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ABSTRACT

Despite its success, generative adversarial networks (GANs) still suffer from mode
collapse, namely the generator can only map latent variables to a partial set of
modes of the target distribution. In this paper, we analyze and try to regularize this
issue with an independent and identically distributed (IID) sampling perspective
and emphasize that holding the IID property for generation for target distribution
(i.e. real distribution) can naturally avoid mode collapse. This is based on the basic
IID assumption for real data in machine learning. However, though the source
samples {z} obey IID, the generations {G(z)} may not necessarily be IID from
the target distribution. Based on this observation, we propose a necessary condition
of IID generation and provide a new loss to encourage the closeness between the
inverse source of real data and the Gaussian source in the latent space to regularize
the generation to be IID from the target distribution. The logic is that the inverse
samples from target data should also be IID in the source distribution. Experiments
on both synthetic and real-world data show the effectiveness of our model.

1 INTRODUCTION

In the generative model fields, the training data (in target space) is often assumed to be IID sampled
from an unknown implicit distribution. Deep generative models often try to construct a mapping
from a known distribution in source space (e.g. Gaussian distribution) to the implicit target. Popular
generative schemes include Variational Auto-Encoders (VAEs) (Kingma & Welling, 2014), Generative
Flow models (Rezende & Mohamed, 2015), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), among which GANs have been a popular tool for data generation, especially for
generating images with a high resolution. Mode collapse is one of the standing issues in GAN, a
phenomenon that the generator tends to get stuck in a subset of modes while excludes other parts of
the target distribution (Liu et al., 2020; Yang et al., 2019), leading to a poor diversity of generation.

Efforts have been made to address mode collapse, along two branches: 1) get a better convergence
between the generated distribution and the target (real data) distribution (Gulrajani et al., 2017; Metz
et al., 2017). Though the distribution convergence may be the ultimate goal of generation, the two
distributions are unknown, and we can only get the sampling data to improve the convergence. Thus
the expression of the distribution convergence can be vague and imprecise. Besides, these methods
study little the relation of the generated data, which leads them to improve convergence merely on
the quality of the generated samples instead of diversity as the real data maintains. 2) penalize the
similarity of the generated images (Elfeki et al., 2019; Meulemeester et al., 2020; Mao et al., 2019) or
apply multiple generator/discriminators (Liu & Tuzel, 2016; Nguyen et al., 2017) . These methods
increase the diverse generations directly but can hardly guarantee covering all the modes.

We first make a basic yet under-exploited (in GAN literature) observation that datasets for generation
are assumed sampled to be independent and identically distributed (IID) from an unknown target
distribution (i.e. real distribution). For the task of IID generation, identical generation from target
distribution is the mainstream goal that previous works studied. For example, the discriminator D is
used to distinguish whether every generation is sampled from an identical target distribution in GAN-
based methods (Goodfellow et al., 2014). While in VAE-based or Flow-based approaches (Kingma
& Welling, 2014; Rezende & Mohamed, 2015), Log-likelihood is applied to increase the density of
every generation. Both of them focus on increasing the quality of generation but ignore the diversity.
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Figure 1: Main idea and technical logic. The left shows the motivation and ideal goal in Sec. 1. While
the right part refers to our approach mainly in Sec. 4.

We aim to solve the problem of independent generations from the target distribution. Note that
though the latent {z} are IID sampled from the source, it cannot tell that the generations {G(z)} are
IID samples from the target distribution. We show more detailed idea as follows.

We first propose the concept of mode completeness as a core requirement of the ‘perfect’ mapping
from the source distribution to the target distribution for IID generation. It is well known that the
target distribution is unknown, and we only know its finite IID samples (i.e. real data). Thus we
propose a weaker/necessary condition1 for IID generation based on an inverse mapping perspective:
if the real data are IID samples from target distribution, their inverses in the source space are also
IID. To achieve IID property, a common and straightforward idea is to drive the distribution of the
overall inverse samples close to a standard Gaussian by certain measures2. This idea also differs from
existing inversion-based methods (Srivastava et al., 2017; Donahue et al., 2017; Rosca et al., 2017)
which learn the relationship between the latent data z and real data x with the discriminator.

Our new perspective can also enrich and extend the understanding of mode collapse, whose concept
has not been well established. Mode collapse in existing literature primarily refers to mode dropping.
That is, the generation does not cover a few modes – see example in Fig. 2. Our IID view naturally
allows for a flexible description of mode collapse, and the resulting new model is expected to handle
both hard mode dropping and soft mode deficiency (i.e. some modes are not hit with enough generated
samples as the real distribution). We show that the proposed method can be effective in both cases, as
more appropriately measured by respective metrics. The main highlights of this paper are:

1) We take an IID perspective to address mode collapse in GAN. We first propose a perfect concept for
generator, which should satisfy Mode Completeness as shown in Def. 1. Then due to the limitation of
finite real samples from target distribution, we propose a necessary condition of mode completeness
as shown in Prop. 1, which requires the IID property of the inverse samples from the real data.

2) With the requirement of Prop. 1, a regularizer is proposed for avoiding mode collapse. We enforce
the inverse samples to be close to a standard Gaussian distribution by Wasserstein distance, which
is termed as Gaussian consistency loss in this paper (see Section 4.3). QQ-plot, Shapiro–Wilk and
Kolmogorov-Smirnov statistics are also used to test the IID property of the inverse Gaussian samples.

3) We show that IID-GAN outperforms baselines by different metrics on synthetic data w.r.t.: number
of covered modes, quality, reverse KL divergence. Our simple technique also performs competitively
on natural images. We also investigate unsupervised disentanglement feature learning and conditional
GAN. Our new regularization can be seen as an orthogonal plug-in to existing GAN models.

2 RELATED WORK

Since its debut (Goodfellow et al., 2014), subsequent works of Generative Adversarial Networks
(GANs) have been developed to improve the stability and quality of generation. Nevertheless GANs
still suffer from training instability, and mode collapse has been one of the most common issues.

Improving training behavior. Unrolled GAN (Metz et al., 2017) presents a surrogate objective
to train the generator, along with an unrolled optimization of the discriminator, which provides
improvements in both training stability and distribution convergence. As an improvement of Wasser-
stein GANs (Arjovsky et al., 2017), WGAN-GP (Gulrajani et al., 2017) devises a gradient penalty.
Although these methods all claim to improve the convergence between the generated and real distribu-

1Note that it will become a necessary and sufficient condition if real data is infinite.
2More precisely, in batch-based GAN training, each batch shall be close to standard Gaussian.
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tion, the convergence may focus more on the quality of the generation, which makes every generated
sample closer to the real distribution samples. However, they focus less on the relationship among
the generated samples, making it hard to generate independent samples from the real distribution.

Enforcing to capture diverse modes. Many methods address GAN’s mode collapse by increasing
the diversity or penalizing similarity. GDPP (Elfeki et al., 2019) applies the determinantal point pro-
cess theory, which gives a penalty for the discriminator to enforce the convergence of the covariance
matrix between the features of generated samples and real data. The approach in (Meulemeester
et al., 2020) uses the last layer output of the discriminator as a feature map to study the distribution
of the real and the fake data. It matches the fake batch diversity with the real batch diversity by using
the Bures distance between covariance matrices in feature space. All of these methods are concerned
with the relationship among generated results through the covariance matrices. However, due to the
randomness of generated samples and real samples, they lack theoretical guarantees and stability
of the diversity generations, which do not capture the key point of generating data with the same
diversity (i.e. the dependence of generations for real distribution).

Multiple generators and discriminators. Another way to reduce mode collapse is involving more
than one generator to achieve wider coverage for the real distribution. In (Liu & Tuzel, 2016), two
coupled generator networks are trained with parameter sharing to learn the real distribution jointly.
The multi-agent system MAD-GAN (Ghosh et al., 2018) involves multiple generators along with
one discriminator. The system implicitly encourages each generator to learn its mode. On the other
hand, multiple discriminators are used in (Durugkar et al., 2017) as an ensemble. Similarly, two
additional discriminators are trained to improve the diversity (Nguyen et al., 2017). These models do
not essentially solve mode collapse, and they resort more to network design and parameter tuning.

Mapping back to learn the representations. Methods e.g. BiGAN (Donahue et al., 2017), VEE-
GAN (Srivastava et al., 2017) and VAE-based models (Kingma & Welling, 2014) design an inverse
or encoding network of the generator to encourage the convergence between the inverse distribution
of real data and source distribution. However, similar to the previously discussed methods which
improve training behavior, the mapping back procedure also ignores the requirement of IID, which
prevents convergence between the inverse and source distributions as shown in Fig. 4. Our work
follows these works and takes one step further to show the effect of IID informed inverse mapping
for solving the mode collapse issue.

(a) two mode collapse cases

(b) mode completeness

Figure 2: Mapping from source to
target: (a) hard mode drop (left) and
soft mode deficiency (right). Mode
dropping can be treated as a spe-
cial case of the soft mode deficiency
when the green part is sparse to the
limit. (b) Assume the existence of
the inverse of mapping G(·). Given
any set S, the probability measures
of the set G−1(S) and S are equal.

These efforts are orthogonal to ours and most of them can
be fulfilled in conjunction with ours to further improve the
training stability, which we leave as future work.

3 PRELIMINARIES AND MOTIVATION

Motivated by the mode collapse case presented in Fig. 2(a),
we define the mode completeness as the ideal mapping state
between two probability measures for the generator:

Definition 1 (Mode Completeness) The probability mea-
sures α and β are defined in the source spaceA and the target
space B, respectively. The generative mapping G : A → B is
defined as mode completeness from α to β if G satisfies:

β(S) = α(z ∈ A : G(z) ∈ S}), (1)

where S ⊂ B is an arbitrary set in the the target space.

Though the purpose of mode completeness is to avoid mode
collapse as shown in Fig. 2(b), Eq. 1 is exactly the same
as the definition of the push-forward operator (Peyré et al.,
2019) β = G#α in optimal transportation. So the mode
completeness can also be understood as designing the mapping
G that satisfies that β = G#α and the operator G# means
that G pushes forward the mass of α to β (Peyré et al., 2019).
Based on Def. 1, we can find that the mode collapse will not
happen because of the same value of the probability measures
given the corresponding sets based on G (i.e. α({zi}) = β({T (zi)})). Then when zi are IID
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sampled from α, the generated samples {G(zi)} can also be viewed as IID from β due to the equal
probability.

The IID generation, i.e. mode completeness β = G#α can not completely achieve for the generative
model because β is complex and unknown. The only information that we will make full use of, is
the IID basic assumptions of the real training data from β. If we assume the existence of the inverse
of the mapping G i.e. G−1 : B → A, which satisfies z = G−1(G(z)) and x = G(G−1(x)) for
any z ∈ A and x ∈ B, then we can obtain a necessary condition for mode completeness to address
the mode collapse. Such a necessary condition for IID generation is formalized by the following
proposition (see Appendix A for proof):

Proposition 1 (IID Property for Inverse Targets) If the generative mapping G satisfies mode
completeness from the source probability measure α to the target probability measure β and its
inverse G−1 exists, then given IID samples {x(i)}ni=1 from β, their inverses {G−1(x(i))}ni=1 can be
viewed as IID samples from α.

Remarks: Since it is commonly assumed that the real data {x(i)}ni=1 are independently sampled
from an unknown distribution β, we can obtain that their inverses {G−1(x(i))} can be viewed as
IID samples from a known distribution α. So to satisfy the mode completeness, we need to train the
inverse mapping G−1 so that the inverse samples of real data can be closer to the IID samples from α.
Note we cannot obtain a strict inverse mapping G−1, a function F which maps back to the source
space will be designed to approximate G−1 by penalizing z = F (G(z)) and x = G(F (x)).

Essential difference to VEEGAN. VEEGAN presents a similar idea with Prop. 1, which maps back
and enforces the inverse samples to obey Gaussian by discriminating real/fake (z,x) pair. However,
the essential difference is that VEEGAN do not take an IID perspective. It is well known that the
domain of (1D) Gaussian distribution is over R and thus every inverse sample can naturally be viewed
as a Gaussian sample. What the discriminator of VEEGAN actually does is to enforce G−1(x) to
be close to 0. Differently, Prop. 1 requires the entire inverses {G−1(x)} to be IID sampled from
Gaussian, which require us to consider the inverse sample set together. Fig. 4 shows the failure of
VEEGAN to approximate the inverse samples to Gaussian.

4 THE PROPOSED APPROACH

Our loss (including conditional GAN (Mirza & Osindero, 2014)) contains three parts – see Fig. 3.

4.1 ADVERSARIAL LEARNING TERM: VANILLA GAN LOSS

The vanilla GAN model (Goodfellow et al., 2014) consists of a discriminator D : Rd → R and
a generator G : RM → Rd, which are typically embodied by deep neural networks. Given the
empirical distribution p(x), D(x) is used to distinguish whether the generated samples from real data,
while G(z) is the mapping from Gaussian sample z to a point in the target spaceRd. The objective
V (G,D) is optimized for the discriminator and generator by alternatingly solving the mini-max:

Ex∼pr(x) [log(D(x))] + Ez∼p(z) [log(1−D(G(z)))] (2)

The first term denotes the probability expectation that x comes from real data distribution p(x)
and the second involves the input distribution p(z), which is embodied in this paper as a standard
multi-dimensional (M -D) Gaussian distribution N (z;0, I). I ∈ RM×M is the identity matrix.

4.2 RECONSTRUCTION TERM: CYCLE-CONSISTENCY LOSS FOR SINGLE SAMPLE

Prop. 1 requires an inverse mapping G−1 of the generation. Noting that our method involves inverse
mapping as implemented by neural network F , a popular and effective technique (Srivastava et al.,
2017; Donahue et al., 2017) is to employ a cycle-consistency loss to prompt F = G−1, where
λ = d/M is the dimensionality ratio of x to z.

Lre(G,F ) = Ez‖z− F (G(z))‖1︸ ︷︷ ︸
to achieve inverse mapping

+λEx‖x−G(F (x))‖1︸ ︷︷ ︸
to avoid mode dropping

(3)

The first term promotes F to be the inverse ofG, which takes the reconstruction loss as the expectation
of the cost of auto-encoding noise vectors (Srivastava et al., 2017). The second term promotes
F (x) ∈ RM , which makes z̃ = F (x) possible to be sampled from Gaussian distribution. Then for
each x, we can find the corresponding z̃ inRM satisfying G(z̃) = x. Note that it cannot help avoid
mode imbalance, since the imbalance refers to the overall distribution rather than the individual data
points studied here. Then we introduce our source space distribution closeness loss.
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(a) Loss to guarantee identical sampling

(b) Cycle-Consistency for inverse mapping

(c) Loss to guar-
antee indepen-
dent sampling

Figure 3: IID-GAN: generator G maps random samples from original standard M -D Gaussian to
target ones and F inverts the target sample back to a source sample which obeys M -D Gaussian.
Note that CycleGAN addresses image-to-image generation and studies the mapping between image
domains, while we only study the mapping relationship between latent space and target space.
4.3 REGULARIZER TERM: GAUSSIAN CONSISTENCY LOSS FOR INVERSE DISTRIBUTION

Recalling the necessary condition for IID generation proposed in Prop. 1, assume that the given real
data {x(i)} are IID sampled from p(x), then the inverse samples of the real data will be independent
and obey the same distribution p(z) (i.e. IID samples from source distribution). Thus, given a batch
of real data, the mapping F should make {F (x(i))} closer to independent samples from standard
Gaussian p(z). For simplicity, we choose Gaussian as the distribution for IID sampling.

M -D Gaussian consistency loss. Suppose the inverse samples {z̃(i)}Ni=1 ∈ RM of real data follow
a Gaussian distribution N (z;µ,Σ) in the latent space, then maximum likelihood estimation is:

µ̃ =
1

N

N∑
i=1

z̃(i), Σ̃ =
1

N

N∑
i=1

(
z̃(i) − µ̃

)> (
z̃(i) − µ̃

)
(4)

where µ̃ ∈ RM , and Σ̃ ∈ RM×M is the estimated covariance. Our goal is to make the Gaussian
q(z) = N (z; µ̃, Σ̃) closer to the standard Gaussian p(z) = N (z;0, I), based on which we can
view {z̃(i)}Ni=1 as IID samples from standard Gaussian p(z). One way is to introduce a distribution
closeness loss LGau. E.g., it can be specified as the square of Wasserstein distance of two Gaussians:

LGau = ‖µ̃‖2 + trace(Σ̃ + I− 2Σ̃1/2) (5)
The two Gaussian distributions q(z) and p(z) can also be evaluated with static divergence or directly
distinguished by a designed discriminator, e.g., p-norm, KL-divergence or z̃−discriminator. Note that
the method (Makhzani et al., 2015) with z̃−discriminator trains another discriminator to distinguish
the Gaussian samples. More details about these methods are presented in Appendix B.

Decoupling M -D Gaussian into M 1-D Gaussians. For large M and small batch size, the training
can suffer from the curse of dimensionality for estimating Σ. So we decouple the M -D Gaussian
loss to the sum of the 1-D Gaussian losses of M ones. Specifically, we introduce an assumption on
the covariance that the non-diagonal values are all zero. Equivalently, the inverse samples {z̃(i)}Ni=1
follow M 1-D Gaussian N (z̃;µ,σ) and then we can get the estimation µ̃ and σ̃ for the Gaussians.

Here our goal is to make the 1-D Gaussian distribution q(zj) more closer to the standard 1-D Gaussian
distribution in each dimension j. Similar to the M -D case, we can design the Gaussian loss with
Wasserstein distance between two Gaussian distributions, and summing them over M dimensions:

LGau =

M∑
m=1

(
µ̃2

m + (σ̃m − 1)2
)

(6)

Throughout the rest of this paper, we directly call it the Gaussian loss, omitting the term consistency.

The final objective. By inputting as many samples sampled from p(z) as possible, together with the
corresponding inverse samples {z̃} from the real data, we optimize Dz and F by adversarial learning
to push {z̃} closer to the sampling results of p(z). Then we can obtain the final loss as:

min
G,F

max
D

V (G,D) + λreLre(G,F ) + λGauLGau(F ) (7)
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Figure 4: Example for 2-D source (z) to 2-D target (x) generation and inverse with 8 modes Ring
dataset as the real training set. Left 4 columns are the results of VAE, BiGAN, VEEGAN, while
right 4 columns are the results of IID-GAN under different Gaussian consistency losses as detailed
in Sec. 4.3 after training 24K batches. For each half part, column 1 and column 5 show the inverse
of the real target data, column 2 and column 6 show the sampled z from Gaussian in source space.
Points in source are in nine colors (8 ‘modes’ + 1 ‘bad’) according to their generation’s mode in the
target space. The pie charts show the ratio of valid generation points in different modes.

where LGau(F ) can be specified according to different distances or divergence and λre, λGau are
loss weights, which will be discussed in experiment in detail.

IID-GAN can be extended to the conditioned case (Mirza & Osindero, 2014) when the label of
the real data c is known. As for conditional IID-GAN, (z, c) are the inputs of the generator G for
generating data points and the real x is the input of F for classification, and the Gaussian consistency
loss is used to maintain the independent condition. The Gaussian loss is mainly used to learn the
diversity of hidden features (e.g. the thickness, inclination for MNIST). See details in Appendix C.

Remarks for the Disentanglement View. Many previous studies (Higgins et al., 2017; Kim & Mnih,
2018) learn the unsupervised disentanglement representation with the assumption of independent
factors, i.e. q(z) =

∏M
j=1 q(zj). However, the recent work (Locatello et al., 2019) opposes this

view and argues that unsupervised learning of disentangled representations is not possible without
inductive biases on both models and data. Our work presents a new viewpoint with an M -D Gaussian
guarantee. When q(z) approximates an M -D standard Gaussian, it is obvious that z is independent
for different dimensions. However, varying zi can not disentangle different modes as shown in the
first column of Fig. 4. We find that representing the data in polar coordinates and varying the polar
angle and diameter may be a good way for unsupervised learning to disentangle representations.

IID testing for Gaussian. In this subsection, we aim to guarantee the IID Gaussian property for
inverse samples from the real data. However, the regularization assumes a non-standard Gaussian
and enforces the consistency of two Gaussians, which raises doubts: Is the consistency useful for
IID? We apply mathematical statistics here to test the Gaussian IID property. Specifically, we adopt
the QQ-plot, Shapiro–Wilk test (SW), Kolmogorov-Smirnov test (KS) to show whether the samples
are IID sampled from standard Gaussian. The results are shown in Fig. 6 and Table 2.

4.4 FURTHER COMPARISONS WITH PEER APPROACHES

In this subsection, we fully discuss the comparisons with peer approaches in terms of methodology.

Comparison to VAE-based methods. Most VAE-based methods (Rosca et al., 2017; Higgins et al.,
2017; Kim & Mnih, 2018) contain an encoder and use the Gaussian distributions for each real data to
learn the latent representation. The difference is that our method considers the overall mini-batch
data to make the inverse samples of the real data approximate IID standard Gaussian samples, based
on which our method can generate more accurate and diverse data.

Comparison to GAN methods with inverse mapping. Many GAN based methods (Donahue et al.,
2017; Jeff & Simonyan, 2019) also try to learn the representation by inverse mapping. However,
in contrast to IID-GAN, these methods do not consider the data from the perspective of the overall
samples and do not consider the IID property. CycleGAN (Zhu et al., 2017) proposes a cycle
consistency loss to obtain the transition between two different styles of images. However, different
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Figure 6: QQ-plot for IID test for standard Gaussian. The closer to diagonal, the closer to Gaussian.

from our method, CycleGAN is designated for image translation and pays less attention to the
diversity of the generated images. Their method has nothing to do with IID.

Figure 5: Generations of grid data given poor
initialization. Compared with 1-D Gaussian con-
sistency loss, the M -D loss outperforms after
enough batch iterations (i.e. training steps). Sim-
ilar results are shown on Ring in Appendix F.

Comparison of M -D and 1-D Gaussian loss.
Our method claims the Gaussian necessary con-
ditions for the inverse samples {z̃} of real data.
{z̃} is a multi-dimensional vector in latent space
and we expect the inverse samples to obey the
standard Gaussian N (z;0, I), which is the goal
of M -D Gaussian loss. However, in the case of
training with real-world data, {z̃} may have a
high dimension and lead to a dimension curse
with small batch size. We consider estimating
M single-dimensional standard Gaussian along
each dimension in the latent space to address this
problem, as shown by the delegated loss in Eq. 6.

5 EXPERIMENTS AND DISCUSSION

In this section, we adopt a simpler network architecture to directly evaluate the superiority of our
techniques. All experiments are conducted on a single GPU of GeForce RTX 2080Ti.

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

Since the distribution is known, mode collapse can be directly measured on synthetic data. In line
with (Metz et al., 2017), we simulate two synthetic datasets.

Ring dataset. The dataset consists of a mixture of 8 2-D Gaussians p(z) with mean
{(2 cos (iπ/4), 2 cos (iπ/4))}8i=1 and standard deviation 0.001. 12.5K samples are simulated from
each Gaussian (i.e. 100K samples in total). 50K samples from p(z) are used to generate x for test.

Grid dataset. The dataset consists of a mixture of 25 2-D isotropic Gaussians i.e. p(z) with mean
{(2i, 2j)}2i,j=−2 and standard deviation 0.0025. 4K samples are simulated from each Gaussian (i.e.
100K samples in total). 100K samples from p(z) are used to generate target samples {x̃} for test.

Metrics and network architecture. Following (Metz et al., 2017; Elfeki et al., 2019), we use the
number of covered modes, generation quality3 and reverse KL divergence. Since in the experiment,
each mode shares the same number of real samples, one can calculate the reverse KL divergence
between the generated distribution and the real one (Nguyen et al., 2017) . The reverse KL divergence
is not strictly defined as

∑m
i=1 pi < 1 (i.e. there exist poor generated points), and allows being

negative. And for the network architecture, we adopt ReLU instead of sigmoid as the activation
function and the networks consist of four linear layers. The architecture details are in Appendix D .

Results with Generation Metrics. IID-GAN is compared with vanilla GAN (Goodfellow et al.,
2014), BiGAN (Donahue et al., 2017), Unrolled GAN (Metz et al., 2017) and VEEGAN (Srivastava
et al., 2017) on Ring and Grid datasets in Table 1. We can see that the two IID-GAN cover all
modes on both Ring and Grid. And for the RKL evaluation, IID-GAN(M -D) achieves a lower RKL
value and a smaller standard deviation. Besides, the quality metric of IID-GAN remains high, which
indicates that the inverse mapping has no bad effect during training on synthetic datasets.

3We follow (Meulemeester et al., 2020): if the generated data point is within 3 times the std of the Gaussian,
consider it a good (or valid) generation (otherwise bad) and the resulting ratio is used as the generation quality.
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Table 1: The generation results for Ring and Grid synthetic data.

Models 2D-Ring 2D-Grid
Mode#↑ Quality% ↑ RKL↓ Mode#↑ Quality% ↑ RKL↓

GAN 3.6± 0.5 98.8± 0.6 0.92± 0.11 18.4± 1.6 98.0± 0.4 0.75± 0.25
BiGAN 6.8± 1.0 38.6± 9.5 0.43± 0.18 24.2± 1.2 83.4± 2.9 0.26± 0.20

Unrolled GAN 6.4± 2.2 98.6± 0.5 0.42± 0.53 8.2± 1.7 98.7± 0.6 1.27± 0.17
VEEGAN 5.4± 1.2 38.8± 16.7 0.40± 0.10 20.0± 2.6 85.0± 5.9 0.41± 0.10

IID-GAN (1-D) 8.0± 0.0 97.3± 0.6 0.18± 0.06 25.0± 0.0 97.8± 0.49 0.32± 0.09
IID-GAN (M -D) 8.0± 0.0 99.0± 0.2 0.17± 0.06 25.0± 0.0 98.0± 0.4 0.26± 0.12

(a) Generation Quality (b) KL divergence
Figure 7: Generating quality and KL divergence
(for diversity) from the inverse source to the stan-
dard Gaussian on MNIST.

Table 3: Results on CIFAR-10 and CIFAR-100.
Models CIFAR-10 CIFAR-100

IS↑ FID↓ IS↑ FID↓
GAN 4.84 78.4 4.79 85.6

Unrolled GAN 4.65 76.2 4.96 83.1
VEEGAN 3.56 161.1 4.34 88.6

GDPP 4.43 80.4 4.87 82.8
DP-GAN 4.72 78.7 4.79 83.3

IID-GAN(1-D) 4.89 65.4 5.05 84.5
IID-GAN(M -D) 5.00 76.9 5.27 82.1

The Gaussian inverse samples. As discussed above, some methods (Kingma & Welling, 2014;
Srivastava et al., 2017) designs an inverse mapping or an encoder to learn the representations between
z and x. However, as shown in Left 4 columns of Fig. 4, VAE-based methods (Kingma & Welling,
2014) can cause the overlap of the inverse samples z, which may lead to bad generations(white
points). And BiGAN and VEEGAN learn the relations between z and x rather than the relation
among the samples {G−1(x)}, which fails to get the 2D inverse Gaussian samples as shown in the
first column of Fig. 4. For IID-GAN, as shown in the fifth column for IID-GAN(M-D), the inverse
samples is very similar to the Gaussian samples, which show the effect of the regularization.

Generation with bad initialization. It is well known that bad initializations can usually lead to the
mode collapse. However, as shown in Fig. 5, IID-GAN(M-D) can overcome the problem of bad
initialization and gradually solve the mode collapse by further training.

Table 2: Static evaluation for IID test on Ring.

Model SW Static ↑ KS Static ↓
Dimension 1 Dimension 2

BiGAN 0.8537 0.3900 0.1637
VEEGAN 0.9567 0.3141 0.2350

IID-GAN(1-D) 0.9548 0.0882 0.0866
IID-GAN(M-D) 0.9824 0.1185 0.0579

IID Test for inverse samples. As discussed in
Sec. 4.3, we conduct the IID test for Gaussian dis-
tribution on Ring dataset. Shapiro-Wilk(SW) and
Kolmogorov-Smirnov(KS) Statics are calculated
to show the IID property. We present the results in
Table 2. Note that SW static is up to 1, while KS
Statics is down to 0. Besides, in Fig. 6, QQ-plot
are used for IID test. Compared to other methods, the blue points of IID-GAN are closer to the red
diagonal, which means that the inverse samples of each dimension are close to the Gaussian.

Ablation study for Gaussian consistency loss. On the right four columns of Fig. 4, we compare
the results of 1-D, M -D and without Gaussian consistency loss in Ring datasets and notice that the
M -D Gaussian setting perform better. Specifically, for such a 2-D source space case, the yellow
inverse samples in red boxes lead to soft mode deficiency in 1-D Wasserstein loss setting, while the
generated modes in the M -D case are more uniformly scaled and more suitable to solve the soft
mode deficiency. More results about synthetic data are shown in Appendix F.

5.2 EXPERIMENTS ON REAL-WORLD DATA

The experimented image datasets include MNIST, stackedMNIST, CIFAR-10, CIFAR-100, and
STL-10. For all experiments, the model is trained for 300 epochs with a batch size of 256 and
0.0002 learning rate. We adopt different architectures to evaluate our model, which mainly follow the
previous studies (Radford et al., 2016; Meulemeester et al., 2020; Dieng et al., 2019).

All the compared models are trained in 100K steps and the results are calculated based on 10K
generated images for CIFAR-10, CIFAR-100 and STL-10 (Coates et al., 2011). Detailed information
about the network architectures for experiments is presented in Appendix G.1. Here we use p-norm
distance as M -D Gaussian loss. It is worth noting that our IID-GAN rarely encounters training
failures e.g. gradient explosion which most other compared methods struggle during training. Besides,
for the evaluation, we adopt the popular Inception Score (IS) (Salimans et al., 2017) and Fréchet
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Figure 8: Conditional results on CIFAR-10 for CGAN, MSGAN and conditional IID-GAN. The
generation results of CGAN and MSGAN can easily deteriorate as training proceeds, while IID-GAN
maintains good performance consistently.
Inception Distance (FID) (Heusel et al., 2017) as quantitative metrics. Mode Score (MS) (Che
et al., 2017) is adopted to make full use of information from real datasets for reasonable evaluation.
Following Richardson & Weiss (2018), JSD is used to measure the similarity between the generated
distribution and the real distribution. For easily distinguishable datasets like MNIST, we use the
number of covered modes and reverse KL for evaluation. The training details are in Appendix E .

Training stability for IID-GAN. As shown in Fig. 7, the generation quality and KL divergence are
evaluated on MNIST. 1-D and M -D IID-GAN can lead to less mode imbalance (which is evaluated
by KL divergence) and higher quality than VAE, while VEEGAN is unstable and often fails to
successfully generate in case of bad initialization.

Evaluation Results. In addition to MNIST, the results of stacked MNIST are shown in Table 4,
which is evaluated by Mode Number, KL divergence and FID. The KL divergence calculation is
based on the classification results by the classifier proposed by (Dieng et al., 2019). Table 5 shows
the experimental results of CIFAR-10 and CIFAR-100. We evaluate the generations of IID-GAN with
IS and FID, comparing with UnrolledGAN (Metz et al., 2017), VEEGAN (Srivastava et al., 2017),
GDPP and DP-GAN (Pei et al., 2021). The generation of STL-10 is evaluated in Table 5. These
experimental results exhibit the superiority of IID-GAN.
Table 4: Generation Results on Stacked MNIST and
the architecture is in line with Radford et al. (2016).

Models Stacked MNIST
Mode↑ KL↓ FID↓

GAN 392.0 8.012 97.788
VEEGAN 761.8 2.173 86.689
PACGAN 992.0 0.277 117.128

IID-GAN(1-D) 996.4 0.152 86.911
IID-GAN(M -D) 999.7 0.101 69.675

Table 5: Generation Results on STL-10.

Models STL-10
IS↑ FID↓ MS↑

GAN 2.28 245.21 2.29
BiGAN 1.22 251.21 1.22

Unrolled GAN 4.78 142.16 4.62
VEEGAN 1.45 298.95 1.46

IID-GAN(M -D) 5.16 139.10 5.12

Table 6: Evaluation with the framework
of WGAN-GP and SNGAN. .

Models CIFAR-10
IS↑ JSD↓

WGAN-GP 7.343 0.00339
IID-GAN(WGAN-GP) 7.443 0.00326

SNGAN 7.255 0.0327
IID-GAN(SNGAN) 7.350 0.0219

Results on conditional generation. We present the re-
sults in Fig. 8. Given different categories for generation,
the conditional IID-GANs (including its 1-D version) are
the most stable and robust on CIFAR-10, and do not suf-
fer from mode collapse. More results about conditional
generation are presented in Appendix G.2.

Results on different GAN frameworks. The previous
results are based on vanilla GAN. To fit with state-of-
the-art generative model achievements, we introduce IID reorganizations on advanced models e.g.
WGANGP (Gulrajani et al., 2017) and SNGAN (Miyato et al., 2018), to examine the performance of
IID reorganizations on more frameworks. We conducted experiments on CIFAR-10. As shown in
Table 6, the performance of WGAN-GP and SN-GAN is improved under the IID regularization.

Results on disentanglement. Unsupervised disentanglement results are shown in Fig. 12 in Ap-
pendix. We study it with the polar coordinate system instead of Cartesian coordinates. By varying
the polar radius and the polar angle, we obtain a good disentanglement result. As shown in Fig. 11,
we can see the disentanglement results in different coordinate systems. More results about real data
are shown in Appendix G.2.

6 CONCLUSION

We provide an IID sampling perspective to address the mode collapse of GAN. Our devised inverse
mapping technique and the new loss show their effectiveness in solving mode collapse on both
synthetic and real-world datasets. The source code will be made publicly available.
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APPENDIX

A DETAILS IN SECTION 3

A.1 A GENERAL CASE OF PROPOSITION 1

Proposition 2 Assume existence of the mapping G which satisfies that G#α = β and its inverse
G−1. Let ρ is the joint probability measure of n independent β and π is the joint probability measure
of n α where T̃#π = ρ and T̃ = [T, T, . . . , T ] with concat of n mapping T . then we can get that π is
the joint probability measure with n independent α.

Proof 1 Given n measurable set Si ⊂ B and S = S1 × S2 × · · · × Sn, then we can get that
ρ(S) = β(S1)β(S2) . . . β(Sn) (8)

For the reason that T̃#π = ρ and T#α = β, we know that ρ(S) = π(T̃−1(S)) and β(Si) =
α(T−1(Si)). And then we can get that

π(T̃−1(S)) = α(T−1(S1)) · α(T−1(S2)) . . . α(T−1(Sn)) (9)
which means that π is the joint probability measure with n independent α.

A.2 THE PROOF OF PROPOSITION 1

Proposition 1 is a special case of Proposition 2. So the proof of Proposition 1 can easily get from the
proof of Proposition 2.

Proof 2 Set n measurable sets as S1 = {x1},S2 = {x2}, . . . ,Sn = {xn} where x1, x2, . . . , xn are
n IID samples from target distribution, then according to Proposition 2, we can get that the following
equation with Eq. 9:

α(T−1(x1)) · α(T−1(x2)) . . . α(T−1(xn)) = π(T̃−1({x1, . . . , xn})) (10)
which means that {T−1(x(i))}ni=1 can be viewed as n independent samples from source distribution.

B MORE M-D GAUSSIAN LOSS WITH DIFFERENT DIVERGENCE

In this paper, four methods are used to optimize as Gaussian Consistency loss to reduce the mode
collapse:

1) p-norm for the difference of mean and variance. To evaluate the divergence of two Gaus-
sian distributionsN (z;0, I) and N (z; µ̃, Σ̃), we first calculate the difference of the parameters of
Gaussian with p-norm:

LGau = ‖µ̃‖p + ‖Σ̃− I‖p (11)
2) Wasserstein distance. The Wasserstein distance has been widely used to evaluate the distance
between two distributions. Given two M -D Gaussains p(z) and q(z), the 2-Wasserstein distance is:
We can see that W2(p(z), q(z)) = 0 if and only if µ̃ = 0 and Σ̃ = I.

3) KL divergence. It is an important divergence to measure the difference between two distributions.
Given M -D Gaussians p(z) and q(z), the KL divergence KL(p(z), q(z)) can be specified as:

LGau =
1

2

{
log(det(Σ̃))−M + tr(Σ̃−1) + µ̃>Σ̃−1µ̃

}
(12)

4) The z̃−discriminator. Real discriminators distinguish whether the generated image is a sample
of real distribution p(x). Similarly, we can also use a discriminator to distinguish the difference
between real Gaussian samples and generated ones as is done in Makhzani et al. (2015). We introduce
a discriminator to distinguish whether it is from standard Gaussian distribution. We can get the final
loss as

min
G,F

max
D,Dz

V (G,D) + Lcons(G,F ) + LGau(F,Dz) (13)

where LGau(F,Dz) can be defined as
Ez∼Pz

[log(Dz(z))] + Ex∼p(x) [log(1−Dz(F (x)))] (14)
Through alternating training, we can get the optimal G,F and D,Dz .
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C CONDITIONED IID-GAN

When the conditioned label c is known, the objective function V (G,D) is optimized for the discrimi-
nator and generator by solving the minimax problem in an alternating fashion as:

Ex∼p(x) [log(D(x))] + Ez,c∼p(z) [log(1−D(G(z, c)))] (15)

The first term gives the expectation of probability that x comes from real data distribution p(x) and the
second involves an input distribution p(z, c), which is embodied by a standard multi-dimensional(M -
D) Gaussian distribution N (z;0, I) and discrete uniform distribution in this paper. To get the
approximate inverse mapping, We adopt the neural network F as the inverse of the generator G. The
reconstruction loss is specified as:

Lre(G,F ) = Ez,c‖
[
z
c

]
− F (G(z, c))‖2 + Ex‖x−G(F (x))‖2 (16)

where z, c are the inputs of the generator to generate the data points x and given x, the inverse
mapping F will reconstruct source sample z and label c. Besides, Gaussian loss for conditional
IID-GAN are similar to unconditioned case.

D SYNTHETIC DATA

D.1 NETWORK ARCHITECTURES FOR SYNTHETIC DATA

Instead of using tanh as the activation function as adopted in Metz et al. (2017); Elfeki et al. (2019)
for more stable training, to more directly verify our technique, we resort to ReLU with four linear
layers as the network architecture.

Table 7: Network Architecture of Inverse F for
Synthetic Ring-Grid Data.

Layer Output size Activation
Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 2 -

Table 8: Network Architecture of Discriminator
D for Synthetic Ring-Grid Data.

Layer Output size Activation
Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 2 -

Table 9: Network Architecture of Discriminator D for Synthetic Ring-Grid Data.
Layer Output size Activation
Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 1 -

E TRAINING DETAILS

MNIST MNIST contains 70,000 images of handwritten digits (LeCun et al., 1998). KL divergence
is used for evaluation. We set the weights (λre, λGau) = (0.5, 0.1). Following Dieng et al. (2019), a
classifier is trained to distinguish the category of generation images. We use the 10-category classifier
to divide the generated images into 11 categories. If the highest probability of the generated picture’s
prediction is smaller than 0.75, it means that the generation quality is poor and classified as bad,
otherwise, its label is determined according to the highest probability.

StackedMNIST. Our StackedMNIST covers 1,000 known modes, as constructed by stacking three
randomly sampled MNIST images along the RGB channels in line with the practice in Srivastava
et al. (2017). We also follow Srivastava et al. (2017) to evaluate the number of covered modes and
divergence between the real and generation distributions. The weights are set (λre, λGau) = (3, 3).
Results on CIFAR-10 and CIFAR-100. All models are trained for 100K steps i.e. mini-batches.
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We set (λre, λGau) = (3, 3). In Table 5, Inception Score and Fréchet Inception Distance (FID)
are used to evaluate the image quality and mode completeness. The best performance is observed
for IID-GAN w.r.t. image quality, measured by FID and Inception score and mode completeness,
measured by FID. Table 3 shows that IID-GAN outperforms UnrolledGAN, VEEGAN and GDPP.

F SYNTHETIC RESULTS

The generation results for Ring and Grid data compared with other methods are given in Figure 10(a)
and Figure 10(b).

Results of M-D different Gaussion loss are presented in Figure 9.

(a) Generation quality (b) Inverse KL divergence

Figure 9: Comparison of Gaussian consistency loss on Ring data.

(a) Results of Ring data (b) Results of Grid data

Figure 10: Comparison among different methods for Ring and Grid.

14



Under review as a conference paper at ICLR 2022

G REAL DATA

G.1 NETWORK ARCHITECTURES FO REAL DATA

Table 10: Network Architecture of Inverse F for CIFAR-10 and CIFAR-100.
Layer Output size Activation BN

Conv2d 16, 16, 3 ReLu Yes
Conv2d 8, 8, 64 ReLu Yes
Conv2d 8, 8, 128 ReLu Yes
Flatten - - -
Linear 100 - -

Table 11: Network Architecture of Generator G for CIFAR-10 and CIFAR-100.
Layer Output size Activation BN
Linear 16384 Relu Yes

Conv’2d 8, 8, 128 ReLu Yes
Conv’2d 16, 16, 64 ReLu Yes
Conv’2d 32, 32, 3 Tanh Yes

Table 12: Network Architecture of Discriminator D for CIFAR-10 and CIFAR-100.
Layer Output size Activation BN

Conv2d 16, 16, 64 LeakyReLu No
Conv2d 8, 8, 128 LeakyReLu Yes
Conv2d 4, 4, 256 LeakyReLu Yes
Flatten - - -
Linear 1 - -

Table 13: Network Architectures of Generator G
for STL-10.

Layer Output size Kernel
Linear 8192

ResnetBlock 4× 4
3× 3, 256
3× 3, 256
1× 1, 256

Upsample 8× 8 scale factor = 2.0

ResnetBlock 8× 8
3× 3, 128
3× 3, 128
1× 1, 128

Upsample 16× 16 scale factor = 2.0

ResnetBlock 16× 16
3× 3, 64
3× 3, 64
1× 1, 64

Upsample 32× 32 scale factor = 2.0

ResnetBlock 32× 32
3× 3, 64
3× 3, 64

Conv2d 32× 32

Table 14: Network Architecture of Inverse F for
STL-10.

Layer Output size Kernel
Conv2d 32× 32 3× 3, 64

ResnetBlock 32× 32
3× 3, 64
3× 3, 64

AvgPool2d 16× 16 3× 3, stride 2

ResnetBlock 16× 16
3× 3, 64
3× 3, 128
1× 1, 128

AvgPool2d 8× 8 3× 3, stride 2

ResnetBlock 8× 8
3× 3, 128
3× 3, 256
1× 1, 256

AvgPool2d 4× 4 3× 3, stride 2

ResnetBlock 4× 4
3× 3, 256
3× 3, 512
1× 1, 512

Linear 20

G.2 RESULTS FOR REAL DATA

Results on disentanglement. We perform unsupervised disentanglement learning with M -D IID-
GAN as shown in Fig. 12. We study it with polar coordinates system and found that the disentan-
glement near the Gaussian origin is poor, and it is better if sampling is far from the origin point
(i.e. the area with a larger polar radius). By varying polar radius and polar angle, we obtain a good
disentanglement result. As shown in Figure 11, we can see the disentanglement results with different
coordinate systems. By varying polar angle (y-axis), we can get unsupervised disentanglement results
with a large polar radius (x-axis).

Condtional GAN Results. in this experiment, we chose relatively low latent dimensions in order
to make the generation more challenging and to make the mode collapse contrast more obvious.
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Table 15: Network Architecture of Discriminator D for STL-10.
Layer Output size Kernel

Conv2d 32× 32 3× 3, 64

ResnetBlock 32× 32
3× 3, 64
3× 3, 64

AvgPool2d 16× 16 3× 3, stride 2

ResnetBlock 16× 16
3× 3, 64
3× 3, 128
1× 1, 128

AvgPool2d 8× 8 3× 3, stride 2

ResnetBlock 8× 8
3× 3, 128
3× 3, 256
1× 1, 256

Linear 10
Linear 1

Figure 11: Uniformly sampling in different Co-
ordinate systems for MNIST with IID-GAN and
VAE model.

Figure 12: Unsupervised disenchantment with
uniform sampling from the polar coordinate sys-
tem by IID-GAN. By varying polar angle (y-
axis), we can get unsupervised disentanglement
results with a large polar radius (x-axis). See
more details in appendix.

Here we use DCGAN network for generation. The generation results for CIFAR-10 with the latent
dimension equal to 5 and 10 are shown in Figure 14 and Figure 15 and the generation results for
MNIST with the latent dimension equal to 2 are shown in Figure 13.

On the MNIST dataset, due to the low complexity of the images, we are able to generate recognizable
images with 2-dimensional latent input z, which allows us to correspond the image to the two-
dimensional z-plane. To observe the distribution and diversity characteristics of the generated images,
we averaged 20 points between -2 and 2 for each dimension of z. The images were generated and
arranged according to the distribution of z as shown in Figure 16. To further explore the role of
our framework for generating diversity on CIFAR10 dataset, we change a dimension of the input
latent code z by increasing or decreasing the value by gradient and use this z to generate, producing a
gradual series of images, and we can observe that compared to the similarity of the images generated
by the original CGAN during the change of the input latent code z, our model is able to capture more
patterns in a single dimension, improving the generative diversity and presenting a decoupling effect
to some extent. We select three image labels for each model under each number of z-dimension for
display, and the image results can be found in Figure 17 and Figure 18.
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(a) Conditional GAN (b) IID-GAN(1-D) (c) IID-GAN(M -D)

Figure 13: Results of conditional IID-GAN for MNIST dataset with latent dimension equal to 2.
The configuration is the same as Figure 14. Although the images express same Arabic numbers, our
model generates these numbers with significantly more patterns, reflecting the promotion of diversity.

(a) Conditional GAN (b) MSGAN (c) IID-GAN(M -D)

Figure 14: Results of conditional IID-GAN for CIFAR-10 dataset. Different columns represent
different labels. We use the configuration with a batchsize of 256 and a learning rate of 0.0002 here.

(a) Conditional GAN (b) IID-GAN(1-D) (c) IID-GAN(M-D)

Figure 15: Results of conditional IID-GAN for CIFAR-10 dataset with random sampling on labels
and z.

Unconditional Results. As shown in Figure 19, we can see that our IID-GAN can cover almost
all modes in StackedMNIST datasets. Figure 20 and Figure 21 are the generation results for two
IID-GAN models in CIFAR10 and CIFAR100.
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(a) Conditional GAN (b) IID-GAN(1-D) (c) IID-GAN(M -D)

Figure 16: The generated distribution of images in the two-dimensional z-plane, with both dimensions
of z taking values from -2 to 2. The configuration is the same as Figure 13. It can be seen that
IID-GAN have a better diversity performance compared to CGAN.

(a) Conditioned GAN (b) Conditioned IID-GAN(1-D) (c) Conditioned IID-GAN(M -D)

Figure 17: Comparison on latent dimension of 10 on CIFAR10 dataset with one dimension value of
the input latent code z increasing by gradient. The configuration is the same as Figure 14.

(a) Conditional GAN (b) IID-GAN(M -D)

Figure 18: Comparison on latent dimension of 5 on CIFAR10 dataset with one dimension value of
the input latent code z increasing by gradient. The configuration is the same as Figure 14.
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(a) Ground truth (b) IID-GAN

Figure 19: Generation results on StackedMNIST for unconditional IID-GAN.

(a) IID-GAN(1-D) (b) IID-GAN(M -D)

Figure 20: Generation results on CIFAR-10 for unconditional IID-GAN.

(a) IID-GAN(1-D) (b) IID-GAN(M -D)

Figure 21: Generation results on CIFAR-100 for unconditional IID-GAN.
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