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ABSTRACT

Predicting future discontinuous phenomena that are unobservable from the training
data sets has been a challenging problem for scientific machine learning. We
introduce a novel paradigm to predict the emergence and evolution of various kinds
of discontinuities for hyperbolic dynamic systems based on smooth observation
data. At the heart of our approach is a templaterizable and data-driven Riemann
solver that functions as a strong inductive prior to tackle the potential discontinuities.
The key design of our templaterized Riemann approximator is inspired by the
classical Roe solver (P. L. Roe, J. Comput. Phys., vol. 43, 1981), which served
as a fundamental mathematical tool for simulating various hyperbolic systems
in computational physics. By carefully designing the computing primitives, data
flow, and incorporating a novel pseudoinverse processing module, we enable our
data-driven predictor to inherently satisfy all the essential mathematical criteria of
a Roe hyperbolic solver derived from the first principles and hence deliver accurate
predictions of hyperbolic dynamics. The most salient feature of our method is
its capability in predicting future discontinuities accurately and robustly that are
invisible from training data. We demonstrate by various examples that our data-
driven Roe predictor can outperform both original human-designed Roe schemes
and deep neural networks with weak priors, with respect to its accuracy, robustness,
and minimum training data.

1 INTRODUCTION

Predicting the invisible future is an ultra ability humans aim to build into machine intelligence. To
materialize this visionary goal into an algorithmic context, we propose to solve a new type of machine
learning problems to predict a dynamic system’s future behavior patterns that are invisible in the
training data set. Namely, the training and testing data sets exhibit salient differences with respect
to their features and distributions in the solution space (see the inset figure). Such examples are
ubiquitous in natural and social sciences. For example, fluid mechanists want to predict the future
occurrence of shock waves based on the observation of the current smooth fluid flow. Epidemiologists
want to predict the break-out time of an epidemic disease based on the collected data on an early
stage. More examples exist in weather forecast (Methaprayoon et al., 2007), aircraft control (Troudet
et al., 1991), traffic scheduling (Yu et al., 2020), and economic crisis prediction (Jahn, 2020). From
a mathematical perspective, we summarize these prediction problems as seeking the evolutionary
solution of a dynamic system whose current observable status are significantly different from its
targeted behaviors in the long future. We name these problems as “unobservable pattern prediction”.

Devising a data-driven paradigm to address the unobserv-
able pattern prediction problem is challenging for two
reasons. First, the target patterns to be predicted do not
exist in the training data set. Hence, we cannot leverage
the expressive power of the modern deep neural networks
to uncover these patterns from abundant training data. In
many scenarios, the training data merely covers a small
region of the entire solution space (see the right inset fig-
ure). Second, there lack accurate models to describe the
evolution that connects the current, observable states to
the future, predictive targets. Mathematically, we typically
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need to use partial differential equations (PDEs) to model such evolution. However, in many cases,
we do not have these differential equations in hand. Instead, only some first-principled inductive
priors such as conservation laws are available to guide and evaluate the predictions on a high level.
These extremely partial observations and insufficiently accurate models jointly make the unobservable
prediction problems seemingly infeasible to solve.

In this paper, we conduct a preliminary exploration on tackling the computational challenges of unob-
servable prediction problems by proposing a novel approach that hybridize model priors and learning
paradigms on an architectural level. We describe our high-level design philosophy as “templaterizable
prior embedding”: Analog to a generic programming process, we use abstracted, inductive priors
as a model template to uncover the unknown evolution mechanics that can be instantiated by an
appropriate combination of data-driven primitive computing blocks. These computing primitives are
embodied with specific mathematical roles in the template and designed as a set of neural-network
modules that can be trained in an end-to-end fashion to search for their optimal instantiations. Our
learning paradigm facilitated with these prior-embedded modules can characterize dynamic evolution
in which (i) the target patterns are invisible in training data sets, (ii) observation window is partial
and short, and (iii) no accurate PDE models connecting the current and future.

As the first step toward the vision of unobservable dynamics prediction, we study a broad, representa-
tive category of problems—hyperbolic dynamic systems—which exist ubiquitously in many fields of
physical science and engineering (see examples in Scheid et al., 1974; Terao & Inagaki, 1989; Dam &
Zegeling, 2006; Bressan, 2013; Mao et al., 2020a). Mathematically, we narrow down our focus further
onto Riemann problem (Toro, 2013), which is a specific type of hyperbolic PDEs with two constant
initial states that will be separated by a single discontinuity in the (long) future. The data-driven
prediction of Riemann problem faces the aforementioned two challenges of the partial observation
and the lack of accurate model. To tackle these challenges, we devise our “templaterizable priors”
by creating a template model based on a classical Riemann solver—Roe solver (Roe, 1981). Roe
solver served as a fundamental mathematical tool in the history of scientific computing. It is not only
a specific numerical scheme but also a set of mathematical design guidelines to create an effective
numerical Riemann solver. In the following sections, we will demonstrate how we take advantage of
these strong mathematical principles to devise a novel learning model (named RoeNet) by embedding
the templaterizable Roe modules as a set of data-driven computing primitives embodied with strong
mathematical priors. We examine the RoeNet’s ability by conducing long-term discontinuity predic-
tions for a broad range of hyperbolic PDEs. The results demonstrate the accuracy, robustness, and
the outstanding predictive capability on processing invisable phenomena of our RoeNet framework,
which outperforms both human-designed numerical schemes and the state-of-the-art neural networks.

2 ROE TEMPLATE WITH PSEUDOINVERSE EMBEDDING

In this section, we will introduce the mathematical model of our RoeNet design. First, we briefly
introduce the mathematical background of hyperbolic systems and the classical form of Roe solver
(we refer the reader to the Appendix A for a detailed description). Next, we introduce our design
of the Roe template with pesudoinverse embedding, which accommodate the data processing and
training over the entire learning pipeline (see the details for network architecture in Section 3).

Hyperbolic Dynamic System A one dimensional hyperbolic problem can be described as a first-
order partial differential equation (PDE) of the form

∂u

∂t
+
∂F (u)

∂x
= 0, (1)

with a initial condition u(t = t0, x) = u0(x) and a proper boundary condition. Here
u = (u(1), u(2), · · · , u(Nc)) with Nc components is called the conserved quantity, while F =
(F (1), F (2), · · · , F (Nc)) is the flux. The variable t ∈ [t0, tT ] denotes time, while x ∈ Ω is the space
variable. The evolution of the PDE is discretized over a Cartersian grid.

We remark that for the discontinuous solution, (1) is interpreted as a integral form of weak solution
(e.g. Eymard et al., 1995). In addition, (1) can be written in a high dimensional form

∂u

∂t
+

Nd∑
i=1

∂Fi(u)

∂xi
= 0. (2)
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If we can successfully solve (1), (2) can be solved spontaneously by applying the method of approxi-
mating ∂F (u)/∂x to approximate ∂Fi(u)/∂xi.

Roe Solver The Roe solver involves finding an estimate for the intercell numerical flux at the
interface between two computational cells, on some discretised space-time computational domain. In
particular, the Roe solver Roe (1981) discretizes (1) as

un+1
j = un

j − λr
(
F̂ (un

j ,u
n
j+1)− F̂ (un

j−1,u
n
j )
)
, (3)

where λr = ∆t/∆x is the ratio of the temporal step size ∆t to the spatial step size ∆x; j = 1, ..., Ng

is the grid node index; and

F̂ (u,v) =
1

2

[
F (u) + F (v)− |Ã(u,v)|(v − u)

]
. (4)

Here, Roe matrix Ã is assumed constant between two cells and must obey the three Roe conditions
(termed property U in Appendix A) including diagonalizable with real eigenvalues, consistent with
the exact Jacobian, and preserving conserved quantities. The key step to design an effective Roe
solver consists in finding the Roe matrix Ã that is assumed constant between two cells by fulfilling
the above “Property U.”

Pseudoinverse Embedding We propose an effective approach to solve hyperbolic dynamic systems
by applying Roe solver under a neural network perspective. Given the diagonalization of the Roe
matrix

Ã = L−1ΛL, (5)

our model consists of two networks which learn L and Λ respectively.

Using neural networks to directly approximate L and Λ is ineffective, since the number of learnable
parameters is limited by the number of components. To enhance the expressiveness of our model, we
introduce the concept of pseudoinverses by replacing L−1 with

L+ = (LTL)−1LT (6)

to enable a hidden dimension Nh so that we are flexible with the number of parameters.

Roe Template Substituting (18) and (6) into (15) along with the third Roe condition yields

un+1
j =un

j −
1

2
λrL

+
j+ 1

2

(Λj+ 1
2
− |Λj+ 1

2
|)Lj+ 1

2
(un

j+1 − un
j )

− 1

2
λrL

+
j− 1

2

(Λj− 1
2

+ |Λj− 1
2
|)Lj− 1

2
(un

j − un
j−1),

(7)

with
Lj+ 1

2
= L(un

j ,u
n
j+1), Λj+ 1

2
= Λ(un

j ,u
n
j+1). (8)

Equation (7) serves as our template to evolve the system’s states from un
j to un+1

j .

3 NEURAL NETWORK ARCHITECTURE

Overall, RoeNet is constructed with two networks AL and AΛ , which learn L and Λ in (8) respec-
tively. As shown in Figure 1, RoeNet takes un

j and its direct neighbors, un
j−1 and un

j+1, as the
input, and outputs un+1

j . Specifically, RoeNet contains two parts, each consists of a AL and a AΛ.
The first part takes un

j−1 and un
j as input of both AL and AΛ and outputs Lj− 1

2
through AL and

Λj− 1
2

through AΛ. The input un
j−1 and un

j is a vector (u
n,(1)
j−1 , · · · ,u

n,(Nc)
j−1 ,u

n,(1)
j , · · · ,un,(Nc)

j )

of length 2Nc. The output matrix Lj− 1
2

is of size (Nc × Nh), and the other output matrix Λj− 1
2

is a diagonal matrix of size (Nh × Nh). The second part takes un
j and un

j+1 as input of both AL

and AΛ and outputs Lj+ 1
2

through AL and Λj+ 1
2

through AΛ. The input unj and unj+1 is a vector

(u
n,(1)
j , · · · ,un,(Nc)

j ,u
n,(1)
j+1 , · · · ,u

n,(Nc)
j+1 ) of length 2Nc. The output matrices Lj+ 1

2
and Λj+ 1

2
take
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Figure 1: The architecture of RoeNet. RoeNet takes the current conserved quantity un
j and its direct

neighbors, un
j−1 and un

j+1, as the input, and outputs the next conserved quantity un+1
j . The ResBlock

has the same architecture as in He et al. (2016) only with the 2D convolution layers replaced by linear
layers. The numbers in the parentheses are output dimensions of each Resblock.

Table 1: Experimental set-up of four PDE problems.
1C Linear 3C Linear Sod tube Inviscid Burgers

Boundary condition periodic Neumann Neumann periodic
Time step ∆t 0.01 0.001 0.001 0.001
Space step ∆x 0.01 0.005 0.005 0.01
Training time span 0.1 0.02 0.02 0.001
Predicting time span 2 0.2 0.1 0.3
Dataset samples 100 2000 2000 100
Dataset generation analytical analytical analytical 2nd central difference
Components number Nc 1 3 3 1
Hidden dimension Nh 1 16 32 64

the same form as the output matrices in the first part. Given the four output matrices Lj− 1
2

, Λj− 1
2

,
Lj+ 1

2
, and Λj+ 1

2
, we combine them through (7) to obtain un+1

j .

AL and AΛ both consist of a chain of ResBlock (He et al., 2016) with a linear layer at the end of
size Nh ×Nc and Nh, respectively. The Nh numbers learned by AΛ is transferred into a diagonal
matrix of Nh×Nh with the learned numbers as its diagonal. The ResBlock has the same architecture
as in He et al. (2016) only with the 2D convolution layers replaced by linear layers. The numbers
in the parentheses are output dimensions of each Resblock. Note that although we only show the
calculation for grid cell j, the process is the same for grid cells. Since each node are calculated
independent from the others except its closest neighbors, we train them in parallel to achieve high
efficiency. In addition, to address different boundary conditions, we implement two ways of padding.
For periodic boundary conditions, we use the periodic padding, e.g., if j = 0, uj−1 = uNg

, where
Ng is the number of grid node. For Neumann boundary conditions, we use the replicate padding, e.g.,
if j = 0, then we set un

j−1 = un
0 .

4 EXPERIMENTS

We examine our model’s ability of solving different kinds of hyperbolic PDEs. Most importantly, we
show our model is capable of predicting discontinuity with smooth training data. The details of the
parameters we set and important quantities about hidden layers can be found in Table 1. We use 2nd

central difference to generate dataset for the inviscid Burgers’ equation, since there is no analytical
solution for Burgers’ equation. Note that 2nd central difference will eventually lead to explosion. We
only use the very first small time window, where the solution has not exploded yet, to train our model.
For all the problems, the range of x we aim to solve are from −0.5 to 0.5.
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Figure 2: Results of solving an one component linear hyperbolic PDE. Left: Results of RoeNet;
Middle: Comparisons ; Right: Errors compared with groundtruth. Notice the contrast between the
small training region (dark blue) and the large future predictions (rainbow color).

For all experiments, we use the Adam optimizer Kingma & Ba (2014) with a learning rate 0.001.
The learning rate decays with a ratio of 0.9 for every 5 epochs. We use a batch size of 16 for all
experiments. We choose the Mean Squared Error as our loss function for all experiments. All the
models are trained for 100 epochs and converge in less than 5 minutes in a single Nvidia RTX 2080Ti.

4.1 HYPERBOLIC PDES WITH ONE COMPONENT

We first show our model’s ability of predicting the results of linear and non-linear hyperbolic PDEs
with one components. The comparisons of our results with other PDE methods are also shown.

A simple example Figure 2 shows the predicting results of the linear hyperbolic PDE with one
component (1C Linear) {

F = x,

u(t = 0, x) = e−300x2

.
(9)

In Figure 2 (a), we plot the prediction results of RoeNet in 3D with time as an additional dimension.
As show in this figure, the region of the wave peak of the predicted results (denoted by rainbow color)
is completely different from the training data (denoted by blue color; t ∈ [0.0, 0.2]).

In Figure 2 (b), we plot the results using RoeNet, Roe solver, DeepXDE(Lu et al., 2019), as well as
the exact solution. Note that for both Roe solver and DeepXDE, the euqations are known, and that
we give DeepXDE training data of longer time period(t ∈ [0.0, 0.5]). It is clear that RoeNet, even
not knowing the equations, outperforms both these two traditional and deep learning PDE solvers,
especially at larger t that is not included in training data.

Figure 2 (c) shows the averaged deviation λu = 〈|u− uexact|〉 of the predicted solutions from the
exact solution, where 〈·〉 denotes the average over [−0.5, 0.5]. The averaged deviation of RoeNet is
almost negligible, showing its high accuracy when making long time predictions.

Predict discontinuity with smooth training data In this example, we exhibit the unique ability of
our model to accomplish tacks that traditional machine learning approaches fail to complete. Given a
short window of continuous training data, we aim to use our model to predict long-term discontinuity
of a nonlinear hyperbolic PDE, the inviscid Burgers’ equation. Burgers’ equation is a fundamental
PDE occurring in various areas, such as fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow. The inviscid Burgers’ equation is a conservation equation, more generally a first order
quasilinear hyperbolic equation, which can develop discontinuities (shock waves) Burgers (1948).
The set of equations is given by 

F =
1

2
u2,

u(t = 0, x) =
1

2
+ sin(2πx).

(10)
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Figure 3: Results of solving an one component linear hyperbolic PDE. Left: Results of RoeNet;
Middle: Heatmap to show the discontinuity ; Right: Comparisons.

Since there is no analytical solution for this problem, we plot only the prediction results made by
RoeNet, Roe solver and DeepXDE(given training data of t ∈ [0.0, 0.1]) at t = 0.1, t = 0.2, and
t = 0.4 in Figure 3 (c). Note that out training data for u is also an approximate solution generated
by numerical method and only involves an extremely shorts time period of t ∈ [0, 0.002], as shown
in the thin blue curve in In Figure 3 (a). The perfect match of the predictions made by RoeNet
with these made by Roe solver at all three time points shows that RoeNet successfully learn the
future discontinuities of the problem based only on short-term continuous training data. This is a
breakthrough improvement in solving prediction problems, as predicting long-term discontinuities
from a short window of smooth training data is in general considered impossible using traditional
machine learning approaches.

4.2 HYPERBOLIC PDES WITH MORE COMPONENT

In addition, we apply RoeNet to solve a linear hyperbolic PDE with three components (3C Linear)
F =

[
0.3237 2.705 5.4101
0.3597 −0.4388 −2.8777
−0.0144 0.0576 1.1151

]
x,

u(t = 0, x ≤ 0) = (0.4, 0.4, 0.4), u(t = 0, x > 0) = (−0.4,−0.4,−0.4).

(11)

Figure 4 shows the the exact solutions and the prediction results of the three components u(1), u(2),
and u(3) of a Riemann problem with linear flux function, att = 0.2. From all three plots in Figure 4,
we can observe that the predictions made by RoeNet match the exact solutions perfectly, while these
of Roe solver have obvious errors around the discontinuous points (at x ≈ ±0.3).

We then access the performance of our model on solving Riemann problems with nonlinear flux
functions, which is in the form of equation 1 with F (u) = A(u)u. Specifically, we apply our model
to the Sod shock tube problem Sod (1978), which is a one-dimensional Riemann problem in the
following form 

u = (ρ, ρv,E)T

F = [ρv, ρv2 + p, v(E + p)]T ,

(ρ, p, v)|t=0,x≤0 = (1, 1, 0), (ρ, p, v)|t=0,x>0 = (0.125, 0.1, 0),

(12)

where ρ is the density, p is the pressure, E is the energy, and v is the velocity. The pressure, p, is
related to the conserved quantities through the equation of state

p = (γ − 1)

(
e− 1

2
ρv2

)
(13)

with γ = 1.4. The time evolution of this problem can be described by solving the Euler equations,
which leads to three characteristics, describing the propagation speed of the various regions of the
system. Namely the rarefaction wave, the contact discontinuity and the shock discontinuity Sod
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Figure 4: Riemann problem with three components and a linear (row 1) / non-linear (row 2) flux
function. (a), (b), and (c) plot the prediction results using RoeNet and Roe solver, and exact solutions
of the three components u(1), u(2), and u(3) respectively.

Figure 5: Results of 2D wave. Left: Heatmap of the 2D wave in different. Note that the blue part is
the time range of training data, while the larger rainbow part are predicted by RoeNet; Middle and
right: predicted results (rainbow) and ground truth(blue) at t = 0.2 and t = 0.4 respectively. The
perfect match shows high accuracy of RoeNet.

(1978). In Figure 4, we plot the three components of the problem, at t = 0.1. Similar to the conclusion
drawn from the previous section 4.1, RoeNet exhibits higher accuracy at predicting the discontinuities
of the nonlinear Riemann problem.

4.3 2D EXAMPLE

We show our model’s ability of predicting higher dimensional PDEs by learning and predicting the
behavior of a 2D wave, defined the following set of equations:{

F = x,

u(t = 0,x) = sin(2π(x1 + x2 + t))
(14)

To solve 2 dimensional PDEs, we add another AL and AΛ networks to learn those matrix in the
second dimension, and combine the vertical and horizontal ∆u together to predict ut+1. Similarly as
our 1D examples, the 2D ReoNet can learn from a limited number and time range of training data
and predict for a long time with high accuracy, as shown in Figure 5.
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4.4 ABLATION STUDY

Robustness to noisy data To test out model’s robustness to noisy data, we use the 1D wave example
and add different levels of noise to the training data. As shown in Figure 2 (b-c), our model can have
higher accuracy than the compared methods even with noisy training data.

Influence of pseudoinverse We now examine the influence of pseudoinverse using the three compo-
nent example. During training the three component models, the network can easily get NaN results if
directly using the inverse matrix. We plot the comparison of inverse and pseudoinverse in Figure 4.

5 RELATED WORK

Riemann solvers In scientific computing, numerical methods discretize the hyperbolic problems into
grids, which can be seen approximately as Riemann problems on a local scale (Griebel & Zumbusch,
1999; Colella et al., 2006; Vilara et al., 2011; McCorquodale & Colella, 2011; Spekreijse, 1987).
In particular, the Riemann problem is a hyperbolic partial differential equation (PDE), with initial
data comprised of two constant states, separated by a single discontinuity (Colella & Glaz, 1985).
Integrating the Riemann problem into hyperbolic system simulation can be traced back to the work
of Godunov Godunov (1959) with many follow-up works (see Toro, 1999). One of the most famous
ones is the Roe solver, invented by Phil Roe in 1981, which is a linearized Riemann solver to improve
the performance of Godunov’s method regarding its performance and dissipation (see Quirk, 1997).
More recently, Rotated-hybrid Riemann solvers were introduced by Hiroaki Nishikawa and Kitamura,
in order to overcome the carbuncle problems of the Roe solver and the excessive diffusion of the
HLLE solver at the same time Nishikawa & Kitamura (2008).

Deep learning solvers Approximating discontinuous functions with deep learning network has
theoretical foundation in various literature, e.g. Yarosky (2017) work on the Hölder space, Petersen
& Voigtländer (2017) on piece-wise smooth functions, Imaizumi & Fukumizu (2019) on DNN
outperforming linear estimators and Suzuki (2019) study on deep learning’s higher adaptivity to
spatial inhomogeneity of the target function. With above-mentioned theoretical cornerstone, a Physics
Informed Neural Network (PINN) is proposed by Raissi et al. (2017) to provide data-driven solutions
to nonlinear problems, employing the well-known capacity of Deep Neural Networks (DNN) as
universal function approximators (Hornik et al., 1989). Among its notable features, PINN maintains
symmetry, invariance and conservation principles deriving from physical laws that governs observed
data (Zhang et al., 2019). Michoski et al. (2019) show that without any regularization, irregular
solutions to PDE can be captured. Mao et al. (2020b) used PINN to approximate solutions to high-
speed flows by formulating the Euler equation and initial/boundary conditions into the loss function.
However, in Mao’s setting, PINN does not solve the forward problems as accurately as the traditional
numerical methods. By incorporating invariants and data a priori known to loss functions, such
DNNs are also less adaptive to different kinds of problems.

6 CONCLUSION

We presented Roe Neural Networks (RoeNets) to predict long-term discontinuity based on partial and
smooth observation. Our numerical experiments showed that RoeNet outperforms both the traditional
Riemann solver and modern deep learning solvers regarding its accuracy, robustness, and ability
to predict invisible discontinuity in the future. We further demonstrated in our ablation tests that
these computational merits draw from our templaterized prior embedding whose scheme preserves
the essential mathematical properties of the original Roe template. To the best of our knowledge,
our method is the first step toward building prior-embedded machine learning methods to predict
long-term future dynamic behaviors that are invisible in the current training data. A broad range of
applications outside physical prediction remains to be explored. On another hand, the design of our
templaterized architecture that hybrids modulerized mathematical priors and data-driven paradigms
opens up a new door to embed structured priors into networks to tackle physical problems. More
broadly speaking, any numerical stencil generators or design principles can serve as a potential prior
template that can be used to empower high-performance learning pipelines. We envision a series of
future work based on our templaterizable prior embedding scheme to bridge scientific computing and
machine learning, such as templaterizing the high-order advection schemes in CFD.
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A DETAILED INTRODUCTION OF ROE SOLVER

The Roe solver Roe (1981) discretizes (1) as

un+1
j = un

j − λr
(
F̂ n
j+ 1

2
− F̂ n

j− 1
2

)
, (15)

where λr = ∆t/∆x is the ratio of the temporal step size ∆t to the spatial step size ∆x; j = 1, ..., Ng

is the grid node index; and
F̂ n
j+ 1

2
= F̂ (un

j ,u
n
j+1) (16)

with
F̂ (u,v) =

1

2

[
F (u) + F (v)− |Ã(u,v)|(v − u)

]
. (17)

Here, Roe matrix Ã that is assumed constant between two cells, and must obey the following Roe
conditions (termed property U):
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1. Diagonalizable with real eigenvalues: ensures that the new linear system is truly hyperbolic.

2. Consistency with the exact Jacobian: when uj ,uj+1 → u, we demand that Ã(uj ,uj+1) =
∂F (u)/∂u.

3. Conserving Fj+1 − Fj = Ã(uj+1 − uj).

From the first Roe condition, matrix Ã can be diagonalized as

Ã = L−1ΛL. (18)

Therefore, |Ã(u,v)| can be interpreted as

|Ã| = L−1|Λ|L. (19)

Substituting (16), (17) and (19) into (15) along with the third Roe condition yields

un+1
j =un

j −
1

2
λr[L−1

j+ 1
2

(Λj+ 1
2
− |Λj+ 1

2
|)Lj+ 1

2
(un

j+1 − un
j )

+ L−1
j− 1

2

(Λj− 1
2

+ |Λj− 1
2
|)Lj− 1

2
(un

j − un
j−1)],

(20)

with
Ln

j+ 1
2

= L(un
j ,u

n
j+1), Λn

j+ 1
2

= Λ(un
j ,u

n
j+1). (21)

(20) serves as a template of evolution from un
j to un+1

j .

In order to construct a Roe matrix Ã that follows the Roe conditions, Roe solver utilizes an analytical
approach to solve L and Λ based on F (u). The Roe matrix is then plugged into (20) to ultimately
solve for u in (1). The Roe solver made a ‘smart’ linearization of the Riemann problem, which is
computationally efficient while still recognizing the non-linear jumps in the problem. Compared with
the other Riemann solvers, e.g. Godunov’s method Godunov (1959) and HLLC solver Toro et al.
(1994), it performs with less cost and less dissipation.
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