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ABSTRACT

Quantization presents a powerful approach for reducing the memory footprint and
accelerating the inference of Large Language Models (LLMs). However, it faces
a fundamental dilemma: computation-friendly Scalar Quantization (SQ) suffers
performance degradation at ultra-low bit-widths, whereas memory-friendly Vector
Quantization (VQ) maintains higher accuracy but fails to reduce computational
demand. As a result, achieving both computational efficiency and high-fidelity
compression in ultra-low-bit regimes (e.g. W2A4) remains a tough challenge. To
address this, we propose AEC-SVQ, a hybrid framework that synergistically inte-
grates SQ ,VQ for high-performance, ultra-low-bit LLM inference. The framework
is built on three innonvations. @To simultaneously address the disparate distribu-
tional challenges presented by weight VQ, activation SQ, and codebook integer
quantization, we introduce a learned rotation-smooth transformation that adap-
tively promotes quantization-friendly distributions for weights, activations, and
codebooks within the hybrid SQ-VQ scheme. ®To mitigate the compounding
errors caused by the independent quantization of weights and activations, we pro-
pose the Cumulative-Error-Aware Vector Quantization (CEAVQ) algorithm.
CEAVQ adjusts weights to compensate for the cumulative error from upstream
quantized layers, thereby proactively aligning with the full-precision output distri-
bution. ®To ensure robustness against statistical noise from limited calibration data,
we introduce a closed-form, data-driven Adaptive Compensation. It modulates the
compensation strength for cumulative errors, preventing overfitting to calibration
set statistics and guaranteeing stable generalization. AEC-SVQ enables a W2A4
pipeline that achieves the memory footprint of a 2-bit model while exploiting the
computational efficiency of 4-bit integer arithmetic. On LLaMA-30B, it delivers
a 3.6x speedup and 7.1 x memory saving, establishing a practical frontier for
ultra-low-bit LLM deployment.

1 INTRODUCTION

Large Language Models (LLMs) (Dettmers et al., 2022a; [Touvron et al., |2023aljb) have unlocked
remarkable capabilities across diverse domains (Achiam et al., 2023} |Chen et al., [2024)), yet their
immense computational and memory footprints present a significant barrier to widespread deployment.
The prohibitive cost of serving these models, particularly on resource-constrained edge devices, has
catalyzed intensive research into model compression. Among various techniques, quantization—
reducing the numerical precision of weights and activations to lower bits—stands out as one of the
most promising avenues for dramatically cutting memory usage, bandwidth, and energy consumption.

As shown in Figure[T|c), LLM quantization is primarily driven by two approaches: Scalar Quantiza-
tion (SQ)|Ashkboos et al.|(2024)) and Vector Quantization (VQ) (Liu et al.| 2024a). SQ, particularly
in INT8 and INT4 settings, has gained wide adoption due to its seamless compatibility with commod-
ity hardware, which offers highly optimized integer arithmetic pipelines for efficient computation.
However, at sub-4-bit precision, the limited representational capacity of SQ causes severe accuracy
loss. In contrast, VQ demonstrates distinct advantages in the ultra-low bit regime(< 4 bits). By
mapping weight parameters to high-dimensional floating-point (FP) codewords, it preserves key
information while further improving the compression ratio. Despite its efficacy in reducing memory
and bandwidth, current VQ methods are restricted to weight-only quantization and remain in costly
FP arithmetic, stemming from two core issues: the prohibitive complexity of quantizing runtime
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Figure 1: Motivation and performance overview of our proposed hybrid W2A4 quantization
framework, AEC-SVQ. (a) Comparison of Bit Operations (BOPs) and memory footprint for recent
quantization methods, demonstrating that AEC-SVQ achieves a superior integration of computation
and memory efficiency. (b) Accuracy of various methods on the LLaMA family, where AEC-SVQ
consistently outperforms existing PTQ techniques. (¢) Conceptual comparison of quantization
schemes. Our hybrid approach synergizes SQ and VQ, using an INT4 codebook to enable memory-
friendly 2-bit weight storage while executing computation with efficient 4-bit integer arithmetic.

activations online and the incompatibility of its non-linear output with accelerated integer arithmetic.
Taken together, the characteristics of VQ and SQ reveal a fundamental computation—-memory trade-off
and raise a key challenge: How can we synergistically integrate the hardware-friendly efficiency
of SQ with the high-fidelity representation of VQ into a unified framework to enable practical,
high-performance ultra-low-bit inference?

Building upon the characteristics of common hardware architectures and the requirements of LLM
inference, we first explore a hybrid quantization scheme. This initial approach, which employs SQ
for runtime activations and VQ for model weights, offers a promising balance of computational
efficiency and compression. To align with low-precision compute units such as INT4 Tensor Cores and
achieve practical speedups, the codebook in VQ are also quantized using SQ. However, the practical
implementation of this strategy faces several critical challenges: @ Suboptimal data distributions
for quantization. The intrinsic data distributions in LLMs are challenging for standard quantization
methods. For weights, VQ performs best on isotropic, spherical clusters (Yue et al.,[2025)), but the
typically anisotropic nature of weight distributions often leads to suboptimal representations. For
activations, scalar quantization requires a narrow dynamic range to maintain high fidelity (Dettmers
et al.| [2022b)). Yet, outliers in LLM activations drastically widen this range, forcing most values into
coarse, low-information bins. For VQ codebook, the few codewords representing high-magnitude
outliers skew the dynamic range, forcing subsequent SQ to collapse most other codewords into
coarse bins and degrade overall fidelity. ® Coupled quantization errors. Conventional approaches
quantize weights and activations independently, overlooking critical error interactions within and
across layers. Distortions from weight quantization can shift data distributions, amplifying activation
errors. Conversely, activation quantization alters the input statistics of downstream layers, rendering
pre-calibrated weight reconstructions suboptimal. Under ultra-low bit widths, these uncompensated
and accumulated errors become the main bottleneck, making simple independent schemes ineffective.
A promising solution is to explicitly model and correct the coupled distortions and cumulative error.
However, in contrast to independent optimization, holistic modeling and collaborative optimization
are often compromised by @ Statistical instability. PTQ relies on small calibration datasets to
estimate correction statistics. Limited sample sizes inevitably introduce noise into these estimates.
Applying such noisy corrections indiscriminately can destabilize inference and degrade generalization.
Therefore, a central challenge for practical deployment is to design a robust method that leverages
beneficial corrections while mitigating the impact of statistical noise.

In response, we propose AEC-SVQ a Hybrid SQ-VQ framework to unlock an efficient W2A4
(2-bit weight, 4-bit activation) pipeline. We first construct a Hybrid SQ-VQ scheme with Learned
Transformation designed to correct suboptimal data distributions for quantization, thereby mak-
ing them more amenable to subsequent quantization. The effectiveness of this transformation is
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validated through both theoretical derivation(Equation ) and intuitive illustration(Figure (b, c)).
By simultaneously satisfying the distributional requirements of activation SQ, weight VQ, and
codebook quantization, the transformation reduces overall quantization error and integrates these
three components into a unified optimization process, ultimately realizing a cohesive and efficient
hybrid scheme. Building on this foundation, we tackle the coupled distortions and cumulative errors
of independent quantization with our Cumulative-Error-Aware Vector Quantization (CEAVQ).
Unlike conventional approaches that treat layers in isolation and minimize local reconstruction error,
CEAVQ pursues a global objective: aligning each layer’s output with its full-precision distribution.
To this end, it introduces a novel corrective term that proactively adjusts the weights. This adjustment
compensates not only for the imminent activation quantization error but also for the accumulated
distortions propagated from upstream quantized layers. Finally, to address the practical issue of
statistical instability, we propose Adaptive Compensation via Bias—Variance Shrinkage, which
formalize the problem by modeling the application of the corrective term as a classical bias—variance
trade-off. Based on this formulation, we derive a closed-form, data-driven solution that adaptively
adjusts the strength of cumulative error correction at the granularity of individual columns. Acting
as a theoretically grounded shrinkage mechanism, it suppresses unreliable correction signals and
ensures stable, generalizable performance.

Specifically, our work makes the following three core contributions:

* Hybrid SQ-VQ scheme with Learned Transformation. We introduce a hybrid scheme built
around a learned transformation that reshapes data distributions into quantization-friendly forms.
This transformation simultaneously meets the distributional requirements of activation SQ, weight
VQ, and codebook quantization, reducing overall quantization error and integrating the three
components into a unified optimization process. As a result, the scheme enables a synergistic hybrid
scheme that achieves the memory footprint of a 2-bit model while retaining the computational
efficiency of 4-bit integer arithmetic.

* Cumulative-Error-Aware VQ (CEAVQ) algorithm. We propose a post-training quantization
algorithm that aligns each layer’s output with its full-precision reference. CEAVQ introduces a
corrective term that proactively adjusts the weight vectors, compensating for both activation quan-
tization errors and the accumulated distortions propagated from upstream layers. This coordinated
optimization alleviates the compounding effects of independent quantization and enables more
accurate ultra-low-bit inference.

* Adaptive Compensation via Bias-Variance Shrinkage. To improve the robustness of CEAVQ
under statistical noise from limited calibration sets, we formalize the instability as a bias—variance
trade-off. From this formulation, we derive a closed-form, data-driven compensation method that
applies shrinkage to the corrective term. This adaptive mechanism balances correction strength
against estimation noise, ensuring stable and generalizable performance.

2 RELATED WORK AND BACKGROUND

Scalar Quantization for LLM Compression. SQ converts weights and activations of pretrained
neural networks from high precision (e.g., 16-bit floating point numbers) to lower precision (e.g., 4-bit
integers). Given a weight W, it is typically implemented with symmetric and uniform quantization

(W)
max
= 1_1 M

where s is the scale factor, |-| denotes the rounding-to-nearest operator, b is the quantization bit-
width, and clamp is the clipping function. SQ remains the workhorse of LLM compression due to its
compatibility with integer arithmetic on commodity accelerators. In the weight-only regime, methods
such as GPTQ (Frantar et al.| |2022) leverage second-order error models to minimize rounding errors,
while AWQ (Lin et al.} 2023) and OWQ (Lee et al.| 2023) employ activation-aware scaling to protect
salient weights from quantization loss. To obtain end-to-end speedups, recent work pushes SQ to
both weights and activations, where the key difficulty is that activation outliers dominate the dynamic
range and lead to insufficient precision representation for most data points. ZeroQuant (Yao et al.|
2022) proposes fine-grained, hardware-friendly schemes; SmoothQuant (Xiao et al., 2022) shifts
dynamic range from activations to weights via an equivalent rescaling; OmniQuant (Shao et al.,[2023)
further learns quantization and transformation parameters; and I-LLM (Hu et al.| |2024)) redesigns
blocks and operators to enable fully integer inference. Orthogonal transforms have emerged as a

SQ(W) = Clamp(L¥],—2b_1,2b_1 -1),
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complementary strategy to make SQ viable at 4 bits: QuaRot (Ashkboos et al., [2024) uses random
rotations to deconcentrate outliers, while SpinQuant (Liu et al., [2024b) learns rotations to adaptively
regularize distributions. OSTQuant (Hu et al., 2025) unified learnable rotations and scaling, providing
additional flexibility and consistently outperforming previous methods. FlatQuant (Sun et al., [2024)
employed layer-wise learned online matrix transforms to improve quantized linears, at the cost of
increased inference overhead.

Vector Quantization for LLM Compression. VQ has emerged as a powerful technique for
achieving higher compression ratios. The core idea of VQ is to map a large set of vectors to a smaller,
finite set of representative vectors—commonly referred to as a codebook. Each original vector is then
represented simply by the index of its closest counterpart in the codebook, achieving compression by
storing this compact index instead of the full-precision vector. exploiting inter-channel correlation
to attain lower distortion at the same bit budget than scalar quantization. Given a weight W with
m rows and n columns to be quantized, VQ reshapes it into W’ with dimensions (m * n/v,v).
For each v-dimensional row vector, VQ replaces it with the logsk-bit index of the nearest vector
from the codebook C' € R¥*V. The compression ratio of VQ is (16mn)/(16kv + logak * mn /v).
Typically, the Euclidean distance (calculated by the Frobenius normalization || - || ) is taken to
measure similarities. In this case, the quantization process can be expressed as:

VQ(W') = {argmin||W}, — C; || ,|i = 1,...,m xn/v}. )
j€k

The codebook C' has shape (k, v), where each row vector represents a cluster center. Codebook design
is central to VQ methods. QuIP# (Tseng et al.,[2024)), leverage structured, data-independent code-
books for extreme compression. In contrast, a more common approach is to learn data-dependent code-
books. VPTQ (Liu et al.,[2024a) and GPTVQ (Van Baalen et al.,2024) optimize codebooks using clus-
tering algorithms like K-Means and Expectation-Maximization, respectively, with AQLM (Egiazarian
et al., 2024) further refining this via layer-wise training. To mitigate error accumulation, both VPTQ
and AQLM incorporate residual quantization. Another line of work exploits the geometric properties
of weight vectors to improve quantizability: PCDVQ (Yue et al.,|2025) decouples vector magnitude
and direction, while PVQ (van der Ouderaa et al., 2024) constrains codewords onto a sphere to better
match the weights’ natural distribution.

3 METHODOLOGY

3.1 HYBRID SQ-VQ SCHEME WITH LEARNED TRANSFORMATION

We introduce a hybrid quantization scheme that synergistically combines VQ for weights and SQ
for activations. This approach addresses their disparate statistical properties, as SQ is well-suited
for the dynamic distributions of activations, while VQ offers superior rate-distortion performance
for static weight tensors. However, a naive implementation of this method is suboptimal due to a
misalignment between the intrinsic data distributions in LLMs and the ideal operating conditions
for each quantization scheme. The effectiveness of VQ is predicated on isotropic, spherical data
clusters. This condition is violated by the anisotropic geometry of weight tensors, as visualized in
Figure [J|c, left) leading to inefficient codebook representations. The fidelity of SQ depends on a
minimal dynamic range. This is severely undermined by emergent outliers in activations(Figure [2[b,
left)), which drastically expand the quantization range and compel the majority of values into coarse,
low-information bins.

To reconcile these requirements, we introduce a Learnable Rotation-Smooth Transformation, an
equivalent transformation pair that reshapes the distributions of both weights and activations to be
simultaneously amenable to their respective quantization schemes. We theoretically prove that this
single transformation systematically benefits not only the weight VQ and activation SQ but also
the subsequent integer quantization of the VQ codebook itself. This unification enables a highly
efficient inference pipeline. By quantizing the VQ codebook to 4-bit integers (INT4), we convert
the primary matrix multiplication (MatMul) into an INT4 table lookup and multiply-accumulate
operation. Consequently, our framework achieves the storage and bandwidth advantages of 2-bit
weights (W2) while leveraging the computational speedups of 4-bit arithmetic (W4A4), a complete
workflow visualized in Figure 2{(a).
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Figure 2: Overview of Hybrid SQ-VQ scheme and the distributional effect of the learned
transformation. (a) W2A4 inference pipeline. Offline learned transformation pair(T, T 1) reshapes
data distribution. Activations subsequently undergo online 4-bit SQ, while weights are quantized
offline using 2-bit VQ with an INT4 codebook. This scheme enables efficient computation on
W4A4 tensor cores. (b) The transformation mitigates outliers in the raw activation distribution (left),
producing a uniform and compact distribution (right) that is ideal for SQ. (¢) PCA distribution of
vectorized weights. The initially anisotropic weight distribution with outliers (left) is transformed
into a dense, isotropic cluster (right), creating an optimal geometry for k-means-based VQ.

Consider a linear layer defined by y = Wx, where x € R% is the input activation and W € Ru*din
is the weight matrix. We introduce an equivalent transformation pair (T, T~!) that preserves the
layer’s function:

y = Wx = (WT )(Tx) = W' 3)
The transformation T is parameterized as a learnable rotation-smooth operator, explicitly defined as
T = AO. Here, O € R%*dn ig a Jearnable orthogonal matrix (rotation) that mixes input channels,
and A is a learnable diagonal matrix (smoothing) that adjusts the variance of each resulting channel.

Modeling the errors from activations SQ(7,.), weights VQ(#,,), and codebook integer quantization(n..)
as additive noise. we derive a unified approximation for the layer’s output Mean Squared Error
(MSE):
Ely -yl = tr(WW'Sy,) +tr(x'x" T (Zy, + Zn.)) )
Activation Error Weight & Codebook Error
, where ¥ represent the error covariances, This model reveals that the transformation T jointly

influences all error sources by modifying both the activation statistics and the effective weight
geometry.

Our core theoretical claim is that the proposed T systematically reduce all three constituent error
terms in Equation [ as empirically demonstrated in Figure [2[b, ¢). Theoretical analysis can be
referred to Appendix [A2]

3.2 CUMULATIVE-ERROR-AWARE VECTOR QUANTIZATION

Conventional PTQ methods that treat weight and activation quantization as independent, locally-
optimized problems are fundamentally suboptimal. This approach overlooks the crucial coupling
of their respective errors, which fosters a reciprocal error amplification Specifically, quantizing
activations shifts the input statistics for weights, while weight quantization error perturbs the output,
magnifying errors in subsequent layers. This cascade of uncompensated, compounding error, visual-
ized in Figure 3] (bottom), becomes the primary performance bottleneck in ultra-low-bit regimes. An
effective weight quantization strategy must therefore abandon this decoupled approach and instead
actively compensate for the error induced by activation quantization.
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Figure 3: Conceptual illustration of our Cumulative-Error-Aware Vector Quantization
(CEAVQ). (Top)A schematic of the layer-wise compensation mechanism. Error information from
the quantization process in one layer is used to apply a corrective adjustment to the subsequent
layer, proactively mitigating the accumulation of cascading errors. (Bottom)A comparison of the
input activation distributions for Layer 31. The leftmost plot shows the ideal distribution under a
full-precision model. The center plot reveals a significant distributional shift caused by standard
quantization. The rightmost plot demonstrates that our CEAVQ method successfully preserves the
statistical integrity of the original distribution, even deep within the network.

To this end, we propose a sequential, layer-wise compensation strategy, conceptually illustrated in
Fgure3[top). We reformulate the weight quantization problem from a foundational perspective. Our

goal is to find the quantized weight matrix I that minimizes the following principled objective:

(W) =E, {H WX — WXH?] —E, [H(W W)X — W(X — X)Hj7‘:| )

where X are the quantized activations corresponding to the full-precision inputs X.

As detailed in Appendix minimizing this objective reveals that the optimal, unquantized solution
is not W, but rather an error-compensated matrix Wo,, = W + WGH ~1. The term WGH !
serves as a corrective pre-shift to the weights. Here, H = E,[X X 7] is the input covariance and
G =E, [(X' — X)X 7] is a cross-correlation matrix capturing the interaction between activation and
weight errors.

Inspired by this finding, we develop a sequential column-wise quantization algorithm. For each

column k, the quantized weight vector I}, is obtained by quantizing a corrected target that integrates
our novel term with a standard error feedback mechanism:

Wi =Q (Wk + (Wiik—1) — Wh(k—l))ak + (WGH_l)k) (6)

where ()(+) is the quantization operator and ay, are feedback coefficients. The derivation details
can be found in Appendix [A-3] The crucial Cumulative Error Correction term directly injects the
corrective bias into the quantization process. This forces the weight quantizer Q(-) to be explicitly
aware of the downstream activation error, steering the solution towards a global minimum of the joint
error landscape. Consequently, the quantized weights are not only locally accurate but also robust to
activation perturbations, preserving the feature distributions as shown in Figure 3] (bottom).

3.3 ADAPTIVE CORRECTION VIA BIAS-VARIANCE REGULARIZATION

While the activation-error correction term WG H 1 is theoretically optimal, its practical application
presents a critical bias-variance trade-off. As illustrated in Figure[d] a fixed, global « is suboptimal.
Any choice o < 1 introduces a systematic bias by under-compensating for the activation error.
Conversely, an unregularized correction (a = 1) overfits to estimation noise in the statistics G and
H derived from finite calibration data, leading to high variance and unstable weights. We therefore
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propose an adaptive method to determine an optimal regularization strength & that minimizes the
weight reconstruction error.

Our goal is to learn an optimal correction factor oy,
that minimizes the layer’s reconstruction loss. As sosb o e
detailed in Appendix by modeling the quantizer

with a linear approximation, the expected loss can
be decomposed into a sum of per-column objectives.
Optimizing for oy, becomes equivalent to minimizing
the following for each column:

Zero-shot Accuracy
I
o
(=)

* _ . 1 2
ap argglenﬂgzk:”(a ) vk + 7o + bl (D)
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where, v, = (WGH™1)}, is the ideal correction, g o

is the propagated error from previous columns, by is  Figure 4: Model accuracy exhibits high sen-
the quantization bias. sitivity to the selection of a fixed, global cor-
rection factor . A suboptimal choice leads
to significant performance degradation. Our
adaptive method automatically determines a
near-optimal shrinkage factor, thereby consis-
(1— ), Ak € [0,1], (8) tently outperforming any fixed « setting.

While this objective yields a closed-form solution
ag, its sensitivity to estimation noise necessitates
regularization. We therefore introduce a shrinkage:

Qg
where )\ is a data-driven shrinkage factor that enhances robustness. This is implemented by
introducing a data-driven ridge term -y into the denominator of the solution. The final, regularized
correction factor is:

. v (v —Tok)
Q= =4
U Uk + Yk

. ©))

The shrinkage intensity A\ = 75/ (U,;r vk + k) is determined automatically by the regularizer g,
which adaptively estimates the variance from propagated errors and baseline estimation noise. (see
Appendix [A.4). This adaptive regularization balances correction strength against estimation noise,
ensuring stable and generalizable performance.

4 EXPERIMENTS

Models and Datasets. We apply our method to the LLaMA-2 (Touvron et al., 2023b)), LLaMA-
3 family and Qwen3 (Yang et al, [2025) family(8b, 14b). Following previous work, we report
WikiText2 (Merity et al.,|2016)) perplexity (PPL) on language modeling tasks. We also perform the
common sense QA evaluation on up to eight zero-shot tasks using the Im-evaluation-harness (Gao
et al., 2024), including BoolQ (Clark et al.| 2019), HellaSwag (Zellers et al.,|2019), LAMBADA,
OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al., [2020), SIQA (Sap et al.,|2019),
WinoGrande (Sakaguchi et al.|[2021), ARC-Easy, and ARC-Challenge (Boratko et al.,[2018).

Baselines and Implementation Details. We benchmark our approach, AEC-SVQ, against
SmoothQuant (Xiao et al., [2022), GPTQ (Frantar et al., |2022), OmniQuant (Shao et al., [2023),
Quarot (Ashkboos et al., [2024), SpinQuant (Liu et al.l 2024b), OSTQuant (Hu et al.| [2025]) and
GPTAQ (Li et al.} 2025). In AEC-SVQ, all activations are quantized using per-token asymmetric
scalar quantization, while weights are quantized using vector quantization configured with 4096
centroids and a vector length of 6. We leverage the optimization methodology presented in OSTQuant
to obtain the transformation T by minimizing the end-to-end distributional error of the hybrid SQ-VQ
framework. Following established practices in weight-only vector quantization, we further fine-tune
the normalization operator and the VQ codebook to enhance quantization performance. As these
fine-tuned parameters constitute only a small fraction of the total layer parameters, this process is
both rapid and memory-efficient.

4.1 OVERALL RESULTS

Quantization Performance. As shown in Table[I} AEC-SVQ consistently and substantially out-
performs all previous state-of-the-art approaches across a diverse range of models and scales. The
performance gains are particularly evident on large-scale models. For instance, On LLaMA-3 70B,
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AEC-SVQ achieves a perplexity of 6.33—orders of magnitude lower than competitors like Quarot
(5e4)—while simultaneously recovering over 89% of the full-precision zero-shot accuracy, showcas-
ing a significant advance in preserving language modeling capabilities. This superiority holds across
diverse architectures. On Qwen3 14B, AEC-SVQ effectively halves the perplexity error of previous
SOTA while maintaining a clear lead in task accuracy.

Unlike prior methods that often trade language modeling fidelity for task performance, our approach
excels at both, drastically narrowing the gap to the full-precision baseline on all fronts. Crucially,
AEC-SVQ’s design proves superior not only to classic methods like SmoothQuant and GPTQ but
also to recent, highly sophisticated approaches such as OSTQuant and SpinQuant. These findings
confirm that our hybrid scalar-vector quantization framework generalizes robustly, underscoring its
broad effectiveness and applicability. More detailed results can be seen in Appendix

Table 1: Comparison of perplexity on WikiText2 and averaged accuracy on eight Zero-Shot tasks
under W2A4 quantization setting. The table shows our proposed AEC-SVQ against prominent
baselines. AEC-SVQ significantly outperforms all prior methods across all models.

LLaMA-3 SB;LLaMA-S 70B|LLaMA-2 7B ;LLaMA-Z 13B;LLaMA-2 70B| Qwen3 7B ! Qwen3 14B

Method 0-shot® Wiki |0-shot® Wiki |O-shot® Wiki ,0-shot® Wiki 0-shot® Wiki |0-shot® Wiki |0-shot® Wiki
(W2A4) AvgM) ) Ave® ) JAve® ) Aved ) Aved () |Aved) @) JAved D)

Full Precision | 67.13 6.14 | 70.59 332 | 64.15 547 | 66.48 4.88 , 70.59 3.32 | 67.28 9.72, 7032 8.65
SmoothQuant | 35.22 1e6 | 3428 7e5 | 3441 5e5 | 34.88 2e5 | 34.18 25 | 3498 3e5 | 3548 6e5
OmniQuant 3646 2¢6 | 34.11 6e5 | 33.69 4e5 | 3536 leS | 34.89 Oed | 34.63 3e5, 3623 SeS
QuaRot 3631 3e5 | 3542 Sed |36.06 1eS | 3628 S8eS | 34.17 8e3 | 3552 le5 | 37.04 3eS
SpinQuant,pro | 36.69 96.94| 3572 3e5 | 3845 124.79) 41.85 23.64 | 4591 656.00| 44.16 24.57, 41.61 4157
SpinQuant,cprao| 40.37 48.31)36.80 4e5 | 38.69 7e3 | 4228 3321, 52.57 200.00| 43.20 25.24) 47.49 17.04
OSTQuant,cpro | 38.33 36.20, 38.33 618.90| 3635 41.15|43.95 15.85,49.99 1131 | 42.82 27.49, 52.90 17.55
OSTQuant,gprag| 41.05 20.20| 3829 559.68| 42.47 1246 | 46.84 890 | 57.17 7.71 | 46.12 24.62] 51.77 1751
AEC-SVQ 5839 8.65, 6311 633 | 5620 629 6078 549 | 65.63 4.41 | 60.52 11.27, 63.70 10.38

Speedup and memory savings. Our AEC-SVQ framework yields substantial improvements in
inference efficiency, as detailed in Table[2] The method dramatically reduces the memory foot-
print, with savings factors peaking at over 7.0x for common short sequence lengths. While this
advantage naturally moderates with longer contexts, the memory reduction remains highly effec-
tive, exceeding 3.5x across all models even at a sequence length of 8192, underscoring its value in
memory-constrained scenarios.

In addition to memory optimization, AEC-SVQ provides robust prefill acceleration. The speedup
consistently surpasses 2.2x across most configurations and scales positively with model size, reaching
up to 3.612x for the 30B model. This sustained acceleration, combined with the significant memory
savings, confirms that our method makes the deployment of large models more computationally
practical and efficient without compromising performance.

Table 2: Prefill speedup and memory saving factor of AEC-SVQ. Measurements are conducted on
LLaMA models with different parameter sizes and sequence lengths. All tests were conducted on a
Transformer block with batch size 4 on a 3090 GPU. Refer to Appendix[A.5.2]for more details.

Model Size Prefill Speedup (Seqlen) Memory Saving Factor (Seqlen)

256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
7B 2.420x  2.334x  2.235x  2.224x  2.207x 1.730x | 6.266x 5902x 5.367x 4.728x 4.103x  3.615x
8B 2.666x 2.575x  2.621x 2.462x 2.375x 2.263x | 6.317x 6.051x 5.613x 4.991x 4.273x  3.593x
13B 2.806x 2.909x 2.764x 2.566x 2.848x 2.333x | 6.686x 6.326x 5.730x 5.096x 4.372x  3.799x
30B 3.612x  3.177x  3.054x  3.450x 2.860x 2.682x | 7.082x 6.699x 6.197x 5.493x 4.697x 4.029x

4.2 ABLATION STUDY

Ablation on AEC-SVQ. We conduct a comprehensive ablation study to validate the effectiveness
of each component in our proposed AEC-SVQ framework, as shown in Table[3] The study confirms
the superiority of an optimized transformation matrix, as our proposed learned transformation
improves perplexity to 12.13 and boosts accuracy to 48.24. Building upon this, the introduction
of CEAVQ and the adaptive correction factor o provides further incremental refinements to both
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Table 3: Ablation study on the compo- Table 4: Performance of AEC-SVQ on 2-
nents of AEC-SVQ. Starting from a baseline bit weight-only quantization. To highlight
weight-activation scalar quantization (W-A- the general applicability of our framework,
SQ), we progressively integrate our key con- we adapt it to a weight-only quantization set-
tributions. Avg Acc denotes the average accu- ting. AEC-SVQ outperforms methods de-
racy over zero-shot® All results are reported signed specifically for this task, demonstrat-
on the LLaMA-3 8B model. ing its superior performance.

Method Wiki(]) Avg Acc (1) Method Wiki(]) Avg Acc()

W-A-SQ NaN 34.49 Full Precision 6.14 72.81

+ Weight VQ 2348.20 35.83 GPTQ 210.00 36.16

+ Codebook Quantization 2519.75 35.50 DB-LLM 13.60 51.74

+ Local Reconstruction 1405.55 35.70 QulP 85.10 36.81

+ Hadamard Transformation ~ 14.97 46.79 QulP# 9.11 -

+ Learned Transformation 12.13 48.24 VPTQ 9.29 60.22

+ CEAVQ (a=0.25) 11.42 49.94 PCDVQ 8.77 58.60

+ Adaptive « 10.46 52.31 AEC-SVQ (ours) 8.02 64.01

+ Fine-tune 8.65 58.39

metrics. Subsequently, the final fine-tuning step delivers another substantial performance leap. This
step-by-step analysis demonstrates that each component of AEC-SVQ plays a crucial and cumulative
role in achieving its final state-of-the-art performance.

AEC-SVQ for weight only quantization. To demonstrate its versatility, we adapt the AEC-
SVQ framework to the 2-bit weight-only quantization setting. As shown in Table 4} our method
outperforms specialized state-of-the-art techniques in this domain. AEC-SVQ achieves a leading
average accuracy of 64.01, while attaining the lowest perplexity of 8.02. This strong performance
in a distinct quantization paradigm, achieved without fundamental modifications, underscores the
robustness and generality of our core framework for minimizing quantization error.

Table 5: Ablation study on the fine-tuning process for our W2A4 model.Starting from a no-
FT baseline, we systematically explore the impact of tuning different parameters, using different
optimizers, and applying various learning rate schedules.

Method Bits FT params FTLR Dataset Wiki-PPL | Zero-shot® 1
FP32 (full precision) FP32  — - - 6.14 67.13
no FT W2A4 - - - 10.46 52.31
+ FT (Adam) W2A4 layernorm Se—5 Wiki+C4 9.62 51.50
+ FT (Adam) W2A4 layernorm Se—5 RedPajama 10.05 52.36
+FT (AdamW) W2A4  layernorm S5e—5 Wiki+C4 9.34 54.58
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=5e—5; CB=5e—5 Wiki+C4 10.19 53.95
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=5¢—5; CB=1e—5 Wiki+C4 8.81 58.18
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=le—5; CB=5e—6 Wiki+C4 8.65 58.39

Ablation on Fine-tuning. We perform a detailed ablation on the post-quantization fine-tuning
(FT) process to identify the optimal strategy, with results in Table[5] Our analysis reveals that while
tuning only the LayerNorm offers moderate gains, co-tuning the VQ codebook is critical, providing
a substantial boost to zero-shot accuracy. Furthermore, we found that applying distinct learning
rates—specifically was superior to a uniform schedule.

5 CONCLUSION

In this paper, we introduce AEC-SVQ, a novel hybrid framework designed to resolve the fundamental
trade-off between computational efficiency and memory compression for ultra-low-bit W2A4 LLM
inference. Our approach is built on three synergistic innovations. First, we propose a hybrid SQ-VQ
scheme centered on a single learned transformation that simultaneously optimizes data distributions
for weight VQ, activation SQ, and codebook quantization. Second, our Cumulative-Error-Aware
VQ (CEAVQ) algorithm introduces a principled method to proactively compensate for compounding
errors by aligning the quantized layer’s output with its full-precision distribution. Finally, we develop
an Adaptive Compensation mechanism that uses a closed-form, data-driven shrinkage factor to
ensure robustness against statistical noise from limited calibration data. Extensive experiments
demonstrate that AEC-SVQ consistently outperforms existing state-of-the-art quantization methods.
These results validate the effectiveness of our integrated approach and establish a new frontier for
LLM quantization, making high-performance, ultra-low-bit models practical for deployment in
resource-constrained environments.
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6 ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive content. It focuses solely
on optimization of LLM compression and inference. Therefore, we believe it does not raise ethical
concerns.

7 REPRODUCIBILITY STATEMENT

We provide complete details of our algorithms and evaluation protocols in the main paper and
appendix. All models are evaluated on publicly available benchmarks (Wikitext-2, ARC, BoolQ,
PIQA, HellaSwag, OBQA, SIQA, and WinoGrande). The code for our algorithms and reproducing
experiments will be released upon publication. These resources will ensure full reproducibility of the
reported results.
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A APPENDIX

A.1 LLM DISCLAIMER

The authors hereby declare the role of large language model (LLM) tools in the preparation of this
manuscript: LLMs were solely utilized to assist with text polishing (including refining sentence
structure, optimizing lexical expression, and enhancing language fluency) and writing optimization
of the paper’s narrative content.

It is explicitly emphasized that all core components of this research, which determine the originality,
scientific validity, and academic value of the work, were independently completed by the research
team through manual efforts. These components include, but are not limited to:

e The formulation and development of the overall research framework, core ideas, and logical
structure of the study;

 The design, coding, debugging, and validation of all algorithms and program codes involved in the
research;

* The design of experimental protocols, collection and preprocessing of experimental data, execution
of experiments, analysis and interpretation of experimental results, and verification of conclusions.

The use of LLM tools did not involve any participation in the conception of research content,
generation of technical solutions, implementation of experimental processes, or derivation of research
conclusions. All content of this paper adheres to academic integrity standards, and the research team
assumes full responsibility for the scientificity, authenticity, and originality of the work.
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A.2 THEORETICAL ANALYSIS OF HYBRID SQ-VQ FRAMEWORK WITH LEARNED
TRANSFORMATION

A.2.1 PRELIMINARIES AND NOTATION
Consider a single linear layer

y =Wz e Riout| z € RYd = diy),
with input second moment (covariance) H = E[zz ] = 0. We analyze three sources of quantization
error applied around this layer: (i) activation scalar quantization (SQ) of x, (i) weight vector
quantization (VQ) of W after reshaping into length-p vectors (with p = vec_len), and (iii) codebook
integer quantization of the learned VQ codewords.

We insert a function-preserving equivalent transformation pair
T = AO, A =diag(M1,...,Ag) = 0,0 € O(d),
in the sense that we work in the primed coordinates
v =T, W =wr 1,

so that Wz = W'z’ in floating point. Quantization is performed in the primed coordinates and the
pair can be fused away at deployment. Throughout, we adopt the standard high-resolution/small-
noise approximation and assume independence between signals and quantization noises when taking
second-order moments.

Weight reshaping for VQ. Following the setting in the main paper, we reshape the weight matrix
W' € Réeut*d glong the input dimension into an i.i.d.-like collection of vectors {2/ € RP}Y | (row
blocks or columnwise chunks of length p = vec_len). K-means with K = num_centroids produces
a codebook C = {c} }/£ | C R” and assignments 7 (i) € [K].

A.2.2 UNIFIED SECOND-ORDER ERROR MODEL

Let n, denote the SQ error on activations, 7,, the VQ reconstruction error on weights, and 7, the
additional error stemming from integer quantization of codewords (propagated back to the weight
domain). In primed coordinates we write 7., 77}, , 7, with covariances

Sy, = Bl |, Sy, = Elmyn ), e, = Elnlarg ]
Neglecting second-order cross terms (small-noise linearization), the output error obeys
g =y~ Wi+ (1, + 1) 2.

Taking squared norm and expectation, using independence between z’ and weight-side noises, we
obtain the unified trace form

E=Elg—yllz~ aWTW,) +t(H (S, +,)), (10)

(A) activation-side propagation (B) weight-side propagation

where H' = E[2’2'T] = THTT. Thus, any transformation 7 that jointly reduces the spec-
tra/diagonals of Zn;, Z,,(U, and En; tends to decrease the unified error £.

A.2.3 NOISE MODELS IN THE PRIMED COORDINATES

(i) Activation SQ. For uniform mid-rise/tread scalar quantizers with per-axis step sizes A; and
negligible overload,
. [ AY A2
En;%dlag(m,...,u , Aj o< ay,

where «; is the (symmetric) dynamic range bound on the j-th coordinate of 2’. Large coordinates
(heavy tails, outliers) directly inflate A ;.
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(ii) Weight VQ (k-means). Let 2z, € RP? be the reshaped weight vectors extracted from W'. K-
means yields reconstructions 2} = ¢/, and errors €] = z; — Z]. Under high-rate assumptions and for
subGaussian/Gaussian-like vector statistics, the mean distortion per vector obeys the Zador/Gersho-
type scaling

Elle|3 ~ Cp|S. |/ K7, (11)

where X,/ is the empirical covariance of the block distribution {z}, and C, depends only on the
dimension p and optimal cell shape.

(iii) Codebook integer quantization. After VQ, each codeword ¢}, € RP? is uniformly quantized per
coordinate to a b-bit integer grid with shared (or per-dimension shared) step size A.. For negligible

overload,
2

S ~ 75 Ilperblock), A, o< a, o = max [(ck) -

Thus a.—the ¢, radius of the codebook cloud along coordinate axes—controls the integer quantiza-
tion error.

A.2.4 Two ELEMENTARY LEMMAS ON WHITENING AND ENERGY EQUALIZATION

Lemma 1 (Whitening optimality for second-order criteria). Let x be subGaussian with covariance
H = 0. Consider Ty, = AynO with Ay, = H™'/? and any O € O(d). Then x' = Ty satisfies
Cov(z') = I. Among all linear transforms with fixed trace of the output covariance, whitening
equalizes all eigenvalues, and hence minimizes the geometric mean of eigenvalues:

p
H A (X20)is minimized when %1 o I,,.
j=1

Consequently, for block statistics derived from right-multiplying W by TV;hl the high-rate VQ proxy

|3,/ |1/P is minimized.

Proof. By construction, Ay, = H —1/2 equalizes the eigenvalues of the output covariance to 1. For
any positive semidefinite matrix with fixed trace, AM>GM implies that the geometric mean of
eigenvalues is minimized when all eigenvalues are equal. The claimed consequence for the proxy
|32,/ |}/P follows from the monotonicity of equationin |3,/ O

Lemma 2 (Energy-equalizing rotations minimize the /., magnitude). For any nonzero u € R?,

u
min_[Oullo. = 1412

0€0(d) N

In particular; there exists O* such that O*u = ||ul|y d='/2 s for some s € {+1}4, i.e., all coordinates
have equal magnitude. Moreover, for subGaussian x', one obtains

1 /
E[|0* |0 < —= E||2'||2and|| 0"’ || o < wsamplewise.

T Vd T Vd
Proof. For any O, ||Oul|oe > ||Oull2/Vd = ||ul|2/+/d by norm inequalities; hence info ||Oul| s >

l|u||2/+/d. Equality is achieved by taking any orthogonal O* that maps the unit vector /||| to the

constant-sign vector d~'/2s (both are unit-norm), which exists because the orthogonal group acts
transitively on the unit sphere. The sub-Gaussian bound follows immediately. O

A.2.5 MAIN PROPOSITION: A SINGLE T' = AO BENEFITS ALL THREE QUANTIZERS

proposition 1 (Joint improvement under a learnable rotation—smooth transform). Assume the high-
resolution regime with negligible overload and independence between signals and quantization noises.
Let
T — H- 1/2 O* ,
N—— ~~~

A*  energy equalization
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where O* is any orthogonal transform that approximately equalizes coordinate magnitudes (e.g., a
Hadamard-like rotation or a learned orthogonal matrix). Then the unified error £ in equation
strictly decreases comparedtoT = I:

AE = E(T*) — £(I) < 0.

In particular, each constituent term decreases:

Activation SQ: S, = diag(A}/12,...),A; o« o (T*) b= (W W' 5, ) |,
Weight VO: S [ 1= BllIE & Gyl 2o [P,
Codebook int-quant: ac(T*) = max (ch)j] 4= By A? .

J

Proof sketch. Step 1 (VQ via whitening). By Lemmall} A* = H~1/2 equalizes second-order statistics
in the primed coordinates, driving block covariances towards >, o I, and thereby minimizing the

high-rate proxy | X,/ |1/ P, Hence the mean VQ distortion decreases.

Step 2 (SQ and codebook via {, control). By Lemma[2] for each sample of 2’ the energy-equalizing
rotation O* enforces ||O0*2’||oo < ||#’||2/V/d. Therefore the per-axis dynamic ranges a;(T*) contract
by a factor on the order of 1/v/d, enabling uniformly smaller steps Aj for SQ and reducing %, . The
same /. contraction applies to codeword coordinates (by the same energy-equalization principle
acting on block vectors), shrinking the global codebook bound a..(7™) and thus A..

Step 3 (Monotonicity in the unified trace). Each of the three covariance terms decreases in the Loewner
order (or at least in trace), so both traces in equation [_115] decrease, which implies AE < 0. O

A.2.6 REMARKS ON “SMOOTH” (MIXING) TRANSFORMS AND TAILS

Beyond orthogonal rotations, one may allow light smoothing/mixing (still linear and invertible) inside
T to average multiple coordinates per output coordinate. Under standard subGaussian/CLT heuristics,
this further reduces kurtosis and extreme-value behavior, lowering overload probabilities for SQ
and tightening the extreme codeword coordinate a.. Such smoothing can be learned jointly with O
while maintaining the factorization 7' = AO (with A diagonal and O orthogonal) by absorbing any
additional conditioning into A and keeping the remainder orthogonal.

A.2.7 ASSUMPTIONS AND LIMITATIONS

The analysis rests on (i) high-resolution quantization (overload negligible after appropriate clipping),
(i1) small-noise linearization (neglecting cross terms), and (iii) subGaussian or light-tailed statistics
enabling the proxies equation[I1] In practice, learnable 7" can be trained end-to-end to approximate
H~'/2 and energy-equalizing rotations; the proposition guarantees the existence of such a beneficial
transform and explains its joint effect on the three quantizers.

A.3 DERIVATION OF CEAVQ

A.3.1 WEIGHT-ACTIVATION QUANTIZATION PROXY OBJECTIVE

We study the proxy loss

(W) =Ex [ | WX - WX||7] = Ex[ (07 - w)x - w(X - X)|I7], (12)

where W, W € R™>" are the full-precision and quantized weight matrices, respectively, and
X, X e R"*P denote a floating-point input and its (possibly stochastic) quantized counterpart. The

expectation is taken with respect to the randomness of X (and hence X when it is a function of X).
Throughout we use ||A||% = tr(A " A) and the cyclic property of the trace, tr(ABC) = tr(BC A),
whenever dimensions are compatible. We assume E|| X ||% < oo so that all traces are finite.
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Step 1: Quadratic expansion. Define
A2 W-WX-W(X-X), B2W-W)X, C2W(X-X),
so A= B — C. Then
|AllZ =t[(B—C)"(B-C)] =tx(B'B) —2tx(B'C) + tr(C'C). (13)
Taking expectations and using linearity of [E yields
(W) =E[te(B"B)] - 2E[tx(BT )] + E[tx(CTC)]. (14)

Step 2: Move fixed matrices outside the expectation. Because W and W are deterministic
(conditioned on the current layer),

E[tr(BT B)] = E {tr(XT(W —wW)T (W — W)X)] - tr((W —wW)T (W - W) E[XXT]),

(15)
E[t(BTC)] = E {tr(XT(W —W)TW(X - X))] - tr((W —W)TWE[(X - X)XT]),
(16)
E[tr(CTC)] =E {u«((f( ~X)TWTW(X - X))} - tr(WTW]E[(X ~X)(X - X)T}).
(17)
Step 3: Collect second-order statistics. Introduce the second-order moment matrices
HA2EXXT], G2EX-X)XT], K2EX-X)(X-X)']. (18)

Substituting equation [I5}-equation[T7]into equation [I4] gives the compact form

oW = tr((W —wW)T(W - W) H) - 2tr((W W)W G) ¥ tr(WTW K) (19)

Remarks. (i) The third term in equationis independent of W and hence acts as a constant offset
when optimizing over W (given fixed W and an input quantizer determining K). (ii) The first term

weighs the weight-quantization error (W — W) by the input second moment H, while the middle
term captures the interaction between weight and activation quantization through G.

A.3.2 COMPLETING THE SQUARE AND THE UNCONSTRAINED MINIMIZER

Let AW £ W — W and define the H-weighted inner product (A, B); 2 tr(A" B H). Then
equation[T2]reads

W) = (AW, AW ) g — 2{AW, WGH ) g + tr(W T WK).
Completing the square under (-, -) i yields
(W) = (AW —WGH™', AW - WGH™ '), +C, (20)
with the constant

C=u(W' WK)—(WGH ", WGH™ "), =tr(W'WK) —to((WGH ") (WGH ") H).
2D
The (unconstrained) minimizer is therefore
W*=W+WGH™, (22)

which coincides with the stationarity condition V ;¢ (W) =2((W-W)H — W@G) = 0. In practice,
W must lie in a quantized space; we will approach equation [22]iteratively.

16



Under review as a conference paper at ICLR 2026

A.3.3 LDLT-STYLE COLUMNWISE DECOMPOSITION

To expose a columnwise structure, factor the (symmetric) matrix H as
H=U+D)DU+IDT, (23)

where U is strictly upper triangular and D = diag(ds, . ..,d,) = 0. (Equivalently, H = LDL"
with L = (U + I) " unit lower triangular.) For any m x n matrix M denote its kth column by Mj,
and the strict prefix by M. (x_1). Using equation [23|and the cyclic property of the trace,

(AW, AW)y = t2o((AW(U + 1)) T AW(U +I) D) = i di | AW (U + Dex ||
k=1

=3 di || AWk + AW oy g (24)
k=1

where uy, = U L:i(k—1),k € R~ collects the kth column of U above the diagonal. Replacing ATV by
AW — WGH™! per equationyields the column-coupled objective
2

> di ||(We = W) + (Wrigmt) — Waage—1)) e — ((WGH_l)k + (WGH ™)1,k Ulc) +C.
k=1

current column previously fixed cross-term compensation

F

. . (25)

Given Wy, (j,_1), the kth subproblem is a (weighted) least-squares fit of W to an effective target
T]SXaCt = Wk + (Wl:(k—l) - Wl:(k—l))uk + (WGH_l)k + (WGH_l)lz(k_l) Uk - (26)

If the quantizer Q(+) is fixed (e.g., a vector quantizer with a frozen codebook), the greedy update is
simply Wy, — Q(T**<Y).

Practical simplification. To reduce overhead, we often approximate equation by re-
taining the dominant self-compensation term (WGH 1), and absorb the history-dependent
(WGH *1)1:(k_1)uk into the feedback through wuj (or damp it with a scalar). This leads to

T, = Wi+ (Wis—1y — Wieny)ar + (WGH ™)y, 27)

where a;, € RF~1 is a feedback vector (default a;, = uy).

A.3.4 COUPLED DECOMPOSITIONS FOR H AND GG

When feasible, we align G' with the same triangular basis induced by H by seeking
Gr(U+I)Dg(U+1I)T, (28)
with D¢ (approximately) diagonal. One practical choice is to set U from the exact LDL T of H
and define D¢ £ diag((U + I)7'G(U + I)~ ") (componentwise on the diagonal), discarding
off-diagonal residualsP_-] This alignment causes the cross-term WG H ~! to predominantly affect the

columnwise targets via the terms already present in equation |27} improving stability of the greedy
updates.

A.3.5 GREEDY COLUMNWISE UPDATE WITH CROSS-TERM FEEDBACK
With the above ingredients, our adaptive quantization step for column k is
Wy = Q(Wk + Wity — Wige_1y) ag + (WGH_l)k)- (29)

This is akin to LDLQ-style feedback, augmented by a linear-term compensation (WG H ~1),, that
explicitly targets the shift in the completed square equation [20] Unless stated otherwise, we set
ar = ug from equation 23| and @ = 0.25. In our implementation, Q(-) updates only the VQ
assignment indices while keeping the codebook fixed.

'Since G' need not be symmetric, one may use its symmetrization %(G + GT) for this projection.
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Choice of a;, and U. Given H = (U + I)D(U + I) T, a; = uy is the optimal feedback in the
sense that it exactly decouples the quadratic term equation into a sum of per-column ¢5 objectives.
If H is ill-conditioned, we compute U, D via a pivoted LDL ' (or Cholesky) factorization of H + A
with a small A.

A.3.6 NOISE SHAPING VIA K AND ITS ONLINE REFINEMENT

Let n £ Q(z) — z denote the quantization error applied elementwise to a vector z. Its covariance
K = E[ny enters equatlon only through the constant C. Nevertheless, to keep the model

consistent w1th the evolving targets equation n we update an online estimate K using mini-batch
residuals 7) observed during quantization:

K« BEK+(1-p)Cov(i), Be[0,1), (30)

and optionally shape the error in the (U + I)-basis so that its dominant directions align with the
(projected) cross-statistics in §A.3.4] This reduces the effective linear term through better agreement
between G and the realized noise.

A.3.7 ALGORITHM

1. Initialization. Set W « 0 (or W « Q(W)). Estimate H = E[XX ] and (optionally)
G =E[(X — X)X "] and K. Compute the factorization H = (U + I)D(U +I)"; set ay, + ug
fork=1,...,n

2. For k = 1 to n (columnwise quantization):
(a) Feedback computation:
A= Wigeo1) — Wigon) ax + (WGH ).
(b) Quantize column:
Wk — Q(Wk + Ak) (update VQ indices only; no codebook re-training).

3. Feedback refinement (optional). If using the coupled projection equation periodically
recompute ay, (through U) and adjust « to maintain descent (see below).

4. Noise update (optional). Update K via equation

A.4 DETAILED DERIVATION OF THE OPTIMAL ADAPTIVE CORRECTION FACTOR WITH
BIAS-VARIANCE REGULARIZATION

Recall the completed-square form of the proxy objective:
e(W):tr((W—W—V)T(W—W—V)H) YO, VAWGH, 31)
with C' = tr(W TWK) — tr(V TV H) independent of . We quantize columnwise using the target
Wi = Q(Wk + 7ok + a’Uk), o 2 Wity — Wie—)) ar, vp = (WGH ). (32)

Bias. When a < 1, the applied correction « vy shrinks the ideal correction vy, producing a
systematic under-compensation even if H and G are known exactly. Hence the expected loss cannot

attain the unconstrained minimum at W* = W + V.

Variance. In practice, H and G are estimated from a finite calibration set, yleldmg Hey and Geg
and a random correction W Geg Hoy. Its variance typically decays with sample size but can be large
for small/heteroskedastic datasets, so « = 1 may overfit calibration noise. Choosing o < 1 acts as a
shrinkage factor that reduces variance (at the cost of bias), improving generalization of the quantized
weights.

Interpretation. Thus « plays the role of a regularization parameter: o = 1 corresponds to an
unregularized, MLE-like plug-in solution; o = 0 ignores the cross-term G and reverts to a purely
weight-error objective. Our goal is to select (per layer, or per column) an « on the regularization path
that maximizes downstream generalization.
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A.4.1 A COLUMNWISE LEAST-SQUARES FORMULATION

Write E 2 W — W — V, whose k-th column is ej,. Then

W) —C=tr(E"HE) = Z Hij (ei,ej), (33)
1,j=1

where (-, -) is the standard inner product on R™. To decouple columns, factor H = LDLT with L

unit lower triangular and D = diag(dy, . .., d,) = 0 (pivoted LDL if needed). Setting E £ LTE
gives

(W) —C=tr(E'DE) = dellekllz, (34)

where &, is the k-th column of E. Hence the k-th update is governed (up to the scalar weight dj) by
the Euclidean error of a columnwise target in the L-basis.

Linearization of the quantizer. Around zj, 2 W, + 70,k + Uy, use a first-order/bias—noise model

Qz) = 2k + bk + 1k, Elne] =0, Cov(ng) = Zp . (35)

Then
Wk —Wimrog+avg+be+m = er~(ror+ avk+ bk —vg) + N (36)
For any deterministic vector a and zero-mean 7, E[[la + n||%,] = |all3; + tr(H %,), so the a-

dependent part of the loss reduces to an H-weighted least-squares problem.
Define the “ideal target”
th 2o —rop—br, |zl 22" Ha. (37)

Discarding the a-independent tr(HY,, 1), the per-column objective is

Ji(@) 2 |lavg — )% (38)
General H. The minimizer is .
v, H ity
r=-k , (39
v, H vy,

Decoupled (LDLT ) basis. Using equation34] J; () = di | avy, — t& |3 so dj cancels and

T
Ut
af = =% (40)
V.. Uk
k
. . . . " UkTTo k
When quantization is (approximately) unbiased, by, ~ 0, so t;, = vy, — 1o and o ~ 1 — W
Vk||2
A.4.2 RIDGE-REGULARIZED ESTIMATOR
To control estimation noise, penalize the scalar gain:
id
T ¥ (a) = vk — till3 + yea?, @1
yielding the closed form
-
vy Tk % A Yk
k() = w——=010-M)ag, M= —F7—m7- (42)
ol vk + Yk Vi + [[ol3

Thus A; € [0,1) is an explicit shrinkage factor. Layer-wise regularization is analogous with vy, ty,
concatenated or summed.

A.4.3 A VARIANCE-DRIVEN CHOICE OF 7

Let H = LDLT with unit lower-triangular L (so a, = uy, in the dual upper-triangular view and
7ok = (W kt1:n — Wi kt1:n) Li+1:m,5). TWo dominant noise sources motivate -y :
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(i) Propagated right-column noise. Let the quantization error on column j > k be e; with
Ele;] = 0 and Cov(e;) = s;1I,,,. Then

ros = D €5 Lik = Cov(ro,) = (3 5 L3 ) I 43)
i>k i>k
Consequently,
T T
Go=1— U0k ) = 2kt L (44)
[[ok]13 l[ok]l3
A natural stabilizer is to move this propagated variance into the denominator:

>k

(ii) Current-column noise floor. Let o2, denote the per-dimension variance of the current column’s

quantization noise (estimated from recent residuals). Introduce a base ridge level vo £ m o2, to
match dimensions.

Combined ridge. With observable residuals e,; on already-quantized columns j > £,

m

=0+ (Zefj) L. (46)

>k r=1

This choice yields a nearly hyperparameter-free o () in equationthat adapts to both propagated
and intrinsic noise.

A.5 FULL RESULTS

A.5.1 QUANTITATIVE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. The results include complete comparison of the perplexity score on
WikiText2 and averaged accuracy on zero-shot common sense reasoning tasks on LLaMA-2(Tab [6)),
LLaMA-3 (Tab[7) and Qwen-3(Tabg).

A.5.2 SPEEDUP AND MEMORY SAVINGS

Tab [9] shows the prefill time and memory usage of LLaMA models with different parameter sizes
and sequence lengths, compared between our W2A4 implementation and FP16. The inference
environment features an Intel(R) Xeon(R) Gold 5317 CPU and an Nvidia 3090 GPU. The 4-bit matrix
multiplication kernel was implemented using cutlass of nvidia, while the self-attention mechanism
was realized with PyTorch’s native SDPA (scaled dot product attention) function. All tests were
conducted 500 times, with the median value taken as the final result. Benefiting from efficient low-
precision computation units within CUDA cores and reduced access overhead, AEC-SVQ achieves
over 3x speedup across various model sizes, and approximately 7x acceleration on the challenging
LLaMA-30B model.
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Table 6: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-2.

ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. | Wiki2
Model| Method G G G RO O O G G R
Full Precision 46.42 7433 7771 7594 4420 79.16 4591 69.53 64.15| 5.47
SmoothQuant 2329 26.52 46.18 26.16 21.80 47.77 3337 50.20 34.41 6e5
OmniQuant 23.72  25.11 3795 2627 23.80 48.20 3439 50.04 33.69 4e5
2-7B QuaRot 20.10 2492 4786 2575 2840 49.89 33.57 49.01 36.06| 1e5.00
SpinQuant+GPTQ 2892 26.05 5847 29.75 26.60 51.36 3449 5193 38.45| 124.79
SpinQuant+GPTAQ | 29.35 26.09 61.65 29.27 27.00 50.22 34.85 51.07 38.69|7561.60
OSTQuant+GPTQ 21.84 3359 3896 3049 2480 55.88 35.88 4933 36.35| 41.15
OSTQuant+GPTAQ | 2491 34.13 6229 39.36 30.20 57.34 36.80 54.70 4247| 12.46
AEC-SVQ 35.67 6229 67.65 6731 3840 7465 4145 62.19 56.20| 6.29
Full Precision 49.15 77.53 80.58 79.39 4520 80.63 4749 7190 6648| 4.88
SmoothQuant 23.72  26.52 46.18 26.17 2480 49.13 34.64 4791 34.88 3e5
OmniQuant 2449 2563 48.84 2734 2560 49.02 34.19 4775 35.36 le5
2-13B QuaRot 2722 2593 5135 2652 2740 50.05 34.14 47.59 36.28 9¢4
SpinQuant+GPTQ 2483 3956 61.47 3801 27.00 54.84 3562 5351 41.85| 23.64
SpinQuant+GPTAQ | 25.85 42.13 61.25 3595 2820 57.51 3526 52.09 4228| 33.21
OSTQuant+GPTQ 2474 4272 63.12 39.28 28.60 61.26 37.15 54770 43.95| 15.85
OSTQuant+GPTAQ | 28.41 4895 6346 4426 3240 63.82 37.67 5572 46.84| 8.90
AEC-SVQ 41.72 68.06 7437 7341 41.60 7693 4391 6622 60.78| 5.49
Full Precision 57.42 81.02 83.79 83.81 48.80 82.70 49.18 7798 70.59| 3.32
SmoothQuant 28.12 25.88 3897 25.12 24.60 50.76 32.55 4744 34.18 2e5
OmniQuant 2924 2555 3783 2676 26.60 5098 3398 48.16 34.89 9¢4
2-70B QuaRot 2892 2740 3792 2565 23.00 50.00 33.78 46.65 34.17|8333.76
SpinQuant+GPTQ 3396 4642 56.85 46.04 32.00 58.49 37.46 56.04 4591 656.00
SpinQuant+GPTAQ | 36.77 62.84 61.47 50.19 36.40 7051 38.18 64.17 52.57| 200.00
OSTQuant+GPTQ 32.08 4642 60.83 5564 3560 62.19 40.74 6638 4999| 11.31
OSTQuant+GPTAQ | 37.88 65.82 6844 64.84 39.00 71.60 4294 66.85 57.17| 7.71
AEC-SVQ 51.28 78.41 73.85 78.08 45.00 78.56 46.11 73.72 65.63| 4.41

Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-3.

ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. | Wiki2

Model| Method e G SRS R G M) BN S Ny MG R S A )
Full Precision 53.50 77.74 81.10 79.18 44.80 80.63 47.08 73.01 67.13| 6.14
SmoothQuant 2224 2428 48.78 2640 2540 5033 34.14 50.20 35.22| 2e6
OmniQuant 2577 24.07 5627 25.68 26.60 50.60 32.12 50.59 36.46| 2e6

3-8B QuaRot 2824 2483 4924 2574 28.80 50.65 33.37 49.64 36.31| 3e5
SpinQuant+GPTQ 21.50 3237 47.52 29.51 25.80 53.37 3270 50.75 36.69| 96.94
SpinQuant+GPTAQ | 22.78 36.74 59.57 3424 2620 5571 34.85 52.88 40.37| 48.31
OSTQuant+GPTQ 2193 34.01 5043 31.62 2640 5582 35.16 51.30 38.33| 36.20
OSTQuant+GPTAQ | 24.66 30.81 61.96 3773 2820 5326 37.41 5438 41.05| 20.20
AEC-SVQ 4130 63.64 7459 69.04 3840 7421 4237 63.61 5839 8.65

Full Precision 49.15 77.53 80.58 79.39 4520 80.63 4749 7190 66.48| 4.88
SmoothQuant 2747 2605 3783 2626 2480 5098 3246 4838 34.28| 7e5
OmniQuant 24.15 25.88 37.83 26.12 2640 50.76 32.55 49.17 34.11| 6e5

3-70B QuaRot 23.81 26.09 4239 2668 27.40 51.03 3434 51.62 3542| 5e5
SpinQuant+GPTQ 2577 25.17 45.17 2922 26.07 51.63 33.83 4893 35.72| 3e5
SpinQuant+GPTAQ | 27.13 25.29 48.81 3248 26.12 51.74 34.12 48.70 36.80| 4e5
OSTQuant+GPTQ 2637 2727 5456 3333 2840 5196 32.60 52.17 38.33[618.90
OSTQuant+GPTAQ | 2594 2555 53.85 32.63 29.00 5196 33.52 5391 38.29|559.68
AEC-SVQ 51.11 77.48 79.88 78.82 3420 79.00 44.78 59.59 63.11| 6.33
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Table 8: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on Qwen-3.

ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. | Wiki2
Model| Method R ) oo DD D Db
Full Precision 56.23 80.93 86.67 7491 4140 78.07 51.84 68.19 67.28 9.72
SmoothQuant 26.62 2357 3801 2620 29.60 51.58 33.32 5091 34.98|282152.00
OmniQuant 27.82 2412 37.82 2636 2720 5098 3345 49.26 34.63|257368.00
3-8B QuaRot 2546 25.66 3993 28.12 2860 5123 3396 51.22 35.52|146378.00
SpinQuant+GPTQ 2730 43.60 6532 4220 2840 60.01 33.62 52.80 44.16 24.57
SpinQuant+GPTAQ | 26.45 41.25 63.55 38.74 27.40 59.30 36.23 5272 43.20 25.24
OSTQuant+GPTQ 23.81 41.79 6394 3566 27.20 60.28 36.80 53.12 42.82 27.49
OSTQuant+GPTAQ | 29.18 46.34 69.08 44.69 27.60 61.04 38.08 52.69 46.12 24.62
AEC-SVQ 4693 7146 78.38 6621 3940 72.58 44.11 65.11 60.52 11.27
Full Precision 60.49 82.87 89.39 7887 4640 79.60 51.94 73.01 70.32 8.65
SmoothQuant 2722 2517 4339 2597 28.60 50.82 33.27 49.41 35.48|638472.00
OmniQuant 27.04 26.77 4620 2550 29.20 51.73 3236 51.02 36.23|537462.00
3.14B QuaRot 28.33 24.62 50.76 26.45 28.00 52.07 3342 52.64 37.04|263984.00
SpinQuant+GPTQ 26.71 39.10 57.00 36.77 28.00 57.73 3598 51.62 41.61 41.57
SpinQuant+GPTAQ | 28.41 44.61 72.81 44.82 29.80 63.06 39.20 57.22 47.49 17.04
OSTQuant+GPTQ 35.67 59.18 76.67 50.70 3440 66.05 40.17 60.38 52.90 17.55
OSTQuant+GPTAQ | 33.78 57.28 76.15 4991 3340 66.10 3992 57.54 51.77 17.51
AEC-SVQ 4846 7395 81.87 72.51 4120 76.44 47.13 68.03 63.70 10.38

Table 9: Prefill time and Memory usage of LLaMA models with different parameter sizes and
sequence lengths, compared between our 4-bit implementation and FP16. All tests were conducted
on a Transformer block with batch size 4 on a 3090 GPU.

Prefill Time(ms) Memory(GB)
Model Size Seqlen FP16 W2A4 Prefill Speedup(x) "FP16 W2A4 Memory Saving(x)
256 8.050 3.326 2.420 0.411  0.066 6.266
512 14904  6.386 2334 0.435 0.074 5.902
1024 27286 12210 2.235 0.483  0.090 5.367
LLaMA2-7B 2048  54.979  24.720 2.224 0577  0.122 4.728
4096  112.603  51.020 2.207 0.766  0.187 4.103
8192 224275 129.630 1.730 1.147 0317 3.615
256 8.035 3.014 2.666 0.430  0.068 6.317
512 15545  6.036 2.575 0.442  0.073 6.051
1024 29.169  11.128 2.621 0.466  0.083 5.613
LLaMA3-8B 2048 57470  23.339 2.462 0.513  0.103 4.991
4096  117.593  49.511 2375 0.608 0.142 4273
8192  256.324 113.263 2.263 0.795 0.221 3.593
256 11449  4.080 2.806 0.634  0.095 6.686
512 21.195  7.285 2.909 0.663  0.105 6.326
1024 41762  15.107 2.764 0.723  0.126 5.730
LLaMA2-13B 2048  81.955 31.936 2.566 0.841 0.165 5.096
4096  199.046  69.881 2.848 1.079  0.247 4372
8192 359.402 154.080 2333 1.553  0.409 3.799
256 18.689  5.174 3.612 1.047  0.148 7.082
512 34393  10.824 3.177 1.085 0.162 6.699
1024  66.880  21.902 3.054 1.162  0.187 6.197
LLaMA-30B 2048  157.585 45.680 3.450 1.315  0.240 5.493
4096 272355 95229 2.860 1.625  0.346 4.697
8192  576.555 214.940 2.682 2242 0.557 4.029
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