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Abstract

Social choice theory is the study of preference aggregation across a population,
used both in mechanism design for human agents and in the democratic align-
ment of language models. In this study, we propose the representative social
choice framework for the modeling of democratic representation in collective deci-
sions, where the number of issues and individuals are too large for mechanisms
to consider all preferences directly. These scenarios are widespread in real-world
decision-making processes, such as jury trials, indirect elections, legislation pro-
cesses, corporate governance, and, more recently, language model alignment. In
representative social choice, the population is represented by a finite sample of
individual-issue pairs, based on which social choice decisions are made. We show
that many of the deepest questions in representative social choice can be naturally
formulated as statistical learning problems, and prove the generalization properties
of social choice mechanisms using the theory of statistical machine learning. We
further formulate axioms for representative social choice, and prove Arrow-like
impossibility theorems with new combinatorial tools of analysis. Our framework
introduces the representative approach to social choice, and opens up research
directions at the intersection of social choice, learning theory, and AI alignment.

1 Introduction

Social choice theory is a field of study that deals with the aggregation of individual preferences to
form a collective decision. It has been applied in domains such as economics [Feldman and Serrano,
2006], political science [Miller, 1983, Coleman and Ferejohn, 1986], and computer science [Conitzer
et al., 2024], to name a few. In these applications, the goal is to design mechanisms that aggregate
individual preferences in a way that satisfies certain desirable properties, most especially fairness.

However, existing theoretical models in social choice theory tend to be simplistic and rely on relatively
strong assumptions. Two such assumptions are (1) independent, single-issue choices, and (2) complete
information on all preferences of all individuals. In practice, these assumptions are often violated. In
common large-scale elections, candidates may have policies that are correlated across a huge number
of different issues, and it is also infeasible to collect preferences of all voters on all issues, due to the
large number of issues and the large number of voters involved.

These problems are not merely practical details that can be ignored. They are fundamental to the
theory of social choice itself, since these complexities are exactly what give rise to democratic
representation — the idea that individuals can delegate their decision-making power to a small
number of representatives who can make decisions on their behalf, when there are too many issues
and too many individuals to consider all preferences directly. The introduction of representation leads
to fundamental questions for social choice theory that are not well-understood, such as the problem of
generalization — how can we ensure that the decisions made by the representatives are representative
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of the population’s preferences, when the representatives are only chosen based on a small number of
individuals’ opinions on a small number of issues?

In this paper, we propose a new framework for social choice theory that models these complexities,
which we call representative social choice. As we will show in the following sections, many of the
deepest questions in representative social choice can be formulated as statistical learning problems,
despite the seemingly different natures of the two fields. This connection allows us to leverage the
rich theory of statistical machine learning to formulate axioms and mechanisms for representative
social choice, and to analyze their properties.

Applications Variants of the representative social choice model can be applied in the modeling of
all collective decision-making processes involving representation and delegation, which include most
real-world decision-making processes. Below are some examples.

• Jury Trials: Citizens delegate their legal decision-making power to a randomly selected jury, which
makes decisions on their behalf.

• Legislation Processes: Legislature body members, which can be viewed as representative samples
of the citizen population, delegates the population’s legal decicions to a set of laws that they decide
on. We have a multi-issue setting, since the laws cover a wide range of issues. The space of
possible collective preference profiles is the space of profiles implementable by laws.

• Corporate Governance: Shareholders elect a board of directors to make decisions on their behalf.
We have a multi-issue setting, since the board decides on a wide range of issues during its service.

• AI Alignment: Frontier AI systems, including large language models (LLMs), undergo the align-
ment process during training, where they are trained to make decisions that are aligned with human
values [Bai et al., 2022a,b], using preference datasets sampled from humans. Alignment can be
viewed as a form of representative social choice, where the LLM is trained to make decisions that
are representative of the human population’s preferences, the latter represented by individual-issue
pairs sampled from human evaluators (i.e., the preference dataset). The space of possible collective
preference profiles is the space of profiles that can be actualized as LLM policies — a feature space
that has been the subject of much research in the field of statistical learning theory [Vapnik, 1999].

Related Work Social choice theory has had a long history [Satterthwaite, 1975, Young, 1975,
Nisan and Ronen, 1999], with more recent research studying its intersection with machine learning
[Fish et al., 2023, Parkes and Procaccia, 2013], and its applications in AI alignment [Conitzer et al.,
2024, Köpf et al., 2024, Klingefjord et al., 2024, Huang et al., 2024, Prasad, 2018, Mishra, 2023, Ge
et al., 2024]. Due to space constraints, we defer a detailed discussion of related work to Appendix A.

2 Problem Settings

In this section, we present the formal definitions of the representative social choice problem.

Issues We consider a discrete (but possibly infinite) set of N -ary issues I, where each issue i ∈ I
(e.g., in a given state or province, which construction project to launch this year?) comes with N
outcomes [N ] = {1, 2, · · · , N}. Each individual’s preference profile can therefore be represented as
a mapping from I to LO(N), where LO(N) is the set of linear orders over [N ].

We define a saliency distribution DI with full support over I, which represents the importance of
different issues, and decides the probability of each issue being sampled in the representation process.
If there are a finite number of equally important issues, then DI is the uniform distribution over I.

Population We consider a possibly infinite population, represented by a distribution DP ∈ ∆[P],
where ∆[P] is the space of probability distributions over the support set P ⊆ LO(N)I .1 For any
preference profile C ∈ P , denote with DP(C) the probability (mass or density) that a random
individual in the population has preference profile C over the outcomes of all issues.

Often, we only need to consider the marginal distribution of DP — the mapping M : I →
∆[LO(N)].2 For any issue i ∈ I, M(i) is the distribution of preferences over the N outcomes of

1In this paper, we denote with AB the space of mappings from B to A.
2∆[LO(N)] is the space of probability distributions over LO(N)

2



issue i in the population. For preference ordering o ∈ LO(N), we denote with M(i)o the probability
that a random individual in the population has preference ordering o over outcomes of issue i.

Outcomes The result of a decision-making process is a preference profile C : I → LO(N), which
represents the aggregated preference of the population generated by some mechanism.

The mechanism is representational if the decision is made based on a finite collection of individual-
issue pairs S = {(o1, i1), (o2, i2), . . . , (o|S|, i|S|)}, with ik ∈ I sampled from DI , and ok ∼ M(ik)
is an individual’s preference over the outcomes of issue ik, sampled from the population distribution.

However, not all preference profiles are allowed. As a key feature of representative social choice, the
mechanism is only allowed to output preference profiles from a limited candidate space C ⊆ LO(N)

I ,
which represents the space of possible preference profiles that can be generated by the mechanism
(e.g., mutually compatible combinations of per-state construction projects in the national policy
case, or language model policies in the AI alignment case). A mechanism is thus a function
f : (LO(N)× I)∗ → C that maps the sample collection S to a preference profile C ∈ C.

Binary Setting as Special Case In the binary (N = 2) case of representative social choice, each
issue is binary (Yes/No), such as in the preference annotations of language model alignment [Bai
et al., 2022a]. The main difference in the binary case is the reduction in complexity, allowing for
analysis of a well-defined majority vote mechanism, as we will see later.

3 Key Results in Representative Social Choice

In this section, we present the key results from our analysis of representative social choice. Due to
space constraints, we leave the details to Appendix B and C. Instead, this section selectively presents
key results of our analysis, along with pointers to the detailed derivations in the appendices.

3.1 Generalization Bounds (Appendix B.2)

Generalization bounds are essential in representative social choice. They ensure that decisions made
by the mechanism based on a finite sample of preferences are representative of the overall population.
This brings us to the concept of generalization error — the gap between the performance of a
mechanism on a sample versus the whole population.
Theorem (Binary Generalization Bound, Thm. 1). Let C be a candidate space with VC dimension
VC(C), and let ϵ > 0 be a desired generalization error. Then, for any δ > 0, with probability at least
1− δ, the sample utility and population utility of any preference profile C ∈ C are ϵ-close, i.e.,

Pr

∣∣∣∣∣∣ 1

|S|

|S|∑
k=1

1C(ik)=ok − Ei∼DI [M(i)C(i)]

∣∣∣∣∣∣ ≤ ϵ, ∀C ∈ C

 ≥ 1− δ (1)

as long as we have the following, for some constant c > 0:

|S| ≥ c

ϵ2
VC(C)

(
log VC(C) + log

1

ϵ
+ log

1

δ

)
(2)

See Theorem 2 for a generalization of this bound to non-binary settings.

In essence, the bound tells us that the larger the sample size, the better the mechanism’s decision
reflects the population’s true preferences, with the sample size needing to grow in proportion to
the complexity of the candidate space, as measured by the VC dimension [Vapnik, 1999] — for
instance, when election candidates are allowed to tailor their messaging in a fine-grained manner, the
population needs to watch more debates to find broadly aligned candidates, or else candidates could
easily overfit their message to a few flagship issues.

3.2 Majority Vote and Scoring Mechanisms (Appendix B.3, C.2)

In the binary setting, one of the simplest and most effective mechanisms for preference aggregation is
the majority vote. This mechanism selects the outcome that receives the majority of votes for each
issue based on a finite sample of individual-issue pairs.
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Corollary (Majority Vote Approximately Maximizes Population Utility, Cor. B.3). Under (2), for
any error ϵ > 0 and confidence requirement δ > 0, the majority vote mechanism fmaj has

Pr

[
UDI ,M(fmaj(S)) ≥ −2ϵ+max

C∈C
UDI ,M(C)

]
≥ 1− δ (3)

where the population utility
UDI ,M(C) := Ei∼DI [M(i)C(i)], (4)

This corollary shows that the majority vote mechanism works well under binary settings, where
it approximately maximizes the population’s utility. In settings where issues are no longer binary,
majority vote becomes no longer well-defined. Instead, we turn to scoring mechanisms, which assign
scores to preference profiles and select the profile with the highest average score.
Corollary (Scoring Mechanisms Approximately Maximize Population Score, Cor. C.2). When |I| is
finite, for any scoring rule s with value bounded by constants, the scoring mechanism fs satisfies

Pr

[
Us
DI ,M(fs(S)) ≥ −2ϵ+max

C∈C
Us
DI ,M(C)

]
≥ 1− δ (5)

as long as we have the following, for some constant c > 0:

|S| ≥ c

ϵ2

(
|I|N logN + log

1

δ

)
(6)

In multi-outcome cases, scoring mechanisms provide a more generally applicable approach than
majority vote. Like majority vote, scoring mechanisms exhibit good generalization properties as long
as the sample size is large enough and in proportion to the complexity of the candidate space.

3.3 Representative Impossibilities (Appendix C.3, C.5)

While the mechanisms we have discussed so far have desirable properties, they cannot satisfy all
the axioms we might want from a social choice mechanism simultaneously. This brings us to
impossibility theorems that generalize Arrow’s famous result in classical social choice theory.
Theorem (Weak Representative Impossibility, Thm. 3). When N ≥ 3, C = LO(N)I , no representa-
tional mechanism simultaneously satisfies probabilistic Pareto efficiency (PPE), weak probabilistic
independence of irrelevant alternatives (W-PIIA), and weak probabilistic convergence (W-PC).
Theorem (Strong Representative Impossibility, Thm. 4). For any C, when there is at least one
cyclically privileged issue (Definition C.10), no representational mechanism simultaneously satisfies
PPE, strong probabilistic independence of irrelevant alternatives (S-PIIA), and strong probabilistic
convergence (S-PC). This cyclicity condition is both sufficient and necessary for impossibility.

These results show that, in representative social choice, we must make trade-offs between different
desirable properties, such as fairness, utility maximization, and convergence. The two theorems differ
in the strength of the axioms they consider, with the strong impossibility theorem takes into account
interdependence between issues by lifting the constraint on the candidate space C.

4 Conclusion

In this paper, we have formulated the problem of representative social choice, where a mechanism
aggregates the preferences of a population based on a finite sample of individual-issue pairs. We have
derived results that reflect both optimistic and pessimistic aspects of representative social choice.

Implications for AI Alignment Representative social choice can be used to model the alignment
of AI systems to diverse human preferences. Generalization analysis of social choice mechanisms
naturally apply to alignment mechanisms, while representative impossibility results highlight trade-
offs between the alignment objectives of fairness and utility maximization. These insights can guide
the development of more robust alignment strategies that manage these trade-offs explicitly.

Limitations and Future Directions We focused on the generalization properties of representational
mechanisms without studying other important properties, such as incentive compatibility and compu-
tational tractability. Future research could explore them and their interactions with generalization.
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Overall Structure of the Appendices

Related Work (Appendix A) We first give a brief overview of the related work in social choice
theory, machine learning methods in social choice theory, and applications of social choice in AI
alignment. They serve as a background for the study of representative social choice.

Binary Representative Social Choice (Appendix B) We start with a simpler case of representative
social choice, where an infinitely large population hold preferences over a possibly infinite number
of binary issues — issues that can be resolved by a simple Yes/No vote — and a collection of
individual-issue pairs are randomly drawn as samples, from which a collective preference profile3 is
constructed to represent the entire population. This setting is meant for analyzing the problem of
generalization in representative social choice, and we examine the majority vote mechanism under
this binary representative setting as a case study.

General Representative Social Choice (Appendix C) We then extend our framework to the
general case of representative social choice, where the issues are no longer binary and can have any
finite number of outcomes. In this case, we introduce a more general class of mechanisms, the scoring
mechanisms, which assign scores to candidate profiles based on individual-issue pairs, and output
the candidate profile with the highest average score. We show that the generalization properties of
scoring mechanisms can be analyzed using the theory of statistical learning. On the pessimistic side,
however, we present Arrow-like impossibility theorems for representative social choice. To this end,
we introduce new combinatorial tools, privileged orderings and the privilege graph, to analyze the
structure of the candidate space and the interdependence between issues and between outcomes.

We consider our contribution in Appendix B, C.1, C.2, C.3 to be primarily conceptual and stage-
setting, establishing the representative framework with techniques well-known in the fields of
social choice theory and statistical learning theory. Appendix C.4 and C.5, when establishing the
conceptually important strong impossibility theorem, additionally introduce new combinatorial tools
of analysis, which we believe to be of independent interest.

3In this paper, we abuse the term preference profile to mean either a collection of preference ordering for
different individuals in a population, or a collection of preference ordering for different issues.
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A Related Work

Social Choice Theory Social choice theory studies the aggregation of individual preferences
to form a collective decision. The field was founded by Arrow [2012], who proved the famous
Arrow’s impossibility theorem, stating that no social choice mechanism can satisfy a set of desirable
properties, including unrestricted domain, non-dictatorship, Pareto efficiency, and independence
of irrelevant alternatives. Since then, many extensions of Arrow’s theorem have been proposed,
including the Gibbard-Satterthwaite theorem [Gibbard, 1973, Satterthwaite, 1975] which introduces
strategy-proofness to the analysis. Beyond impossibility results, social choice theory also studies
concrete mechanisms for preference aggregation, such as voting rules [Taylor, 2005], scoring rules
[Young, 1975], and judgment aggregation [List, 2012], while featuring intersections with other fields
such as mechanism design [Nisan and Ronen, 1999] and computational social choice [Brandt et al.,
2016]. in this paper, we extend the study of social choice theory to the representative setting, where
the number of issues and individuals is too large to consider all preferences directly.

Machine Learning Methods in Social Choice Theory Various machine learning methods have
been applied to social choice theory to address limitations of over-simplification in certain social
choice models. For instance, generative social choice studies the problem of handling open-ended
outcomes in social choice theory in theoretically sound ways [Fish et al., 2023], and dynamic social
choice studies the problem of handling evolving preferences in social choice theory, using theoretical
models from reinforcement learning [Parkes and Procaccia, 2013]. in this paper, we apply the theory
of statistical learning to the study of representative social choice, and show that many of the deepest
questions in representative social choice can be naturally formulated as statistical learning problems.

Applications of Social Choice in AI Alignment Social choice theory has been applied to the study
of AI alignment, where the goal is to design AI systems that make decisions that are aligned with
human values. Current approaches to AI alignment involves the aggregation of human preferences,
and social choice-based algorithms [Köpf et al., 2024, Klingefjord et al., 2024], experimental studies
[Huang et al., 2024], conceptual frameworks [Prasad, 2018, Mishra, 2023, Conitzer et al., 2024], and
axiomatic frameworks [Ge et al., 2024] have been proposed to address the problem. in this paper,
we extend the study of social choice theory to the representative setting, which can be applied to
the AI alignment setting, where the human preferences are represented by a collection of individual-
issue pairs sampled from human evaluators, and the AI system is trained to make decisions that are
representative of the human population’s preferences.

8



B Binary Representative Social Choice

In this section, we consider the case of representative social choice where the issues are binary. We
will show that this setting can be naturally formulated as a statistical learning problem, and we will
analyze the generalization properties of the majority vote mechanism under this setting.

A real-world example of binary representative social choice is the case of jury trials, where a randomly
selected jury makes decisions on behalf of the entire population, and the outcome of the trial is a
binary decision (guilt or innocence).

B.1 Problem Settings

Here we present the formal definitions of the binary representative social choice problem.

Issues We consider a discrete (but possibly infinite) set of binary issues I. Each issue i ∈ I
can be resolved by a simple Yes/No vote, and therefore each individual’s preference profile can be
represented as a mapping from I to LO(2), where LO(2) is the set of linear orders over a set of two
outcomes (Yes/No).

Furthermore, we define a saliency distribution DI with full support over I, which represents the
importance of different issues, and decides the probability of each issue being sampled in the
representative process. If there are a finite number of equally important issues, then DI is the
uniform distribution over I; if there are a few important issues and many unimportant ones, then
DI is a distribution that assigns high probability to the important issues and low probability to the
unimportant ones, including in cases with infinitely many issues. The distribution DI is assumed to
be known to the mechanism.

Population We consider a possibly infinite population, represented by a distribution DP ∈ ∆[P],
where ∆[P] is the space of probability distributions over the support set P ⊆ LO(2)I .45 For any
preference profile C ∈ P , denote with DP(C) the probability6 that a randomly selected individual in
the population has preference profile C over the two outcomes of all issues.

Often, we only need to consider the marginal distribution of DP — the mapping M : I → ∆[LO(2)],
where ∆[LO(2)] is the space of probability distributions over LO(2). For any issue i ∈ I, M(i) is
the distribution of preferences over the two outcomes of issue i in the population. For any preference
ordering o ∈ LO(2), we denote with M(i)o the probability that a randomly selected individual in
the population has preference ordering o over the two outcomes of issue i.

Outcomes The result of a decision-making process is a preference profile C : I → LO(2), which
represents the aggregated preference of the population generated by some mechanism.

The mechanism is said to be representational if the decision is made based on a finite collection
of individual-issue pairs S = {(o1, i1), (o2, i2), . . . , (o|S|, i|S|)}, where ik ∈ I is an issue sampled
from DI , and ok ∼ M(ik) is an individual’s preference over the two outcomes of issue ik, sampled
from the population distribution.

However, not all preference profiles are allowed. As a key feature of representative social choice, the
mechanism is only allowed to output preference profiles from a limited candidate space C ⊆ LO(2)

I ,
which represents the space of possible preference profiles that can be generated by the mechanism
(e.g., presidential candidates in the election case, or language model policies in the AI alignment
case). Without such a candidate space, multi-issue settings become degrenerate, as different issues
become mutually independent and can be decided separately. Finally, a mechanism is a function
f : (LO(2)× I)∗ → C that maps the sample collection S to a preference profile C ∈ C.

4Here, we define P instead of directly using LO(2)I , because when |I| is infinite, LO(2)I is uncountably
infinite, and a distribution on it will be hard to specify. Instead, P can allow for, for instance, distributions over
parameterizations.

5In this paper, we denote with AB the space of mappings from B to A.
6Probability mass or probability density, depending whether P is discrete or continuous.
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B.2 Binary Generalization Bound

When deciding on the aggregation result, the mechanism only has access to a finite collection of
individual-issue pairs, and therefore the decision is made based on a finite sample of all population-
issue pairs. This raises the question of generalization — how can we ensure that the decision made
by the mechanism is representative of the population’s preferences, when the mechanism is only
optimized for a small number of individual opinions on individual issues?

To answer this question, we can leverage the theory of statistical learning, which studies the gen-
eralization properties of learning/optimization algorithms based on finite samples. However, the
reliability of generalization depends on the complexity of the candidate space C — the more flexibile
the candidate space, the more likely a profile can be picked by the mechanism that specifically fits the
sample (overfitting) rather than the broader population. To characterize complexity, we can use the
concept of Vapnik-Chervonenkis (VC) dimension [Vapnik, 1999], which measures the capacity of a
hypothesis space to fit arbitrary finite samples.
Definition B.1 (Vapnik-Chervonenkis Dimension [Vapnik, 1999]). Given any issue space I, we
consider candidate profiles mapping I to LO(2), and a candidate space C ⊆ LO(2)

I . The VC
dimension of C is the cardinality of the largest finite set of issues I ⊆ I such that for any binary
function o ∈ LO(2)

I , there exists a preference profile c ∈ C such that c(i) = o(i) for all i ∈ I . If I
can be arbitrarily large, then the VC dimension is infinite. Here we assume that the VC dimension is
nonzero.

With the VC dimension as a measure of complexity, we can now introduce the sample complexity
theorem. For any preference profile C as the aggregation outcome, the theorem gives an upper
bound on the difference between the sample utility 1

|S|
∑

k 1C(ik)=ok (the goodness of the aggregated
profile, evaluated on the selected samples) and the population utility Ei∼DI [M(i)C(i)] (the unknown
utility of the aggregated profile for the entire population), as a function of the sample size |S| and the
VC dimension of the candidate space C. Such a difference is called the generalization error.
Theorem 1 (Binary Generalization Bound). Let C be a candidate space with VC dimension VC(C),
and let ϵ > 0 be a desired generalization error. Then, for any δ > 0, with probability at least 1− δ,
the sample utility and population utility of any preference profile C ∈ C are ϵ-close, i.e.,

Pr

∣∣∣∣∣∣ 1

|S|

|S|∑
k=1

1C(ik)=ok − Ei∼DI [M(i)C(i)]

∣∣∣∣∣∣ ≤ ϵ, ∀C ∈ C

 ≥ 1− δ (7)

as long as we have the following, for some constant c > 0:

|S| ≥ c

ϵ2
VC(C)

(
log VC(C) + log

1

ϵ
+ log

1

δ

)
(8)

Proof. First consider the case where population has size 1, and the resulting population M always
maps an issue to a one-point distribution (i.e., a deterministic preference).

In this case, M(i)C(i) ∈ {0, 1} represents whether the aggregated profile C is correct on issue i.
The population utility Ei∼DI [M(i)C(i)] can thus be formulated as the population error in statistical
learning settings, and the result in Theorem 3.1 follows directly from the VC generalization error
bound in statistical learning theory [Vapnik, 1999].

To generalize the result to the case where the population has arbitrary cardinality, we can construct
the following reduction to the deterministic case. We make the following definitions:

Ĩ := I × LO(2) (9)

D̃Ĩ(i, b) := DI(i) · M(i)b (10)

M̃(i, b)b′ := 1b=b′ (11)

C̃ := {C̃ : (i, b) 7→ C(i) | C ∈ C} (12)

S̃ := {(o1, (i1, o1)), (o2, (i2, o2)), . . . , (o|S|, (i|S|, o|S|))} (13)

where b, b′ ∈ LO(2).
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In other words, we duplicate each issue i into two issues (i, 0) and (i, 1), and for each issue i, we
construct a population M̃(i, b) that always maps the issue to a one-point distribution, where the
point is b. We then construct a saliency distribution D̃Ĩ that accounts for the original population
probabilities over preferences. It can be verified that

E(i,b)∼D̃Ĩ
[M̃(i, b)C̃(i,b)] = Ei∼DI [M(i)C(i)] (14)

1

|S̃|

|S̃|∑
k=1

1C̃((ik,ok))=ok
=

1

|S|

|S|∑
k=1

1C(ik)=ok (15)

VC(C̃) = VC(C) (16)

Since Theorem 3.1 holds for the deterministic case (Ĩ, D̃Ĩ ,M̃, C̃), it also holds for the original case
(I,DI ,M, C).

Intuitively, the sample complexity theorem states that the sample utility of any preference profile in
the candidate space C approximates the population utility, as long as the sample size is sufficiently
large. The sample size required for this guarantee depends on the VC dimension of the candidate
space, the desired generalization error ϵ, and the desired confidence level δ.

Note that here we cannot directly utilize the tail inequalities [Hellman and Raviv, 1970] to estimate
the generalization error, because when the profile C is picked to maximize sample utility, the sample
utility ceases to be an unbiased estimator of the population utility.

Theorem 3.1 will be central in Section B.3, where we analyze the generalization properties of the
majority vote mechanism under the binary representative setting.

B.3 Case Study: Majority Vote in the Binary Case

In this section, we consider the majority vote mechanism under the binary representative setting. It
generalizes the well-known majority vote mechanism in social choice theory, where the population
directly votes on a set of binary issues, to the representative setting, where the population is represented
by a collection of individual-issue pairs.
Definition B.2 (Majority Vote Mechanism). The majority vote mechanism is a representational
mechanism fmaj that outputs the preference profile C that maximizes the sample utility, i.e.,

fmaj(S) = argmax
C∈C

1

|S|

|S|∑
k=1

1C(ik)=ok . (17)

The majority vote mechanism can be viewed as a voting process where each individual-issue pair
in the sample collection S casts a vote for the outcome that the individual prefers, based on the
individual’s preference over the two outcomes of the issue. The candidate profile that receives the
most votes is then selected as the aggregated preference profile. When there is only one issue and
candidate space C = LO(2), the majority vote mechanism reduces to the standard majority vote
mechanism in social choice theory.

From Theorem 3.1, we know that the majority vote mechanism has good generalization properties
when the VC dimension of the candidate space C is small, resulting in the following corollary.
Corollary B.3 (Majority Vote Approximately Maximizes Population Utility). For any error require-
ment ϵ > 0 and confidence requirement δ > 0, the majority vote mechanism fmaj satisfies

Pr

[
UDI ,M(fmaj(S)) ≥ −2ϵ+max

C∈C
UDI ,M(C)

]
≥ 1− δ (18)

where the population utility
UDI ,M(C) := Ei∼DI [M(i)C(i)], (19)

as long as the sample size |S| satisfies

|S| ≥ c

ϵ2
VC(C)

(
log VC(C) + log

1

ϵ
+ log

1

δ

)
(20)
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Proof. From Theorem 3.1, with probability 1− δ, we have

UDI ,M(fmaj(S)) ≥ −ϵ+
1

|S|

|S|∑
k=1

1fmaj(S)(ik)=ok (21)

= max
C∈C

−ϵ+
1

|S|

|S|∑
k=1

1fmajC(ik)=ok

 (22)

≥ −2ϵ+max
C∈C

UDI ,M(C) (23)

Corollary 3.2 shows that the majority vote mechanism approximately maximizes the population
utility, as long as the sample size is sufficiently large and the VC dimension of the candidate space is
small.

Furthermore, we can verify that the majority vote mechanism satisfies the following formal axioms,
analogous to the classical Pareto efficiency and non-dictatorship axioms in social choice theory
[Fishburn, 2015].

Axiom: Probabilistic Pareto Efficiency (PPE), Binary Case

Consider profiles C,C ′ ∈ C such that for the only issue i ∈ I that they disagree on, we
have 1 ≻C 0, 0 ≻C′ 1 and the population is unanimous on 1 ≻ 0.a For any such C,C ′

and a sufficiently large sample size |S|, with probability at least 1− eα|S|,b fmaj(S) ̸= C ′.
Likewise when 0 ≻C 1, 1 ≻C′ 0 and the population is unanimous on 0 ≻ 1.

aIn other words, M(i)1≻0 = 1
b. . . where α > 0 is an arbitrary constant dependent only on C,C′, and |S| denotes the number of

samples that fall into issue i. From now on, we will abbreviate this expression to 1− eΩ(|S|).

Remark B.4. Introduction of the candidate space C leads to interdependence between issues, which
is not present in the classical social choice setting. As a result, we could not simply require that the
mechanism output 1 ≻ 0 when the population is unanimous on 1 ≻ 0 as in the classical setting —
what if the population is unanimous on 1 ≻ 0 for one issue, but unanimous on 0 ≻ 1 for another
issue, and the two issues are strongly correlated (e.g., every candidate profile agrees on the two
issues)? Cases like these, while less extreme, are widespread in the real world. The way we state the
PPE axiom avoids this problem by comparing between two candidate profiles C and C ′ that keep the
same preference on all issues except one, a way to ensure “all else being equal”.

The probability bound 1− eΩ(|S|) is the convergence rate guaranteed by Hoeffding’s inequality for
independent samples. Intuitively speaking, this is the probability that you can correctly tell a majority
from a minority in the population by looking at a large sample S.

Axiom: Probabilistic Non-Dictatorship (PND), Binary Case

For any issue i ∈ I , for any subpopulation D′
P that occupies a probability mass |D′

P | < 0.5
in the whole population, at least one of the following is true w.r.t. issue i:

• When D′
P is unanimous on 0 ≻ 1, there exists a preference specification DP of the

whole population for which fmaj(S)(i) = (1 ≻ 0) with probability 1− eΩ(|S|).
• When D′

P is unanimous on 1 ≻ 0, there exists a preference specification DP of the
whole population for which fmaj(S)(i) = (0 ≻ 1) with probability 1− eΩ(|S|).

Remark B.5. Here, the requirement that at least one (as opposed to both) condition is fulfilled is,
again, a consequence of the candidate space C. In the extreme case, if all candidate profiles agree
that 0 ≻ 1 for issue i, then at most one of the two conditions can be met.

The non-dictatorship axiom above is stronger than the classical version, in the sense that not only
individuals, but also coalitions, cannot dictate the aggregation result.
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In fact, our problem setting (Appendix B.1) treats individuals as interchangeable, thereby implicitly
forcing anonymity of the mechanism — a stronger property than PND. As a result, representational
mechanisms always satisfy PND, a fact that is formalized in Lemma C.5 for the more general,
non-binary case.

Note that the classical axiom of independence of irrelevant alternatives (IIA) [Fishburn, 2015] is not
applicable to the binary case, since irrelevant alternatives only exist when there are more than two
outcomes for each issue.
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C General Representative Social Choice

Having formulated and analyzed the binary case of representative social choice, we now extend our
analysis to the general case where there can be an arbitrary number of outcomes for each issue. We
will first present the formulation, show a generalization bound similar to that in the binary case, and
present Arrow-like impossibility theorems.

C.1 Problem Settings

Here we present the full formal definition of the representative social choice problem.

Issues We consider a discrete (but possibly infinite) set of N -ary issues I. Each individual’s
preference profile can be represented as a mapping from I to LO(N), where LO(N) is the set of
linear orders over [N ] = {1, 2, · · · , N}. We then define the saliency distribution DI with full support
over I, representing the importance of different issues.

Population We consider a possibly infinite population, represented by a distribution DP ∈ ∆[P],
where ∆[P] is the space of probability distributions over the support set P ⊆ LO(N)I .

We then define the marginal distribution M : I → ∆[LO(N)]. For any issue i ∈ I, M(i) is the
distribution of preferences over the N outcomes of issue i in the population. For any preference
ordering o ∈ LO(N), we denote with M(i)o the probability that a randomly selected individual in
the population has preference ordering o over outcomes of issue i.

Outcomes The result of a decision-making process is a preference profile C : I → LO(N), which
represents the aggregated preference of the population generated by some mechanism.

The mechanism is said to be representational if the decision is made based on a finite collection
of individual-issue pairs S = {(o1, i1), (o2, i2), . . . , (o|S|, i|S|)}, where ik ∈ I is an issue sampled
from DI , and ok ∼ M(ik) is an individual’s preference over the two outcomes of issue ik, sampled
from the population distribution.

The social choice mechanism is only allowed to output preference profiles from a limited candidate
space C ⊆ LO(N)

I , which represents the space of possible preference profiles that can be generated
by the mechanism. A mechanism is thus a function f : (LO(N)× I)∗ → C that maps the sample
collection S to a preference profile C ∈ C.

C.2 Scoring Rules and Generalization Errors

Generalizing the majority vote mechanism to the general case meets challenges, as the majority vote
is over candidate profiles as opposed to outcomes, and when N > 2, the way each individual-issue
pair votes is no longer well-defined. Instead, we can consider a more general class of mechanisms
called scoring mechanisms [Lepelley et al., 2000], which for every individual-issue pair, assign a
score to each candidate profile, and then output the candidate profile with the highest average score.

As an example, the scoring rule could be an arbitrary distance measure that measures the degree of
alignment between the sampled individual’s preference and the candidate profile’s preference. The
mechanism then outputs the candidate profile that maximizes the average sample alignment score.
Definition C.1. A scoring mechanism is defined by a scoring rule s : LO(N)× LO(N) → R, which
assigns a score to each pair of preference orderings over the N outcomes. The scoring mechanism
then outputs the candidate profile that maximizes the average score over all individual-issue pairs in
the sample collection S, i.e.,

fs(S) = argmax
C∈C

1

|S|

|S|∑
k=1

s(ok, C(ik)). (24)

For scoring mechanisms, we can similarly define the sample score 1
|S|

∑|S|
k=1 s(ok, C(ik)) and

the population score Us
DI ,M := Ei∼DI ,o∼M(i)[s(o, C(i))], and have the following guarantees on

generalization, analogous to Corollary 3.2.
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Theorem 2 (Generalization Bound for Scoring Mechanisms). For any scoring rule s with value
bounded by constants, the scoring mechanism fs satisfies

Pr

[
Us
DI ,M(fs(S)) ≥ −2ϵ+max

C∈C
Us
DI ,M(C)

]
≥ 1− δ (25)

as long as the sample size |S| satisfies

|S| ≥ c

ϵ2
log

1

δ
(26)

and
R̂|S|(C̄) ≤

ϵ

c
(27)

where the function class C̄ is defined as
C̄ := {(o, i) 7→ s(o, C(i)) | C ∈ C} (28)

and R̂|S|(C̄) is the empirical Rademacher complexity of C̄ with respect to the sample collection S
[Mohri and Rostamizadeh, 2008] — a generalization of the VC dimension to real-valued (as opposed
to binary) functions.

The result follows directly from the Rademacher complexity generalization error bound in statistical
learning theory.
Corollary C.2 (Scoring Mechanisms Approximately Maximize Population Score). When |I| is finite,
for any scoring rule s with value bounded by constants, the scoring mechanism fs satisfies

Pr

[
Us
DI ,M(fs(S)) ≥ −2ϵ+max

C∈C
Us
DI ,M(C)

]
≥ 1− δ (29)

as long as we have the following, for some constant c > 0:

|S| ≥ c

ϵ2

(
|I|N logN + log

1

δ

)
(30)

Proof. Proof of the corollary is done by bounding the empirical Rademacher complexity of the
function class C̄ using Massart’s Lemma [Bousquet et al., 2003], which gives us

R̂|S|(C̄) ≤ c

√
log |C̄|
|S|

for some constant c > 0.

Given that the cardinality of C̄ is (N !)|I|, the Corollary is not hard to verify by plugging the bound
into Theorem 2.

Rademacher complexity could be seen a generalization of the VC dimension to real-valued functions,
and is a measure of the capacity of a function class to fit arbitrary finite samples. Intuitively, Corollary
C.2 states that the sample score of any candidate profile in the candidate space C approximates the
population score, as long as the sample size exceeds the ability of the candidate space to fit arbitrary
finite samples — i.e., when the mechanism is forced to generalize.

It’s worth noting that Corollary C.2 is agnostic towards the correlation structure among issues, and
as a result, the sample complexity grows approximately linearly with the number of issues |I| and
the number of outcomes N . When given a issue correlation structure, the sample complexity can
potentially be reduced using Theorem 2.

C.3 Weak Representative Impossibility

In this section, we present certain axioms that ideal social choice mechanisms should satisfy, and
then present Arrow-like impossibility theorems that show that no mechanism can satisfy all these
axioms simultaneously. A weaker version of the impossibility theorem — which we present in this
section — is a simple generalization of the classical Arrow’s impossibility theorem, while a stronger
version shall be derived in Section C.5.

We first introduce the necessary notations, and then restate the axioms from the binary case, adapting
them to our general setting.
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Definition C.3 (Operation of a Permutation on an Ordering). For a set S, a linear order o ∈ LO(S),
and a permutation σ ∈ SS , we define the operation o⊙ σ as the ordering obtained by applying the
permutation σ to the elements of o. Specifically, for any s1, s2 ∈ S, we have s1 ≻o⊙σ s2 if and only
if σ−1(s1) ≻o σ−1(s2).

For a subset T ⊆ S and σ ∈ ST , we similarly define o⊙ σ := o⊙ σ|S , where σ|S is the extension of
σ to the whole set S, mapping elements outside T to themselves.

Finally, for a full profile C ∈ LO(N)I , we define C ⊙i σ as the profile obtained by applying the
permutation σ to C(i), while keeping C unchanged for all other issues.

Remark C.4. Operation of a permutation on an ordering aims to capture “local changes” to a
preference profile, where the permutation only affects a subset of the outcomes. They will be used in
the definition of the axioms below.

One common case of local change is swapping two outcomes, for which we denote with σ(c1,c2) the
2-element permutation (transposition) that swaps c1 and c2.

Axiom: Probabilistic Pareto Efficiency (PPE)

Consider profiles C,C ′ ∈ C such that for the only issue i ∈ I that they disagree on, there
exists c, c′ ∈ [N ] such that c ≻C c′, C ′ = C ⊙i σ(c,c′)

a and the population is unanimous on
c ≻ c′.b For any such C,C ′, with probability 1− eΩ(|S|), f(S) ̸= C ′.

aThe second condition means that the order between c, c′ is the only disagreement they have on
issue i.

bIn other words, M(i)o = 0 for all o ∈ LO(N) that prefers c′ over c.

Axiom: Probabilistic Non-Dictatorship (PND)

For any issue i ∈ I and c, c′ ∈ [N ], for any subpopulation D′
P that occupies a probability

mass |D′
P | < 0.5 in the whole population, at least one of the following is true w.r.t. issue i:

• When D′
P is unanimous on c ≻ c′, there exists a preference specification DP of the

whole population for which c′ ≻f(S) c with probability 1− eΩ(|S|).

• When D′
P is unanimous on c′ ≻ c, there exists a preference specification DP of the

whole population for which c ≻f(S) c
′ with probability 1− eΩ(|S|).

In fact, all representational mechanisms satisfy PND, since our problem setting (Appendix C.1)
treats individuals as interchangeable and homogeneous, therefore implicitly forcing anonymity of the
mechanism, which inturn implies PND. We formalize this fact in the following lemma, which will
turn out useful in the proof of the later, strong version of the impossibility theorem.

Lemma C.5 (Probabilistic Non-Dictatorship for All Representational Mechanisms). For any
(I,DI , C) and any representational mechanism f , PND is satisfied.

Proof. Assume otherwise, that under some mechanism f , a subpopulation D′
P occupying a probabil-

ity mass strictly less than 0.5 can dictate the aggregation result in both directions, by being unanimous
on either c′ ≻ c or c ≻ c′.

Take another subpopulation D′′
P that’s disjoint with D′

P and has the same probability mass. Let
D′

P be unanimous on c′ ≻ c, and D′′
P be unanimous on c ≻ c′. Since populations of the same

probability mass are undisguishable to the mechanism, D′′
P must also dictate the aggregation result

in both directions, leading to a contradiction.

As a result, we shall remove PND from the explicit statements of the impossibility theorems, but it
should be understood that PND is still implicitly satisfied.

Finally, we define a weak version of the independence of irrelevant alternatives (IIA) axiom, as well
as a new axiom specific to the representative setting.
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Axiom: Weak Probabilistic Independence of Irrelevant Alternatives (W-PIIA)

When C = LO(N)I , for two populations DP ,D′
P that differ only in the preference over a

single issue i ∈ I satisfying M(i) |LO({c,c′})= M′(i) |LO({c,c′}) (where c, c′ are any two
elements of [N ]),a with probability 1− eΩ(|S|), we have f(S) |LO({c,c′})= f(S ′) |LO({c,c′}).

aThe condition here means that the population distribution over the relative preference between c, c′

are the same in the two populations.

Remark C.6. C = LO(N)I implies independence both between issues and between outcomes of the
same issue. As a result, we won’t need to worry about, e.g., the population’s insistance on c1 ≻ c2
leads to the side effect of c3 ≻ c4 due to all profiles in C ranking c1 and c3 close to each other
and c2 and c4 close to each other. Such cross-outcome or cross-issue dependencies may contribute
positively or negatively to the fulfillment of axioms, making C = LO(N)I the easiest candidate space
to analyze. We will aim to overcome these difficulties in Section C.4 and C.5.

Axiom: Weak Probabilistic Convergence (W-PC)

When C = LO(N)I , for a population DP that’s non-uniform on a pair of outcomes c, c′

of issue i ∈ I,a there exists a partial preference ordering o ∈ LO({c, c′}) such that with
probability 1− eΩ(|S|), f(S)(i) |LO({c,c′})= o.

ai.e., M(i) |LO({c,c′}) (c ≻ c′) ̸= 0.5. We are only concerned with the marginal distribution.

Remark C.7. Intuitively speaking, W-PC requires that the mechanism not be torn between two
outcomes when the population is not torn between them. This is to rule out “indecisive” mechanisms
that are unable to make a decision with high probability (or requires too many samples to make that
decision) when the population is clear on the preference. This need arises only in the representative
setting, where the mechanism is no longer deterministic.

It’s worth noting that 1− eΩ(|S|) is the convergence rate guaranteed by Hoeffding’s inequality for
independent samples, which, intuitively speaking, asks that the mechanism not be qualitatively slower
in convergence than the majority vote mechanism. And again, C = LO(N)I removes the complexity
of cross-outcome dependencies, which simplifies the statement of the axiom.

We now present the weak representative impossibility theorem.

Theorem 3 (Weak Representative Impossibility). When N ≥ 3, for any (I,DI , C = LO(N)I), no
representational mechanism simultaneously satisfies PPE, W-PIIA, and W-PC for all DP .

Proof. The proof proceeds by a simple reduction to Arrow’s impossibility theorem. Given the number
of outcomes N ≥ 3, any instance of the original voting problem in Arrow’s theorem with N outcomes
and an odd number n of voters can be reduced to the weak representative setting.

Specifically, let n be the number of voters in the original problem. One could simulate this by
dividing the population into n disjoint subpopulations, each with a probability mass of 1/n. Each
subpopulation is then unanimous on their respective preference profile. Since n is odd, there can
never be a pair of outcomes on which there is a tie in the population’s preference. By W-PC, at
the limit |S| → +∞, the mechanism must converge upon a deterministic preference profile with
probability 1, allowing us to treat the problem as a deterministic one, as in Arrow’s theorem.

Meanwhile, the problem that multiple issues exist can be resolved by the independence between
issues due to the candidate space C = LO(N)I , which allows us to examine each issue in isolation.
The reduction is thus complete.

Since Arrow’s theorem shows that for any problem instance with N ≥ 3, no deterministic social
choice mechanism can satisfy Pareto efficiency, independence of irrelevant alternatives, and non-
dictatorship simultaneously, we are able to reduce at least one such hard instance to every instance
(I,DI , C = LO(N)I) of the weak representative setting, and the theorem follows.
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The theorem is “weak” in the sense that it focuses on the C = LO(N)I case, where the candidate
space is the simplest, and no interdependence between issues or outcomes exist. In the next section,
we will present a stronger version of the impossibility theorem that overcome this limitation.

C.4 Privileged Orderings and Privilege Graph

Before we present the strong representative impossibility theorem, we need tools to represent and
analyze the structure of the candidate space C. To this end, we introduce the concept of privileged
orderings, which are partial orderings that are preferred over all other alternative orderings in the
candidate space.
Definition C.8 (Privileged Ordering). For an issue i ∈ I and a subset of outcomes T =
{c1, c2, · · · , ck} ⊆ [N ] (k ≥ 2), we call o ∈ LO(T ) : c1 ≻ c2 ≻ · · · ≻ ck a privileged ordering if for
any extension C ∈ LO(N)I of o7 and permutation σ ∈ ST of T , we have C ⊙i σ ∈ C =⇒ C ∈ C.
Remark C.9. Intuitively, a privileged ordering o is a partial ordering that is preferred in the
candidate space C over all other alternative partial orderings. The definition requires that any full
preference profile in C that disagrees with o must have a counterpart in C that agrees with o while
keeping the rest of the profile unchanged. These privileged orderings are in fact surprisingly common
in practice, as will be showcased in Example C.11 and C.12.
Definition C.10 (Privilege Graph). For an issue i ∈ I , we define the privilege graph Gi as a directed
graph with vertices as the outcomes in [N ], and an edge from u to v iff there exists a privileged
ordering u ≻ v. We call i cyclically privileged if its privilege graph contains a simple directed cycle
of length at least 3.8

Example C.11 (Privileged Orderings in the Real World). Consider the following examples of
privileged orderings and privilege graphs. We use the legal setting for the examples for simplicity, but
it should be understood that privileged orderings are also widespread in other real-world settings.

Specifically, consider three persons I = {A,B,C} on trial before the jury, after each being accused
of a crime. A is charged of burglary ($5k, first trial), B also of burglary ($50k, second trial), and
C of fraud. The possible outcomes for each defendant (N = 3) include aqcuittal (a), community
service (c), and imprisonment (i). The jury ranks the outcomes for each defendant in order of
recommendation. In this hypothetical case, the following factors may lead to privileged orderings:

• Monotonicity and fairness constraints. The jury may consider it unfair to punish A harder than
B given the difference in the amount of burglary. As a result, locally changing the recommended
outcome of A from c to i may violate the monotonicity constraint (namely when the outcome of
B is c), but changing from i to c will not. This line of reasoning results in privileged orderings
c ≻ i and (analogously) a ≻ c for A, and i ≻ c and c ≻ a for B.

• Local independence. While the crimes of A and B are similar and therefore correlated in the
jury’s judgment, the crime of C is unrelated to the other two. As a result, the candidate space
C may be the Cartesian product of the candidate space C(A,B) for (A,B) and CC for C. When
CC = LO({a, c, i}) and C = C(A,B) × LO({a, c, i}), it can be verified that C’s privilege graph
GC is a complete digraph, and every ordering is privileged for C.

• Default outcomes. Assume that B’s sentence in the first trial was c, and the jury is inclined to
keep the sentence unchanged since no new substantial evidence is presented. This may lead to
the privileged orderings c ≻ i and c ≻ a for B, since c, being the default outcome, is a plausible
substitute for any other outcome.

These considerations are generalizable. Locally independent decisions, and decisions with a default
outcome, are common in the real world; and many decisions (e.g., those involving numerical
balancing of costs and benefits), according to common sense, should be monotonic as well. There are
other reasons for privileged orderings too, and the three examples above are only for illustration.
Example C.12 (Privileged Orderings in AI and AI Alignment). Outside of the human case, privileged
orderings are also natural consequences of inductive biases in machine learning models [Baxter,
2000], including deep neural networks. Examples of this include:

7i.e., C must agree with o on issue i that c1 ≻ c2 ≻ · · · ≻ ck, but can differ on the remaining outcomes of i,
as well as on other issues.

8Note that for our purposes, we don’t consider graphs containing only 2-cycles as cyclic.
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• Language models. Language models are known to display a wide range of human behavioral
tendencies [Perez et al., 2022, Santurkar et al., 2023, Lampinen et al., 2024], including ones
discussed in Example C.11. Tendencies including consistent treatment of similar decisions,
default outcomes, monotonicity, and many more, can all lead to privileged orderings. In the
finetuning-based process of alignment, these pretrained tendencies serve as a form of inductive
bias that sets limits on the possible outcomes of alignment training.

• Reinforcement learning agents. In reinforcement learning, the reward function is a key compo-
nent that guides the learning process. The reward function has been demonstrated to induce
agents to learn deeply ingrained hiearchies or equivalences between outcomes [Di Langosco
et al., 2022, Wang et al., 2024]. Similar to the language model case, these prior tendencies set
limits on the possible outcomes of later learning, and can lead to privileged orderings.

• Vision models. Vision models have been shown to exhibit spatial locality [Li et al., 2022],
translation invariance [Kauderer-Abrams, 2017], simplicity bias [Shah et al., 2020], and other
inductive biases. These biases, which are often necessary for the models to learn effectively,
operate by setting limits on the possible outcomes of learning, leading to privileged orderings.

While these tendencies in AI systems are often probabilistic and less clear-cut than in the human case,
modeling them with privileged orderings and privilege graphs can still be a useful abstraction for
understanding and approximating their behaviors.

Next, we characterize some important properties of privileged orderings and privilege graphs.
Lemma C.13 (Transitivity of Privileged Graph). For an issue i ∈ I and u, v, w ∈ [N ], if u ≻ v and
v ≻ w are both privileged, then u ≻ w is privileged.

Proof. For any extension C ∈ LO(N)I of u ≻ w, we need to show that C ′ := C ⊙i σ(u,w) ∈
C =⇒ C ∈ C. Assuming C ′ ∈ C, we consider ordering between u, v, w in C(i).

When u ≻C w ≻C v, we have v ≻C′ w ≻C′ u. Since u ≻ v is privileged, C ′′ := C ′ ⊙i σ(u,v) ∈ C,
and we have u ≻C′′ w ≻C′′ v. Since v ≻ w is privileged, C ′′′ := C ′′ ⊙i σ(v,w) ∈ C. It can be
verified that u ≻C′′′ v ≻C′′′ w and C ′′′ = C. The case v ≻C u ≻C w is analogous.

When u ≻C v ≻C w, we have w ≻C′ v ≻C′ u. Since v ≻ w is privileged, C ′′ := C ′ ⊙i σ(v,w) ∈ C.
Now v ≻C′′ w ≻C′′ u, reducing to the first case.

Lemma C.14 (Closure of Privileged Orderings Under Concatenation). Let c1, c2, · · · , ck+m−1 ∈
[N ] (k,m ≥ 2) be distinct outcomes in an issue i. If o : c1 ≻ c2 ≻ · · · ≻ ck and o′ : ck ≻ ck+1 ≻
ck+2 ≻ · · · ≻ ck+m−1 are both privileged orderings, then o⊕ o′ : c1 ≻ c2 ≻ · · · ≻ ck+m−1 is also
a privileged ordering.

Proof. For any extension C ∈ LO(N)I of o⊕ o′ and permutation σ ∈ S{c1,c2,··· ,ck+m−1}, we need
to show that C ′ := C ⊙i σ ∈ C =⇒ C ∈ C.

Similar to the proof of Lemma C.13, there are two transformations that we are allowed to ap-
ply to C ′ to obtain C: first, we can apply some permutation σo ∈ S{c1,c2,··· ,ck} on C to sort
{c1, c2, · · · , ck} in this order if it isn’t already sorted; second, we can apply some permutation
σo′ ∈ S{ck,ck+1,··· ,ck+m−1} on C to sort {ck, ck+1, · · · , ck+m−1} in this order if it isn’t already.
Since o and o′ are privileged, these two transformations preserve membership in C.

We repeated apply these two transformations in arbitrary order, until neither of them can be applied —
i.e., until both {c1, c2, · · · , ck} and {ck, ck+1, · · · , ck+m−1} are sorted in the correct order. Since
(c1 ≻ c2 ≻ · · · ≻ ck) ∧ (ck ≻ ck+1 ≻ ck+2 ≻ · · · ≻ ck+m−1) =⇒ c1 ≻ c2 ≻ · · · ≻ ck+m−1,
when such a process terminates, we have C ∈ C.

We still need to show that the process indeed terminates. We define a potential function Φ such
that for any E ∈ LO(N)I , Φ(E) = Invc1≻···≻ck+m−1

(E(i)) =
∑

1≤x<y≤k+m−1 1cy≻E(i)cx , the
number of inversions in E(i) with respect to the ordering o⊕ o′ : c1 ≻ · · · ≻ ck+m−1.

We show that the transformation ⊙iσo strictly decreases Invo⊕o′ . We first decompose ⊙iσo into a
series of transpositions ⊙iσ(cj1 ,cj2 )

such that j1 < j2 and cj2 ≻ cj1 in the pre-transposition ordering.
It can be verified that this transposition removes the inversion (cj1 , cj2) without introducing new
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inversions. Therefore the transformation ⊙iσo strictly decreases Φ, and likewise for ⊙iσo′ . Since the
initial Φ(C ′) is finite and Φ is always non-negative, the process must terminate.

Corollary C.15. For any issue i ∈ I and o : c1 ≻ c2 ≻ · · · ≻ ck (k ≥ 2) containing distinct
outcomes in i, o is a privileged ordering if the path c1 → c2 → · · · → ck exists in Gi.

The privilege graph Gi captures all binary privileged orderings in issue i, and will be the primary
way in which we represent the structure of the candidate space C.

It’s worth noting that properties stronger than Lemma C.13 and C.14 often do not hold, e.g., a
subsequence of a privileged ordering is not necessarily privileged. Also, the condition in Corollary
C.15 is a sufficient but not necessary condition for a privileged ordering.

Finally, we review a few graph theoretical concepts that will be useful in the proof of the strong
representative impossibility theorem.
Definition C.16 (Strongly Connected Component). For a directed graph G, a strongly connected
component (SCC) is a maximal subgraph of G (including those of size 1) in which there is a directed
path between every ordered pair of vertices. The SCCs of G form a partition of the vertex set of G.
Definition C.17 (Condensation). The condensation cond(G) of a directed graph G is a directed
acyclic graph (DAG) where each vertex represents an SCC of G, and there is an edge from SCC A to
SCC B iff there is an edge from a vertex in A to a vertex in B in G.
Remark C.18. Intuitively, SCC is the unit of bidirectional connectivity in a directed graph, and
condensation is a way to simplify a directed graph into a DAG by contracting SCCs into single
vertices. There is a directed path from u to v in G iff there is a directed path from the SCC containing
u to the SCC containing v in cond(G). It’s worth noting that, given the transitivity of the privilege
graph, any SCC in the privilege graph is a complete digraph.

Both SCC and condensation can be computed in linear time in the number of vertices and edges of
the graph, using algorithms such as Tarjan’s algorithm and Kosaraju’s algorithm.

With these preparations, we are now able to state and prove the strong representative impossibility.

C.5 Strong Representative Impossibility

We first present the version of independence of irrelevant alternatives that will be used in the strong
representative impossibility theorem, as well as the strong version of the probabilistic convergence
axiom. They imply their weak counterparts while being applicable to arbitrary candidate spaces C
and thus more general.

Axiom: Strong Probabilistic Independence of Irrelevant Alternatives (S-PIIA)

For arbitrary C and c, c′ ∈ [N ] such that c ≻ c′ and c′ ≻ c are both privileged order-
ings in some issue i ∈ I, for two populations DP ,D′

P satisfying M(i) |LO({c,c′})=

M′(i) |LO({c,c′}),a with probability 1−eΩ(|S|), we have f(S) |LO({c,c′})= f(S ′) |LO({c,c′}).

aThe condition here means that the population distribution over the relative preference between c, c′

are the same in the two populations.

Axiom: Strong Probabilistic Convergence (S-PC)

For arbitrary C and c, c′ ∈ [N ] such that c ≻ c′ and c′ ≻ c are both privileged order-
ings in some issue i ∈ I, for a population DP that’s non-uniform on {c, c′},a there ex-
ists a partial preference ordering o ∈ LO({c, c′}) such that with probability 1 − eΩ(|S|),
f(S)(i) |LO({c,c′})= o.

ai.e., M(i) |LO({c,c′}) (c ≻ c′) ̸= 0.5. We are only concerned with the marginal distribution.

Remark C.19. S-PIIA and S-PC are generalizations of W-PIIA and W-PC, respectively, to arbitrary
candidate spaces C. This is achieved by limiting comparisons to pairs that are privileged orderings
in both directions, ensuring that they are locally independent from other outcomes and issues.
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Before we present the strong representative impossibility theorem, we need to establish a few
corollaries of the axioms we have defined.

Definition C.20 (Decisiveness). Given any representational mechanism f , for a subpopulation D′
P

with probability mass 0 < |D′
P | ≤ 1 in the larger population DP , we say that it is decisive over

c ≻ c′ in issue i if when D′
P is unanimous on c ≻ c′, whatever the preference specification DP of

the whole population is, c ≻f(S) c
′ with probability 1− eΩ(|S|). We say that it is weakly decisive if

when D′
P is unanimous on c ≻ c′ and the rest of the population is unanimous on c′ ≻ c, c ≻f(S) c

′

with probability 1− eΩ(|S|).

Remark C.21. Given the guaranteed anonymity of our problem setting, all subpopulations of the
same probability mass are entirely interchangeable, and thus the decisiveness of a subpopulation
over a specific preference only depends on the subpopulation’s mass.

Lemma C.22 (Field Expansion Lemma). Given any representational mechanism f satisfying PPE
and S-PIIA, consider outcomes u, v, w of issue i ∈ I such that all 6 pairwise orderings among them
are privileged, and a subpopulation D′

P that is weakly decisive over u ≻ v. We then have that D′
P

is decisive over u ≻ w.

Note that by analogy, it will also be decisive over w ≻ v. With repeated application and transitivity,
it follows that D′

P is decisive over all 6 pairwise orderings among u, v, w.

Proof. Assume that D′
P is unanimous on u ≻ w. By S-PIIA, we can assume that D′

P is further
unanimous on u ≻ v ≻ w, while the rest of the population is unanimous on v ≻ u and v ≻ w. This
does not affect f(S) |LO({u,w}).

By weak decisiveness, we have u ≻f(S) v with probability 1− eΩ(|S|). Due to the privilegedness of
v ≻ w, PPE can be applied to every extension of the opposite ordering w ≻ v (where the extension
serve as C ′), guaranteeing that v ≻f(S) w with probability 1 − eΩ(|S|). Taken together, we have
u ≻f(S) w with probability 1− eΩ(|S|), and thus D′

P is decisive over u ≻ w. The rest follows.

This finally leads us to the strong representative impossibility theorem.

Theorem 4 (Strong Representative Impossibility). For any (I,DI , C), when there is at least one
cyclically privileged issue,9 there exists no representational mechanism that simultaneously satisfies
PPE, S-PIIA, and S-PC for all DP .

Meanwhile, given any mapping ϕ from each issue i to a privilege graph ϕ(i) without cyclic privileges,
there exist a candidate space C whose privilege graph Gi (for each i) is ϕ(i) or its supergraph, and a
representational mechanism f over (I,DI , C) satisfying PPE, S-PIIA, and S-PC for all DP .

Proof. We first show that issues with cyclic privilege graphs imply the impossibility of a mechanism
satisfying the axioms. We assume the existence of such an f and show that it leads to a contradiction.

For any cyclic privileged issue i, by Lemma C.13, we know that any directed simple cycle in Gi

induces a complete digraph on the outcomes in the cycle. We arbitrarily pick outcomes u, v, w from
the cycle. Arbitrarily partition the population into equal portions Da

P and Db
P of probablity mass 2

3

and 1
3 respectively. Let Da

P be unanimous on u ≻ v and Db
P be unanimous on v ≻ u. By S-PC,

the representational mechanism f must converge upon u ≻ v or v ≻ u with probability 1− eΩ(|S|)

in the full population.

Assume that f converges upon u ≻ v, in which case Da
P is weakly decisive over u ≻ v. By the field

expansion lemma, Da
P is decisive over u ≻ v. We further partition Da

P into 1 : 2 portions Da,1
P

and Da,2
P . Then, we let:

• Da,1
P (probability mass 2

9 ) be unanimous on u ≻ v ≻ w,

• Da,2
P (probability mass 4

9 ) be unanimous on w ≻ u ≻ v, and

• Db
P (probability mass 1

3 ) be unanimous on v ≻ w ≻ u.

9i.e., issues whose privilege graphs contain simple cycles of length at least 3.
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Since Da
P is decisive, we have u ≻f(S) v with probability 1− eΩ(|S|). Since the probability masses

of all subpopulations have denominators 3 or 9 (both odd numbers), there can be no ties, and f must
converge due to S-PC. Given that u ≻f(S) v, with probability 1− eΩ(|S|), we have either u ≻f(S) w

or w ≻f(S) v. In the former case, Da,1
P is weakly decisive over u ≻ w, and in the latter case, Da,2

P
is weakly decisive over w ≻ v. In either case, the subpopulation is decisive by the field expansion
lemma, but its probability mass ( 29 or 4

9 ) is smaller than 0.5, contradicting PND (Lemma C.5).

We can similarly show that f converging upon v ≻ u leads to a contradiction. Therefore, no such f
can exist. Note that in the proof above, we have been misusing |S| to denote the number of samples
that falls into issue i, which is not a problem since i’s probability mass PrDI [i] > 0 is a positive
constant (we can pick the i with the largest probability mass, which makes the mass only dependent
on DI itself), and the asymptotic behavior of the convergence probability is the same.

Then, assuming that all issues (except possibly those with zero probability in DI) have specific
non-cyclic privilege graphs, we construct a candidate space C consistent with the privilege graphs,
and a mechanism f that satisfies the axioms for all DP .

First consider the case where |I| = 1, I = {i}. Since ϕ(i) is transitive (Lemma C.13) but doesn’t
have simple cycles of length at least 3, it follows that ϕ(i) doesn’t have any SCC containing 3 or more
vertices. Fix an arbitrary topological order (g1, · · · , gm) of vertices in the DAG cond(ϕ(i)), where
{gj}mj=1 constitute a partition of [N ], and |{gj}| ∈ {1, 2} for each j; let gk1

, · · · , gkl
be the SCCs of

size 2. Now consider translating (g1, · · · , gm) into an ordering in LO(N), where the vertices in each
SCC are ordered arbitrarily, and vertices in different SCCs are ordered according to the topological
order (g1, · · · , gm). There are 2l ways to perform such translation, and we define C ⊂ LO(N) to
be the set of these 2l orderings. It can be verified that the Gi resulting from C contains ϕ(i) as a
subgraph.

We then define the mechanism f . For each gkj = {uj , vj} (1 ≤ j ≤ l), it examines if a majority in
the sampels prefer uj over vj . If yes, it outputs the ordering that places uj above vj ; otherwise, it
outputs the ordering that places vj above uj . Ties are broken arbitrarily. Let us now verify that f
satisfies PPE, S-PIIA, and S-PC for all DP .

• PPE: Relative orderings between outcomes in different SCCs are fixed by the topological order,
and therefore the outcomes c, c′ in the PPE axiom must be in the same SCC. f resolves this
preference using a majority vote, which, by Hoeffding’s inequality, has a convergence probability
of 1− eΩ(|S|).

• S-PIIA: It can be verified that if c ≻ c′ and c′ ≻ c are both privileged orderings in i, then c, c′

must be in the same SCC. f resolves this preference using a majority vote that considers only
the relative preference between c and c′, and thus satisfies S-PIIA.

• S-PC: Again, c, c′ must be in the same SCC. f resolves this preference using a majority
vote, which, by Hoeffding’s inequality, has a convergence probability of 1− eΩ(|S|) when the
population is non-uniform on c, c′.

In the general case where |I| > 1, we can apply the above construction to each issue independently,
and define C to be the Cartesian product of the constructed candidate spaces. The mechanism f is
then defined to apply the constructed mechanism for each issue independently. It can be verified that
f satisfies PPE, S-PIIA, and S-PC for all DP .

Theorem 4 is a generalization of Arrow’s theorem and Theorem 3 to arbitrary candidate spaces C.
It shows that the cyclicity is both necessary and sufficient for the impossibility of a representative
mechanism satisfying the axioms. However, the “necessary” part is not as strong as one would hope,
since it constructs counterexample for at least one C associated with each non-cyclic privilege graph,
instead of showing that the impossibility holds for all C associated with the privilege graph. It is an
open question whether such a stronger necessity holds, and shall be the subject of future research.

The N ≥ 3 condition (“at least 3 outcomes”) in Theorem 3 (as well as in the original Arrow’s
theorem) is replaced by the cyclicity condition here (“at least 3 outcomes in a cycle, in the privilege
graph”). Intuitively speaking, the cyclicity condition is a more general condition that identifies a
“core structure” in the candidate space C that is incompatible with the axioms.
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The cyclicity condition can be checked computationally in linear time (in the number of vertices and
edges) for any privilege graph, since it is equivalent to the existence of SCCs with at least 3 vertices.
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