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A Methodology for Evaluating Multimodal Referring Expression
Generation for Embodied Virtual Agents
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ABSTRACT
Robust use of definite descriptions in a situated space often involves

recourse to both verbal and non-verbal modalities. For IVAs, vir-

tual agents designed to interact with humans, the ability to both

recognize and generate non-verbal and verbal behavior is a critical

capability. To assess how well an IVA is able to deploy multimodal

behaviors, including language, gesture, and facial expressions, we

propose a methodology to evaluate the agent’s capacity to gener-

ate object references in a situational context, using the domain of

multimodal referring expressions as a use case. Our contributions

include: 1) developing an embodied platform to collect human refer-

ring expressions while communicating with the IVA. 2) comparing

human and machine-generated references in terms of evaluable

properties using subjective and objective metrics. 3) reporting pre-

liminary results from trials that aimed to check whether the agent

can retrieve and disambiguate the object the human referred to,

if the human has the ability to correct misunderstanding using

language, deictic gesture, or both; and human ease of use while

interacting with the agent.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies→ Natural language
generation.

KEYWORDS
Embodied agents, non-verbal behaviours, multimodality, referring

expression generation
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1 INTRODUCTION
Recent achievements in generative language modeling, of which

OpenAI’s ChatGPT is an exemplar, have demonstrated remarkable

abilities in producing topically coherent, grammatically correct,

and contextually appropriate text. Prior to the generative AI boom,

language models such as BERT [10] and GPT-2 [54] achieved state
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of the art results on various language processing tasks. It may be

tempting, therefore, to believe that language generation for con-

versational agents (CAs) is a solved problem. However, a common

critique of large language models (LLMs) is that they lack ground-
ing or understanding. Bender and Koller [4] argue that learning

only from the textual form does not provide information about the

“meaning” connecting utterance to communicative intent.

Humans,meanwhile, communicate inmultiple non-verbalmodal-

ities, and mix these fluently with verbal modalities. A telling exam-

ple is the ability of a human to answer a question like “what am I

pointing at?” with appropriate situational context, which even a

multimodal LLM like GPT-4 cannot. Given the recent developments

in language modeling, we can expect the ability to fluently mix and

match modalities to be a critical capability in the next generation

of CAs. As interactive agents become more sophisticated, and see

and interpret both visual and linguistic context concurrently, users

will expect them to behave more like humans.

Agent embodiment is one channel to provide information needed

to enable CAs to understand language in context. If one modality

(e.g., language) is not communicative, another modality (e.g., ges-

ture) can be used to disambiguate or correct the failure. As objects

in a shared situated context provide anchors for the construction of

common ground between interlocutors [7, 50, 51], a valuable use

case to understand multimodal language use in context ismulti-
modal referring expressions (MREs) that exploit information

about both object characteristics and locations [8]. It is therefore

necessary to come up with principled strategies to evaluate mixed-

modality referring expression generation systems.

In this paper, we propose a methodology to carefully evaluate

generation of multimodal referring expressions by a particular class

of CAs, namely embodied interactive virtual agents (IVAs), with

the goal of aiding the development of IVAs that interact with hu-

mans with symmetrical, bidirectional use of non-verbal and verbal

behavior. Our novel contributions are:

• An embodied virtual agent testbed with an IVA who uses

gesture and language [26, 40] to elicit MREs from humans;

• Establishing bidirectional and symmetric communication

between humans and IVAs using verbal and non-verbal

behavior synthesis;

• Evaluation metrics thereof that apply to both humans and

IVAs, combining qualitative and quantitative metrics;

• Analysis of preliminary data gathered from interactions

with our test agent.

2 RELATEDWORK
The psycholinguistic literature shows the impact of deictic gesture

on the successful communication of intent and reference for both

speakers and hearers [17, 41]. Nonetheless, much earlier work in the

area of referring expression (RE) generation has focused on linguis-

tic description, such as relative and absolute properties of objects

1
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(e.g., size and color) [16, 61], spatial references [12, 32, 37], and re-

lational episodic descriptions [13]. Where non-verbal information,

such as deictic gesture, is considered, much prior work focuses on

RE comprehension rather than generation, e.g., [5, 35, 52, 57], and

additionally typically lacks features related to agent embodiment

[22, 23]. Where generation is addressed [13], it is often separated

from comprehension. As such, we seek to build and evaluate models

for generating MREs that are fluent and clear, and symmetric and

bidirectional in the context they exploit when compared to human-

generated REs. Doing so requires developing evaluation metrics

that indicate when IVA-generated non-verbal behavior provides a

meaningful boost in communicative capability compared to verbal

behavior only.

Datasets. A number of datasets and corpora exist of human-

generated descriptions of target objects in visual scenes, including

Bishop [18], Drawer [63], GRE3D3 [64], TUNA [16], RS-VS [37],

and recent corpora by Kunze et al. [32] and Doğan et al. [12]. Other

RE corpora collected for the purpose of training comprehension

models fall into three categories—verbal references only [6, 9, 20,

39, 42, 45, 67], gestures only [56, 58, 59], and embodied multimodal

REs including language and gesture [30, 55].

Metrics. Correspondence between human corpora and machine

generated references can be measured either by automatic metrics

or human judgments. Overlap in the properties of human and ma-

chine descriptions can been computed according to Dice Coefficient

[11], MASI [44], Levenshtein Distance [34], BLEU [43], ROUGE

[36], CIDER [62], or METEOR [2]. Alternatively, human judges

can evaluate generated REs according to adequacy of reference or

naturalness. While adequacy is evaluated by object identification

tasks [12, 13, 15, 32], naturalness is evaluated by (1) metrics such as

error rate, identification time, and reading time [3, 29] or (2) human

ranking of generated references for objects in a set of images or

videos [12, 30, 32].

Prior work on embodied agents argues for the role of embodi-

ment in representing the salient content of objects in a scene [49],

in contributing to mutual understanding [25], and in evaluating the

outputs of interactive systems [31]. Relatedly, Kozierok et al. [21] ar-

gue that evaluating multimodal interactions require a combination

of quantitative and qualitative criteria, particularly in task-based

situations. We therefore present a task-oriented setting designed to

require the use of MREs, and a proposal for evaluating how non-

verbal strategies complement verbal strategies for situated meaning

[53].

In the remainder of this paper, we will discuss the platform we

use to collect and generate MREs in a human-agent interaction

(Sec. 3), specify the evaluation metrics we propose to use (Sec. 4),

present preliminary results of initial data collected according to the

proposed evaluation (Sec. 5), and discuss future directions (Sec. 6).

3 METHODOLOGY
First, we develop an interactive virtual agent system for an object

identification task that interprets human language and simulated

gesture inputs, and responds with language and animated gestures.

We then proposed metrics to address the fluency and clarity of

referring expressions used. Since our goal is to create symmetric,

bidirectional communication between humans and agents, these

metrics may apply to either human or agent behaviors, and we

compare the use of verbal and non-verbal modalities. We then

analyze preliminary data for indications of where human and agent

use of different modalities aids communication, for the purposes of

assessing the contribution of non-verbal behavior to the interaction.

3.1 Interactive Virtual Agent (IVA) Development
The Diana system [26, 47] was developed as a collaborative virtual

agent who responds to instructions given via both live gesture and

speech and collaborates with humans in situated task-based inter-

actions. We adapted the existing system into a standalone version

where human participants are presented with a sequence of 10

scenes, each involving (1) ten equally sized target blocks randomly

placed on a table that (in simulated units in the Unity-based envi-

ronment) is approximately 1.6m wide. There are two of each color

of block: red, green, blue, pink, and yellow; and (2) two landmark

objects (plate and cup) available for use when describing the tar-

get blocks. This setting requires the IVA to ask for disambiguation

based on factors like color and location if needed, and the human

to provide complex descriptions including verbal (e.g., relational,

historical) references, non-verbal (e.g., deictic pointing) references,

or ensemble. Diana initially asks a question, e.g., “Which object

should we focus on?”, as shown in Fig. 1, without providing any

prior knowledge of what she understands, e.g., specific domain

words or actions. Participants are informed that they are able to

use multiple input channels, e.g., automatically recognized speech

and mouse-based deixis, to clearly express their intent. To replicate

the variability in pointing displayed in the Diana system with live

gesture recognition, and the gesture-semantic notion of a pointing
cone [24], the center of deixis fluctuates within a circle of radius

±0.3m around the mouse location and the size of the deictic reticle

(see Fig. 1) randomly fluctuates in size within a range of 14–186%

of the default radius (17.32cm). This variability prevents users from

relying on fully accurate pointing with the mouse as a method of

unambiguously indicating objects, and encorages the use of speech

input for object specification.

Figure 1: Experimental Diana System: the purple circle indi-
cates where the user is pointing. Without disambiguation,
any object within the pointing circle is a potential candi-
date for a deixis-only RE. Diana’s utterances both appear on
screen and are spoken aloud via TTS.
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Table 1: Predicate logic format (PLF) transformation for co-gestural verbal REs (Att _RE: Attributive RE, Trans_RE: Transitive
RE, Rel_RE: Relational RE, Hist_RE: Historical RE, and Comp_RE: Compound RE). ∗Numerals in brackets denote variables
that must be assigned from prior conversational or non-verbal context (e.g., “it,” “there,” etc.).

Speech Prompt PLF Verbal Non-Verbal RE Type

Pick up that red block 𝑔𝑟𝑎𝑠𝑝 (𝑡ℎ𝑎𝑡 (𝑟𝑒𝑑 (𝑏𝑙𝑜𝑐𝑘))) ✓ ✓ (Att_RE)

Put this block to the right of the blue block 𝑝𝑢𝑡 (𝑡ℎ𝑖𝑠 (𝑏𝑙𝑜𝑐𝑘), 𝑟𝑖𝑔ℎ𝑡 (𝑡ℎ𝑒 (𝑏𝑙𝑢𝑒 (𝑏𝑙𝑜𝑐𝑘)))) ✓ ✓ (Trans_RE)

Grasp the green block beside the plate 𝑔𝑟𝑎𝑠𝑝 (𝑡ℎ𝑒 (𝑔𝑟𝑒𝑒𝑛(𝑏𝑒𝑠𝑖𝑑𝑒_𝑎𝑑 𝑗 (𝑝𝑙𝑎𝑡𝑒 (𝑏𝑙𝑜𝑐𝑘)))) ✓ - (Rel_RE)

Lift the block you just put down 𝑙𝑖 𝑓 𝑡 (𝑡ℎ𝑒 (𝑝𝑢𝑡_𝑎𝑑 𝑗 (𝑏𝑙𝑜𝑐𝑘))) ✓ - (Hist_RE)

Take this block and put it there 𝑡𝑎𝑘𝑒 (𝑡ℎ𝑖𝑠 (𝑏𝑙𝑜𝑐𝑘)) + 𝑃𝑢𝑡 ({0}, {1})∗ ✓ ✓ (Comp_RE)

Interpreting Verbal and Non-Verbal Expressions. Multimodal refer-

ring expressions can be considered special cases of gesture utterances
as specified in [48], in that they contain a gestural component and

a verbal component that must be unified for a complete interpreta-

tion by either human or machine. In addition, MREs may be mixed

with unimodal REs in a discourse, but even unimodal REs may rely

on meaning that was previously established in the discourse using

multimodal communication. Therefore, our motivation for devel-

oping a bidirectional evaluation scheme is to create methodologies

for evaluating combined verbal and non-verbal behavior that apply

equally well to human and IVA behaviors.

We follow an analysis of the EGGNOG dataset, a collection of

human-human interactions in a BlocksWorld domain [65], wherein

human-generated verbal REs are expected to fall into three complex

categories, potentially involving both verbal and non-verbal con-

tent: Attributive REs, which describe object properties; Relational
REs, which describe objects in relation to each other; and Histor-
ical REs, which describe objects already mentioned or interacted

with. All three of these may be aligned with deictic gesture, but

in different ways. To replicate these exhibited interpretive capabil-

ities, we first developed four main algorithms to interpret verbal

REs: (1) <𝑃𝑎𝑟𝑠𝑖𝑛𝑔𝑇𝑜𝑃𝐿𝐹> recursively follows a set of rules, using

the Stanford CoreNLP dependency tree [38] to compose linguis-

tic constituents into a predicate logic format (PLF). Table 1 shows

the PLFs of different speech inputs and whether they need to be

accompanied by non-verbal information for a complete interpre-

tation. Multimodal references are interpreted with respect to the

VoxML modeling language [33, 46] and the scene in the VoxWorld

simulation platform [27, 28]. (2) The <𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝐸> algorithm

leverages spatial relations between objects that are tracked by the

VoxWorld platform using calculi such as RCC-3D [1]. The inter-

preter extracts mentioned objects, localizes the target relative to

other objects, and acts upon it as shown by command #7 in Fig. 2.

(3) The <𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑅𝐸> algorithm processes those sub-predicates

that indicate actions that have previously been taken in the dia-

logue, e.g., in Fig. 2 #9, by extracting objects that were the subjects

of previous actions. (4) The <𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝑅𝐸> algorithm interprets

attributes of the object (in this setting, color or demonstratives).

There are two subcategories of attributive REs: Transitive REs, an
attributive RE embedded within a transitive clause (see Table 1);

and Compound REs involving multiple events, as shown by Fig. 2 #1.

A simple, non-transitive, non-compound attributive RE is shown

in Fig. 2 #3. This utterance also shows how demonstratives may

involve the human deictically disambiguating the target. Deictic

inputs can also be sequential pointing prompts with no speech, e.g.,

Fig. 2 #13–16, in which the human points to 𝐵𝑙𝑢𝑒𝐵𝑙𝑜𝑐𝑘 then to the

𝐺𝑟𝑒𝑒𝑛𝐵𝑙𝑜𝑐𝑘 to instruct Diana to put the blue block on the green

block.

human: [1] Take the red block and put it to the left of the plate.

diana: [2] Which red block?

human: [3] This one. [Points to a red block]
diana: [4] OK! [Acts on the red block]
human: [5] Grasp this pink block and put it on the red block.

[points to a pink block]
diana: [6] Do you mean the red block I just put down? [Points

to a red block]
human: [7] No, the red block behind the blue block.

diana: [8] OK! [Acts on the red block]
human: [9] Pick up the block that you just grasped.

diana: [10] I’ve just grasped the pink block (that is) on the

red block. Is this what you mean? [points to a pink block]
human: [11] Yes.

diana: [12] OK! [Acts on the pink block]
human: [13] [Points to a blue block]
diana: [14] [Points to the same blue block]
human: [15] [Points over the green block]
diana: [16] [Puts the blue block on the green block]

Figure 2: Sample dialogue: the interaction from 1–12 is mul-
timodal (co-gestural speech) and from 13–16 is unimodal
(deictic gesture only).

Generating Verbal and Non-Verbal Expressions. In addition to in-

terpreting multimodal inputs, being able to generate non-verbal

behavior is essential for interactive agents to add social fluency

to the interaction [66]. Diana is able to generate speech via text-

to-speech, deictic gesture via animation and inverse kinematics

executed on her body rig, and action by manipulating virtual ob-

jects in the scene. (1) When the human indicates a block without

supplying an action to execute, Diana points to it, confirming un-

derstanding of the RE with her own deictic RE, as shown in Fig.

3. (2) She directly acts on all aforementioned verbal prompts (e.g.,

multimodal commands in Fig. 2, #1–12) by either disambiguating

candidate target objects or carrying out the requested action in

the virtual space. (3) She also acts on non-verbal prompts (e.g., uni-

modal commands in Fig. 2 from 13-16) by performing the denoted

actions after the human specifies the focus and target locations. (4)

As shown in Fig. 4, she expresses emotions (e.g., confusion and joy),

in response to human inputs, such as being confused when there

is an ambiguity in RE or action interpretation, or joy at having

interpreted an input successfully. Appropriate generation, then,

3
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becomes a question of correctly generating the content of an ut-

terance, movement through space of a gesture, or specific facial

expression at the right time, to serve a communicative purpose.

Figure 3: Generating deictic gestures. Diana will respond to
what she interprets the RE as referring to by pointing to
it, which can be used to assess the correctness of her object
grounding depending on which object the human actually
intended to reference.

4 EVALUATION
With the goal to enable bidirectional communication between ma-

chines and humans using multimodal referring expressions as a

testbed use case, specific evaluable properties must be enumerated

to demonstrate where a fully-symmetrical system is more success-

ful than one that maintains communicative asymmetry between the

two interlocutors. The key research question with evaluation is: do
the metrics used clearly establish whether both interlocutors are able
to extract the communicative intents of the others from their behav-
ior? Therefore, good metrics will answer if the non-verbal behavior

generation methods used for an IVA is effectively contributing to

the human interlocutor’s understanding, as defined as the ability

to extract communicative intent from utterances and actions. We

consider properties that are related to deictic and linguistic context

awareness, as used in the evaluation of human-machine collabo-

ration [21], and propose quantitative and qualitative metrics that

assess the following properties of multimodal RE usage in a task-

based environment: 1) efficient and collaborative task completion,

2) software reliability and consistency, 3) ability of humans and

machines to understand diverse communications, and 4) agent con-

tribution of meaningful content. The version of the Diana system

described above is presented to human subjects to collect samples

(a) (b)

Figure 4: Diana’s facial expressions. (a) Confusion (e.g., undo-
ing an action or responding to a negative acknowledgment).
(b) Joy (e.g., welcoming users at the beginning of interactions
or responding to a positive acknowledgment).

of bidirectional collaborations and evaluate successful multimodal

communication strategies for RE generation using both logged

interactions and human judgments.

4.1 Human-Machine Collaboration Data
Collection

During a single human-agent interaction session, the participant

views 10 scenes containing 10 randomly-placed target objects to

be referenced. Referencing is considered successful when Diana is

able to ground the human’s MRE to the same object as the human

intends to describe. The IVA’s and participant’s utterances, non-

verbal behavior, and actions are logged (e.g., Fig. 5) for analysis and

future training and evaluating of multimodal referring expression

generation models.

4.2 Evaluation Metrics
To evaluate the success of the IVA w.r.t. the key characteristics of

human-machine collaboration from Sec. 4, we define 19 metrics as

follows:

(1) Multimodal Prompt Completion Efficiency (MPCE).

(2) Linguistic Prompt Completion Efficiency (LPCE).

The difference in target identification and the related task comple-

tion times when using multimodal REs vs. verbal only REs indicates

the increase in RE effectiveness when using multimodal generation

vs. linguistic generation methods only.

(3) Human-machine completion efficiency (HMCE): Time taken to

complete the task. Since the task as a whole is normalized (an

object referencing with 10 scenes each containing 10 objects),

completion time can be directly related to referring strategies

used by each interlocutor.

(4) Machine Appropriate Response Success Rate (MARSR): Rate

of IVA responses to human prompts that are not followed by a

negative response (e.g., no, nevermind).

(5) ProceedWithout Reset (PWR): Rate of interactions that proceed

without resets.

(6) Machine Interpretation of Human Communication (MIHC):

Rate of correctly executed prompts.

(7) Machine Interpretation of Relational REs (MIRRE): Rate of cor-

rectly executed relational prompts.

(8) Machine Interpretation of Historical REs (MIHRE): Rate of cor-

rectly executed historical prompts.

(9) Human Interpretation Efficiency of Machine Communication

(HIEMC): Time from generation ofmachine’s reference to target

identification by human.

(10) Agent Pointing Success Rate (APSR): Rate of agent successfully

pointing out the target object.

(11) Mutual Contribution Success Rate (MCSR): Difference between

number of verbose human turns and verbose agent turns (“ver-

bose” being defined as a meaningful contribution beyond posi-

tive or negative acknowledgement or disambiguatory question—

in our MRE use case this typically means a distinct referring

expression).

(12) Machine-generated referring expressions (MGRE): Rate ofmachine-

generated referring expressions compared to total utterances/

discourse moves.
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(13) Recognition of Previously Mentioned Entities (RPME): Rate

of previously mentioned entities grounded at the end of each

discourse move.

(14) Machine Historical Referencing Success (MHRS): Rate of histor-

ical references generated by the agent relative to total number

of generated REs.

(15) Machine Relational Referencing Success (MRRS): Rate of re-

lational references generated by the machine relative to total

number of generated REs.

The above metrics 1–15 are all calculated directly from data

logged during human-agent interactions. The following metrics are

collected post facto from the judgments of 3rd-party evaluators (see

Sec. 6.1).

(16) Machine Object Identification Success Rate (MOISR): Rate of

correctly identified objects (by machine).

(17) Human Object Identification Success Rate (HOISR): Rate of

correctly identified objects (by humans).

(18) Machine References Fluency Rate (MRFR): Rate of top-rated

machine references according to 3rd-party human judgments.

(19) Human References Fluency Rate (HRFR): Rate of the top-rated

human references according to 3rd-party human judgments.

In this paper, we include preliminary results for the following

metrics: Multimodal Prompt Completion Efficiency (MPCE), Human

Interpretation Efficiency of Machine Communication (HIEMC), and

Agent Pointing Success Rate (APSR), in addition to the illustrations

of generated referring expressions by each of the IVA and sub-

ject, IVA’s ability to disambiguate, human’s ability to correct IVA’s

misunderstanding, the impact of deictic gesture on interlocutors’

understanding, and IVA’s dialogue history.

5 PRELIMINARY RESULTS
5.1 Automated Quantitative Evaluation
In a preliminary study, constituting the complete 10-scene inter-

action with a sample test subject, we logged 330 different human

referring expressions, including 141 pointing-only references for

target object identification, 141 pointing-only references for target

location identification, 33 multimodal REs, and 15 linguistic REs, as

depicted in Fig. 6a. Linguistically, as shown in Fig. 6c, 84% REs are

transitive attributive references (e.g.,move the red block to the plate).
Similarly, we logged 330 different machine referring expressions,

including 141 pointing-only REs to the referents, 174 multimodal

REs, and 15 linguistic REs, as depicted in Fig. 6b. Consequently, we
used these logged data to obtain preliminary results regarding the

ease of agent disambiguation, human recognition of agent intent

from verbal and non-verbal behavior, and overall interaction.

In Fig. 5a, interlocutors’ moves, including actions, speech, and

gestures, are logged with their timestamps. We see that the hu-

man started pointing to the focus object (BlueBlock1) and moving

it behind YellowBlock1. Logs also include the positions of each, dis-

tance from agent to each, and the agent’s action after pointing to

each of the two blocks. The human then used language only (“Pick

up the yellow block”) to instruct Diana to pick up YellowBlock2.
This instruction required Diana ask for disambiguation: “Which

yellow block?”, as there are two yellow blocks in the scene. To

disambiguate, the human uses pointing, and the object, its position,

(a)

(b)

Figure 5: (a) Trial sample of Diana’s ability to disambiguate
the target; (b) Trial sample of human’s ability to correct mis-
understanding.

and distance are logged, along with Diana’s action. This illustrates

Diana’s capability to clearly disambiguate the object the human

referenced and efficiently execute the human’s prompt as shown in

Fig. 7a and b, which leads to bidirectional communicative efficiency,

with both human and agent combining verbal and non-verbal be-

havior. When Diana has a misunderstanding, the human can correct

it using language, deictic gesture, or both (Fig. 5b). Diana confirms

that disambiguation was successful using deictic gesture to the

correct object.

In human-human interactions, pointing reduces cognitive load

[17]. Similarly, this is observed with the IVA as shown in the con-

tingency table, Table 2. The agent shows her understanding of the

human’s intended meaning when providing a sequence of pointing

REs or co-gestural speech (Multimodal REs) without asking for dis-

ambiguation by pointing to the referents; nonetheless, using only

speech for communication requires the agent to ask for additional

information, i.e., gestures, to clearly identify the target and point to

it as depicted in Fig. 7c. We see that a relationship exists between

the modalities used and the level of ambiguity, such that use of

pointing significantly reduces the ambiguity level of the prompt

(𝑝-value < 0.001 using Fisher’s exact test [14]).

In addition to language and deictic gesture, prior actions con-

tribute to building speakers’ knowledge of descriptions of objects

as defined by Grice’s maxim of quantity [19]. Therefore, we inte-

grated a dialogue history to the IVA. This stack stores all requested

actions along with target objects, and accomodates interpretations

of verbal, gestural, and multimodal inputs. Fig. 8 shows the number

of actions in the dialogue history by the end of each scene in the

preliminary data. These stored actions are available for use by both
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(a)

(b)

(c)

Figure 6: Preliminary results on (a) Human generated REs (b)
Diana generated REs: categories and quantity (c) Categories
of human verbal REs.

Table 2: Contingency table of human RE ambiguity and
modalities used: # ambiguous REs by modality type

Modality Did Agent Disambiguate?

No Yes

Multimodal RE 15 0

Pointing Only RE 141 0

Speech Only RE 0 33

𝑝-value < 2.2e − 16

humans and the IVA to refer to objects that may have previously

been interacted with, as described in Sec. 3.1.

Table 3 shows how the IVA’s dialogue history is constructed and

revisited to understand the human’s intents within a shared space.

(a)

(b)

(c)

Figure 7: (a) Human Interpretation Efficiency of Machine
Communication (Metric #3: HIEMC); (b) Multimodal Prompt
Completion Efficiency (Metric #1: MPCE) by Diana; (c) Agent
Pointing Success Rate (Metric #10: APSR).

After recognizing the human’s intent and executing the parsed-out

prompt, the IVA pushes the action and referent (extracted from the

PLF of the prompt) to two separate stacks (an actions stack and

a referents stack) as shown by Table 3, #1–3. If the human uses a

mention of a previously executed action to indicate an object as

in Table 3, #4 (“grasp the block you just slid”), the IVA visits the

dialogue history to 1) retrieve the most recently referenced object

that is relevant to the provided action (in this case, GreenBlock2, as
it satisfies the adj_slid(·) predicate), 2) push the new most recent

action and referent onto the stack for future retrieval if necessary.
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Table 3: Sample of dialogue history, including previously mentioned actions and related objects after executing multimodal
(co-gesure speech) or unimodal (speech only or pointing only) prompts.

No. Modality PLF Actions Stack Referents Stack

4 Speech Only 𝑔𝑟𝑎𝑠𝑝 (𝑡ℎ𝑒 (𝑎𝑑 𝑗_𝑠𝑙𝑖𝑑 ((𝑏𝑙𝑜𝑐𝑘))) grasp put put GreenBlock2 RedBlock1 GreenBlock1

3 Multimodal 𝑠𝑙𝑖𝑑𝑒 (𝐺𝑟𝑒𝑒𝑛𝐵𝑙𝑜𝑐𝑘2; 𝑙𝑒 𝑓 𝑡 (𝑡ℎ𝑒 (𝑝𝑙𝑎𝑡𝑒))) slide put put GreenBlock2 RedBlock1 GreenBlock1

2 Pointing Only 𝑝𝑢𝑡 (𝑅𝑒𝑑𝐵𝑙𝑜𝑐𝑘1; 𝑙𝑒 𝑓 𝑡 (𝑡ℎ𝑒 (𝑝𝑙𝑎𝑡𝑒))) put put RedBlock1 GreenBlock1

1 Pointing Only 𝑝𝑢𝑡 (𝐺𝑟𝑒𝑒𝑛𝐵𝑙𝑜𝑐𝑘1;< 0.5919505; 1.12487;−0.3801433 >) put GreenBlock1

Figure 8: IVA’s dialogue history length at end of each scene.

6 FUTURE EVALUATION
A larger study is preparationwith a goal to collect data from roughly

150 participants who use REs of different types and strategies while

collaborating with Diana to perform the task described above. Each

participant views 10 scenes to refer to 10 randomly placed target

objects, resulting in a total of 15,000 samples and recorded videos.

Recorded video will consist of screen captures showing the human

instructions as they are rendered in the scene, but direct video of

the participants will not be collected. The gathered data will then

be used to train generative models (e.g., fine-tuning an open-source

large language model such as LLaMA [60] or similar) to produce

contextually correct and situationally fluent REs that combine lan-

guage and gesture. These REs will be evaluated according to the

metrics discussed above, as well as human judgments as described

below.

6.1 Human Evaluation
To evaluate the success of multimodal referring expression gen-

eration (MREG) models, two human-based experiments will be

conducted using crowdsourcing platforms such as Amazon Me-

chanical Turk (AMT). We propose two primary criteria to assess

how generative modules imbued with situational awareness and

the ability to prompt non-verbal behavior could be compared with

humans’ generation capabilities. Criterion 1: how well the agent-

generated strategies qualitatively compared to humans-generated

strategies, as evaluated using a preference ordering method; Crite-

rion 2: how well the agent-generated multimodal references quanti-
tatively compared to humans-generated multimodal references, as

evaluated using task completion. Fig. 9 shows the MREG evaluation

framework including the design, participants and procedures.

Figure 9: Crowdsourcing framework for evaluating multi-
modal referring expression generation models.

6.2 Study Design
Human MREs will be selected from the data gathered according to

the strategy outlined in Sec. 4.1. These will be compared with REs

generated by the virtual agent when driven by a generative model

trained over the human data. A total of 2,800 videos (7 references ×
10 blocks × 20 configurations × 2 agents—human and Diana) will

be collected. The 7 referencing strategies for each target object will

use pointing only once, speech only three times, and a multimodal

ensemble three times. This follows the pattern established for data

collection in Krishnaswamy and Putejovsky’s EMRE dataset [30]

which allows for variability in the language used in linguistic or

multimodal REs. Videos will be used in a set of AMT human intelli-

gence tasks (HITs), where each HIT will involve workers rating 28

videos for both fluency and clarity, including 7 machine generated

REs and 7 human REs, for a total of 100 HITs. Each HIT will be com-

pleted by 10 workers, for a total of 1,000 HITs and 28,000 individual

judgments (2,000 for each individual RE in the dataset). Recruited
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Figure 10: Each set in the HIT includes two tasks for quanti-
tative and qualitative evaluation of human REs and IVA REs.

workers will be fluent English speakers between 18 and 60 years

old and be given 15 minutes for each task while being compensated

for their time via the platform.

Each HIT will require workers to evaluate 2 sets of 14 videos

according to both the aforementioned criteria (Sec. 6.1). Each set

will contain 7 videos of human REs and 7 of machine-generated REs.

Workers will be informed whether the descriptions are generated

by humans or by the embodied agent. As shown in Fig. 10, first

participants will be asked to rate the “fluency” of each description

in the video using a Likert-type scale (from 5—best—to 1—worst).

Then they will be asked to locate the target object that is mentioned

by the video, which will be compared to the actual object that was

intended to be referenced, as stored in the dataset. This assesses

the correctness of the referring expression: does a human listener

correctly retrieve the object that was intended to be referenced,

and how do verbal and non-verbal signals each contribute to the

ability to correctly retrieve the object from the referring expression

provided?

7 CONCLUSION
As interactive agents become more widespread in everyday use,

developers will need principled ways of evaluating their behavior.

Modern generative large language models already demand new

methods of evaluation beyond metrics such as accuracy, precision,

and recall on benchmark datasets. Factors such as fluency, reliabil-

ity, correctability, and ease of use must be taken into account. This

is doubly the case when non-linguistic modalities are involved, as

would be the case with embodied IVAs. In this paper, we proposed

a quantitative and qualitative evaluation framework to assess the

quality of generated multimodal referring expressions, including

language, gesture, and actions grounded in a shared virtual environ-

ment. We developed an instance of an IVA for an object referencing

task designed to elicit multimodal referring expressions from hu-

man interlocutors and developed a set of metrics for evaluating

the quality of referring expressions that apply equally to those pro-

duced by both humans and humanoid IVAs using combined verbal

and non-verbal information. We showed preliminary results from

naive users of the experimental platform, and analyzed system out-

puts based on a subset of our proposed metrics to showcase their

utility for evaluating the contribution of non-verbal information

toward bidirectional interpretation and disambiguation of definite

descriptions of objects in context. We also detailed how our pre-

liminary study will be expanded and scaled up. Our framework

targets both timing and fluency of the interaction and proposes

a set of qualitative and quantitative metrics that we hope will be

beneficial for researchers in the IVA and multimodal interaction

communities to assess dialogue and behavior generation strategies

for multimodal interaction systems.
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