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Abstract: We introduce ClutterGen, a physically compliant simulation scene generator
capable of producing highly diverse, cluttered, and stable scenes for robot learning.
Generating such scenes is challenging as each object must adhere to physical laws like
gravity and collision. As the number of objects increases, finding valid poses becomes
more difficult, necessitating significant human engineering effort, which limits the
diversity of the scenes. To overcome these challenges, we propose a reinforcement
learning method that can be trained with physics-based reward signals provided by
the simulator. Our experiments demonstrate that ClutterGen can generate cluttered
object layouts with up to ten objects on confined table surfaces. Additionally, our
policy design explicitly encourages the diversity of the generated scenes for open-ended
generation. Our real-world robot results show that ClutterGen can be directly used
for clutter rearrangement and stable placement policy training.
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Fig. 1: (a) The success rate of generating a stable simulation setup. When the number of objects in the environment
increases, the difficulty of creating such a stable setup also increases. The traditional heuristic method cannot create a
simulation scene above 7 objects, while ClutterGen consistently achieves high success rates. (b) Diverse, cluttered,
and stable simulation setups created by ClutterGen.

1 Introduction
Simulation has played an important role in advancing robot learning [1, 2, 3, 4, 5] by providing a controlled
yet versatile environment for developing and testing algorithms. Data-driven approaches, in particular,
typically deploy robots into simulations to undergo extensive training across a variety of diverse and
randomized settings to enable generalizable and adaptable behaviors. Significant advancements in robot
learning have been achieved by randomizing object shapes [4, 6, 7], textures [8, 9, 10, 11], and dynamics
[12]. However, the layout of objects, despite being another critical factor, remains challenging to reach
fully open-ended randomization.

Unlike object properties, which can be easily specified within a range without interfering with other objects,
object layout must consider the presence of other objects and physical feasibility. For instance, arranging
objects in a scene requires ensuring that they do not overlap and are placed in stable positions instead of
falling down from the air. Existing efforts often prevent this issue by fixing the object bases [13, 4, 14, 15],
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but this strategy is not suitable for many objects like bottles or cups. As the number of objects increases
within a limited space, generating a randomized yet stable object layout becomes exponentially difficult.
Fig. 1(a) shows the challenge of using the widely adopted approach of random sampling and rejecting
failure trials [16, 17, 18, 19] to generate valid scenes, with even seven objects on a table. Other methods
require human manual specifications of object regions for local randomization [20, 21, 22] or apply
discretization to the possible placement space to avoid collisions [17, 23, 24]. However, navigating and
manipulating cluttered environments are essential challenges to deploying robot learning to the real world.

We introduce ClutterGen, an auto-regressive simulation scene generator for creating physically compliant
and highly diverse cluttered scenes. By framing cluttered scene generation as a reinforcement learning prob-
lem, ClutterGen learns a closed-loop policy from 3D observations without requiring pre-existing datasets
or human specifications. Once trained, ClutterGen can be applied to variations of the original environment
without fine-tuning. We further demonstrate the utility of ClutterGen in several downstream tasks including
real-world clutter rearrangement and training robust placement policies for zero-shot sim-to-real transfer.

Our main contributions are summarized as follows:
• We frame the scene generation problem as a reinforcement learning task, enabling a closed-loop policy

for creating physically compliant, cluttered, and diverse environments. Our model-free training process
uses intuitive physics-based rewards without relying on pre-existing datasets or human specifications.

• Our policy design encourages scene diversity to enhance general robot training.
• We demonstrate ClutterGen’s applicability to real-world clutter rearrangement tasks and its

effectiveness as a synthetic data generator for training robust stable placement policies.

2 Related Work
Procedural Content Generation (PCG) Recently, there has been growing interest in data-driven PCG al-
gorithms using generative models for indoor scene generation [25, 26, 27], 3D object asset creation [28, 29],
and household rearrangement [30, 31, 32, 32, 33, 34]. Large-language models (LLMs) have also been used
to guide scene generation [35, 36, 37] due to their prior embedded human knowledge. However, existing
methods often impose strong heuristics such as limiting the regions of each object, and fail to consider
physics feasibility, resulting in scenes with intersecting objects, floating objects, and unstable placements
that are not suitable for generating flexible, diverse, and realistic robot training environments. In contrast, our
method frames scene generation as a reinforcement learning task while explicitly considering the physical
stability of the scene generation without relying on human-designed training datasets or expert heuristics.

Scene-level Randomization for Robot Learning. Scene-level randomization has been crucial in robot
learning. Recent work has focused on synthesizing object shapes [4, 6] and textures [8, 9, 10, 11]
to reduce data collection costs and improve model robustness. However, randomizing object poses
in simulation scenes remains challenging. Traditional methods, such as random rejection sampling
[16, 17, 18, 19], require significant human effort to define the range of object positions and verify scene
validity. As the number of objects increases, finding valid poses becomes exponentially harder within
a confined region, resulting in low diversity and success rates (Fig. 1(a)). Recently, LLMs have been
used to synthesize simulation scenes [38, 22, 39], but they rely on pre-existing datasets or knowledge and
extensive user-defined heuristics for object positions. Moreover, LLMs struggle to create accurate object
placements without observing physical behaviors, leading to unstable scenes. Our method does not require
a high-quality dataset or pre-defined pose constraints and trains by directly interacting with the simulation
environment. Our method can create stable, diverse, and highly cluttered scenes for robot training.

3 The ClutterGen Framework
Designing a simulation environment for robot training typically involves a human expert observing the
scene and object geometry, deciding on a placement, running simulations to check for collision and
unstable pose issues, and adjusting placements as needed. This iterative process, repeated until object poses
are finalized, is difficult to scale due to its heavy human involvement and time-consuming trial-and-error.
We propose ClutterGen to automate the steps for generating cluttered simulations using a single learning
agent. ClutterGen controls scene generation in a closed-loop manner under challenging cluttered scenarios.
Our key idea is to formulate the process as a reinforcement learning task. Without prior knowledge or
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Fig. 2: ClutterGen. We stack a sequence of attempt histories as input to the history sequence encoder to generate the
history feature. This feature, combined with the perception feature from the point cloud encoder, is taken by ClutterGen
to output the placement pose for the queried object. The simulator evaluates the placement’s stability, determining
whether to proceed to the next attempt or the next queried object placement.

human input, ClutterGen can generate diverse and cluttered scenes using simple reward signals. Fig. 2
shows an overview of our method.

3.1 Problem Formulation
Our problem is formulated as follows: A supporting object with a fixed support surface (e.g. a table) is
placed in the simulation. A queried region is a part of this supporting object, such as a section of a table.
The queried scene includes the supporting surface and all previously placed objects. A queried object
is the current object to be arranged next. ClutterGen is asked to sequentially place movable objects into
the queried region while ensuring stability for the new and previously placed objects. The episode succeeds
when all queried objects are placed stably.

We formulate the generation process as a Markov Decision Process, defined by the tuple <S,A,P,R,γ>.
S is a set of states, A is a set of actions, P is a state transition probability matrix; P(s′|s,a) indicating
the probability of transitioning to state s′ from state s after action a, R is a reward function, and γ is a
discount factor 0≤γ≤1. A policy π :S→A determines the next action based on the current state. Our
objective is to find an optimal policy π∗ that maximizes the sum of all discounted future rewards.

3.2 Cluttered Scene Generator
Observation and Action Space ClutterGen takes in the point cloud of the queried scene and object. If the
current object placement fails, we inform the policy about its past actions and their impacts by providing
a history of the queried object’s movement trajectories Mi={m0,m1,...,mk|mi∈R13},i={1,2,...,I}.
Each m includes the object’s position ∈ R3, orientation quaternion H ∈ R4, linear velocity ∈ R3 and
angular velocity ∈R3 at each step. The hyperparameter k determines the number of simulation steps to
verify placement success, and I is the predefined maximum number of attempts allowed.

We encode each point cloud with a feature encoder to extract geometry embeddings. We concatenate the
movement trajectory, previous placement poses, and queried regions and send them into a history sequence
encoder to generate a history embedding. The concatenation of geometry and history embedding is the
final input to our RL agent. Our policy outputs the object placement position and z-axis rotation relative
to the queried region.

Policy Design We optimize our RL agent with PPO [40] which is an on-policy actor-critic algorithm. The
critic computes the advantage during training and the actor generates the action distribution for the 3D
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translation and 1D rotation independently. Since our design requires bounded continuous action space,
instead of using the conventional squashed normal distribution to bound the action space, we choose beta
distribution as the policy distribution. Specifically, the actor of the agent outputs the α∈R4 and β∈R4 to
build the action distribution Beta(α,β), and then the relative placement pose can be obtained by sampling
from the distribution.

Our choice of action distribution offers several benefits. First, beta distribution is well-defined among [0,1],
which only requires a simple linear operation to our action range [−1,1], while the unsquashed process
for the squashed normal distribution will introduce numerical instability during training and requires extra
post-processing. Second, beta distribution can represent more distribution shapes by changing the α and
β values, which is essential to improve the diversity of our scene generation. As shown in Sec. 4.1, our
results demonstrate that the policy trained with the beta distribution outperforms the policy trained with
the squashed normal distribution in both success rate and scene diversity.

Success Conditions A successfully placed object should not collide with existing objects and maintain a
stable pose. To verify a placement, we run the simulator and record the object’s velocity and acceleration to
check stability. The placement is considered stable if the following conditions are met: 1) the linear velocity
and acceleration become less than 0.005m/s and 1m/s2, respectively, within 40 simulation steps (0.167s in
real-time); 2) the angular velocity and acceleration become less than 0.5◦ and 180◦/s2, respectively, within
40 simulation steps; and 3) the velocity and acceleration remain below these thresholds for 20 continuous
simulation steps.

Reward Function Guided by the success conditions, for each placement attempt, ClutterGen optimizes
the following reward function to minimize the accumulated absolute values of the velocity and accelerate
during new object placements:

Ri=−c

k∑
i=0

(||vi||2+||ai||2)+n·1stable ·R0 (1)

where c is a scaler to adjust the velocity and acceleration penalty, vi ∈R6 and ai ∈R6 represents the
velocity and acceleration the queried object at ith simulation step, the indicator function 1stable will equal
to 1 if the placement pose is stable otherwise will equal to 0, n represents the current queried object is
the nth object for the queried scene, and R0 is a scalar reward.

3.3 Implementation Details
For each attempt, we run the simulator for up to k=240 steps (1s) to check the placement stability. We
set the maximum allowed attempts as I=5. We use PointNet++ [41] as the point cloud feature encoder
and 3-layer MLP as the history sequence encoder. Both the actor and critic networks are composed of
5 layers of MLPs. We optimized the agent for 2.5M steps with a learning rate of 1e−4. All training was
conducted on one NVIDIA RTX A6000 GPU. Other details are listed in the Appendix.

4 Experiments
In this section, we aim to evaluate ClutterGen’s capability to effectively generate cluttered, stable, and
diverse scenes. We further investigate the generalizability of the learned model on various scene-level
changes. We then conduct several real-world experiments to demonstrate the effectiveness of ClutterGen
for downstream robotics tasks such as clutter rearrangement and stable placement policy training.

4.1 Scene Generation Evaluation
Dataset To include diverse everyday objects for our evaluation, we created a dataset consisting of five
groups, each containing ten objects. The first four groups are selected from the PartNet-Mobility [42],
Objaverse [43], and YCB [44] datasets. The fifth group, referred to as the real group, includes our
3D-scanned everyday objects that are also used in our physical experiments. We used a cuboid table with
[60cm,70cm,70cm] in width, length, and height as the initial queried scene.

Baselines Since most prior studies on scene generation rely on either pre-collected datasets or
human-specified heuristics and constraints, we cannot directly compare with them. The closest method,
which is also widely adopted [16, 17, 18, 19] in recent literature, is the random rejection sampling (RRS)
algorithm. We also compare our methods with other alternative settings.
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Method

Object Group

Group 1 Group 2 Group 3 Group 4 Group 5
Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

RRS 0.005 168.9±202.1 0.00 290.3±379.1 0.00 171.3±188.2 0.02 214.2±275.8 0.005 175.6±198.2
ClutterGen-OL 0.212 139.4±168.2 0.145 206.7±247.5 0.086 170.9±179.4 0.232 164.9±182.1 0.251 135.0±121.1
ClutterGen-SM 0.359 101.8±125.1 0.414 111.3±149.5 0.364 106.6±119.3 0.517 97.62±101.8 0.602 83.47±90.26

ClutterGen-Normal 0.92573.86±57.73 0.833 85.25±91.44 0.951 56.37±61.13 0.969 51.19±56.22 0.98943.86±33.40
ClutterGen 0.912 88.50±95.46 0.87470.82±97.86 0.963 59.70±55.73 0.97349.89±55.55 0.988 45.72±31.21

Tab. 1: Success rate comparison of cluttered scene generation. We report the average success rate and stable steps
across three random seeds of training and five object groups. Our method significantly outperforms the widely adopted
RRS baseline. The long-term attempt history and closed-loop design in our framework deliver the best performance.

• Random Rejection Sampling (RRS). This method heuristically computes the position of the supporting
surface in the queried scene and randomly places objects within the queried region.

• ClutterGen-OpenLoop (OL). This method uses the same architecture as ClutterGen, but without
previous object movement trajectory and placement pose information for the next attempt.

• ClutterGen-ShortMemory (SM). This method uses the same architecture but only takes the latest
attempt history (buffer length = 1) for the next attempt.

• ClutterGen-Normal. This method uses the truncated normal distribution instead of the beta distribution.

Metrics Our evaluation metrics include: 1) the success rate of placing all queried objects into the queried
scene, and 2) the average simulation steps (stable steps) required for each object to achieve stability.
Additionally, we access setup diversity, a qualitative metric, using a diversity map to evaluate the variety
of the generated scenes.
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Fig. 3: Average stable steps across differ-
ent numbers of attempts. We computed the
average stable steps for object placements re-
quiring ≥3 attempts. The x-axis represents the
ith attempt, and the y-axis represents the aver-
age simulation steps for the object to stabilize.
ClutterGen’s closed-loop re-attempt mechanism
increasingly improves placement stability.

Results Tab. 1 shows the testing restuls with 1,000 trials. The
RRS almost always failed to produce a valid object layout.
This is because RRS cannot learn from active interaction
with the environment. While ClutterGen-OL and CluuterGen-
SM can produce some reasonable layouts, the success rate
is generated low with longer simulation steps for the scene
to become stable, suggesting long-term close-loop history is
important. Both the normal and beta distributions achieve
high success rates.

To further understand the effectiveness of ClutterGen, we plot
the average stable steps needed over different attempts. As
shown in Fig.3, ClutterGen can use previous placement poses
and object movement trajectories to adjust the next placement
pose for faster convergence of stability. This closed-loop
mechanism is extremely useful for cluttered scene generation within limited spaces. Fig. 4 shows an
example of ClutterGen’s closed-loop generation process to adjust its next action based on the past attempts.

4th successful attempt

Back View

3rd failed attempt2nd failed attempt1st failed attempt

Side View

Fig. 4: Example of the closed-loop generation process of ClutterGen. ClutterGen attempts to place a camera on a
cluttered table. Failed placement attempts (e.g., floating in the air, colliding with objects, or inserting into the table) are
marked by red circles. After each attempt, the simulator runs and records the movement trajectory. ClutterGen uses all
previous failed attempts to adjust its future actions until achieving a successful placement.
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Method Original
Translation Rotation Shrinkage Expansion

Randomly Combinedx:[−15cm,15cm]
y:[−15cm,15cm]

rz:[−π,π]
∆hx:[−10cm,0cm)
∆hy:[−10cm,0cm)

∆hx:(0cm,10cm]
∆hy:(0cm,10cm]

ClutterGen 0.99 0.89 0.92 0.76 0.93 0.85

Tab. 2: Scene-level generalization results. We report the average success rate of cluttered scene generation under
various test-time changes to the queried region. ClutterGen demonstrates strong generalizability.
Generating diverse object layouts is crucial for training robust robot policies by providing sufficient
randomization. Although both ClutterGen and ClutterGen-Normal achieved high success rates in generating
cluttered scenes, we assess their ability to create diverse layouts by visualizing their successful placements
through a 2D projection. Each subplot in Fig. 5 shows the placement distribution for one object across
500 scenes. ClutterGen-Normal tends to place objects in very similar positions resulting in homogeneous
outcomes, while our ClutterGen with beta distribution generates significantly more diverse setups.

4.2 Scene-level Generalization
Translation Rotation Shrinkage

Expansion Randomly Combined

Fig. 6: Qualitative examples of the generated
scenes under test-time changes of the queried
region.

We are interested in evaluating ClutterGen’s generalization
capability to generate cluttered scenes when the queried region
varies during test time, even if it was fixed during training.
We propose five test-time changes: 1) translation (random
2D translation within a certain range), 2) rotation (random
rotation around z-axis), 3) shrinkage (random reduction of
xy half-extents), 4) expansion (random enlargement of xy
half-extents), and 5) randomly combinations of the previous
changes. We used the real object group for this evaluation.
To ensure the queried region remains covered by the support
surface after the changes, we enlarged the table dimension to
[140cm,140cm,70cm] for this test. Our evaluation across 500 episodes for each change is shown in Tab. 2.
We observe a performance drop in the shrinkage test. This is because a narrower queried region forces the
scene to be more cluttered, which increases the difficulty of finding stable poses for all objects. Overall,
ClutterGen shows strong zero-shot generalization ability across all changes. Examples of the generated
scenes are shown in Fig. 6.

To demonstrate the real-world use cases, we selected 10 furniture tables from our dataset and directly
applied ClutterGen to them with all five object groups. We adjusted the queried region’s xy extents to
match the furniture’s dimension. We also randomly applied the above four changes. By evaluating 50
episodes for each table, we achieved an overall 70% success rate. Qualitative examples are shown in
Fig. 1. Another advantage of our method is the formulation of scene generation as a sequential 3D object
placement task. Therefore, ClutterGen can naturally generate complex object relationships such as a mug
on a book or a fork under a plate.

4.3 Real Robotics Task: Clutter Rearrangement
Given a clutter of objects, humans can easily determine the goal state of stable poses for each object when
tasked with moving them to another location (e.g., from one table to another). However, achieving this
behavior in robots remains challenging. For instance, when the target area is cluttered, robots must identify
a safe and stable pose for new object placements to avoid collisions or simply dropping objects into the
area. Consequently, existing “pick-and-drop” solutions are inadequate in this scenario. Additionally, human
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ClutterGen

Sequentially detect objects on the table 

. . .

ClutterGen proposes new setups for the objects
to the target region (right half table)

User selects one
preferred setup

Place

Grasp

Success State

. . .

Sequentiall place object to the desired setup

. . .

Queried objects 

Fig. 7: Clutter rearrangement. The red circle indicates the position of the camera. The blue cube encloses the objects
to be rearranged. ClutterGen proposes several different setups for rearrangement. After a user selects a preferred setup,
the Panda arm will rearrange the table accordingly.

preferences for the resulting scene layout can vary, making it difficult to incorporate these preferences into
robot planning.

We demonstrate ClutterGen’s applicability in the challenging task of clutter rearrangement using a Franka
Panda arm equipped with an RGB-D camera. Fig. 7 provides an overview of our approach. We randomly
selected five objects from our real object group and placed them on one side of a table as the initial clutter.
The robot’s goal is to move this entire clutter to the other side of the table. We used GroundDINO [45] to
identify the object categories, Segment Anything [46] to generate the object masks, and FoundationPose
[47] to determine the 6 DoF pose of each object. To simplify the setting and focus on ClutterGen’s key
capabilities, we assume access to the 3D models of these objects and a set of grasping poses [48], although
these assumptions can be relaxed with recent advancements in grasp synthesis [49, 50, 51]. With this
information, we render the queried scene point cloud to ClutterGen to propose possible target layouts.

We asked ClutterGen to generate ten possible layouts for the other side of the table, allowing users to select
their preferred setup and obtain the target poses for each object. The robot arm then planned its motions to
move the entire clutter to the target area using MoveIt [52]. We evaluated the full pipeline over ten episodes.
Success is counted if all objects are rearranged to the user-selected setup without any collisions or unstable
poses. The overall success rate was 7/10. We include both successful and failed trials in the supplementary
videos. Failures were due to arm-object or object-object collisions during motion planning (2/3) or failed
object layout proposals from ClutterGen under the ten-trial limit (1/3).

4.4 Real Robotics Task: Stable Object Placement
While pick-and-drop tasks have seen great success in robot manipulation, placing objects stably in cluttered
scenes remains challenging. In this experiment, we leverage ClutterGen as a synthetic data generator to
train a robot policy for stable object placement. Fig. 8 provides an overview of our approach. Our stable

...

Mesh Sampling Camera Capture1 Camera Capture2

ClutterGen
Agent Training

...

Zero-Shot Sim-to-Real DeploymentDataset Generation

Fig. 8: Synthetic dataset generation and zero-shot sim-to-real policy deployment. We generate a synthetic dataset
by replaying the scene generation trajectory created by ClutterGen. Green points mark the ground truth pose of the
queried object, while blue points represent the point cloud of the queried scene. To augment the dataset, we use a
virtual camera to capture the scene point cloud from different angles. This synthetic dataset is then used to train a stable
object placement policy, which is directly deployed on a real robot.
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placement policy takes the point clouds of the queried scene and object and learns to output the stable
placement pose. Due to our novel formulation of ClutterGen as a sequential 3D placement task, ClutterGen
naturally serves as a data generation source for training the stable placement policy. Specifically, we ran
ClutterGen 500 times to create 500 layouts while recording its generation process for each object, resulting
in 5,000 data points. To mitigate occlusion issues in the real world, instead of using the full point cloud, we
captured the scene point cloud using a virtual RGB-D camera in the simulator and randomly translated
its position four times while ensuring focus on the center of the scene. We then randomly sampled the
final 5,000 data points as our dataset termed ClutterGen-5000. This data generation process takes less than
one minute on a single thread and can be further accelerated through parallelization. We then applied
supervised learning to train the stable placement policy over 1,000 epochs using mean squared error loss.
At test time, we achieve a 91% success rate by using the simulator to verify placement success with the
same physics-based stability metric.

Dataset ClutterGen-5000 Human-200

Success Rate 0.91 0.52

Tab. 3: Boost model performance by training with the
synthetic dataset from ClutterGen. We report the success
rate of two models trained on ClutterGen-5000 and Human-
200. ClutterGen can create diverse and effective training
data in under one minute, whereas a human expert needs
1.5 hours to create a dataset that is only 4% of its size.

To demonstrate the efficiency improvements of
ClutterGen compared to a human engineer, we de-
veloped a user interface within the Pybullet [53]
simulator to allow humans to manually create sim-
ulation setups. We manually constructed 20 stable
setups, resulting in 200 data points. We applied
the same augmentation process as above to obtain
the final dataset termed Human-200. The entire
process took approximately 1.5 hours for an expert
engineer. We then trained the stable object placement policy using this dataset under the same configura-
tions as before. Both models were evaluated on the same test dataset as shown in Tab. 3. ClutternGen-5000
enables significant higher performance than using Human-200 for the policy training.

We directly deployed the stable object placement policy trained with ClutterGen-5000 to a Franka Panda
arm equipped with an RGB-D camera. In each episode, the robot arm grasped and lifted a queried object
while six to eight other objects were randomly placed on the table to form an unseen clutter. Based on
the scene point cloud captured by the RGB-D camera and the object point cloud, the policy predicted
a stable placement pose, which was then used to plan and execute the robot’s actions. We repeated this
process by randomizing the clutter configurations for ten episodes per object. We used five target objects to
be placed. An episode was counted as successful if the object was stably placed without any collisions.
Failures occurred if the model failed to predict a stable pose, the arm could not reach the pose after five
attempts, or a collision occurred during placement. Across all 50 episodes, our zero-shot sim-to-real policy
achieved a 72% success rate. The performance drop is likely due to significant noise in the real-world point
cloud. This could be mitigated by further randomizing the dataset to simulate real-world noises or using
better hardware to capture the point clouds.

5 Conclusion, Limitations, and Future Work
In this work, we propose ClutterGen, an auto-regressive simulation scene generator for robot learning.
ClutterGen efficiently generates diverse, cluttered, and physically compliant environments without relying
on pre-existing datasets or human specifications. Our key idea of framing the scene generation task as
a reinforcement learning problem enables a closed-loop mechanism to sequentially generate 3D object
placements. Our policy design further enhances the diversity of the generated scenes. Through both
simulation and real robot experiments, we demonstrate that ClutterGen can help tackle several challenging
robotics tasks, such as clutter rearrangement and stable object placement in cluttered environments.

Our work has a few limitations that should be addressed in future research. First, the object layouts are
currently limited to rotation along the z-axis. Allowing rotations along the x and y axes could produce
more diverse and complex layouts. Second, we have only demonstrated the setups on flat surfaces. Future
work could explore various surface configurations, such as uneven or inclined surfaces. Finally, our current
training involves only ten objects in a limited space. Training the policy with a great number of objects
in the pool could enhance object-level generalization during testing. Overall, we hope that ClutterGen
provides a novel problem formulation for automated simulation scene design to facilitate the generation of
large datasets for robot learning.
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Appendix
Loss Function We use the PPO algorithm to optimize CSG. The policy objective function is given by

LCLIP(θ)=Et

[
min

(
rt(θ)Ât,clip(rt(θ),1−ϵ,1+ϵ)Ât

)]
(2)

rt(θ)=
πθ(at |st)
πθold(at |st)

(3)

where rt(θ) is the probability ratio between the new policy and the old policy; Ât is the advantage function
estimate at timestep t; clip(·) is a function that clips rt(θ) within the range [1− ϵ,1+ ϵ]; ϵ is a small
hyper-parameter that controls the clipping range.

The value function error and the entropy bonus are given by

LVF(θ)=Et

[(
Vθ(st)−R̂t

)2
]

(4)

LH(θ)=Et[H[πθ](st)] (5)

where Vθ(st) is the value function parameterized by θ; R̂t is the cumulative return at timestep t; H[πθ](st)
is the entropy of the policy at state st.

The combined loss function is given by

L(θ)=c1L
VF(θ)−c2L

H(θ)−LCLIP(θ) (6)

where c1 and c2 are the coefficients that balance the importance of the value function error and the entropy
bonus, respectively.
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Fig. 9: Learning curves of ClutterGen. The x-axis
shows the number of steps, and the y-axis shows the suc-
cess rate. The solid curve represents the average success
rate from three different initial random seeds for each
group, with the semi-transparent area indicating the stan-
dard deviation.
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Fig. 10: Maximum allowed attempts selection. The
performance will drop if the maximum allowed attempts
≤2. We choose 5 attempts for the ClutterGen.

Extra Explanation of the Stable Conditions It is difficult to precisely define object stable conditions
with single thresholds for the velocity and acceleration in the simulation. On one hand, the simulator is not
perfect, meaning a visually stable pose usually has non-zero velocity and acceleration. Too small thresholds
for the velocity and acceleration usually introduce false negatives (i.e., the queried object that is already
stable by human judgment but can not pass the stable conditions). On the other hand, too large thresholds
usually introduce false positives. In this work, we applied small thresholds for both values, formulating a
relatively strict checking condition.

Implementation Details of the ClutterGen The PointNet++ encoder was pre-trained on modelnet40
dataset [54] and the weights were frozen during the training of ClutterGen. The attempt history was
flattened and then padded by 0 if the current attempts were fewer than the maximum allowed attempts to
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Fig. 11: 5 groups objects dataset. Each group contains 10 objects. The group 1 to 4 are selected from the existing
object dataset. Group 5 is 3D-scanned everyday objects that are also used in our physical experiments.

Fig. 12: 10 test tables dataset. We select 10 different tables from the existing object dataset for the scene-level
randomization test.

guarantee fixed-size input before being sent to the history sequence encoder. All the training and test was
conducted in the PyBullet simulator [53].

ClutterGen Training Results We trained ClutterGen on different group objects. The training results
are shown in Fig.9. ClutterGen could reach above 0.85 success rate after 2.3M steps optimization for all
groups, which shows the high adaptation of different objects.

Selection of Maximum Allowed Attempts. We test the performance of ClutterGen with different maxi-
mum attempts on group 1 objects. Increasing allowed attempts will boost the performance. However, too
many attempts will slow down the training process. We set 5 attempts at most to balance the performance
and training speed.

Implementation Details of Stable Placement Policy We used two pre-trained PointNet++ models as the
perception encoders for the queried scene point cloud and the queried object point cloud respectively. We
did not freeze their weights during the training in this task. The perception features were concatenated and
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sent to a 4-layer MLP to generate the predicted placement pose into the scene surface center frame. This
pose was then transformed into the robot base frame for motion planning.

Tab. 4: PPO Hyperparameters
Hyperparameter Value Description
Learning Rate 0.0001 The step size at each iteration while moving toward a minimum of a loss function.
Batch Size 1000 Number of steps per gradient update.
Update Epochs 5 Number of epochs to update the policy.
γ 0.99 The discount factor for reward.
λgae 0.95 The discount for the general advantage estimation.
ϵ 0.2 The surrogate clipping coefficient.
c1 0.5 The coefficient of the value function.
c2 0.01 The coefficient of the entropy.
gclip max 0.5 The maximum norm for the gradient clipping.
Hidden Layer Size 256 The number of units of hidden layer in MLP.
Optimizer Adam Optimization algorithm for updating weights.

Tab. 5: ClutterGen Hyperparameters
Hyperparameter Value Description
Pobj 1024 Number of points of queried object point cloud.
Psce 20480 Number of points of queried scene point cloud.
Max Attempts 5 Number of allowed attempts of placing the queried object.
c 0.005 The coefficient of the velocity and acceleration penalty.
R0 100 The scalar reward.
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