathbb{R}^p\}_{i=1}^N$ (row
673 blocks or columnwise chunks of length $p = \text{vec_len}$). K-means with $K = \text{num_centroids}$ produces
674 a codebook $\mathcal{C} = \{c'_k\}_{k=1}^K \subset \mathbb{R}^p$ and assignments $\pi(i) \in [K]$.
675676 A.2.2 UNIFIED SECOND-ORDER ERROR MODEL
677678 Let η_x denote the SQ error on activations, η_w the VQ reconstruction error on weights, and η_c the
679 additional error stemming from integer quantization of codewords (propagated back to the weight
680 domain). In primed coordinates we write $\eta'_x, \eta'_w, \eta'_c$ with covariances

681
$$\Sigma_{\eta'_x} = \mathbb{E}[\eta'_x \eta'^\top_x], \Sigma_{\eta'_w} = \mathbb{E}[\eta'_w \eta'^\top_w], \Sigma_{\eta'_c} = \mathbb{E}[\eta'_c \eta'^\top_c].$$

682

683 Neglecting second-order cross terms (small-noise linearization), the output error obeys

684
$$\hat{y} - y \approx W' \eta'_x + (\eta'_w + \eta'_c) x'.$$

685

686 Taking squared norm and expectation, using independence between x' and weight-side noises, we
687 obtain the *unified trace form*

688
$$\mathcal{E} = \mathbb{E}\|\hat{y} - y\|_2^2 \approx \underbrace{\text{tr}(W'^\top W' \Sigma_{\eta'_x})}_{\text{(A) activation-side propagation}} + \underbrace{\text{tr}(H' (\Sigma_{\eta'_w} + \Sigma_{\eta'_c}))}_{\text{(B) weight-side propagation}}, \quad (10)$$

689
690

691 where $H' = \mathbb{E}[x' x'^\top] = THT^\top$. Thus, any transformation T that jointly reduces the spec-
692 tra/diagonals of $\Sigma_{\eta'_x}$, $\Sigma_{\eta'_w}$, and $\Sigma_{\eta'_c}$ tends to decrease the unified error \mathcal{E} .
693694 A.2.3 NOISE MODELS IN THE PRIMED COORDINATES
695696 **(i) Activation SQ.** For uniform mid-rise/tread scalar quantizers with per-axis step sizes Δ_j and
697 negligible overload,

698
$$\Sigma_{\eta'_x} \approx \text{diag}\left(\frac{\Delta_1^2}{12}, \dots, \frac{\Delta_d^2}{12}\right), \quad \Delta_j \propto \alpha_j,$$

699
700

701 where α_j is the (symmetric) dynamic range bound on the j -th coordinate of x' . Large coordinates
(heavy tails, outliers) directly inflate Δ_j .

(ii) **Weight VQ (k-means).** Let $z'_i \in \mathbb{R}^p$ be the reshaped weight vectors extracted from W' . K-means yields reconstructions $\hat{z}'_i = c'_{\pi(i)}$ and errors $e'_i = z'_i - \hat{z}'_i$. Under high-rate assumptions and for subGaussian/Gaussian-like vector statistics, the mean distortion per vector obeys the Zador/Gersho-type scaling

$$\mathbb{E}\|e'\|_2^2 \approx C_p |\Sigma_{z'}|^{1/p} K^{-2/p}, \quad (11)$$

where $\Sigma_{z'}$ is the empirical covariance of the block distribution $\{z'_i\}$, and C_p depends only on the dimension p and optimal cell shape.

(iii) **Codebook integer quantization.** After VQ, each codeword $c'_k \in \mathbb{R}^p$ is uniformly quantized per coordinate to a b -bit integer grid with shared (or per-dimension shared) step size Δ_c . For negligible overload,

$$\Sigma_{\eta'_c} \approx \frac{\Delta_c^2}{12} I_p \text{(per block)}, \quad \Delta_c \propto \alpha_c, \alpha_c = \max_{k,j} |(c'_k)_j|.$$

Thus α_c —the ℓ_∞ radius of the codebook cloud along coordinate axes—controls the integer quantization error.

A.2.4 TWO ELEMENTARY LEMMAS ON WHITENING AND ENERGY EQUALIZATION

Lemma 1 (Whitening optimality for second-order criteria). *Let x be subGaussian with covariance $H \succ 0$. Consider $T_{\text{wh}} = \Lambda_{\text{wh}} O$ with $\Lambda_{\text{wh}} = H^{-1/2}$ and any $O \in \mathbb{O}(d)$. Then $x' = T_{\text{wh}} x$ satisfies $\text{Cov}(x') = I$. Among all linear transforms with fixed trace of the output covariance, whitening equalizes all eigenvalues, and hence minimizes the geometric mean of eigenvalues:*

$$\prod_{j=1}^p \lambda_j(\Sigma_{z'}) \text{ is minimized when } \Sigma_{z'} \propto I_p.$$

Consequently, for block statistics derived from right-multiplying W by T_{wh}^{-1} , the high-rate VQ proxy $|\Sigma_{z'}|^{1/p}$ is minimized.

Proof. By construction, $\Lambda_{\text{wh}} = H^{-1/2}$ equalizes the eigenvalues of the output covariance to 1. For any positive semidefinite matrix with fixed trace, AM \geq GM implies that the geometric mean of eigenvalues is minimized when all eigenvalues are equal. The claimed consequence for the proxy $|\Sigma_{z'}|^{1/p}$ follows from the monotonicity of equation 11 in $|\Sigma_{z'}|^{1/p}$. \square

Lemma 2 (Energy-equalizing rotations minimize the ℓ_∞ magnitude). *For any nonzero $u \in \mathbb{R}^d$,*

$$\min_{O \in \mathbb{O}(d)} \|Ou\|_\infty = \frac{\|u\|_2}{\sqrt{d}}.$$

In particular, there exists O^* such that $O^* u = \|u\|_2 d^{-1/2} s$ for some $s \in \{\pm 1\}^d$, i.e., all coordinates have equal magnitude. Moreover, for subGaussian x' , one obtains

$$\mathbb{E}\|O^* x'\|_\infty \leq \frac{1}{\sqrt{d}} \mathbb{E}\|x'\|_2 \text{ and } \|O^* x'\|_\infty \leq \frac{\|x'\|_2}{\sqrt{d}} \text{ samplewise.}$$

Proof. For any O , $\|Ou\|_\infty \geq \|Ou\|_2/\sqrt{d} = \|u\|_2/\sqrt{d}$ by norm inequalities; hence $\inf_O \|Ou\|_\infty \geq \|u\|_2/\sqrt{d}$. Equality is achieved by taking any orthogonal O^* that maps the unit vector $u/\|u\|_2$ to the constant-sign vector $d^{-1/2} s$ (both are unit-norm), which exists because the orthogonal group acts transitively on the unit sphere. The sub-Gaussian bound follows immediately. \square

A.2.5 MAIN PROPOSITION: A SINGLE $T = \Lambda O$ BENEFITS ALL THREE QUANTIZERS

proposition 1 (Joint improvement under a learnable rotation–smooth transform). *Assume the high-resolution regime with negligible overload and independence between signals and quantization noises. Let*

$$T^* = \underbrace{H^{-1/2}}_{\Lambda^*} \underbrace{O^*}_{\text{energy equalization}},$$

756 where O^* is any orthogonal transform that approximately equalizes coordinate magnitudes (e.g., a
757 Hadamard-like rotation or a learned orthogonal matrix). Then the unified error \mathcal{E} in equation 10
758 strictly decreases compared to $T = I$:

$$759 \quad \Delta\mathcal{E} = \mathcal{E}(T^*) - \mathcal{E}(I) < 0.$$

760 *In particular, each constituent term decreases:*

$$761 \quad \text{Activation SQ:} \quad \Sigma_{\eta'_x} = \text{diag}(\Delta_1^2/12, \dots), \Delta_j \propto \alpha_j(T^*) \downarrow \Rightarrow \text{tr}(W^T W' \Sigma_{\eta'_x}) \downarrow,$$

$$762 \quad \text{Weight VQ:} \quad |\Sigma_{z'}|^{1/p} \downarrow \Rightarrow \mathbb{E}\|e'\|_2^2 \approx C_p |\Sigma_{z'}|^{1/p} K^{-2/p} \downarrow,$$

$$763 \quad \text{Codebook int-quant:} \quad \alpha_c(T^*) = \max_{k,j} |(c'_k)_j| \downarrow \Rightarrow \Sigma_{\eta'_c} \propto \Delta_c^2 \downarrow.$$

764 *Proof sketch. Step 1 (VQ via whitening).* By Lemma 1, $\Lambda^* = H^{-1/2}$ equalizes second-order statistics
765 in the primed coordinates, driving block covariances towards $\Sigma_{z'} \propto I_p$ and thereby minimizing the
766 high-rate proxy $|\Sigma_{z'}|^{1/p}$. Hence the mean VQ distortion decreases.

767 *Step 2 (SQ and codebook via ℓ_∞ control).* By Lemma 2, for each sample of x' the energy-equalizing
768 rotation O^* enforces $\|O^*x'\|_\infty \leq \|x'\|_2/\sqrt{d}$. Therefore the per-axis dynamic ranges $\alpha_j(T^*)$ contract
769 by a factor on the order of $1/\sqrt{d}$, enabling uniformly smaller steps Δ_j for SQ and reducing $\Sigma_{\eta'_x}$. The
770 same ℓ_∞ contraction applies to codeword coordinates (by the same energy-equalization principle
771 acting on block vectors), shrinking the global codebook bound $\alpha_c(T^*)$ and thus Δ_c .

772 *Step 3 (Monotonicity in the unified trace).* Each of the three covariance terms decreases in the Loewner
773 order (or at least in trace), so both traces in equation 10 decrease, which implies $\Delta\mathcal{E} < 0$. \square

781 A.2.6 REMARKS ON “SMOOTH” (MIXING) TRANSFORMS AND TAILS

782 Beyond orthogonal rotations, one may allow light smoothing/mixing (still linear and invertible) inside
783 T to average multiple coordinates per output coordinate. Under standard subGaussian/CLT heuristics,
784 this further reduces kurtosis and extreme-value behavior, lowering overload probabilities for SQ
785 and tightening the extreme codeword coordinate α_c . Such smoothing can be learned jointly with O
786 while maintaining the factorization $T = \Lambda O$ (with Λ diagonal and O orthogonal) by absorbing any
787 additional conditioning into Λ and keeping the remainder orthogonal.

788 A.2.7 ASSUMPTIONS AND LIMITATIONS

789 The analysis rests on (i) high-resolution quantization (overload negligible after appropriate clipping),
790 (ii) small-noise linearization (neglecting cross terms), and (iii) subGaussian or light-tailed statistics
791 enabling the proxies equation 11. In practice, learnable T can be trained end-to-end to approximate
792 $H^{-1/2}$ and energy-equalizing rotations; the proposition guarantees the existence of such a beneficial
793 transform and explains its joint effect on the three quantizers.

794 A.3 DERIVATION OF CEAVQ

795 A.3.1 WEIGHT-ACTIVATION QUANTIZATION PROXY OBJECTIVE

796 We study the proxy loss

$$803 \quad \ell(\hat{W}) = \mathbb{E}_X \left[\|\hat{W}X - W\tilde{X}\|_F^2 \right] = \mathbb{E}_X \left[\|(\hat{W} - W)X - W(\tilde{X} - X)\|_F^2 \right], \quad (12)$$

804 where $W, \hat{W} \in \mathbb{R}^{m \times n}$ are the full-precision and quantized weight matrices, respectively, and
805 $\tilde{X}, X \in \mathbb{R}^{n \times p}$ denote a floating-point input and its (possibly stochastic) quantized counterpart. The
806 expectation is taken with respect to the randomness of X (and hence \tilde{X} when it is a function of X).
807 Throughout we use $\|A\|_F^2 = \text{tr}(A^\top A)$ and the cyclic property of the trace, $\text{tr}(ABC) = \text{tr}(BCA)$,
808 whenever dimensions are compatible. We assume $\mathbb{E}\|X\|_F^2 < \infty$ so that all traces are finite.

810 **Step 1: Quadratic expansion.** Define
 811

$$812 \quad A \triangleq (\hat{W} - W)X - W(\tilde{X} - X), \quad B \triangleq (\hat{W} - W)X, \quad C \triangleq W(\tilde{X} - X),$$

813 so $A = B - C$. Then
 814

$$815 \quad \|A\|_F^2 = \text{tr}[(B - C)^\top (B - C)] = \text{tr}(B^\top B) - 2 \text{tr}(B^\top C) + \text{tr}(C^\top C). \quad (13)$$

816 Taking expectations and using linearity of \mathbb{E} yields
 817

$$818 \quad \ell(\hat{W}) = \mathbb{E}[\text{tr}(B^\top B)] - 2\mathbb{E}[\text{tr}(B^\top C)] + \mathbb{E}[\text{tr}(C^\top C)]. \quad (14)$$

819 **Step 2: Move fixed matrices outside the expectation.** Because W and \hat{W} are deterministic
 820 (conditioned on the current layer),
 821

$$822 \quad \mathbb{E}[\text{tr}(B^\top B)] = \mathbb{E}[\text{tr}(X^\top (\hat{W} - W)^\top (\hat{W} - W)X)] = \text{tr}((\hat{W} - W)^\top (\hat{W} - W) \mathbb{E}[XX^\top]), \quad (15)$$

$$823 \quad \mathbb{E}[\text{tr}(B^\top C)] = \mathbb{E}[\text{tr}(X^\top (\hat{W} - W)^\top W(\tilde{X} - X))] = \text{tr}((\hat{W} - W)^\top W \mathbb{E}[(\tilde{X} - X)X^\top]), \quad (16)$$

$$824 \quad \mathbb{E}[\text{tr}(C^\top C)] = \mathbb{E}[\text{tr}((\tilde{X} - X)^\top W^\top W(\tilde{X} - X))] = \text{tr}(W^\top W \mathbb{E}[(\tilde{X} - X)(\tilde{X} - X)^\top]). \quad (17)$$

830 **Step 3: Collect second-order statistics.** Introduce the second-order moment matrices
 831

$$832 \quad H \triangleq \mathbb{E}[XX^\top], \quad G \triangleq \mathbb{E}[(\tilde{X} - X)X^\top], \quad K \triangleq \mathbb{E}[(\tilde{X} - X)(\tilde{X} - X)^\top]. \quad (18)$$

833 Substituting equation 15–equation 17 into equation 14 gives the compact form
 834

$$835 \quad \ell(\hat{W}) = \text{tr}((\hat{W} - W)^\top (\hat{W} - W) H) - 2 \text{tr}((\hat{W} - W)^\top W G) + \text{tr}(W^\top W K). \quad (19)$$

836 **Remarks.** (i) The third term in equation 19 is independent of \hat{W} and hence acts as a constant offset
 837 when optimizing over \hat{W} (given fixed W and an input quantizer determining K). (ii) The first term
 838 weighs the weight-quantization error $(\hat{W} - W)$ by the input second moment H , while the middle
 839 term captures the interaction between weight and activation quantization through G .
 840

841 A.3.2 COMPLETING THE SQUARE AND THE UNCONSTRAINED MINIMIZER

842 Let $\Delta W \triangleq \hat{W} - W$ and define the H -weighted inner product $\langle A, B \rangle_H \triangleq \text{tr}(A^\top B H)$. Then
 843 equation 12 reads
 844

$$845 \quad \ell(\hat{W}) = \langle \Delta W, \Delta W \rangle_H - 2\langle \Delta W, WGH^{-1} \rangle_H + \text{tr}(W^\top WK).$$

846 Completing the square under $\langle \cdot, \cdot \rangle_H$ yields
 847

$$848 \quad \ell(\hat{W}) = \langle \Delta W - WGH^{-1}, \Delta W - WGH^{-1} \rangle_H + C, \quad (20)$$

849 with the constant
 850

$$851 \quad C = \text{tr}(W^\top WK) - \langle WGH^{-1}, WGH^{-1} \rangle_H = \text{tr}(W^\top WK) - \text{tr}((WGH^{-1})^\top (WGH^{-1})H). \quad (21)$$

852 The (unconstrained) minimizer is therefore
 853

$$854 \quad \hat{W}^* = W + WGH^{-1}, \quad (22)$$

855 which coincides with the stationarity condition $\nabla_{\hat{W}} \ell(\hat{W}) = 2((\hat{W} - W)H - WG) = 0$. In practice,
 856 \hat{W} must lie in a quantized space; we will approach equation 22 iteratively.
 857

864 A.3.3 LDL^T-STYLE COLUMNWISE DECOMPOSITION
865866 To expose a columnwise structure, factor the (symmetric) matrix H as
867

868
$$H = (U + I) D (U + I)^\top, \quad (23)$$

869

870 where U is strictly upper triangular and $D = \text{diag}(d_1, \dots, d_n) \succcurlyeq 0$. (Equivalently, $H = LDL^\top$
871 with $L = (U + I)^\top$ unit lower triangular.) For any $m \times n$ matrix M denote its k th column by M_k
872 and the strict prefix by $M_{1:(k-1)}$. Using equation 23 and the cyclic property of the trace,
873

874
$$\begin{aligned} \langle \Delta W, \Delta W \rangle_H &= \text{tr}((\Delta W(U + I))^\top \Delta W(U + I) D) = \sum_{k=1}^n d_k \|\Delta W(U + I)e_k\|_F^2 \\ &= \sum_{k=1}^n d_k \|\Delta W_k + \Delta W_{1:(k-1)} u_k\|_F^2, \end{aligned} \quad (24)$$

875

876 where $u_k \triangleq U_{1:(k-1), k} \in \mathbb{R}^{k-1}$ collects the k th column of U above the diagonal. Replacing ΔW by
877 $\Delta W - WGH^{-1}$ per equation 20 yields the column-coupled objective
878

879
$$\sum_{k=1}^n d_k \left\| \underbrace{(\hat{W}_k - W_k)}_{\text{current column}} + \underbrace{(\hat{W}_{1:(k-1)} - W_{1:(k-1)}) u_k}_{\text{previously fixed}} - \underbrace{((WGH^{-1})_k + (WGH^{-1})_{1:(k-1)} u_k)}_{\text{cross-term compensation}} \right\|_F^2 + C. \quad (25)$$

880

881 Given $\hat{W}_{1:(k-1)}$, the k th subproblem is a (weighted) least-squares fit of \hat{W}_k to an *effective target*
882

883
$$T_k^{\text{exact}} = W_k + (W_{1:(k-1)} - \hat{W}_{1:(k-1)}) u_k + (WGH^{-1})_k + (WGH^{-1})_{1:(k-1)} u_k. \quad (26)$$

884

885 If the quantizer $Q(\cdot)$ is fixed (e.g., a vector quantizer with a frozen codebook), the greedy update is
886 simply $\hat{W}_k \leftarrow Q(T_k^{\text{exact}})$.
887888 **Practical simplification.** To reduce overhead, we often approximate equation 26 by re-
889 retaining the dominant self-compensation term $(WGH^{-1})_k$ and absorb the history-dependent
890 $(WGH^{-1})_{1:(k-1)} u_k$ into the feedback through u_k (or damp it with a scalar). This leads to
891

892
$$T_k = W_k + (W_{1:(k-1)} - \hat{W}_{1:(k-1)}) a_k + (WGH^{-1})_k, \quad (27)$$

893

894 where $a_k \in \mathbb{R}^{k-1}$ is a feedback vector (default $a_k = u_k$).
895896 A.3.4 COUPLED DECOMPOSITIONS FOR H AND G
897898 When feasible, we align G with the same triangular basis induced by H by seeking
899

900
$$G \approx (U + I) D_G (U + I)^\top, \quad (28)$$

901

902 with D_G (approximately) diagonal. One practical choice is to set U from the exact LDL^\top of H
903 and define $D_G \triangleq \text{diag}((U + I)^{-1} G(U + I)^{-\top})$ (componentwise on the diagonal), discarding
904 off-diagonal residuals.¹ This alignment causes the cross-term WGH^{-1} to predominantly affect the
905 columnwise targets via the terms already present in equation 27, improving stability of the greedy
906 updates.
907908 A.3.5 GREEDY COLUMNWISE UPDATE WITH CROSS-TERM FEEDBACK
909910 With the above ingredients, our adaptive quantization step for column k is
911

912
$$\hat{W}_k = Q \left(W_k + (W_{1:(k-1)} - \hat{W}_{1:(k-1)}) a_k + (WGH^{-1})_k \right). \quad (29)$$

913

914 This is akin to LDLQ-style feedback, augmented by a linear-term compensation $(WGH^{-1})_k$ that
915 explicitly targets the shift in the completed square equation 20. Unless stated otherwise, we set
916 $a_k = u_k$ from equation 23 and $\alpha = 0.25$. In our implementation, $Q(\cdot)$ updates only the VQ
917 assignment indices while keeping the codebook fixed.
918¹Since G need not be symmetric, one may use its symmetrization $\frac{1}{2}(G + G^\top)$ for this projection.

918 **Choice of a_k and U .** Given $H = (U + I)D(U + I)^\top$, $a_k = u_k$ is the optimal feedback in the
 919 sense that it exactly decouples the quadratic term equation 24 into a sum of per-column ℓ_2 objectives.
 920 If H is ill-conditioned, we compute U, D via a pivoted LDL^\top (or Cholesky) factorization of $H + \lambda I$
 921 with a small λ .
 922

923 A.3.6 NOISE SHAPING VIA K AND ITS ONLINE REFINEMENT

924 Let $\eta \triangleq Q(z) - z$ denote the quantization error applied elementwise to a vector z . Its covariance
 925 $K = \mathbb{E}[\eta\eta^\top]$ enters equation 12 only through the constant C . Nevertheless, to keep the model
 926 consistent with the evolving targets equation 29, we update an online estimate \hat{K} using mini-batch
 927 residuals $\hat{\eta}$ observed during quantization:
 928

$$929 \hat{K} \leftarrow \beta \hat{K} + (1 - \beta) \widehat{\text{Cov}}(\hat{\eta}), \quad \beta \in [0, 1), \quad (30)$$

930 and optionally shape the error in the $(U + I)$ -basis so that its dominant directions align with the
 931 (projected) cross-statistics in §A.3.4. This reduces the effective linear term through better agreement
 932 between G and the realized noise.
 933

934 A.3.7 ALGORITHM

935 1. **Initialization.** Set $\hat{W} \leftarrow 0$ (or $\hat{W} \leftarrow Q(W)$). Estimate $H = \mathbb{E}[XX^\top]$ and (optionally)
 936 $G = \mathbb{E}[(\tilde{X} - X)X^\top]$ and K . Compute the factorization $H = (U + I)D(U + I)^\top$; set $a_k \leftarrow u_k$
 937 for $k = 1, \dots, n$.
 938

939 2. **For** $k = 1$ **to** n (columnwise quantization):

940 (a) **Feedback computation:**

$$941 \Delta_k = (W_{1:(k-1)} - \hat{W}_{1:(k-1)}) a_k + (WGH^{-1})_k.$$

942 (b) **Quantize column:**

$$944 \hat{W}_k \leftarrow Q(W_k + \Delta_k) \quad (\text{update VQ indices only; no codebook re-training}).$$

945 3. **Feedback refinement (optional).** If using the coupled projection equation 28, periodically
 946 recompute a_k (through U) and adjust α to maintain descent (see below).
 947

948 4. **Noise update (optional).** Update \hat{K} via equation 30.
 949

950 A.4 DETAILED DERIVATION OF THE OPTIMAL ADAPTIVE CORRECTION FACTOR WITH 951 BIAS-VARIANCE REGULARIZATION

952 Recall the completed-square form of the proxy objective:

$$954 \ell(\hat{W}) = \text{tr}\left((\hat{W} - W - V)^\top (\hat{W} - W - V) H\right) + C, \quad V \triangleq WGH^{-1}, \quad (31)$$

955 with $C = \text{tr}(W^\top WK) - \text{tr}(V^\top VH)$ independent of \hat{W} . We quantize columnwise using the target
 956

$$957 \hat{W}_k = Q\left(W_k + r_{0,k} + \alpha v_k\right), \quad r_{0,k} \triangleq (W_{1:(k-1)} - \hat{W}_{1:(k-1)}) a_k, \quad v_k \triangleq (WGH^{-1})_k. \quad (32)$$

958 **Bias.** When $\alpha < 1$, the applied correction αv_k shrinks the ideal correction v_k , producing a
 959 systematic under-compensation even if H and G are known exactly. Hence the expected loss cannot
 960 attain the unconstrained minimum at $\hat{W}^* = W + V$.
 961

962 **Variance.** In practice, H and G are estimated from a finite calibration set, yielding H_{est} and G_{est}
 963 and a random correction $WG_{\text{est}}H_{\text{est}}^{-1}$. Its variance typically decays with sample size but can be large
 964 for small/heteroskedastic datasets, so $\alpha = 1$ may overfit calibration noise. Choosing $\alpha < 1$ acts as a
 965 shrinkage factor that reduces variance (at the cost of bias), improving generalization of the quantized
 966 weights.
 967

968 **Interpretation.** Thus α plays the role of a regularization parameter: $\alpha = 1$ corresponds to an
 969 unregularized, MLE-like plug-in solution; $\alpha = 0$ ignores the cross-term G and reverts to a purely
 970 weight-error objective. Our goal is to select (per layer, or per column) an α on the regularization path
 971 that maximizes downstream generalization.
 972

972 A.4.1 A COLUMNWISE LEAST-SQUARES FORMULATION
973974 Write $E \triangleq \hat{W} - W - V$, whose k -th column is e_k . Then
975

976
$$\ell(\hat{W}) - C = \text{tr}(E^\top H E) = \sum_{i,j=1}^n H_{ij} \langle e_i, e_j \rangle, \quad (33)$$

977

978 where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^m . To decouple columns, factor $H = LDL^\top$ with L
979 unit lower triangular and $D = \text{diag}(d_1, \dots, d_n) \succcurlyeq 0$ (pivoted LDL^\top if needed). Setting $\tilde{E} \triangleq L^\top E$
980 gives
981

982
$$\ell(\hat{W}) - C = \text{tr}(\tilde{E}^\top D \tilde{E}) = \sum_{k=1}^n d_k \|\tilde{e}_k\|_2^2, \quad (34)$$

983

984 where \tilde{e}_k is the k -th column of \tilde{E} . Hence the k -th update is governed (up to the scalar weight d_k) by
985 the Euclidean error of a columnwise target in the L -basis.
986987 **Linearization of the quantizer.** Around $z_k \triangleq W_k + r_{0,k} + \alpha v_k$, use a first-order/bias–noise model
988

989
$$Q(z_k) \approx z_k + b_k + \eta_k, \quad \mathbb{E}[\eta_k] = 0, \quad \text{Cov}(\eta_k) = \Sigma_{\eta,k}. \quad (35)$$

990 Then

991
$$\hat{W}_k - W_k \approx r_{0,k} + \alpha v_k + b_k + \eta_k \implies e_k \approx (r_{0,k} + \alpha v_k + b_k - v_k) + \eta_k. \quad (36)$$

992

993 For any deterministic vector a and zero-mean η , $\mathbb{E}[\|a + \eta\|_H^2] = \|a\|_H^2 + \text{tr}(H \Sigma_\eta)$, so the α -
994 dependent part of the loss reduces to an H -weighted least-squares problem.

995 Define the “ideal target”

996
$$t_k \triangleq v_k - r_{0,k} - b_k, \quad \|x\|_H^2 \triangleq x^\top H x. \quad (37)$$

997

998 Discarding the α -independent $\text{tr}(H \Sigma_{\eta,k})$, the per-column objective is
999

1000
$$J_k(\alpha) \triangleq \|\alpha v_k - t_k\|_H^2. \quad (38)$$

1001 *General H .* The minimizer is

1002
$$\alpha_k^* = \frac{v_k^\top H t_k}{v_k^\top H v_k}, \quad (39)$$

1003

1004 *Decoupled (LDL^\top) basis.* Using equation 34, $J_k(\alpha) = d_k \|\alpha v_k - t_k\|_2^2$ so d_k cancels and
1005

1006
$$\alpha_k^* = \frac{v_k^\top t_k}{v_k^\top v_k}. \quad (40)$$

1007

1008 When quantization is (approximately) unbiased, $b_k \approx 0$, so $t_k \approx v_k - r_{0,k}$ and $\alpha_k^* \approx 1 - \frac{v_k^\top r_{0,k}}{\|v_k\|_2^2}$.
10091010 A.4.2 RIDGE-REGULARIZED ESTIMATOR
1011

1012 To control estimation noise, penalize the scalar gain:

1013
$$J_k^{\text{ridge}}(\alpha) = \|\alpha v_k - t_k\|_2^2 + \gamma_k \alpha^2, \quad (41)$$

1014

1015 yielding the closed form

1016
$$\alpha_k(\gamma_k) = \frac{v_k^\top t_k}{v_k^\top v_k + \gamma_k} = (1 - \lambda_k) \alpha_k^*, \quad \lambda_k \triangleq \frac{\gamma_k}{\gamma_k + \|v_k\|_2^2}. \quad (42)$$

1017

1018 Thus $\lambda_k \in [0, 1]$ is an explicit shrinkage factor. Layer-wise regularization is analogous with v_k, t_k
1019 concatenated or summed.1020 A.4.3 A VARIANCE-DRIVEN CHOICE OF γ_k
10211022 Let $H = LDL^\top$ with unit lower-triangular L (so $a_k = u_k$ in the dual upper-triangular view and
1023 $r_{0,k} = (W_{:,k+1:n} - \hat{W}_{:,k+1:n}) L_{k+1:n,k}$). Two dominant noise sources motivate γ_k :

1026 **(i) Propagated right-column noise.** Let the quantization error on column $j > k$ be e_j with
 1027 $\mathbb{E}[e_j] = 0$ and $\text{Cov}(e_j) = s_j I_m$. Then
 1028

$$1029 \quad r_{0,k} = \sum_{j>k} e_j L_{jk} \Rightarrow \text{Cov}(r_{0,k}) = \left(\sum_{j>k} s_j L_{jk}^2 \right) I_m. \quad (43)$$

1030 Consequently,

$$1031 \quad \hat{\alpha}_0 = 1 - \frac{v_k^\top r_{0,k}}{\|v_k\|_2^2}, \quad \text{Var}(\hat{\alpha}_0) = \frac{\sum_{j>k} s_j L_{jk}^2}{\|v_k\|_2^2}. \quad (44)$$

1032 A natural stabilizer is to *move* this propagated variance into the denominator:

$$1033 \quad \gamma_{r0,k} \approx \sum_{j>k} s_j L_{jk}^2. \quad (45)$$

1034 **(ii) Current-column noise floor.** Let $\sigma_{e,k}^2$ denote the per-dimension variance of the current column's
 1035 quantization noise (estimated from recent residuals). Introduce a base ridge level $\gamma_0 \triangleq m \sigma_{e,k}^2$ to
 1036 match dimensions.

1037 **Combined ridge.** With observable residuals e_{rj} on already-quantized columns $j > k$,

$$1038 \quad \gamma_k = \gamma_0 + \sum_{j>k} \left(\sum_{r=1}^m e_{rj}^2 \right) L_{jk}^2. \quad (46)$$

1039 This choice yields a nearly hyperparameter-free $\alpha_k(\gamma_k)$ in equation 42 that adapts to both propagated
 1040 and intrinsic noise.

1041 A.5 FULL RESULTS

1042 A.5.1 QUANTITATIVE RESULTS

1043 In this section, we provide a comprehensive presentation of our results across various datasets to
 1044 complement the main paper. The results include complete comparison of the perplexity score on
 1045 WikiText2 and averaged accuracy on zero-shot common sense reasoning tasks on LLaMA-2(Tab 6),
 1046 LLaMA-3 (Tab 7) and Qwen-3(Tab 8).

1047 A.5.2 SPEEDUP AND MEMORY SAVINGS

1048 Tab 9 shows the prefill time and memory usage of LLaMA models with different parameter sizes
 1049 and sequence lengths, compared between our W2A4 implementation and FP16. The inference
 1050 environment features an Intel(R) Xeon(R) Gold 5317 CPU and an Nvidia 3090 GPU. The 4-bit matrix
 1051 multiplication kernel was implemented using cutlass of nvidia, while the self-attention mechanism
 1052 was realized with PyTorch's native SDPA (scaled dot product attention) function. All tests were
 1053 conducted 500 times, with the median value taken as the final result. Benefiting from efficient low-
 1054 precision computation units within CUDA cores and reduced access overhead, AEC-SVQ achieves
 1055 over 3x speedup across various model sizes, and approximately 7x acceleration on the challenging
 1056 LLaMA-30B model.

1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080
1081
1082 Table 6: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
1083 Common Sense Reasoning tasks on **LLaMA-2**.
1084
1085

Model	Method	ARC-c (↑)	ARC-e (↑)	BoolQ (↑)	HellaS. (↑)	OBQA (↑)	PIQA (↑)	SIQA (↑)	WinoG. (↑)	Avg. (↑)	Wiki2 (↓)
2-7B	Full Precision	46.42	74.33	77.71	75.94	44.20	79.16	45.91	69.53	64.15	5.47
	SmoothQuant	23.29	26.52	46.18	26.16	21.80	47.77	33.37	50.20	34.41	6e5
	OmniQuant	23.72	25.11	37.95	26.27	23.80	48.20	34.39	50.04	33.69	4e5
	QuaRot	29.10	24.92	47.86	25.75	28.40	49.89	33.57	49.01	36.06	1e5.00
	SpinQuant+GPTQ	28.92	26.05	58.47	29.75	26.60	51.36	34.49	51.93	38.45	124.79
	SpinQuant+GPTAQ	29.35	26.09	61.65	29.27	27.00	50.22	34.85	51.07	38.69	7561.60
	OSTQuant+GPTQ	21.84	33.59	38.96	30.49	24.80	55.88	35.88	49.33	36.35	41.15
	OSTQuant+GPTAQ	24.91	34.13	62.29	39.36	30.20	57.34	36.80	54.70	42.47	12.46
	AEC-SVQ	35.67	62.29	67.65	67.31	38.40	74.65	41.45	62.19	56.20	6.29
2-13B	Full Precision	49.15	77.53	80.58	79.39	45.20	80.63	47.49	71.90	66.48	4.88
	SmoothQuant	23.72	26.52	46.18	26.17	24.80	49.13	34.64	47.91	34.88	3e5
	OmniQuant	24.49	25.63	48.84	27.34	25.60	49.02	34.19	47.75	35.36	1e5
	QuaRot	27.22	25.93	51.35	26.52	27.40	50.05	34.14	47.59	36.28	9e4
	SpinQuant+GPTQ	24.83	39.56	61.47	38.01	27.00	54.84	35.62	53.51	41.85	23.64
	SpinQuant+GPTAQ	25.85	42.13	61.25	35.95	28.20	57.51	35.26	52.09	42.28	33.21
	OSTQuant+GPTQ	24.74	42.72	63.12	39.28	28.60	61.26	37.15	54.70	43.95	15.85
	OSTQuant+GPTAQ	28.41	48.95	63.46	44.26	32.40	63.82	37.67	55.72	46.84	8.90
	AEC-SVQ	41.72	68.06	74.37	73.41	41.60	76.93	43.91	66.22	60.78	5.49
2-70B	Full Precision	57.42	81.02	83.79	83.81	48.80	82.70	49.18	77.98	70.59	3.32
	SmoothQuant	28.12	25.88	38.97	25.12	24.60	50.76	32.55	47.44	34.18	2e5
	OmniQuant	29.24	25.55	37.83	26.76	26.60	50.98	33.98	48.16	34.89	9e4
	QuaRot	28.92	27.40	37.92	25.65	23.00	50.00	33.78	46.65	34.17	8333.76
	SpinQuant+GPTQ	33.96	46.42	56.85	46.04	32.00	58.49	37.46	56.04	45.91	656.00
	SpinQuant+GPTAQ	36.77	62.84	61.47	50.19	36.40	70.51	38.18	64.17	52.57	200.00
	OSTQuant+GPTQ	32.08	46.42	60.83	55.64	35.60	62.19	40.74	66.38	49.99	11.31
	OSTQuant+GPTAQ	37.88	65.82	68.44	64.84	39.00	71.60	42.94	66.85	57.17	7.71
	AEC-SVQ	51.28	78.41	73.85	78.08	45.00	78.56	46.11	73.72	65.63	4.41

1108
1109
1110
1111
1112 Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
1113 Common Sense Reasoning tasks on **LLaMA-3**.
1114
1115

Model	Method	ARC-c (↑)	ARC-e (↑)	BoolQ (↑)	HellaS. (↑)	OBQA (↑)	PIQA (↑)	SIQA (↑)	WinoG. (↑)	Avg. (↑)	Wiki2 (↓)
3-8B	Full Precision	53.50	77.74	81.10	79.18	44.80	80.63	47.08	73.01	67.13	6.14
	SmoothQuant	22.24	24.28	48.78	26.40	25.40	50.33	34.14	50.20	35.22	2e6
	OmniQuant	25.77	24.07	56.27	25.68	26.60	50.60	32.12	50.59	36.46	2e6
	QuaRot	28.24	24.83	49.24	25.74	28.80	50.65	33.37	49.64	36.31	3e5
	SpinQuant+GPTQ	21.50	32.37	47.52	29.51	25.80	53.37	32.70	50.75	36.69	96.94
	SpinQuant+GPTAQ	22.78	36.74	59.57	34.24	26.20	55.71	34.85	52.88	40.37	48.31
	OSTQuant+GPTQ	21.93	34.01	50.43	31.62	26.40	55.82	35.16	51.30	38.33	36.20
	OSTQuant+GPTAQ	24.66	30.81	61.96	37.73	28.20	53.26	37.41	54.38	41.05	20.20
	AEC-SVQ	41.30	63.64	74.59	69.04	38.40	74.21	42.37	63.61	58.39	8.65
3-70B	Full Precision	49.15	77.53	80.58	79.39	45.20	80.63	47.49	71.90	66.48	4.88
	SmoothQuant	27.47	26.05	37.83	26.26	24.80	50.98	32.46	48.38	34.28	7e5
	OmniQuant	24.15	25.88	37.83	26.12	26.40	50.76	32.55	49.17	34.11	6e5
	QuaRot	23.81	26.09	42.39	26.68	27.40	51.03	34.34	51.62	35.42	5e5
	SpinQuant+GPTQ	25.77	25.17	45.17	29.22	26.07	51.63	33.83	48.93	35.72	3e5
	SpinQuant+GPTAQ	27.13	25.29	48.81	32.48	26.12	51.74	34.12	48.70	36.80	4e5
	OSTQuant+GPTQ	26.37	27.27	54.56	33.33	28.40	51.96	32.60	52.17	38.33	618.90
	OSTQuant+GPTAQ	25.94	25.55	53.85	32.63	29.00	51.96	33.52	53.91	38.29	559.68
	AEC-SVQ	51.11	77.48	79.88	78.82	34.20	79.00	44.78	59.59	63.11	6.33

1134

1135

1136

Table 8: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on **Qwen-3**.

1138

Model	Method	ARC-c (↑)	ARC-e (↑)	BoolQ (↑)	HellaS. (↑)	OBQA (↑)	PIQA (↑)	SIQA (↑)	WinoG. (↑)	Avg. (↑)	Wiki2 (↓)
3-8B	Full Precision	56.23	80.93	86.67	74.91	41.40	78.07	51.84	68.19	67.28	9.72
	SmoothQuant	26.62	23.57	38.01	26.20	29.60	51.58	33.32	50.91	34.98	282152.00
	OmniQuant	27.82	24.12	37.82	26.36	27.20	50.98	33.45	49.26	34.63	257368.00
	QuaRot	25.46	25.66	39.93	28.12	28.60	51.23	33.96	51.22	35.52	146378.00
	SpinQuant+GPTQ	27.30	43.60	65.32	42.20	28.40	60.01	33.62	52.80	44.16	24.57
	SpinQuant+GPTAQ	26.45	41.25	63.55	38.74	27.40	59.30	36.23	52.72	43.20	25.24
	OSTQuant+GPTQ	23.81	41.79	63.94	35.66	27.20	60.28	36.80	53.12	42.82	27.49
	OSTQuant+GPTAQ	29.18	46.34	69.08	44.69	27.60	61.04	38.08	52.69	46.12	24.62
	AEC-SVQ	46.93	71.46	78.38	66.21	39.40	72.58	44.11	65.11	60.52	11.27
3-14B	Full Precision	60.49	82.87	89.39	78.87	46.40	79.60	51.94	73.01	70.32	8.65
	SmoothQuant	27.22	25.17	43.39	25.97	28.60	50.82	33.27	49.41	35.48	638472.00
	OmniQuant	27.04	26.77	46.20	25.50	29.20	51.73	32.36	51.02	36.23	537462.00
	QuaRot	28.33	24.62	50.76	26.45	28.00	52.07	33.42	52.64	37.04	263984.00
	SpinQuant+GPTQ	26.71	39.10	57.00	36.77	28.00	57.73	35.98	51.62	41.61	41.57
	SpinQuant+GPTAQ	28.41	44.61	72.81	44.82	29.80	63.06	39.20	57.22	47.49	17.04
	OSTQuant+GPTQ	35.67	59.18	76.67	50.70	34.40	66.05	40.17	60.38	52.90	17.55
	OSTQuant+GPTAQ	33.78	57.28	76.15	49.91	33.40	66.10	39.92	57.54	51.77	17.51
	AEC-SVQ	48.46	73.95	81.87	72.51	41.20	76.44	47.13	68.03	63.70	10.38

1154

1155

1156

1157

1158

1159

Table 9: Prefill time and Memory usage of LLaMA models with different parameter sizes and sequence lengths, compared between our 4-bit implementation and FP16. All tests were conducted on a Transformer block with batch size 4 on a 3090 GPU.

1160

1161

1162

Model Size	Seqlen	Prefill Time(ms)		Prefill Speedup(×)	Memory(GB)		Memory Saving(×)
		FP16	W2A4		FP16	W2A4	
LLaMA2-7B	256	8.050	3.326	2.420	0.411	0.066	6.266
	512	14.904	6.386	2.334	0.435	0.074	5.902
	1024	27.286	12.210	2.235	0.483	0.090	5.367
	2048	54.979	24.720	2.224	0.577	0.122	4.728
	4096	112.603	51.020	2.207	0.766	0.187	4.103
	8192	224.275	129.630	1.730	1.147	0.317	3.615
LLaMA3-8B	256	8.035	3.014	2.666	0.430	0.068	6.317
	512	15.545	6.036	2.575	0.442	0.073	6.051
	1024	29.169	11.128	2.621	0.466	0.083	5.613
	2048	57.470	23.339	2.462	0.513	0.103	4.991
	4096	117.593	49.511	2.375	0.608	0.142	4.273
	8192	256.324	113.263	2.263	0.795	0.221	3.593
LLaMA2-13B	256	11.449	4.080	2.806	0.634	0.095	6.686
	512	21.195	7.285	2.909	0.663	0.105	6.326
	1024	41.762	15.107	2.764	0.723	0.126	5.730
	2048	81.955	31.936	2.566	0.841	0.165	5.096
	4096	199.046	69.881	2.848	1.079	0.247	4.372
	8192	359.402	154.080	2.333	1.553	0.409	3.799
LLaMA-30B	256	18.689	5.174	3.612	1.047	0.148	7.082
	512	34.393	10.824	3.177	1.085	0.162	6.699
	1024	66.880	21.902	3.054	1.162	0.187	6.197
	2048	157.585	45.680	3.450	1.315	0.240	5.493
	4096	272.355	95.229	2.860	1.625	0.346	4.697
	8192	576.555	214.940	2.682	2.242	0.557	4.029

1186

1187