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ABSTRACT

Quantization presents a powerful approach for reducing the memory footprint and
accelerating the inference of Large Language Models (LLMs). However, it faces
a fundamental dilemma: computation-friendly Scalar Quantization (SQ) suffers
performance degradation at ultra-low bit-widths, whereas memory-friendly Vector
Quantization (VQ) maintains higher accuracy but fails to reduce computational
demand. As a result, achieving both computational efficiency and high-fidelity
compression in ultra-low-bit regimes (e.g.W2A4) remains a tough challenge. To
address this, we propose AEC-SVQ, a hybrid framework that synergistically inte-
grates SQ ,VQ for high-performance, ultra-low-bit LLM inference. The framework
is built on three innonvations. ❶To simultaneously address the disparate distribu-
tional challenges presented by weight VQ, activation SQ, and codebook integer
quantization, we introduce a learned rotation-smooth transformation that adap-
tively promotes quantization-friendly distributions for weights, activations, and
codebooks within the hybrid SQ–VQ scheme. ❷To mitigate the compounding
errors caused by the independent quantization of weights and activations, we pro-
pose the Cumulative-Error-Aware Vector Quantization (CEAVQ) algorithm.
CEAVQ adjusts weights to compensate for the cumulative error from upstream
quantized layers, thereby proactively aligning with the full-precision output distri-
bution. ❸To ensure robustness against statistical noise from limited calibration data,
we introduce a closed-form, data-driven Adaptive Compensation. It modulates the
compensation strength for cumulative errors, preventing overfitting to calibration
set statistics and guaranteeing stable generalization. AEC-SVQ enables a W2A4
pipeline that achieves the memory footprint of a 2-bit model while exploiting the
computational efficiency of 4-bit integer arithmetic. On LLaMA-30B, it delivers
a 3.6× speedup and 7.1× memory saving, establishing a practical frontier for
ultra-low-bit LLM deployment.

1 INTRODUCTION

Large Language Models (LLMs) (Dettmers et al., 2022a; Touvron et al., 2023a;b) have unlocked
remarkable capabilities across diverse domains (Achiam et al., 2023; Chen et al., 2024), yet their
immense computational and memory footprints present a significant barrier to widespread deployment.
The prohibitive cost of serving these models, particularly on resource-constrained edge devices, has
catalyzed intensive research into model compression. Among various techniques, quantization—
reducing the numerical precision of weights and activations to lower bits—stands out as one of the
most promising avenues for dramatically cutting memory usage, bandwidth, and energy consumption.

As shown in Figure 1(c), LLM quantization is primarily driven by two approaches: Scalar Quantiza-
tion (SQ) Ashkboos et al. (2024) and Vector Quantization (VQ) (Liu et al., 2024a). SQ, particularly
in INT8 and INT4 settings, has gained wide adoption due to its seamless compatibility with commod-
ity hardware, which offers highly optimized integer arithmetic pipelines for efficient computation.
However, at sub-4-bit precision, the limited representational capacity of SQ causes severe accuracy
loss. In contrast, VQ demonstrates distinct advantages in the ultra-low bit regime(< 4 bits). By
mapping weight parameters to high-dimensional floating-point (FP) codewords, it preserves key
information while further improving the compression ratio. Despite its efficacy in reducing memory
and bandwidth, current VQ methods are restricted to weight-only quantization and remain in costly
FP arithmetic, stemming from two core issues: the prohibitive complexity of quantizing runtime
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Figure 1: Motivation and performance overview of our proposed hybrid W2A4 quantization
framework, AEC-SVQ. (a) Comparison of Bit Operations (BOPs) and memory footprint for recent
quantization methods, demonstrating that AEC-SVQ achieves a superior integration of computation
and memory efficiency. (b) Accuracy of various methods on the LLaMA family, where AEC-SVQ
consistently outperforms existing PTQ techniques. (c) Conceptual comparison of quantization
schemes. Our hybrid approach synergizes SQ and VQ, using an INT4 codebook to enable memory-
friendly 2-bit weight storage while executing computation with efficient 4-bit integer arithmetic.
activations online and the incompatibility of its non-linear output with accelerated integer arithmetic.
Taken together, the characteristics of VQ and SQ reveal a fundamental computation–memory trade-off
and raise a key challenge: How can we synergistically integrate the hardware-friendly efficiency
of SQ with the high-fidelity representation of VQ into a unified framework to enable practical,
high-performance ultra-low-bit inference?

Building upon the characteristics of common hardware architectures and the requirements of LLM
inference, we first explore a hybrid quantization scheme. This initial approach, which employs SQ
for runtime activations and VQ for model weights, offers a promising balance of computational
efficiency and compression. To align with low-precision compute units such as INT4 Tensor Cores and
achieve practical speedups, the codebook in VQ are also quantized using SQ. However, the practical
implementation of this strategy faces several critical challenges: ❶ Suboptimal data distributions
for quantization. The intrinsic data distributions in LLMs are challenging for standard quantization
methods. For weights, VQ performs best on isotropic, spherical clusters (Yue et al., 2025), but the
typically anisotropic nature of weight distributions often leads to suboptimal representations. For
activations, scalar quantization requires a narrow dynamic range to maintain high fidelity (Dettmers
et al., 2022b). Yet, outliers in LLM activations drastically widen this range, forcing most values into
coarse, low-information bins. For VQ codebook, the few codewords representing high-magnitude
outliers skew the dynamic range, forcing subsequent SQ to collapse most other codewords into
coarse bins and degrade overall fidelity. ❷ Coupled quantization errors. Conventional approaches
quantize weights and activations independently, overlooking critical error interactions within and
across layers. Distortions from weight quantization can shift data distributions, amplifying activation
errors. Conversely, activation quantization alters the input statistics of downstream layers, rendering
pre-calibrated weight reconstructions suboptimal. Under ultra-low bit widths, these uncompensated
and accumulated errors become the main bottleneck, making simple independent schemes ineffective.
A promising solution is to explicitly model and correct the coupled distortions and cumulative error.
However, in contrast to independent optimization, holistic modeling and collaborative optimization
are often compromised by ❸ Statistical instability. PTQ relies on small calibration datasets to
estimate correction statistics. Limited sample sizes inevitably introduce noise into these estimates.
Applying such noisy corrections indiscriminately can destabilize inference and degrade generalization.
Therefore, a central challenge for practical deployment is to design a robust method that leverages
beneficial corrections while mitigating the impact of statistical noise.

In response, we propose AEC-SVQ a Hybrid SQ-VQ framework to unlock an efficient W2A4
(2-bit weight, 4-bit activation) pipeline. We first construct a Hybrid SQ–VQ scheme with Learned
Transformation designed to correct suboptimal data distributions for quantization, thereby mak-
ing them more amenable to subsequent quantization. The effectiveness of this transformation is
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validated through both theoretical derivation(Equation 4) and intuitive illustration(Figure 2(b, c)).
By simultaneously satisfying the distributional requirements of activation SQ, weight VQ, and
codebook quantization, the transformation reduces overall quantization error and integrates these
three components into a unified optimization process, ultimately realizing a cohesive and efficient
hybrid scheme. Building on this foundation, we tackle the coupled distortions and cumulative errors
of independent quantization with our Cumulative-Error-Aware Vector Quantization (CEAVQ).
Unlike conventional approaches that treat layers in isolation and minimize local reconstruction error,
CEAVQ pursues a global objective: aligning each layer’s output with its full-precision distribution.
To this end, it introduces a novel corrective term that proactively adjusts the weights. This adjustment
compensates not only for the imminent activation quantization error but also for the accumulated
distortions propagated from upstream quantized layers. Finally, to address the practical issue of
statistical instability, we propose Adaptive Compensation via Bias–Variance Shrinkage, which
formalize the problem by modeling the application of the corrective term as a classical bias–variance
trade-off. Based on this formulation, we derive a closed-form, data-driven solution that adaptively
adjusts the strength of cumulative error correction at the granularity of individual columns. Acting
as a theoretically grounded shrinkage mechanism, it suppresses unreliable correction signals and
ensures stable, generalizable performance.

Specifically, our work makes the following three core contributions:
• Hybrid SQ-VQ scheme with Learned Transformation. We introduce a hybrid scheme built

around a learned transformation that reshapes data distributions into quantization-friendly forms.
This transformation simultaneously meets the distributional requirements of activation SQ, weight
VQ, and codebook quantization, reducing overall quantization error and integrating the three
components into a unified optimization process. As a result, the scheme enables a synergistic hybrid
scheme that achieves the memory footprint of a 2-bit model while retaining the computational
efficiency of 4-bit integer arithmetic.

• Cumulative-Error-Aware VQ (CEAVQ) algorithm. We propose a post-training quantization
algorithm that aligns each layer’s output with its full-precision reference. CEAVQ introduces a
corrective term that proactively adjusts the weight vectors, compensating for both activation quan-
tization errors and the accumulated distortions propagated from upstream layers. This coordinated
optimization alleviates the compounding effects of independent quantization and enables more
accurate ultra-low-bit inference.

• Adaptive Compensation via Bias-Variance Shrinkage. To improve the robustness of CEAVQ
under statistical noise from limited calibration sets, we formalize the instability as a bias–variance
trade-off. From this formulation, we derive a closed-form, data-driven compensation method that
applies shrinkage to the corrective term. This adaptive mechanism balances correction strength
against estimation noise, ensuring stable and generalizable performance.

2 RELATED WORK AND BACKGROUND

Scalar Quantization for LLM Compression. SQ converts weights and activations of pretrained
neural networks from high precision (e.g., 16-bit floating point numbers) to lower precision (e.g., 4-bit
integers). Given a weight W, it is typically implemented with symmetric and uniform quantization
as:

SQ(W ) = clamp(⌊W
s
⌉,−2b−1, 2b−1 − 1), s =

max(|W |)
2b−1 − 1

, (1)

where s is the scale factor, ⌊·⌉ denotes the rounding-to-nearest operator, b is the quantization bit-
width, and clamp is the clipping function. SQ remains the workhorse of LLM compression due to its
compatibility with integer arithmetic on commodity accelerators. In the weight-only regime, methods
such as GPTQ (Frantar et al., 2022) leverage second-order error models to minimize rounding errors,
while AWQ (Lin et al., 2023) and OWQ (Lee et al., 2023) employ activation-aware scaling to protect
salient weights from quantization loss. To obtain end-to-end speedups, recent work pushes SQ to
both weights and activations, where the key difficulty is that activation outliers dominate the dynamic
range and lead to insufficient precision representation for most data points. ZeroQuant (Yao et al.,
2022) proposes fine-grained, hardware-friendly schemes; SmoothQuant (Xiao et al., 2022) shifts
dynamic range from activations to weights via an equivalent rescaling; OmniQuant (Shao et al., 2023)
further learns quantization and transformation parameters; and I-LLM (Hu et al., 2024) redesigns
blocks and operators to enable fully integer inference. Orthogonal transforms have emerged as a
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complementary strategy to make SQ viable at 4 bits: QuaRot (Ashkboos et al., 2024) uses random
rotations to deconcentrate outliers, while SpinQuant (Liu et al., 2024b) learns rotations to adaptively
regularize distributions. OSTQuant (Hu et al., 2025) unified learnable rotations and scaling, providing
additional flexibility and consistently outperforming previous methods. FlatQuant (Sun et al., 2024)
employed layer-wise learned online matrix transforms to improve quantized linears, at the cost of
increased inference overhead.

Vector Quantization for LLM Compression. VQ has emerged as a powerful technique for
achieving higher compression ratios. The core idea of VQ is to map a large set of vectors to a smaller,
finite set of representative vectors—commonly referred to as a codebook. Each original vector is then
represented simply by the index of its closest counterpart in the codebook, achieving compression by
storing this compact index instead of the full-precision vector. exploiting inter-channel correlation
to attain lower distortion at the same bit budget than scalar quantization. Given a weight W with
m rows and n columns to be quantized, VQ reshapes it into W ′ with dimensions (m ∗ n/v, v).
For each v-dimensional row vector, VQ replaces it with the log2k-bit index of the nearest vector
from the codebook C ∈ Rk×v. The compression ratio of VQ is (16mn)/(16kv + log2k ∗mn/v).
Typically, the Euclidean distance (calculated by the Frobenius normalization || · ||F ) is taken to
measure similarities. In this case, the quantization process can be expressed as:

VQ(W ′) = {argmin
j∈k

||W ′
i,: −Cj,:||F | i = 1, ...,m ∗ n/v}. (2)

The codebook C has shape (k, v), where each row vector represents a cluster center. Codebook design
is central to VQ methods. QuIP# (Tseng et al., 2024), leverage structured, data-independent code-
books for extreme compression. In contrast, a more common approach is to learn data-dependent code-
books. VPTQ (Liu et al., 2024a) and GPTVQ (Van Baalen et al., 2024) optimize codebooks using clus-
tering algorithms like K-Means and Expectation-Maximization, respectively, with AQLM (Egiazarian
et al., 2024) further refining this via layer-wise training. To mitigate error accumulation, both VPTQ
and AQLM incorporate residual quantization. Another line of work exploits the geometric properties
of weight vectors to improve quantizability: PCDVQ (Yue et al., 2025) decouples vector magnitude
and direction, while PVQ (van der Ouderaa et al., 2024) constrains codewords onto a sphere to better
match the weights’ natural distribution.

3 METHODOLOGY

3.1 HYBRID SQ-VQ SCHEME WITH LEARNED TRANSFORMATION

We introduce a hybrid quantization scheme that synergistically combines VQ for weights and SQ
for activations. This approach addresses their disparate statistical properties, as SQ is well-suited
for the dynamic distributions of activations, while VQ offers superior rate-distortion performance
for static weight tensors. However, a naive implementation of this method is suboptimal due to a
misalignment between the intrinsic data distributions in LLMs and the ideal operating conditions
for each quantization scheme. The effectiveness of VQ is predicated on isotropic, spherical data
clusters. This condition is violated by the anisotropic geometry of weight tensors, as visualized in
Figure 2(c, left) leading to inefficient codebook representations. The fidelity of SQ depends on a
minimal dynamic range. This is severely undermined by emergent outliers in activations(Figure 2(b,
left)), which drastically expand the quantization range and compel the majority of values into coarse,
low-information bins.

To reconcile these requirements, we introduce a Learnable Rotation-Smooth Transformation, an
equivalent transformation pair that reshapes the distributions of both weights and activations to be
simultaneously amenable to their respective quantization schemes. We theoretically prove that this
single transformation systematically benefits not only the weight VQ and activation SQ but also
the subsequent integer quantization of the VQ codebook itself. This unification enables a highly
efficient inference pipeline. By quantizing the VQ codebook to 4-bit integers (INT4), we convert
the primary matrix multiplication (MatMul) into an INT4 table lookup and multiply-accumulate
operation. Consequently, our framework achieves the storage and bandwidth advantages of 2-bit
weights (W2) while leveraging the computational speedups of 4-bit arithmetic (W4A4), a complete
workflow visualized in Figure 2(a).
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Figure 2: Overview of Hybrid SQ-VQ scheme and the distributional effect of the learned
transformation. (a) W2A4 inference pipeline. Offline learned transformation pair(T,T−1) reshapes
data distribution. Activations subsequently undergo online 4-bit SQ, while weights are quantized
offline using 2-bit VQ with an INT4 codebook. This scheme enables efficient computation on
W4A4 tensor cores. (b) The transformation mitigates outliers in the raw activation distribution (left),
producing a uniform and compact distribution (right) that is ideal for SQ. (c) PCA distribution of
vectorized weights. The initially anisotropic weight distribution with outliers (left) is transformed
into a dense, isotropic cluster (right), creating an optimal geometry for k-means-based VQ.

Consider a linear layer defined by y = Wx, where x ∈ Rdin is the input activation and W ∈ Rdout×din

is the weight matrix. We introduce an equivalent transformation pair (T,T−1) that preserves the
layer’s function:

y = Wx = (WT−1)(Tx) = W′x′. (3)
The transformation T is parameterized as a learnable rotation-smooth operator, explicitly defined as
T = ΛO. Here, O ∈ Rdin×din is a learnable orthogonal matrix (rotation) that mixes input channels,
and Λ is a learnable diagonal matrix (smoothing) that adjusts the variance of each resulting channel.

Modeling the errors from activations SQ(ηx), weights VQ(ηw), and codebook integer quantization(ηc)
as additive noise. we derive a unified approximation for the layer’s output Mean Squared Error
(MSE):

E∥ỹ − y∥22 ≈ tr
(
W ′⊤W ′Σηx

)︸ ︷︷ ︸
Activation Error

+tr
(
x′x′⊤(Σηw

+Σηc
)
)︸ ︷︷ ︸

Weight & Codebook Error

(4)

, where Σ represent the error covariances, This model reveals that the transformation T jointly
influences all error sources by modifying both the activation statistics and the effective weight
geometry.

Our core theoretical claim is that the proposed T systematically reduce all three constituent error
terms in Equation 4, as empirically demonstrated in Figure 2(b, c). Theoretical analysis can be
referred to Appendix A.2

3.2 CUMULATIVE-ERROR-AWARE VECTOR QUANTIZATION

Conventional PTQ methods that treat weight and activation quantization as independent, locally-
optimized problems are fundamentally suboptimal. This approach overlooks the crucial coupling
of their respective errors, which fosters a reciprocal error amplification Specifically, quantizing
activations shifts the input statistics for weights, while weight quantization error perturbs the output,
magnifying errors in subsequent layers. This cascade of uncompensated, compounding error, visual-
ized in Figure 3 (bottom), becomes the primary performance bottleneck in ultra-low-bit regimes. An
effective weight quantization strategy must therefore abandon this decoupled approach and instead
actively compensate for the error induced by activation quantization.
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Figure 3: Conceptual illustration of our Cumulative-Error-Aware Vector Quantization
(CEAVQ). (Top)A schematic of the layer-wise compensation mechanism. Error information from
the quantization process in one layer is used to apply a corrective adjustment to the subsequent
layer, proactively mitigating the accumulation of cascading errors. (Bottom)A comparison of the
input activation distributions for Layer 31. The leftmost plot shows the ideal distribution under a
full-precision model. The center plot reveals a significant distributional shift caused by standard
quantization. The rightmost plot demonstrates that our CEAVQ method successfully preserves the
statistical integrity of the original distribution, even deep within the network.

To this end, we propose a sequential, layer-wise compensation strategy, conceptually illustrated in
Fgure3(top). We reformulate the weight quantization problem from a foundational perspective. Our
goal is to find the quantized weight matrix Ŵ that minimizes the following principled objective:

ℓ(Ŵ ) = Ex

[∥∥∥ ŴX −WX̃
∥∥∥2
F

]
= Ex

[∥∥∥(Ŵ −W )X −W (X̃ −X)
∥∥∥2
F

]
(5)

where X are the quantized activations corresponding to the full-precision inputs X̃ .

As detailed in Appendix A.3, minimizing this objective reveals that the optimal, unquantized solution
is not W , but rather an error-compensated matrix Wopt = W + WGH−1. The term WGH−1

serves as a corrective pre-shift to the weights. Here, H = Ex[XXT ] is the input covariance and
G = Ex[(X̃ −X)XT ] is a cross-correlation matrix capturing the interaction between activation and
weight errors.

Inspired by this finding, we develop a sequential column-wise quantization algorithm. For each
column k, the quantized weight vector Ŵk is obtained by quantizing a corrected target that integrates
our novel term with a standard error feedback mechanism:

Ŵk = Q
(
Wk + (W1:(k−1) − Ŵ1:(k−1))ak + (WGH−1)k

)
(6)

where Q(·) is the quantization operator and ak are feedback coefficients. The derivation details
can be found in Appendix A.3. The crucial Cumulative Error Correction term directly injects the
corrective bias into the quantization process. This forces the weight quantizer Q(·) to be explicitly
aware of the downstream activation error, steering the solution towards a global minimum of the joint
error landscape. Consequently, the quantized weights are not only locally accurate but also robust to
activation perturbations, preserving the feature distributions as shown in Figure 3 (bottom).

3.3 ADAPTIVE CORRECTION VIA BIAS-VARIANCE REGULARIZATION

While the activation-error correction term WGH−1 is theoretically optimal, its practical application
presents a critical bias-variance trade-off. As illustrated in Figure 4, a fixed, global α is suboptimal.
Any choice α < 1 introduces a systematic bias by under-compensating for the activation error.
Conversely, an unregularized correction (α = 1) overfits to estimation noise in the statistics G and
H derived from finite calibration data, leading to high variance and unstable weights. We therefore
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propose an adaptive method to determine an optimal regularization strength α̂ that minimizes the
weight reconstruction error.

Figure 4: Model accuracy exhibits high sen-
sitivity to the selection of a fixed, global cor-
rection factor α. A suboptimal choice leads
to significant performance degradation. Our
adaptive method automatically determines a
near-optimal shrinkage factor, thereby consis-
tently outperforming any fixed α setting.

Our goal is to learn an optimal correction factor αk

that minimizes the layer’s reconstruction loss. As
detailed in Appendix A.4, by modeling the quantizer
with a linear approximation, the expected loss can
be decomposed into a sum of per-column objectives.
Optimizing for αk becomes equivalent to minimizing
the following for each column:

α⋆
k = argmin

α∈R

∑
k

∥(α− 1) vk + r0,k + bk∥2H (7)

where, vk ≜ (WGH−1)k is the ideal correction, r0,k
is the propagated error from previous columns, bk is
the quantization bias.

While this objective yields a closed-form solution
α∗
k, its sensitivity to estimation noise necessitates

regularization. We therefore introduce a shrinkage:

α̂k = (1− λk)α
⋆
k, λk ∈ [0, 1], (8)

where λk is a data-driven shrinkage factor that enhances robustness. This is implemented by
introducing a data-driven ridge term γk into the denominator of the solution. The final, regularized
correction factor is:

α̂k =
v⊤k (vk − r0,k)

v⊤k vk + γk
. (9)

The shrinkage intensity λk = γk/(v
⊤
k vk + γk) is determined automatically by the regularizer γk,

which adaptively estimates the variance from propagated errors and baseline estimation noise. (see
Appendix A.4). This adaptive regularization balances correction strength against estimation noise,
ensuring stable and generalizable performance.

4 EXPERIMENTS

Models and Datasets. We apply our method to the LLaMA-2 (Touvron et al., 2023b), LLaMA-
3 family and Qwen3 (Yang et al., 2025) family(8b, 14b). Following previous work, we report
WikiText2 (Merity et al., 2016) perplexity (PPL) on language modeling tasks. We also perform the
common sense QA evaluation on up to eight zero-shot tasks using the lm-evaluation-harness (Gao
et al., 2024), including BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA,
OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and ARC-Challenge (Boratko et al., 2018).

Baselines and Implementation Details. We benchmark our approach, AEC-SVQ, against
SmoothQuant (Xiao et al., 2022), GPTQ (Frantar et al., 2022), OmniQuant (Shao et al., 2023),
Quarot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024b), OSTQuant (Hu et al., 2025) and
GPTAQ (Li et al., 2025). In AEC-SVQ, all activations are quantized using per-token asymmetric
scalar quantization, while weights are quantized using vector quantization configured with 4096
centroids and a vector length of 6. We leverage the optimization methodology presented in OSTQuant
to obtain the transformation T by minimizing the end-to-end distributional error of the hybrid SQ-VQ
framework. Following established practices in weight-only vector quantization, we further fine-tune
the normalization operator and the VQ codebook to enhance quantization performance. As these
fine-tuned parameters constitute only a small fraction of the total layer parameters, this process is
both rapid and memory-efficient.

4.1 OVERALL RESULTS

Quantization Performance. As shown in Table 1, AEC-SVQ consistently and substantially out-
performs all previous state-of-the-art approaches across a diverse range of models and scales. The
performance gains are particularly evident on large-scale models. For instance, On LLaMA-3 70B,
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AEC-SVQ achieves a perplexity of 6.33—orders of magnitude lower than competitors like Quarot
(5e4)—while simultaneously recovering over 89% of the full-precision zero-shot accuracy, showcas-
ing a significant advance in preserving language modeling capabilities. This superiority holds across
diverse architectures. On Qwen3 14B, AEC-SVQ effectively halves the perplexity error of previous
SOTA while maintaining a clear lead in task accuracy.

Unlike prior methods that often trade language modeling fidelity for task performance, our approach
excels at both, drastically narrowing the gap to the full-precision baseline on all fronts. Crucially,
AEC-SVQ’s design proves superior not only to classic methods like SmoothQuant and GPTQ but
also to recent, highly sophisticated approaches such as OSTQuant and SpinQuant. These findings
confirm that our hybrid scalar-vector quantization framework generalizes robustly, underscoring its
broad effectiveness and applicability. More detailed results can be seen in Appendix A.5
Table 1: Comparison of perplexity on WikiText2 and averaged accuracy on eight Zero-Shot tasks
under W2A4 quantization setting. The table shows our proposed AEC-SVQ against prominent
baselines. AEC-SVQ significantly outperforms all prior methods across all models.

LLaMA-3 8B LLaMA-3 70B LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B Qwen3 7B Qwen3 14B

Method 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki

(W2A4) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)

Full Precision 67.13 6.14 70.59 3.32 64.15 5.47 66.48 4.88 70.59 3.32 67.28 9.72 70.32 8.65

SmoothQuant 35.22 1e6 34.28 7e5 34.41 5e5 34.88 2e5 34.18 2e5 34.98 3e5 35.48 6e5

OmniQuant 36.46 2e6 34.11 6e5 33.69 4e5 35.36 1e5 34.89 9e4 34.63 3e5 36.23 5e5

QuaRot 36.31 3e5 35.42 5e4 36.06 1e5 36.28 8e5 34.17 8e3 35.52 1e5 37.04 3e5

SpinQuant+GPTQ 36.69 96.94 35.72 3e5 38.45 124.79 41.85 23.64 45.91 656.00 44.16 24.57 41.61 41.57

SpinQuant+GPTAQ 40.37 48.31 36.80 4e5 38.69 7e3 42.28 33.21 52.57 200.00 43.20 25.24 47.49 17.04

OSTQuant+GPTQ 38.33 36.20 38.33 618.90 36.35 41.15 43.95 15.85 49.99 11.31 42.82 27.49 52.90 17.55

OSTQuant+GPTAQ 41.05 20.20 38.29 559.68 42.47 12.46 46.84 8.90 57.17 7.71 46.12 24.62 51.77 17.51

AEC-SVQ 58.39 8.65 63.11 6.33 56.20 6.29 60.78 5.49 65.63 4.41 60.52 11.27 63.70 10.38

Speedup and memory savings. Our AEC-SVQ framework yields substantial improvements in
inference efficiency, as detailed in Table 2. The method dramatically reduces the memory foot-
print, with savings factors peaking at over 7.0x for common short sequence lengths. While this
advantage naturally moderates with longer contexts, the memory reduction remains highly effec-
tive, exceeding 3.5x across all models even at a sequence length of 8192, underscoring its value in
memory-constrained scenarios.

In addition to memory optimization, AEC-SVQ provides robust prefill acceleration. The speedup
consistently surpasses 2.2x across most configurations and scales positively with model size, reaching
up to 3.612x for the 30B model. This sustained acceleration, combined with the significant memory
savings, confirms that our method makes the deployment of large models more computationally
practical and efficient without compromising performance.

Table 2: Prefill speedup and memory saving factor of AEC-SVQ. Measurements are conducted on
LLaMA models with different parameter sizes and sequence lengths. All tests were conducted on a
Transformer block with batch size 4 on a 3090 GPU. Refer to Appendix A.5.2 for more details.

Model Size Prefill Speedup (Seqlen) Memory Saving Factor (Seqlen)
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

7B 2.420× 2.334× 2.235× 2.224× 2.207× 1.730× 6.266× 5.902× 5.367× 4.728× 4.103× 3.615×
8B 2.666× 2.575× 2.621× 2.462× 2.375× 2.263× 6.317× 6.051× 5.613× 4.991× 4.273× 3.593×
13B 2.806× 2.909× 2.764× 2.566× 2.848× 2.333× 6.686× 6.326× 5.730× 5.096× 4.372× 3.799×
30B 3.612× 3.177× 3.054× 3.450× 2.860× 2.682× 7.082× 6.699× 6.197× 5.493× 4.697× 4.029×

4.2 ABLATION STUDY

Ablation on AEC-SVQ. We conduct a comprehensive ablation study to validate the effectiveness
of each component in our proposed AEC-SVQ framework, as shown in Table 3. The study confirms
the superiority of an optimized transformation matrix, as our proposed learned transformation
improves perplexity to 12.13 and boosts accuracy to 48.24. Building upon this, the introduction
of CEAVQ and the adaptive correction factor α provides further incremental refinements to both

8
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Table 3: Ablation study on the compo-
nents of AEC-SVQ. Starting from a baseline
weight-activation scalar quantization (W-A-
SQ), we progressively integrate our key con-
tributions. Avg Acc denotes the average accu-
racy over zero-shot5 All results are reported
on the LLaMA-3 8B model.

Method Wiki(↓) Avg Acc (↑)
W-A-SQ NaN 34.49
+ Weight VQ 2348.20 35.83
+ Codebook Quantization 2519.75 35.50
+ Local Reconstruction 1405.55 35.70
+ Hadamard Transformation 14.97 46.79
+ Learned Transformation 12.13 48.24
+ CEAVQ (α=0.25) 11.42 49.94
+ Adaptive α 10.46 52.31
+ Fine-tune 8.65 58.39

Table 4: Performance of AEC-SVQ on 2-
bit weight-only quantization. To highlight
the general applicability of our framework,
we adapt it to a weight-only quantization set-
ting. AEC-SVQ outperforms methods de-
signed specifically for this task, demonstrat-
ing its superior performance.

Method Wiki(↓) Avg Acc(↑)
Full Precision 6.14 72.81
GPTQ 210.00 36.16
DB-LLM 13.60 51.74
QuIP 85.10 36.81
QuIP# 9.11 -
VPTQ 9.29 60.22
PCDVQ 8.77 58.60
AEC-SVQ (ours) 8.02 64.01

metrics. Subsequently, the final fine-tuning step delivers another substantial performance leap. This
step-by-step analysis demonstrates that each component of AEC-SVQ plays a crucial and cumulative
role in achieving its final state-of-the-art performance.

AEC-SVQ for weight only quantization. To demonstrate its versatility, we adapt the AEC-
SVQ framework to the 2-bit weight-only quantization setting. As shown in Table 4, our method
outperforms specialized state-of-the-art techniques in this domain. AEC-SVQ achieves a leading
average accuracy of 64.01, while attaining the lowest perplexity of 8.02. This strong performance
in a distinct quantization paradigm, achieved without fundamental modifications, underscores the
robustness and generality of our core framework for minimizing quantization error.
Table 5: Ablation study on the fine-tuning process for our W2A4 model.Starting from a no-
FT baseline, we systematically explore the impact of tuning different parameters, using different
optimizers, and applying various learning rate schedules.

Method Bits FT params FT LR Dataset Wiki-PPL ↓ Zero-shot8 ↑
FP32 (full precision) FP32 – – – 6.14 67.13
no FT W2A4 – – – 10.46 52.31
+ FT (Adam) W2A4 layernorm 5e−5 Wiki+C4 9.62 51.50
+ FT (Adam) W2A4 layernorm 5e−5 RedPajama 10.05 52.36
+ FT (AdamW) W2A4 layernorm 5e−5 Wiki+C4 9.34 54.58
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=5e−5; CB=5e−5 Wiki+C4 10.19 53.95
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=5e−5; CB=1e−5 Wiki+C4 8.81 58.18
+ FT (AdamW) W2A4 layernorm + VQ codebook LN=1e−5; CB=5e−6 Wiki+C4 8.65 58.39

Ablation on Fine-tuning. We perform a detailed ablation on the post-quantization fine-tuning
(FT) process to identify the optimal strategy, with results in Table 5. Our analysis reveals that while
tuning only the LayerNorm offers moderate gains, co-tuning the VQ codebook is critical, providing
a substantial boost to zero-shot accuracy. Furthermore, we found that applying distinct learning
rates—specifically was superior to a uniform schedule.

5 CONCLUSION

In this paper, we introduce AEC-SVQ, a novel hybrid framework designed to resolve the fundamental
trade-off between computational efficiency and memory compression for ultra-low-bit W2A4 LLM
inference. Our approach is built on three synergistic innovations. First, we propose a hybrid SQ-VQ
scheme centered on a single learned transformation that simultaneously optimizes data distributions
for weight VQ, activation SQ, and codebook quantization. Second, our Cumulative-Error-Aware
VQ (CEAVQ) algorithm introduces a principled method to proactively compensate for compounding
errors by aligning the quantized layer’s output with its full-precision distribution. Finally, we develop
an Adaptive Compensation mechanism that uses a closed-form, data-driven shrinkage factor to
ensure robustness against statistical noise from limited calibration data. Extensive experiments
demonstrate that AEC-SVQ consistently outperforms existing state-of-the-art quantization methods.
These results validate the effectiveness of our integrated approach and establish a new frontier for
LLM quantization, making high-performance, ultra-low-bit models practical for deployment in
resource-constrained environments.
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6 ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive content. It focuses solely
on optimization of LLM compression and inference. Therefore, we believe it does not raise ethical
concerns.

7 REPRODUCIBILITY STATEMENT

We provide complete details of our algorithms and evaluation protocols in the main paper and
appendix. All models are evaluated on publicly available benchmarks (Wikitext-2, ARC, BoolQ,
PIQA, HellaSwag, OBQA, SIQA, and WinoGrande). The code for our algorithms and reproducing
experiments will be released upon publication. These resources will ensure full reproducibility of the
reported results.
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A APPENDIX

A.1 LLM DISCLAIMER

The authors hereby declare the role of large language model (LLM) tools in the preparation of this
manuscript: LLMs were solely utilized to assist with text polishing (including refining sentence
structure, optimizing lexical expression, and enhancing language fluency) and writing optimization
of the paper’s narrative content.

It is explicitly emphasized that all core components of this research, which determine the originality,
scientific validity, and academic value of the work, were independently completed by the research
team through manual efforts. These components include, but are not limited to:

• The formulation and development of the overall research framework, core ideas, and logical
structure of the study;

• The design, coding, debugging, and validation of all algorithms and program codes involved in the
research;

• The design of experimental protocols, collection and preprocessing of experimental data, execution
of experiments, analysis and interpretation of experimental results, and verification of conclusions.

The use of LLM tools did not involve any participation in the conception of research content,
generation of technical solutions, implementation of experimental processes, or derivation of research
conclusions. All content of this paper adheres to academic integrity standards, and the research team
assumes full responsibility for the scientificity, authenticity, and originality of the work.
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A.2 THEORETICAL ANALYSIS OF HYBRID SQ-VQ FRAMEWORK WITH LEARNED
TRANSFORMATION

A.2.1 PRELIMINARIES AND NOTATION

Consider a single linear layer

y = Wx ∈ Rdout , x ∈ Rd(d = din),

with input second moment (covariance) H = E[xx⊤] ≻ 0. We analyze three sources of quantization
error applied around this layer: (i) activation scalar quantization (SQ) of x, (ii) weight vector
quantization (VQ) of W after reshaping into length-p vectors (with p = vec len), and (iii) codebook
integer quantization of the learned VQ codewords.

We insert a function-preserving equivalent transformation pair

T = ΛO, Λ = diag(λ1, . . . , λd) ≻ 0, O ∈ O(d),

in the sense that we work in the primed coordinates

x′ = Tx, W ′ = WT−1,

so that Wx = W ′x′ in floating point. Quantization is performed in the primed coordinates and the
pair can be fused away at deployment. Throughout, we adopt the standard high-resolution/small-
noise approximation and assume independence between signals and quantization noises when taking
second-order moments.

Weight reshaping for VQ. Following the setting in the main paper, we reshape the weight matrix
W ′ ∈ Rdout×d along the input dimension into an i.i.d.-like collection of vectors {z′i ∈ Rp}Ni=1 (row
blocks or columnwise chunks of length p = vec len). K-means with K = num centroids produces
a codebook C = {c′k}Kk=1 ⊂ Rp and assignments π(i) ∈ [K].

A.2.2 UNIFIED SECOND-ORDER ERROR MODEL

Let ηx denote the SQ error on activations, ηw the VQ reconstruction error on weights, and ηc the
additional error stemming from integer quantization of codewords (propagated back to the weight
domain). In primed coordinates we write η′x, η

′
w, η

′
c with covariances

Ση′
x
= E[η′xη′⊤x ],Ση′

w
= E[η′wη′⊤w ],Ση′

c
= E[η′cη′⊤c ].

Neglecting second-order cross terms (small-noise linearization), the output error obeys

ŷ − y ≈W ′η′x + (η′w + η′c)x
′.

Taking squared norm and expectation, using independence between x′ and weight-side noises, we
obtain the unified trace form

E = E∥ŷ − y∥22 ≈ tr
(
W ′⊤W ′ Ση′

x

)︸ ︷︷ ︸
(A) activation-side propagation

+tr
(
H ′ (Ση′

w
+Ση′

c
)
)︸ ︷︷ ︸

(B) weight-side propagation

, (10)

where H ′ = E[x′x′⊤] = THT⊤. Thus, any transformation T that jointly reduces the spec-
tra/diagonals of Ση′

x
, Ση′

w
, and Ση′

c
tends to decrease the unified error E .

A.2.3 NOISE MODELS IN THE PRIMED COORDINATES

(i) Activation SQ. For uniform mid-rise/tread scalar quantizers with per-axis step sizes ∆j and
negligible overload,

Ση′
x
≈ diag

(
∆2

1

12
, . . . ,

∆2
d

12

)
, ∆j ∝ αj ,

where αj is the (symmetric) dynamic range bound on the j-th coordinate of x′. Large coordinates
(heavy tails, outliers) directly inflate ∆j .
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(ii) Weight VQ (k-means). Let z′i ∈ Rp be the reshaped weight vectors extracted from W ′. K-
means yields reconstructions ẑ′i = c′π(i) and errors e′i = z′i − ẑ′i. Under high-rate assumptions and for
subGaussian/Gaussian-like vector statistics, the mean distortion per vector obeys the Zador/Gersho-
type scaling

E∥e′∥22 ≈ Cp

∣∣Σz′
∣∣1/pK−2/p, (11)

where Σz′ is the empirical covariance of the block distribution {z′i}, and Cp depends only on the
dimension p and optimal cell shape.

(iii) Codebook integer quantization. After VQ, each codeword c′k ∈ Rp is uniformly quantized per
coordinate to a b-bit integer grid with shared (or per-dimension shared) step size ∆c. For negligible
overload,

Ση′
c
≈ ∆2

c

12
Ip(per block), ∆c ∝ αc, αc = max

k,j
|(c′k)j |.

Thus αc—the ℓ∞ radius of the codebook cloud along coordinate axes—controls the integer quantiza-
tion error.

A.2.4 TWO ELEMENTARY LEMMAS ON WHITENING AND ENERGY EQUALIZATION

Lemma 1 (Whitening optimality for second-order criteria). Let x be subGaussian with covariance
H ≻ 0. Consider Twh = ΛwhO with Λwh = H−1/2 and any O ∈ O(d). Then x′ = Twhx satisfies
Cov(x′) = I . Among all linear transforms with fixed trace of the output covariance, whitening
equalizes all eigenvalues, and hence minimizes the geometric mean of eigenvalues:

p∏
j=1

λj(Σz′)is minimized when Σz′ ∝ Ip.

Consequently, for block statistics derived from right-multiplying W by T−1
wh , the high-rate VQ proxy

|Σz′ |1/p is minimized.

Proof. By construction, Λwh = H−1/2 equalizes the eigenvalues of the output covariance to 1. For
any positive semidefinite matrix with fixed trace, AM≥GM implies that the geometric mean of
eigenvalues is minimized when all eigenvalues are equal. The claimed consequence for the proxy
|Σz′ |1/p follows from the monotonicity of equation 11 in |Σz′ |1/p.

Lemma 2 (Energy-equalizing rotations minimize the ℓ∞ magnitude). For any nonzero u ∈ Rd,

min
O∈O(d)

∥Ou∥∞ =
∥u∥2√

d
.

In particular, there exists O⋆ such that O⋆u = ∥u∥2 d−1/2 s for some s ∈ {±1}d, i.e., all coordinates
have equal magnitude. Moreover, for subGaussian x′, one obtains

E∥O⋆x′∥∞ ≤
1√
d
E∥x′∥2and∥O⋆x′∥∞ ≤

∥x′∥2√
d

samplewise.

Proof. For any O, ∥Ou∥∞ ≥ ∥Ou∥2/
√
d = ∥u∥2/

√
d by norm inequalities; hence infO ∥Ou∥∞ ≥

∥u∥2/
√
d. Equality is achieved by taking any orthogonal O⋆ that maps the unit vector u/∥u∥2 to the

constant-sign vector d−1/2s (both are unit-norm), which exists because the orthogonal group acts
transitively on the unit sphere. The sub-Gaussian bound follows immediately.

A.2.5 MAIN PROPOSITION: A SINGLE T = ΛO BENEFITS ALL THREE QUANTIZERS

proposition 1 (Joint improvement under a learnable rotation–smooth transform). Assume the high-
resolution regime with negligible overload and independence between signals and quantization noises.
Let

T ⋆ = H−1/2︸ ︷︷ ︸
Λ⋆

O⋆︸︷︷︸
energy equalization

,
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where O⋆ is any orthogonal transform that approximately equalizes coordinate magnitudes (e.g., a
Hadamard-like rotation or a learned orthogonal matrix). Then the unified error E in equation 10
strictly decreases compared to T = I:

∆E = E(T ⋆)− E(I) < 0.

In particular, each constituent term decreases:

Activation SQ: Ση′
x
= diag(∆2

1/12, . . . ),∆j ∝ αj(T
⋆) ↓⇒ tr

(
W ′⊤W ′ Ση′

x

)
↓,

Weight VQ:
∣∣Σz′

∣∣1/p ↓⇒ E∥e′∥22 ≈ Cp

∣∣Σz′
∣∣1/pK−2/p ↓,

Codebook int-quant: αc(T
⋆) = max

k,j
|(c′k)j | ↓⇒ Ση′

c
∝ ∆2

c ↓ .

Proof sketch. Step 1 (VQ via whitening). By Lemma 1, Λ⋆ = H−1/2 equalizes second-order statistics
in the primed coordinates, driving block covariances towards Σz′ ∝ Ip and thereby minimizing the
high-rate proxy |Σz′ |1/p. Hence the mean VQ distortion decreases.

Step 2 (SQ and codebook via ℓ∞ control). By Lemma 2, for each sample of x′ the energy-equalizing
rotation O⋆ enforces ∥O⋆x′∥∞ ≤ ∥x′∥2/

√
d. Therefore the per-axis dynamic ranges αj(T

⋆) contract
by a factor on the order of 1/

√
d, enabling uniformly smaller steps ∆j for SQ and reducing Ση′

x
. The

same ℓ∞ contraction applies to codeword coordinates (by the same energy-equalization principle
acting on block vectors), shrinking the global codebook bound αc(T

⋆) and thus ∆c.

Step 3 (Monotonicity in the unified trace). Each of the three covariance terms decreases in the Loewner
order (or at least in trace), so both traces in equation 10 decrease, which implies ∆E < 0.

A.2.6 REMARKS ON “SMOOTH” (MIXING) TRANSFORMS AND TAILS

Beyond orthogonal rotations, one may allow light smoothing/mixing (still linear and invertible) inside
T to average multiple coordinates per output coordinate. Under standard subGaussian/CLT heuristics,
this further reduces kurtosis and extreme-value behavior, lowering overload probabilities for SQ
and tightening the extreme codeword coordinate αc. Such smoothing can be learned jointly with O
while maintaining the factorization T = ΛO (with Λ diagonal and O orthogonal) by absorbing any
additional conditioning into Λ and keeping the remainder orthogonal.

A.2.7 ASSUMPTIONS AND LIMITATIONS

The analysis rests on (i) high-resolution quantization (overload negligible after appropriate clipping),
(ii) small-noise linearization (neglecting cross terms), and (iii) subGaussian or light-tailed statistics
enabling the proxies equation 11. In practice, learnable T can be trained end-to-end to approximate
H−1/2 and energy-equalizing rotations; the proposition guarantees the existence of such a beneficial
transform and explains its joint effect on the three quantizers.

A.3 DERIVATION OF CEAVQ

A.3.1 WEIGHT-ACTIVATION QUANTIZATION PROXY OBJECTIVE

We study the proxy loss

ℓ(Ŵ ) = EX

[ ∥∥ ŴX −WX̃
∥∥2
F

]
= EX

[ ∥∥(Ŵ −W )X −W (X̃ −X)
∥∥2
F

]
, (12)

where W, Ŵ ∈ Rm×n are the full-precision and quantized weight matrices, respectively, and
X̃,X∈Rn×p denote a floating-point input and its (possibly stochastic) quantized counterpart. The
expectation is taken with respect to the randomness of X (and hence X̃ when it is a function of X).
Throughout we use ∥A∥2F = tr(A⊤A) and the cyclic property of the trace, tr(ABC) = tr(BCA),
whenever dimensions are compatible. We assume E∥X∥2F <∞ so that all traces are finite.
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Step 1: Quadratic expansion. Define

A ≜ (Ŵ −W )X −W (X̃ −X), B ≜ (Ŵ −W )X, C ≜ W (X̃ −X),

so A = B − C. Then

∥A∥2F = tr
[
(B − C)⊤(B − C)

]
= tr(B⊤B)− 2 tr(B⊤C) + tr(C⊤C). (13)

Taking expectations and using linearity of E yields

ℓ(Ŵ ) = E
[
tr(B⊤B)

]
− 2E

[
tr(B⊤C)

]
+ E

[
tr(C⊤C)

]
. (14)

Step 2: Move fixed matrices outside the expectation. Because W and Ŵ are deterministic
(conditioned on the current layer),

E
[
tr(B⊤B)

]
= E

[
tr
(
X⊤(Ŵ −W )⊤(Ŵ −W )X

)]
= tr

(
(Ŵ −W )⊤(Ŵ −W )E[XX⊤]

)
,

(15)

E
[
tr(B⊤C)

]
= E

[
tr
(
X⊤(Ŵ −W )⊤W (X̃ −X)

)]
= tr

(
(Ŵ −W )⊤W E[(X̃ −X)X⊤]

)
,

(16)

E
[
tr(C⊤C)

]
= E

[
tr
(
(X̃ −X)⊤W⊤W (X̃ −X)

)]
= tr

(
W⊤W E[(X̃ −X)(X̃ −X)⊤]

)
.

(17)

Step 3: Collect second-order statistics. Introduce the second-order moment matrices

H ≜ E[XX⊤], G ≜ E[(X̃ −X)X⊤], K ≜ E[(X̃ −X)(X̃ −X)⊤]. (18)

Substituting equation 15–equation 17 into equation 14 gives the compact form

ℓ(Ŵ ) = tr
(
(Ŵ −W )⊤(Ŵ −W )H

)
− 2 tr

(
(Ŵ −W )⊤W G

)
+ tr

(
W⊤W K

)
. (19)

Remarks. (i) The third term in equation 19 is independent of Ŵ and hence acts as a constant offset
when optimizing over Ŵ (given fixed W and an input quantizer determining K). (ii) The first term
weighs the weight-quantization error (Ŵ −W ) by the input second moment H , while the middle
term captures the interaction between weight and activation quantization through G.

A.3.2 COMPLETING THE SQUARE AND THE UNCONSTRAINED MINIMIZER

Let ∆W ≜ Ŵ − W and define the H-weighted inner product ⟨A,B⟩H ≜ tr(A⊤BH). Then
equation 12 reads

ℓ(Ŵ ) = ⟨∆W,∆W ⟩H − 2⟨∆W,WGH−1⟩H + tr(W⊤WK).

Completing the square under ⟨·, ·⟩H yields

ℓ(Ŵ ) =
〈
∆W −WGH−1, ∆W −WGH−1

〉
H
+ C, (20)

with the constant

C = tr(W⊤WK)−
〈
WGH−1, WGH−1

〉
H

= tr(W⊤WK)− tr
(
(WGH−1)⊤(WGH−1)H

)
.

(21)
The (unconstrained) minimizer is therefore

Ŵ ⋆ = W +WGH−1, (22)

which coincides with the stationarity condition∇Ŵ ℓ(Ŵ ) = 2
(
(Ŵ −W )H−WG

)
= 0. In practice,

Ŵ must lie in a quantized space; we will approach equation 22 iteratively.
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A.3.3 LDLT-STYLE COLUMNWISE DECOMPOSITION

To expose a columnwise structure, factor the (symmetric) matrix H as

H = (U + I)D (U + I)⊤, (23)

where U is strictly upper triangular and D = diag(d1, . . . , dn) ≽ 0. (Equivalently, H = LDL⊤

with L = (U + I)⊤ unit lower triangular.) For any m× n matrix M denote its kth column by Mk

and the strict prefix by M1:(k−1). Using equation 23 and the cyclic property of the trace,

⟨∆W,∆W ⟩H = tr
(
(∆W (U + I))⊤ ∆W (U + I)D

)
=

n∑
k=1

dk
∥∥∆W (U + I)ek

∥∥2
F

=

n∑
k=1

dk
∥∥∆Wk +∆W1:(k−1) uk

∥∥2
F
, (24)

where uk ≜ U1:(k−1),k ∈ Rk−1 collects the kth column of U above the diagonal. Replacing ∆W by
∆W −WGH−1 per equation 20 yields the column-coupled objective

n∑
k=1

dk

∥∥∥∥∥∥∥∥
(
Ŵk −Wk

)︸ ︷︷ ︸
current column

+
(
Ŵ1:(k−1) −W1:(k−1)

)︸ ︷︷ ︸
previously fixed

uk −
(
(WGH−1)k + (WGH−1)1:(k−1) uk

)
︸ ︷︷ ︸

cross-term compensation

∥∥∥∥∥∥∥∥
2

F

+C.

(25)
Given Ŵ1:(k−1), the kth subproblem is a (weighted) least-squares fit of Ŵk to an effective target

T exact
k = Wk +

(
W1:(k−1) − Ŵ1:(k−1)

)
uk + (WGH−1)k + (WGH−1)1:(k−1) uk. (26)

If the quantizer Q(·) is fixed (e.g., a vector quantizer with a frozen codebook), the greedy update is
simply Ŵk ← Q

(
T exact
k

)
.

Practical simplification. To reduce overhead, we often approximate equation 26 by re-
taining the dominant self-compensation term (WGH−1)k and absorb the history-dependent
(WGH−1)1:(k−1)uk into the feedback through uk (or damp it with a scalar). This leads to

Tk = Wk +
(
W1:(k−1) − Ŵ1:(k−1)

)
ak + (WGH−1)k, (27)

where ak ∈ Rk−1 is a feedback vector (default ak = uk).

A.3.4 COUPLED DECOMPOSITIONS FOR H AND G

When feasible, we align G with the same triangular basis induced by H by seeking

G ≈ (U + I)DG (U + I)⊤, (28)

with DG (approximately) diagonal. One practical choice is to set U from the exact LDL⊤ of H
and define DG ≜ diag

(
(U + I)−1G(U + I)−⊤) (componentwise on the diagonal), discarding

off-diagonal residuals.1 This alignment causes the cross-term WGH−1 to predominantly affect the
columnwise targets via the terms already present in equation 27, improving stability of the greedy
updates.

A.3.5 GREEDY COLUMNWISE UPDATE WITH CROSS-TERM FEEDBACK

With the above ingredients, our adaptive quantization step for column k is

Ŵk = Q
(
Wk + (W1:(k−1) − Ŵ1:(k−1)) ak + (WGH−1)k

)
. (29)

This is akin to LDLQ-style feedback, augmented by a linear-term compensation (WGH−1)k that
explicitly targets the shift in the completed square equation 20. Unless stated otherwise, we set
ak = uk from equation 23 and α = 0.25. In our implementation, Q(·) updates only the VQ
assignment indices while keeping the codebook fixed.

1Since G need not be symmetric, one may use its symmetrization 1
2
(G+G⊤) for this projection.
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Choice of ak and U . Given H = (U + I)D(U + I)⊤, ak = uk is the optimal feedback in the
sense that it exactly decouples the quadratic term equation 24 into a sum of per-column ℓ2 objectives.
If H is ill-conditioned, we compute U,D via a pivoted LDL⊤ (or Cholesky) factorization of H +λI
with a small λ.

A.3.6 NOISE SHAPING VIA K AND ITS ONLINE REFINEMENT

Let η ≜ Q(z) − z denote the quantization error applied elementwise to a vector z. Its covariance
K = E[ηη⊤] enters equation 12 only through the constant C. Nevertheless, to keep the model
consistent with the evolving targets equation 29, we update an online estimate K̂ using mini-batch
residuals η̂ observed during quantization:

K̂ ← β K̂ + (1− β) Ĉov(η̂), β ∈ [0, 1), (30)

and optionally shape the error in the (U + I)-basis so that its dominant directions align with the
(projected) cross-statistics in §A.3.4. This reduces the effective linear term through better agreement
between G and the realized noise.

A.3.7 ALGORITHM

1. Initialization. Set Ŵ ← 0 (or Ŵ ← Q(W )). Estimate H = E[XX⊤] and (optionally)
G = E[(X̃ −X)X⊤] and K. Compute the factorization H = (U + I)D(U + I)⊤; set ak ← uk

for k = 1, . . . , n.

2. For k = 1 to n (columnwise quantization):
(a) Feedback computation:

∆k = (W1:(k−1) − Ŵ1:(k−1)) ak + (WGH−1)k.

(b) Quantize column:

Ŵk ← Q
(
Wk +∆k

)
(update VQ indices only; no codebook re-training).

3. Feedback refinement (optional). If using the coupled projection equation 28, periodically
recompute ak (through U ) and adjust α to maintain descent (see below).

4. Noise update (optional). Update K̂ via equation 30.

A.4 DETAILED DERIVATION OF THE OPTIMAL ADAPTIVE CORRECTION FACTOR WITH
BIAS-VARIANCE REGULARIZATION

Recall the completed-square form of the proxy objective:

ℓ(Ŵ ) = tr
(
(Ŵ −W − V )⊤(Ŵ −W − V )H

)
+ C, V ≜ WGH−1, (31)

with C = tr(W⊤WK)− tr(V ⊤V H) independent of Ŵ . We quantize columnwise using the target

Ŵk = Q
(
Wk + r0,k + α vk

)
, r0,k ≜ (W1:(k−1) − Ŵ1:(k−1)) ak, vk ≜ (WGH−1)k. (32)

Bias. When α < 1, the applied correction α vk shrinks the ideal correction vk, producing a
systematic under-compensation even if H and G are known exactly. Hence the expected loss cannot
attain the unconstrained minimum at Ŵ ⋆ = W + V .

Variance. In practice, H and G are estimated from a finite calibration set, yielding Hest and Gest
and a random correction WGestH

−1
est . Its variance typically decays with sample size but can be large

for small/heteroskedastic datasets, so α = 1 may overfit calibration noise. Choosing α < 1 acts as a
shrinkage factor that reduces variance (at the cost of bias), improving generalization of the quantized
weights.

Interpretation. Thus α plays the role of a regularization parameter: α = 1 corresponds to an
unregularized, MLE-like plug-in solution; α = 0 ignores the cross-term G and reverts to a purely
weight-error objective. Our goal is to select (per layer, or per column) an α on the regularization path
that maximizes downstream generalization.
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A.4.1 A COLUMNWISE LEAST-SQUARES FORMULATION

Write E ≜ Ŵ −W − V , whose k-th column is ek. Then

ℓ(Ŵ )− C = tr(E⊤HE) =

n∑
i,j=1

Hij ⟨ei, ej⟩, (33)

where ⟨·, ·⟩ is the standard inner product on Rm. To decouple columns, factor H = LDL⊤ with L

unit lower triangular and D = diag(d1, . . . , dn) ≽ 0 (pivoted LDL⊤ if needed). Setting Ẽ ≜ L⊤E
gives

ℓ(Ŵ )− C = tr(Ẽ⊤D Ẽ) =

n∑
k=1

dk ∥ẽk∥22, (34)

where ẽk is the k-th column of Ẽ. Hence the k-th update is governed (up to the scalar weight dk) by
the Euclidean error of a columnwise target in the L-basis.

Linearization of the quantizer. Around zk ≜ Wk + r0,k +αvk, use a first-order/bias–noise model

Q(zk) ≈ zk + bk + ηk, E[ηk] = 0, Cov(ηk) = Ση,k. (35)

Then

Ŵk −Wk ≈ r0,k + αvk + bk + ηk =⇒ ek ≈ (r0,k + αvk + bk − vk) + ηk. (36)

For any deterministic vector a and zero-mean η, E
[
∥a + η∥2H

]
= ∥a∥2H + tr(H Ση), so the α-

dependent part of the loss reduces to an H-weighted least-squares problem.

Define the “ideal target”

tk ≜ vk − r0,k − bk, ∥x∥2H ≜ x⊤Hx. (37)

Discarding the α-independent tr(HΣη,k), the per-column objective is

Jk(α) ≜ ∥αvk − tk∥2H . (38)

General H . The minimizer is

α⋆
k =

v⊤k H tk
v⊤k H vk

, (39)

Decoupled (LDL⊤) basis. Using equation 34, Jk(α) = dk∥αvk − tk∥22 so dk cancels and

α⋆
k =

v⊤k tk
v⊤k vk

. (40)

When quantization is (approximately) unbiased, bk ≈ 0, so tk ≈ vk − r0,k and α⋆
k ≈ 1− v⊤k r0,k

∥vk∥22
.

A.4.2 RIDGE-REGULARIZED ESTIMATOR

To control estimation noise, penalize the scalar gain:

J ridge
k (α) = ∥αvk − tk∥22 + γkα

2, (41)

yielding the closed form

αk(γk) =
v⊤k tk

v⊤k vk + γk
= (1− λk)α

⋆
k, λk ≜

γk
γk + ∥vk∥22

. (42)

Thus λk ∈ [0, 1) is an explicit shrinkage factor. Layer-wise regularization is analogous with vk, tk
concatenated or summed.

A.4.3 A VARIANCE-DRIVEN CHOICE OF γk

Let H = LDL⊤ with unit lower-triangular L (so ak = uk in the dual upper-triangular view and
r0,k = (W:,k+1:n − Ŵ:,k+1:n)Lk+1:n,k). Two dominant noise sources motivate γk:
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(i) Propagated right-column noise. Let the quantization error on column j > k be ej with
E[ej ] = 0 and Cov(ej) = sjIm. Then

r0,k =
∑
j>k

ej Ljk ⇒ Cov(r0,k) =
(∑

j>k

sj L
2
jk

)
Im. (43)

Consequently,

α̂0 = 1− v⊤k r0,k
∥vk∥22

, Var(α̂0) =

∑
j>k sj L

2
jk

∥vk∥22
. (44)

A natural stabilizer is to move this propagated variance into the denominator:

γr0,k ≈
∑
j>k

sj L
2
jk. (45)

(ii) Current-column noise floor. Let σ2
e,k denote the per-dimension variance of the current column’s

quantization noise (estimated from recent residuals). Introduce a base ridge level γ0 ≜ mσ2
e,k to

match dimensions.

Combined ridge. With observable residuals erj on already-quantized columns j > k,

γk = γ0 +
∑
j>k

( m∑
r=1

e2rj

)
L2
jk. (46)

This choice yields a nearly hyperparameter-free αk(γk) in equation 42 that adapts to both propagated
and intrinsic noise.

A.5 FULL RESULTS

A.5.1 QUANTITATIVE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. The results include complete comparison of the perplexity score on
WikiText2 and averaged accuracy on zero-shot common sense reasoning tasks on LLaMA-2(Tab 6),
LLaMA-3 (Tab 7) and Qwen-3(Tab 8).

A.5.2 SPEEDUP AND MEMORY SAVINGS

Tab 9 shows the prefill time and memory usage of LLaMA models with different parameter sizes
and sequence lengths, compared between our W2A4 implementation and FP16. The inference
environment features an Intel(R) Xeon(R) Gold 5317 CPU and an Nvidia 3090 GPU. The 4-bit matrix
multiplication kernel was implemented using cutlass of nvidia, while the self-attention mechanism
was realized with PyTorch’s native SDPA (scaled dot product attention) function. All tests were
conducted 500 times, with the median value taken as the final result. Benefiting from efficient low-
precision computation units within CUDA cores and reduced access overhead, AEC-SVQ achieves
over 3× speedup across various model sizes, and approximately 7× acceleration on the challenging
LLaMA-30B model.
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Table 6: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-2.

Model Method ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

2-7B

Full Precision 46.42 74.33 77.71 75.94 44.20 79.16 45.91 69.53 64.15 5.47
SmoothQuant 23.29 26.52 46.18 26.16 21.80 47.77 33.37 50.20 34.41 6e5
OmniQuant 23.72 25.11 37.95 26.27 23.80 48.20 34.39 50.04 33.69 4e5
QuaRot 29.10 24.92 47.86 25.75 28.40 49.89 33.57 49.01 36.06 1e5.00
SpinQuant+GPTQ 28.92 26.05 58.47 29.75 26.60 51.36 34.49 51.93 38.45 124.79
SpinQuant+GPTAQ 29.35 26.09 61.65 29.27 27.00 50.22 34.85 51.07 38.69 7561.60
OSTQuant+GPTQ 21.84 33.59 38.96 30.49 24.80 55.88 35.88 49.33 36.35 41.15
OSTQuant+GPTAQ 24.91 34.13 62.29 39.36 30.20 57.34 36.80 54.70 42.47 12.46
AEC-SVQ 35.67 62.29 67.65 67.31 38.40 74.65 41.45 62.19 56.20 6.29

2-13B

Full Precision 49.15 77.53 80.58 79.39 45.20 80.63 47.49 71.90 66.48 4.88
SmoothQuant 23.72 26.52 46.18 26.17 24.80 49.13 34.64 47.91 34.88 3e5
OmniQuant 24.49 25.63 48.84 27.34 25.60 49.02 34.19 47.75 35.36 1e5
QuaRot 27.22 25.93 51.35 26.52 27.40 50.05 34.14 47.59 36.28 9e4
SpinQuant+GPTQ 24.83 39.56 61.47 38.01 27.00 54.84 35.62 53.51 41.85 23.64
SpinQuant+GPTAQ 25.85 42.13 61.25 35.95 28.20 57.51 35.26 52.09 42.28 33.21
OSTQuant+GPTQ 24.74 42.72 63.12 39.28 28.60 61.26 37.15 54.70 43.95 15.85
OSTQuant+GPTAQ 28.41 48.95 63.46 44.26 32.40 63.82 37.67 55.72 46.84 8.90
AEC-SVQ 41.72 68.06 74.37 73.41 41.60 76.93 43.91 66.22 60.78 5.49

2-70B

Full Precision 57.42 81.02 83.79 83.81 48.80 82.70 49.18 77.98 70.59 3.32
SmoothQuant 28.12 25.88 38.97 25.12 24.60 50.76 32.55 47.44 34.18 2e5
OmniQuant 29.24 25.55 37.83 26.76 26.60 50.98 33.98 48.16 34.89 9e4
QuaRot 28.92 27.40 37.92 25.65 23.00 50.00 33.78 46.65 34.17 8333.76
SpinQuant+GPTQ 33.96 46.42 56.85 46.04 32.00 58.49 37.46 56.04 45.91 656.00
SpinQuant+GPTAQ 36.77 62.84 61.47 50.19 36.40 70.51 38.18 64.17 52.57 200.00
OSTQuant+GPTQ 32.08 46.42 60.83 55.64 35.60 62.19 40.74 66.38 49.99 11.31
OSTQuant+GPTAQ 37.88 65.82 68.44 64.84 39.00 71.60 42.94 66.85 57.17 7.71
AEC-SVQ 51.28 78.41 73.85 78.08 45.00 78.56 46.11 73.72 65.63 4.41

Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-3.

Model Method ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

3-8B

Full Precision 53.50 77.74 81.10 79.18 44.80 80.63 47.08 73.01 67.13 6.14
SmoothQuant 22.24 24.28 48.78 26.40 25.40 50.33 34.14 50.20 35.22 2e6
OmniQuant 25.77 24.07 56.27 25.68 26.60 50.60 32.12 50.59 36.46 2e6
QuaRot 28.24 24.83 49.24 25.74 28.80 50.65 33.37 49.64 36.31 3e5
SpinQuant+GPTQ 21.50 32.37 47.52 29.51 25.80 53.37 32.70 50.75 36.69 96.94
SpinQuant+GPTAQ 22.78 36.74 59.57 34.24 26.20 55.71 34.85 52.88 40.37 48.31
OSTQuant+GPTQ 21.93 34.01 50.43 31.62 26.40 55.82 35.16 51.30 38.33 36.20
OSTQuant+GPTAQ 24.66 30.81 61.96 37.73 28.20 53.26 37.41 54.38 41.05 20.20
AEC-SVQ 41.30 63.64 74.59 69.04 38.40 74.21 42.37 63.61 58.39 8.65

3-70B

Full Precision 49.15 77.53 80.58 79.39 45.20 80.63 47.49 71.90 66.48 4.88
SmoothQuant 27.47 26.05 37.83 26.26 24.80 50.98 32.46 48.38 34.28 7e5
OmniQuant 24.15 25.88 37.83 26.12 26.40 50.76 32.55 49.17 34.11 6e5
QuaRot 23.81 26.09 42.39 26.68 27.40 51.03 34.34 51.62 35.42 5e5
SpinQuant+GPTQ 25.77 25.17 45.17 29.22 26.07 51.63 33.83 48.93 35.72 3e5
SpinQuant+GPTAQ 27.13 25.29 48.81 32.48 26.12 51.74 34.12 48.70 36.80 4e5
OSTQuant+GPTQ 26.37 27.27 54.56 33.33 28.40 51.96 32.60 52.17 38.33 618.90
OSTQuant+GPTAQ 25.94 25.55 53.85 32.63 29.00 51.96 33.52 53.91 38.29 559.68
AEC-SVQ 51.11 77.48 79.88 78.82 34.20 79.00 44.78 59.59 63.11 6.33
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Table 8: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on Qwen-3.

Model Method ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

3-8B

Full Precision 56.23 80.93 86.67 74.91 41.40 78.07 51.84 68.19 67.28 9.72
SmoothQuant 26.62 23.57 38.01 26.20 29.60 51.58 33.32 50.91 34.98 282152.00
OmniQuant 27.82 24.12 37.82 26.36 27.20 50.98 33.45 49.26 34.63 257368.00
QuaRot 25.46 25.66 39.93 28.12 28.60 51.23 33.96 51.22 35.52 146378.00
SpinQuant+GPTQ 27.30 43.60 65.32 42.20 28.40 60.01 33.62 52.80 44.16 24.57
SpinQuant+GPTAQ 26.45 41.25 63.55 38.74 27.40 59.30 36.23 52.72 43.20 25.24
OSTQuant+GPTQ 23.81 41.79 63.94 35.66 27.20 60.28 36.80 53.12 42.82 27.49
OSTQuant+GPTAQ 29.18 46.34 69.08 44.69 27.60 61.04 38.08 52.69 46.12 24.62
AEC-SVQ 46.93 71.46 78.38 66.21 39.40 72.58 44.11 65.11 60.52 11.27

3-14B

Full Precision 60.49 82.87 89.39 78.87 46.40 79.60 51.94 73.01 70.32 8.65
SmoothQuant 27.22 25.17 43.39 25.97 28.60 50.82 33.27 49.41 35.48 638472.00
OmniQuant 27.04 26.77 46.20 25.50 29.20 51.73 32.36 51.02 36.23 537462.00
QuaRot 28.33 24.62 50.76 26.45 28.00 52.07 33.42 52.64 37.04 263984.00
SpinQuant+GPTQ 26.71 39.10 57.00 36.77 28.00 57.73 35.98 51.62 41.61 41.57
SpinQuant+GPTAQ 28.41 44.61 72.81 44.82 29.80 63.06 39.20 57.22 47.49 17.04
OSTQuant+GPTQ 35.67 59.18 76.67 50.70 34.40 66.05 40.17 60.38 52.90 17.55
OSTQuant+GPTAQ 33.78 57.28 76.15 49.91 33.40 66.10 39.92 57.54 51.77 17.51
AEC-SVQ 48.46 73.95 81.87 72.51 41.20 76.44 47.13 68.03 63.70 10.38

Table 9: Prefill time and Memory usage of LLaMA models with different parameter sizes and
sequence lengths, compared between our 4-bit implementation and FP16. All tests were conducted
on a Transformer block with batch size 4 on a 3090 GPU.

Model Size Seqlen
Prefill Time(ms)

Prefill Speedup(×)
Memory(GB)

Memory Saving(×)FP16 W2A4 FP16 W2A4

LLaMA2-7B

256 8.050 3.326 2.420 0.411 0.066 6.266
512 14.904 6.386 2.334 0.435 0.074 5.902

1024 27.286 12.210 2.235 0.483 0.090 5.367
2048 54.979 24.720 2.224 0.577 0.122 4.728
4096 112.603 51.020 2.207 0.766 0.187 4.103
8192 224.275 129.630 1.730 1.147 0.317 3.615

LLaMA3-8B

256 8.035 3.014 2.666 0.430 0.068 6.317
512 15.545 6.036 2.575 0.442 0.073 6.051

1024 29.169 11.128 2.621 0.466 0.083 5.613
2048 57.470 23.339 2.462 0.513 0.103 4.991
4096 117.593 49.511 2.375 0.608 0.142 4.273
8192 256.324 113.263 2.263 0.795 0.221 3.593

LLaMA2-13B

256 11.449 4.080 2.806 0.634 0.095 6.686
512 21.195 7.285 2.909 0.663 0.105 6.326

1024 41.762 15.107 2.764 0.723 0.126 5.730
2048 81.955 31.936 2.566 0.841 0.165 5.096
4096 199.046 69.881 2.848 1.079 0.247 4.372
8192 359.402 154.080 2.333 1.553 0.409 3.799

LLaMA-30B

256 18.689 5.174 3.612 1.047 0.148 7.082
512 34.393 10.824 3.177 1.085 0.162 6.699

1024 66.880 21.902 3.054 1.162 0.187 6.197
2048 157.585 45.680 3.450 1.315 0.240 5.493
4096 272.355 95.229 2.860 1.625 0.346 4.697
8192 576.555 214.940 2.682 2.242 0.557 4.029
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