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ABSTRACT

Data preparation plays a pivotal role in every machine learning-based approach,
and this holds true for the task of detecting claims in the automotive industry as
well. Handling high-dimensional feature spaces, especially when dealing with im-
balanced data, poses a significant challenge in sectors where a vast amount of data
accumulates over time. Machine learning models trained on highly imbalanced
data often result in unreliable and untrustworthy predictions. Therefore, address-
ing the aforementioned issues is essential during the data pre-processing phase.
In this paper, we propose an innovative two-dimensional optimization approach
to effectively address the challenge of highly imbalanced data in the context of
fault detection. We employ a heuristic optimization algorithm called Genetic Al-
gorithm to concurrently reduce both the data point tuples and the feature space.
Furthermore, we constructed and evaluated two-dimensional reduction using par-
ticle swarm optimization (PSO) and Whale optimization algorithms. The empir-
ical results of the proposed techniques on the data collected from thousands of
vehicles show promise.

keywords: Fault Detection, Tuple Selection, Feature Selection.

1 INTRODUCTION

Modern vehicles in the automotive industry are complex systems with a multitude of potential con-
figurations, where component breakdowns can originate from various sub-components failing due to
different reasons. A rise in component breakdowns can indicate a quality issue with the component,
which in turn elevates the risk to customer safety, even in modern vehicles, and negatively impact-
ing customer satisfaction. Thus, fault detection has become a critical operation in the maintenance
strategy of the automotive sector. In this context, numerous studies utilize various statistical and
machine learning algorithms to predict claims in various scenarios Khoshkangini et al. (2020a;b).
The current availability of data collected from hundreds of sensors in vehicles provides us with the
opportunity to employ this data for usage modeling and claims estimation. Advanced machine learn-
ing and artificial intelligence (AI) have become essential in many applications Rabbani et al. (2020;
2016); Dahl et al. (2020); Revanur et al. (2020); Khoshkangini et al. (2017), with particular signifi-
cance in the automotive sector, where we develop multiple predictive models to predict component
breakdowns before they occur.

Nonetheless, this vast volume of data comes with deficiencies that can impact the construction of
predictive models. Redundant readouts and features often infiltrate the data, imposing an additional
processing burden and resulting in highly imbalanced data. This imbalance can lead to bias in
the modeling process and negatively affect prediction performance. Consequently, researchers have
given substantial attention to addressing imbalanced data by applying different machine learning and
data mining techniques. For instance,Chawla et al. (2002) introduced the Synthetic Minority Over-
sampling Technique (SMOTE), which is designed to increase the number of minority instances
by interpolating along a line, while ignoring the majority instances. In Chawla et al. (2003), the
SMOTE technique is enhanced by integrating it with a boosting procedure. However, despite the
notable improvements achieved with SMOTEBoost in addressing the problem, the approach does
exhibit vulnerability to artefacts. In the context of the SMOTE technique, Han et al. introduced two
methods known as borderline-SMOTE1 and borderline-SMOTE2 in their paper Han et al. (2005).
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These methods focus on selectively oversampling only the minority instances that are in proximity to
the borderline. In a similar study discussed in Bunkhumpornpat et al. (2009), the authors introduced
the Safe-Level-SMOTE technique. This approach involves sampling minority instances along the
same line with different weights and considering them for analysis. To enhance its performance, the
method synthesizes minority samples more prominently around a larger safe model.

In the study by the authors in P. Songwattanasiri (2010), they introduced the Synthetics Minority
Over- and Under-sampling Techniques (SMOUTE). This method combines over-sampling of minor-
ity data using SMOTE with under-sampling achieved through k-means clustering. SMOUTE offers
advantages such as faster computation and improved F-measure values, particularly beneficial for
handling big data, in contrast to the plain SMOTE approach. Bunkhumpornpat et al. Bunkhumporn-
pat et al. (2011) proposed the Majority Under-sampling Technique (MUTE). This technique involves
establishing a boundary between the minority and majority samples, and during the training process,
it discards all of the majority data that falls within the minority class boundary.

Regarding the studies discussed in this context, including those mentioned earlier, we observe that
the fundamental concept behind under-sampling approaches is to remove the majority samples,
which are often regarded as artifacts, with the primary goal of preserving minority cases. This
principle can lead to a slight reduction in the performance of predictive models. Moreover, there
are numerous studies in the literature that delve into the challenges posed by imbalanced data. The
methods discussed earlier have the potential to be applied and further enhanced in the context of
the automotive industry, particularly in the domain of breakdown detection. Machine learning ap-
proaches, as exemplified in studies such as Khoshkangini et al. (2019); Chaudhuri (2018); Killeen
et al. (2019); Hecker et al. (2018); Khoshkangini et al. (2020b), have found utility within the au-
tomotive sector for predicting failures and enhancing reliability. Over the past decade, researchers
have introduced new approaches to address these challenges, as documented in studies such as Ran
et al. (2019); Khoshkangini et al. (2019; 2020a; 2021). Within these investigations, various artificial
neural network (ANN) architectures have been explored for tasks such as estimating the remaining
useful life of components (RUL), including applications to bearings and wind turbines Teng et al.
(2017). Multi-layer perceptrons (MLP) have been employed to predict breakdowns as a classifica-
tion task Revanur et al. (2020), and linear regressions have been utilized for forecasting downtimes
Welch et al. (1995). These studies have garnered considerable attention among researchers in the
field.

In response to the challenges outlined above, this study introduces a novel two-dimensional opti-
mization approach aimed at mitigating the issues associated with highly imbalanced data, specif-
ically in the domain of fault detection within the automotive industry. Our proposed system in-
troduces a novel approach that combines optimization techniques with tuple and feature selection
methods. In this context, tuple refers to the recorded readout samples gathered during the truck’s
operational lifespan, while features encompass the characteristics that describe the behavior of vehi-
cles throughout their operational life. In this study, our proposed methodology focuses on selecting
the most informative tuples and features that have a significant impact on the predictive models,
enabling accurate predictions of component breakdowns. We employ three types of optimization
algorithms: Genetic Algorithm (GA) Whitley (1994), Particle Swarm Optimization (PSO) Marini
& Walczak (2015), and Whale Optimization Algorithm (WOA) Mirjalili & Lewis (2016). These
algorithms are utilized to select the optimal tuples and the most informative predictors for use in the
training phase. It’s important to note that in this work, we place a particular emphasis on the appli-
cation of GA. The objective is to identify which portion of the training data significantly contributes
to the predictive model, thereby improving its performance. The optimization process is aimed at
extracting a specific subset of the data (tuples and features), that results in the most accurate pre-
dictions. Subsequently, the outputs obtained from the three optimization approaches are compared
under various conditions to assess their respective efficiencies.

The rest of the paper is organized as follows: In Section 2, we explain the base algorithm used in this
study. Data representation and preparation are described in Section 3. In Section 4, the proposed
approach is discussed. Section 5 covers experimental results, and the summary is expressed in
Section 6.
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2 BACKGROUND

In this Section, we describe some notions of Genetic, PSO, and WOA algorithms.

2.1 GENETIC ALGORITHM (GA)

Genetic is an evolutionary algorithm Dennett & Dennett (1996) suitable for constrained and uncon-
strained optimization tasks, which is widely used in a vast range of applications Srinivas & Patnaik
(1994); Whitley & Sutton (2012); Motieghader et al. (2017); Ma et al. (2018). Unlike the other
optimization approaches used in Dorigo & Blum (2005); Khoshkangini et al. (2014), GAs work
with a coded representation of the problem data set and look for a population of possible solutions
to the problem. GA constantly generates a population of chromosomes as solutions. Through sev-
eral generations, by using GA operators, the system randomly selects individuals from the current
population to be parents and uses them to generate a new population for the next generation. The
GA operators are briefly described as follows:

• Encoding: the approach utilized a binary scheme operation. The binary is the most common
encoding scheme, where each chromosome ci is a vector of operators represented as a
binary of 1 or 0. In this encoding strategy, each individual feature fi shows that whether it
is included fi = 1 or not fi = 0 in that particular chromosome C(i=1,...,m) Katoch et al.
(2020).

• Generation/initialization: The initialization of the population is constructed after the en-
coding operation. By randomly selecting the individuals, the first population is created
with labels of either 1 or 0, While the first indicates the individual predictor and the latter
signifies that the predictor is not selected Katoch et al. (2020).

• Gene selection: in this step, different subsets of genes (from the training set) are selected
over various iterations. The final subset of the gene will be chosen from the genes with the
highest selected numbers Deng et al. (2004).

• Mutation: To maintain the diversity of the genes from one generation to another, the muta-
tion occurs where some of the genes are subjected to mutate with low probability Katoch
et al. (2020).

• Crossover: After calculating the suitability of the chromosomes, two children will be pro-
duced by exchanging a specific part of the genes of the two chromosomes.

2.2 PARTICLE SWARM OPTIMIZATION ALGORITHM

The main idea of the PSO algorithm originated from the collective movement of animals, includ-
ing birds. Birds usually choose their landing place according to the least danger and the greatest
opportunity. The philosophy behind this decision is based on each bird’s experience and personal
perceptions (pBest) as well as observation of other birds’ movements or social knowledge (gBest).
In the PSO algorithm, birds are called particles, which are formed randomly. In each phase, the par-
ticles occupy a more suitable position in the problem space compared to the previous phase. Their
fit is determined by the objective function, similar to the genetic algorithm we discussed in the pre-
vious section. Their fit is determined by the objective function, similar to the genetic algorithm. In
this study, we used the binary version of the algorithm to solve our discrete problem, while the PSO
algorithm is mainly used for continuous problems. In feature selection, Ones and Zeros indicate the
presence or absence of the tuples or features. The purpose of optimization techniques is to determine
the variable that is represented by the vector P = [p1, p2, p3, . . . , pn] and is minimized depending
on the formula of the objective function where n represents the number of variables that may be
specified in the problem. The position vector in the PSO is calculated by the following formula.

P t
i = [pi1, pi2, pi3, . . . , pin]

T (1)

In Equation 2, St
i represents the velocity vector per repetition for particle i.

St
i = [si1, si2, si3, . . . , sin]

T (2)
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In Equation 3, Obj1 denotes the internal multiplication of w on the vector of velocity.

Obj1ij = wSt
ij (3)

Equation 3 affects the situation (here, we refer to velocity) of the vector in the next step. This means
the distance between the two points (the first point refers to the solution of the problem, and the
second point talks about the position of the particle) in the search space is highly dependent on
the value of w such that if we increase w; the search speed will increase, while the accuracy will
decrease. However, this may lead us to obtain a more accurate solution in the next position.

Obj2ij = c1Randomt
1(pBestij − P t

ij) (4)

Equation 4 is based on personal experience and self-perception of the particle. If the individual
experience is slightly different from the current situation, it will point to a new location with a
constant coefficient c1 indicating the effective value. In addition, a random variable Random1

prevents the parameters from converging.

Obj3ij = c2Randomt
2(gBestj − P t

ij) (5)

Equation 5 refers to the best social experience. The result is the sharing of individual experiences. If
the current position of the particle differs from the best social experience, it leads to a new position
that has an impact factor of c2. A random variable Random2 prevents the convergence of the
parameters.

In Equation 6, all three objects influence the velocity of the next step.

St+1
ij = Obj1ij +Obj2ij +Obj3ij (6)

In Equation 7, P t+1
ij points to the next position, where calculated by the sum of the current position

and the obtained velocity.
P t+1
ij = P t

ij + St+1
ij (7)

Indeed, the PSO algorithm has shown a suitable optimization approach for all types of problems
with continuous and discrete data.

2.3 WHALE OPTIMIZATION ALGORITHM (WOA)

The algorithm was proposed by Mirjalili et al. in 2016 Mirjalili & Lewis (2016). It is developed upon
the hunting mechanism of humpback whales in nature. As described in Mirjalili & Lewis (2016),
whales have common cells in some regions of their brain, similar to humans. Therefore, they are
capable of learning, judging, communicating, and becoming emotional. The hunting method of
whales, the bubble-net feeding method, has been studied and it was found to be interesting Watkins
& Schevill (1979). Distinctive bubbles along a circle similar to a ‘9’-shaped path are created. Further
investigation Goldbogen et al. (2013) of whales’ hunting method shows that two maneuvers are
associated with the bubbles namely ‘upward-spirals’ and ‘double-loops’. While the latter consists
of three stages such as coral loop, lobtail, and capture loop; the former is created by the descent of
whales to around 12 meters down and the creation of bubbles in a spiral shape around the prey and
ascending of the whales towards the surface. The mathematical model of the WOA utilizes three
models of encircling prey, spiral bubble-net feeding maneuver, and search for prey. A set of random
solutions is assumed in the WOA algorithm. At each iteration, the positions of search agents are
updated with respect to either a randomly chosen search agent or the best-obtained solution. In order
to globally optimize the algorithm, exploration or exploitation abilities are included by decreasing
the parameter a from 2 to 0.

3 DATA REPRESENTATION

In this section, we present the two data sets; Sensors Data (SD) and Repairs Data (RD), which are
taken to carry out the proposed TDO approach.
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The SD data includes the aggregated vehicle usage, where the values of the predictors/parameters
are collected each time a vehicle visits an authorized workshop for repairs and service. These sensor
data were collected from heavy-duty trucks designed and used in forests over two years of operation
in China, from 2018 to 2020.

The RD includes information regarding the faults that were reported during the vehicle’s opera-
tional life. In particular, the RD gives information about the vehicle, the part, and the failure date.
We integrated these two data sets (using the approach introduced in Wu & Meeker (2002)) to build a
complete data set having both usages (as independent parameters) and fault information (as depen-
dent and target values). Each row of the data shows the behavior/usage of the vehicle in a specific
duration of time (e.g., a week), and the target value indicates whether the vehicle is sound (0) or
defective (1) given the usage.

The data includes 9541 samples collected over time and 300 parameters characterizing vehicle us-
age. To detect the failures (in this study, we focus on the part of the power train component), we
processed and analyzed incredibly imbalanced data in which the proportion of the majority class
(’1’ healthy vehicles) is extremely higher than the minority class (’0’ unhealthy vehicles).

4 PROPOSED APPROACH

In this section, we describe how our proposed tuple and feature selection approach can find the best
representation of data for fault detection. We formulate this problem as an optimization task, where
the classifier trains the model–iteratively–using a different subset of data to find out the portion that
provides the best prediction performance.

The conceptual view of the proposed approach is illustrated in Figure 1, where at the first step, TDO
randomly initializes the first population, including a set of individual solutions (chromosomes). A
representation of a chromosome is shown in Figure 1, where each chromosome is divided into two
parts; in the first part, the tuples are placed, and the second part holds the parameters. Given the first
population (it may include several individual solutions), TDO calculates the fitness value to evaluate
the performance of the generated solutions. Equation 8 describes how the fitness will be calculated,
which includes four different objectives.

Fitness = W1 ×Obj1 +W2 ×Obj2

+W3 ×Obj3 +W4 ×Obj4
(8)

Where Wi refers to the weight of the objectives in the fitness function–the sum of those weights
should be equal to one shown in equation 9.

W1 +W2 +W3 +W4 = 1 (9)

Obj1 in Equation 10 expresses the performance of the classifier used to predict the fault. In this
problem, the goal is to minimize the error, where f(x) is converted into 1− f(x).

Obj1 = 1− f(x) (10)

Obj2 =

∑n
i=1 Selected Tuplei∑n

i=1 Tuplei
(11)

Obj3 =

∑n
i=1 Selected Featurei∑n

i=1 Featurei
(12)

Equation 11 defines the second objective, which reduces the number of selected tuples. While
the third objective defined in Equation 12 shows the number of selected features that should be
diminished.
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Figure 1: The conceptual view of the proposed approach- with. In this schema, we could observe
how the input data are divided into train and test, then converted into chromosomes where tuples
and features are positioned side by side.

Obj4 = 1−
∑n

i=1 Selected Tuple(Minority)i∑n
i=1 Tuple(Minority)i

(13)

Obj4 in Equation 13, indicates the number of minority tuples that should be increased. Since the
objective function is decreasing, it is necessary to convert the whole equation to the negative power
of one. Note: it needs to be mentioned that the above objectives are set in different ranges that
should be optimized at the same time over the course of generations:

The TDO continuously calls the GA operators (such as selection, mutation, and crossover) to se-
lect the best solution and prepare it for the next generations. The optimization process will be
terminated until the criterion is met, which is the maximum number of generations. The proposed
approach selects the most informative tuples and features in each generation in order to increase
the performance of the predictive models. Moreover, in this fashion, we could decrease the time
consumption at reaching the best performance over the optimization process.

5 EXPERIMENTAL EVALUATION AND RESULTS

5.1 STUDY SETUP

As outlined in Section 1, the primary objective of this study is to develop a fault detection approach
with a specific focus on addressing the challenges posed by highly imbalanced data in the automotive
industry. Therefore, in order to conduct the experiments, we have defined two Experimental Goals
(EGs) as follows:

• EG1: To what extent can we predict component failures based on the vehicle’s usage data?

• EG2: How can we utilize the GA, PSO, and WOA algorithms for tuple and feature selec-
tion, and what represents the optimal trade-off between tuples and features?

The two aforementioned Experimental Goals (EGs) delineate our evaluation criteria, which are
aligned with the primary objective of this study. Our intention was to address these questions by
leveraging various structures and data sources, primarily focusing on classification. As a result, we
conducted the following experiments:
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Parameters V(s)
Weight1(W1) 0.97
Weight2(W2) 0.01
Weight3(W3) 0.01
Weight4(W4) 0.01
Number of generation 150
Size of population 28
Length of chromosome 367
Ratio of elite 0.5
Probability of crossover 0.8
Probability of mutation 0.1
Parents portion 0.5
The number of
executions of the 2114
objective function

(a) GA

Parameters V(s)
Weight1(W1) 0.97
Weight2(W2) 0.01
Weight3(W3) 0.01
Weight4(W4) 0.01
c1, c2 1, 3
w 0.9
k 14
p 5
Num of generation 151
Size of particles 14
Length of Particles 367
The number of
executions of the 2114
objective function

(b) PSO

Parameters V(s)
Weight1(W1) 0.97
Weight2(W2) 0.01
Weight3(W3) 0.01
Weight4(W4) 0.01
b 1
Num of generation 151
Number of whales 14
number of Feature 367
The number of
executions of the 2114
objective function

(c) WOA

Table 1: Objective values and parameters of three optimization algorithms. We
take advantage of the hyper-parameter estimator available in scikit-learn: https://scikit-
learn.org/stable/modules/gridsearch.html to obtain the values.

5.2 EVALUATION AND RESULTS

Before answering the first EG, we conducted several experiments by building predictive models
using different machine-learning algorithms. These experiments were developed to find a baseline
(or set of baseline) to assess our proposed approach. In all experiments, the dataset, which contains
9511 instances, was divided into training sets with 7189 samples and test sets holding 352 samples
testing the models. The figures illustrated in Table 2 show the performance of eleven algorithms on
the dataset. It is quite evident that Xgboost and AdaBoost outperformed other algorithms with 0.94
and 0.84, respectively. Thus, we consider these numbers as our baseline to implement and assess
our optimization approach.

Given the performance of XGboost Chen & Guestrin (2016), we utilized this algorithm at the core of
our objective function. The Area Under the Curve (AUC) Kumar & Indrayan (2011) was used as the
performance metric. To achieve the best results, we parameterized all three optimization algorithms
using the values shown in Table 1 for GA, PSO, and WOA, respectively.

To ensure a fair comparison among the aforementioned algorithms, it’s important that the number
of executions for each individual objective function remains consistent. Hence, in the GA process,
the objective function is called based on the number of chromosomes in the population. Initially, the
function generates 28 populations, but in the subsequent generations, it will execute 14 populations.
However, the entire process will run for 150 generations, as depicted in Figure 2. Based on the
provided information, for PSO and WOA, the population sizes are multiplied by the number of
iterations to ensure comparability with the GA settings.

During the under-sampling process, it was observed that in certain instances, the value of AUC
decreased while attempting to preserve the minority data. As a result, to achieve the highest AUC
value, we parameterized the proportion of minority samples using W4 in Equation 13 when con-
structing the models.

Figure 2 illustrates the AUC values obtained over multiple generations using GA, PSO, and WOA
algorithms. We conducted three types of experiments, which included feature selection only, tuple
selection only, and simultaneous tuple and feature selection, in order to evaluate the performance of
the approach.

Regarding feature selection alone, WOA showcased superior performance compared to GA and
PSO, achieving more than a 5% improvement overall, as illustrated in Figure 2(c). This outcome
suggests the potential promise of WOA in tackling complex problems of this nature. However,
when considering both tuple and feature selections (Figure 2(a and b)), as well as tuple selection
alone, both GA and WOA ultimately yield similar levels of performance by the conclusion of the
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Figure 2: The comparison of three optimization algorithms.

Method Objects AUC # of # of # of tAUC tuple feature minority tuple ftr minr
SVM 0.8323 7189 367 161 14.46
ExtraTrees 0.7230 7189 367 161 1.15
GaussianProcess 0.6960 7189 367 161 536.27
KNeighbors 0.7320 7189 367 161 1.64
LGBM 0.8815 7189 367 161 6.34
Logistic Regression 0.7714 7189 367 161 0.54
QDA 0.4998 7189 367 161 1.14
RandomForest 0.8035 7189 367 161 14.57
SGD 0.7314 7189 367 161 12.45
XGBoost 0.9446 7189 367 161 33
AdaBoost 0.8402 7189 367 161 12.28
SMOTE+XGBoost 0.9131 14056 367 7028 14.04
GA+XGBoost ✓ ✓ ✓ ✓ 0.9878 3176 152 67 7674
GA+XGBoost ✓ ✓ ✓ 0.9858 3043 367 72 21425
GA+XGBoost ✓ ✓ 0.9844 7189 174 161 30249
PSO+XGBoost ✓ ✓ ✓ ✓ 0.9679 3804 184 88 15042
PSO+XGBoost ✓ ✓ ✓ 0.9805 3642 367 79 28369
PSO+XGBoost ✓ ✓ 0.9802 7189 177 161 34329
WOA+XGBoost ✓ ✓ ✓ ✓ 0.9696 6487 329 143 28278
WOA+XGBoost ✓ ✓ ✓ 0.9445 2192 367 46 43219
WOA+XGBoost ✓ ✓ 0.9788 7189 183 161 19697

Table 2: Comparative table of the combination of methods and objectives. ftr expresses the number
of features; minr refers to the minorities; and t points to the execution time per second.

optimization process. It’s worth noting that the AUC values obtained using the PSO approach exhibit
considerable variance over the course of 150 generations in all three experiments. Conversely, both
GA and WOA show consistent improvement with the progression of generations, nearly reaching
an AUC of 0.99% in tuple selection, as illustrated in Figure 2(b), and tuple and feature selections,
as depicted in Figure 2(a).

Table 2 provides comprehensive information regarding the experiments, including the computational
time required for the combined techniques. Notably, the results indicate that GA and XGboost out-
performed all combinations, even in scenarios with a limited number of minority instances, specif-
ically 67 and 72. Regarding the execution time, as indicated in Table 2, it is evident that the GA
approach is significantly faster than WOA. This observation strongly suggests that when time ef-
ficiency is a critical factor, WOA may not be the ideal choice. Upon closer examination of the
algorithms and the number of objectives to be optimized over the generations, it was observed that
GA outperformed others, especially when considering four objectives. Conversely, when two objec-
tives are considered (as shown in Figure 2c), GA and PSO exhibit similar performance.

Considering the figures reported in Table 2, the GA+XGBoost performed well compared with other
combinations, including linear and optimizations. However, the superiority of our proposed ap-
proach to this problem was undeniable. This motivated us to assess all these approaches in different
contexts. Thus, we conducted the proposed approach with the other approaches on two different
datasets (African Country Recession Kaggle and SECOM UCI) to evaluate the generality and verify
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Algorithm African Country Recession SECOM
F1-Score t-test ** p F1-Score t-test ** p

XGBoost 0.9133 30.722 ✓ <0.05 0.9154 16.22077✓ <0.05
SVM 0.8793 46.21362✓ <0.05 0.9008 27.03977✓ <0.05
ExtraTrees 0.9021 30.80877✓ <0.05 0.9002 26.43019✓ <0.05
GaussianProcess 0.8793 46.21362✓ <0.05 0.9008 27.03977✓ <0.05
KNeighbors 0.8793 46.21362✓ <0.05 0.9008 27.03977✓ <0.05
LGBM 0.9056 34.20818✓ <0.05 0.9008 27.03977✓ <0.05
Logistic Regression 0.9021 35.81065✓ <0.05 0.8960 30.59082✓ <0.05
QDA 0.8793 46.21362✓ <0.05 0.9008 27.03977✓ <0.05
RandomForest 0.8793 46.21362✓ <0.05 0.9008 27.03977✓ <0.05
SGD 0.8793 46.21362✓ <0.05 0.9037 9.37029✓ <0.05
AdaBoost 0.8885 42.00354✓ <0.05 0.9070 22.48418✓ <0.05
SMOTE+XGBoost 0.9131 40.77441✓ <0.05 0.9234 10.30378✓ <0.05
GA+Tuple+Feature+XGBoost 0.9808 – – 0.9396 – –

Table 3: The comparison between GA+XGBoost and other algotihms. For each model, 5 × 2 cv
paired t-test was used to test the pairwise significance between the model and other models for each
task. “**” refers to the alpha level at 0.05 to reject the null hypothesis, e.g., the “two sigma” level.
Significant differences are denoted by ✓, and insignificant differences are denoted by ✗.

whether the GA+XGBoost performed equally or better than its performance in other problems. This
is quite an important consideration since it evaluates the generality of the approach to deal with data
from different domains.

Table 3 shows the implementation evaluation of different approaches on the two datasets, in which
we can observe that GA+XGBoost outperformed other algorithms in both cases by an average f-
score value of 0.98 and 0.93 for dataset 1 and dataset 2, respectively. In addition, we performed the
statistical t-test and compared the results received for GA+XGBoost and all other experiments to
quantify whether the outcomes differed significantly. Selecting α = 0.05 as the critical value, we
could see in all experiments that the test rejected the null hypothesis and concluded that the proposed
approach performed best.

6 SUMMERY

In this preliminary work, we proposed a fault detection system designed for the automotive industry.
We have developed a two-dimensional approach to data reduction employing optimization algo-
rithms, enabling us to identify and extract the most informative components from the data for the
construction of predictive models. Our approach aimed to map vehicle usage to component failures
using optimization algorithms, with a specific focus on addressing and handling highly imbalanced
data. We examined the GA, PSO, and WOA algorithms with the aim of simultaneously reducing
both the tuple and feature space to facilitate the construction of predictive models. Furthermore,
we employed a similar reduction approach by considering only features and types.The experimental
results demonstrate the promise of the proposed technique for reducing data dimensions and suggest
a high potential for further investigation. The generality experiments also show how the proposed
optimization approach could perform in other contexts. However, more datasets (from different
contexts) are needed to extensively assess this aspect of the approach. In future work, our goal
is to explore a broader range of genetic algorithms and integrate them into a deep neural network
framework to map vehicle usage to component breakdowns effectively.
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