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Abstract

Terradrönare is a solution that aims to deter wild boars from damaging crops by using unmanned aerial
vehicles (UAVs) equipped with manually operated scent dispensers. The dispenser releases balls filled with
wolf scent, an effective natural deterrent for boars. The system incorporates image recognition technology to
help users identify optimal target sites, such as suitable tree trunks, to deploy the deterrents. By reducing
direct human interaction with wildlife, Terradrönare improves people’s and animals’ safety while minimizing
the need for manual crop monitoring. Acknowledging potential legal restrictions on semi-automated flight, the
solution avoids autonomous operations and provides real-time guidance through a mobile Android application
displayed on the user’s device. This ensures legal compliance while effectively managing wildlife and protecting
agricultural resources.

INTRODUCTION
Efficient environmental monitoring and wildlife management remain a pressing challenge, particularly
in addressing the impact of wild boars on forest ecosystems. This project aims to develop an adaptive
UAV system capable of territory exploration, tree recognition, wild boar damage detection, and scent
distribution for animal control. Integrating advanced technologies will enhance monitoring efficiency,
reduce human intervention, and ensure wildlife safety through non-invasive management techniques.

The UAV system introduces an innovative approach by employing a wolf-scent pheromone dispenser
to deter wild boars from vulnerable areas, providing an eco-friendly alternative to conventional meth-
ods such as fencing or labor-intensive processes such as manual repellents. Additionally, the UAV’s
capability to recognize environmental features and assess damage in real time enhances monitoring
precision and supports operators in making informed decisions about wildlife management and habi-
tat protection.

The project aims to develop a fully functional, field-tested UAV platform compliant with local regula-
tions, featuring a mobile app for control, image recognition algorithms for environmental analysis, and
hardware components, including a scent distribution mechanism for scent distribution. By employing
advanced recognition technology, the system minimizes time and labor requirements while enhancing
the accuracy and efficiency of forest monitoring tasks, offering a practical solution for wildlife manage-
ment and habitat protection.

Related Work
Modern agricultural drones, such as DJI’s Agras series [1] and Auto Spray Systems [2], are designed for
precision tasks like delivering pesticides and fertilizers while reducing waste. These systems incorpo-
rate advanced imaging for accurate target identification and autonomous navigation for efficient cover-
age, enabling precise delivery to specific areas. Similarly, platforms like Croptracker use multi-spectral
imaging to monitor crop health, allowing for targeted analysis of features such as tree canopies [3].
Technologies such as automated flight paths and precision spraying demonstrate their adaptability for
wildlife management tasks involving similar requirements.

In wildlife applications, drones are primarily employed for passive observation. Wildlife Drones inte-
grates radio receivers with UAVs to track animals tagged with VHF radio transmitters, enabling real-time
location monitoring over large areas [4]. The JOUAV CW-15 drone specializes in long-range habitat sur-
veys, while the JOUAV CW-25 VTOL drone combines thermal imaging and GPS for tracking endangered
species like Māui dolphins [5]. The DJI Matrice 300 RTK drone excels in short-range observations such as
monitoring nesting birds or responding to environmental disasters [6]. Programs such as Air Shepherd
leverage AI for species identification, behavioral analysis, and anti-poaching operations, highlighting
how UAVs are increasingly tailored to ecological challenges [7].
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PROPOSED SOLUTION
The development of the adaptive UAV system encompassed three main components: the Android appli-
cation for control and user interface, the scent distribution hardware, and the image recognition module
for environmental feature detection. Each component underwent iterative development and testing to
ensure compatibility, compliance with project requirements, and effective integration into the overall
system. This section outlines the design process, challenges encountered, and results achieved for each
component.

Architecture Diagram

Figure 1: Architecture Diagram [8] [9]

The Terradrönare system operates through coordinated interaction between the user, the Android
Mobile Application, and the UAV. The user interfaces with the Android app, which connects to the Com-
munication Controller via a USB-C link. The Communication Controller establishes a wireless OcuSync
2.0 link with the UAV, enabling real-time data transmission and control. Commands from the user are
relayed through the app to the UAV, which processes them and signals the Microcontroller. The Mi-
crocontroller, using the UAV’s LED system, activates the Scent Dispenser to release repellents onto the
target. The workflow includes safety measures, such as ensuring the UAV is within range and the “Aim”
mode is active before allowing the dispenser to trigger. This ensures precise operation.

Terradrönare The Terradrönare is a UAV integrated with a Scent Dispenser for precise projectile de-
livery. This design enables synchronized operation and is suitable for environmental and agricultural
applications, ensuring accurate targeting and reliable functionality.

Microcontroller The Microcontroller is an Arduino-based system that manages communication be-
tween the UAV and the Scent Dispenser. It ensures synchronized operations and accurate firing control,
facilitating efficient system coordination.

Scent Dispenser The scent dispenser is a custom module designed to distribute repellents to specific
targets, such as trees.
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Wireless Communication Link The wireless communication link utilizes OcuSync 2.0, offering dual-
band (2.4/5.8 GHz) transmission with a 10-km range, 1080p / 30fps video streaming, and 120 ms latency.
It includes anti-interference and multi-device compatibility for robust communication.

Communication Controller The communication controller is based on a DJI system, providing a 10 km
range using OcuSync 2.0. It features low-latency video transmission and wired connectivity to mobile
devices for precise operation.

Wired Communication Link The wired communication link uses a USB-C connection between the DJI
RC 2 controller and a mobile device. This setup ensures stable communication and minimizes latency.

AndroidMobile Application The Android application, developed with the DJI Mobile SDK in Java, serves
as the central interface for UAV operation. Provides real-time telemetry, live video feeds, and control
over the UAV and payload, ensuring communication and firmware validation during the registration
process.

Mobile SDK The DJI Mobile SDK supports the integration of drone controls, camera management,
telemetry, and video feeds into the Android application. Its support for Java and Kotlin facilitates robust
and extensible development.

Video Processing The video processing system uses a YOLO-based machine learning model to detect
and classify trees. This capability allows for accurate target tracking in real time, improving operational
precision.

Android Application

The Android application serves as the primary user interface and control system for the UAV platform.
Initially, the team explored utilizing a Windows-based software development kit (SDK) for application
development. However, compatibility issues with the DJI Windows SDK, including its lack of support, a
transition to the DJI Mobile SDK was required. This shift involved redesigning the application framework
to accommodate the Android platform.

The Terradrönare application was developed using the DJI Mobile SDK [10] and written in Java. The
user interface was designed with a focus on simplicity to facilitate navigation in field conditions. The
app provides users with real-time drone telemetry, a live video feed, and control of both the UAV and
the scent dispenser, delivering key functionalities essential for UAV operation.

The application includes an initial registration process (Figure 2), requiring users to connect the UAV
before accessing the main interface. This step ensures secure communication between the app and the
UAV, validating the firmware version and checking compatibility with the DJI SDK for proper operation.

The main screen (Figure 3) of the application displays a live camera feed from the UAV, along with
essential real-time telemetry such as altitude, speed, and the distance to the nearest obstacle. These
metrics are drawn from the UAV’s front cameras, helping operators maintain spatial awareness and
avoid collisions. A horizon line overlay further assists in maintaining proper orientation during flight.
Two primary control functions are available: the "Aim" function, which activates a crosshair overlay
employing the Circular Error Probable (CEP) technique. The crosshair dynamically adjusts its size based
on distance measurements from the UAV’s front cameras (Figure 4), shrinking as obstacles come closer
to indicate increased precision. The "Fire" function triggers the scent distribution mechanism, providing
users with control over the UAV’s scent deployment system.

The "Fire" function triggers the scent distribution mechanism by activating the UAV’s LED lights for a
specified period (Figure 5). These lights serve as a signal for the scent mechanism to initiate its sequence.
The "Fire" button remains inactive if the "Aim" mode is off or if the UAV is outside the required threshold
distance to the target. This ensures that the scent distribution sequence is initiated only under precise
conditions, preventing unintended activations and enhancing operational accuracy.

Scent Dispenser

The final design of the scent dispenser focuses on modularity and simplicity, ensuring a rapid prototyp-
ing process. By designing each part of the dispenser to be easily replaceable, we significantly reduced
the need to reprint entire components when iterations or changes were required during development.
This modular approach, as illustrated in the CAD model of the dispenser (Figure 6), allowed for targeted
testing and refinement of specific components, reducing material waste and accelerating the develop-
ment time.
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Figure 2: Registering Screen Figure 3: Main Video Screen - Aim Mode Off

Figure 4: Main Video Screen - Close Up Figure 5: Scent Dispenser Triggered

A key decision in the development was the selection of a roller-based ball launching mechanism.
This mechanism uses two rotating rollers to propel the scent-filled balls forward. This approach was
chosen over alternative designs like spring-loaded mechanisms, for its simplicity and reliability. It of-
fers sufficiently consistent performance with fewer moving parts compared to the alternative solutions,
reducing the likelihood of mechanical failure and simplifying maintenance.

The dispenser was also designed to seamlessly integrate with the UAV platform, by using the drone’s
existing components for operation. Specifically, the system uses the drone’s onboard LED as a trigger
for the launching sequence via a photo-resistor, as detailed in the electrical schematic (Figure 8). This
solution was chosen because it eliminated the need for additional communication channels, simplifying
the overall system and reducing weight and complexity.

The attachment system securely fastens to the UAV without requiring any modifications to the drone.
The 3D-printed version of the dispenser, shown in Figure 7, weighs just under 240g and demonstrates
the physical realization of this design, validating its effectiveness and compatibility with the UAV.

Figure 6: CAD model of the dispenser Figure 7: 3D-printed version of the dispenser
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Figure 8: Electrical Schematic

Image Recognition

The UAV platform integrates object detection and control systems, using a custom-trained YOLOv8 [11]
model and an Android application. The Python-based development focuses on training and evaluating
the object detection model, which is then exported to TensorFlow Lite [12] for integration into the app.
This system combines object detection with system.

The Python part of the workflow focuses on training a YOLOv8 model specifically designed for de-
tecting objects like trees and trunks. Using the Ultralytics library, the model was trained on a custom
dataset, achieving high mAP scores across test images. Post-training, the model was evaluated for pre-
cision and recall, followed by inference on sample images to validate real-world detection accuracy. The
model was then exported to TensorFlow Lite format, optimized for real-time deployment. This resulted
in lightweight performance suitable for UAV’s live video processing system.

In the Android application, detection is implemented using the TensorFlow Lite model and OpenCV
[13], integrated with the UAV’s live video feed. Frames captured from the UAV camera are processed and
passed to the model for real-time inference. The app dynamically visualizes detected objects by drawing
bounding boxes and labels directly on the video feed, updating detection results for each frame. The
system handles model inference, ensuring detection without lag, even in field conditions, and provides
feedback to the user in real-time.

Testing

The app was extensively tested in simulated and real-world scenarios to ensure reliability. Integration
with the DJI Android SDK enabled seamless communication between the mobile device and the UAV,
minimizing latency to provide real-time responsiveness. Feedback from field testing was incorporated
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Figure 9: Drone with Scent Dispenser

to refine the interface and improve overall usability. The final application demonstrated stable perfor-
mance under varying field conditions and successfully supported the intended operational workflows.

CONCLUSION
This project provided us insights into the complexity and interdisciplinary nature of developing an adap-
tive UAV system. By integrating electrical components, 3D printing, software engineering, and machine
learning, we successfully designed a multifunctional system that connects technical domains. While
challenges were inevitable, the progress we achieved underscores the importance of persistence and
iterative problem-solving.

The development of the Android application as the control hub was particularly challenging. Initial
compatibility issues showed due to the inconsistent support and updates for the Windows SDK, which
ultimately necessitated a transition to the DJI Mobile SDK for Android. This highlighted the importance
of choosing tools with ongoing support in technical projects. The resulting application delivered real-
time telemetry, live video feeds, and precise UAV control. Although there is room for future optimization,
the app met the functional requirements needed for reliable operation under field conditions.

The design and implementation of the scent dispenser demonstrated the advantages of a modu-
lar approach. Exploiting 3D printing for prototyping enabled rapid iteration and significant savings in
time and materials. TPU was chosen as the material for 3D-printed components due to its flexibility,
durability, and enhanced friction properties. The increased friction provided by TPU was beneficial for
the roller-based mechanism, ensuring grip and movement of components during operation. Despite
producing numerous prototypes to perfect the design, the roller-based mechanism was chosen for its
simplicity and reliability. Future iterations could focus on enhancing adaptability for broader applica-
tions.

The object detection system, utilizing a custom-trained YOLOv8 model, was the most technically
demanding component, particularly due to challenges with integrating model into the Android environ-
ment. An issue appears from conflicts between OpenCV and Gradle dependencies, where mismatched
versions caused build errors. Resolving these conflicts required dependency management, aligning
library versions, and customizing Gradle configurations. Regardless of these challenges, the system
was optimized for real-time video processing and object detection, demonstrating its suitability for
UAV deployment. This underscored the need for careful dependency management to enable future
enhancements in object detection accuracy, and performance in complex environments.

Testing the system in both simulated and real-world scenarios pointed up the importance of iterative
refinement and user-centered design. However, real-world testing created additional challenges due
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to the strict drone laws in Poland, which restricted flight zones and operational conditions. Obtaining
the permissions delayed field tests and required modifications to planned testing protocols. These
constraints bring out the need for preparation when operating UAVs in regulated environments. Despite
these challenges, adjustments ensured the usability under field conditions. Achieving well-grounded
performance in tests validated the system’s design.

FUTURE DIRECTIONS
Several potential directions for improvement can be explored, the first being improvements to the
battery life of the dispenser attachment and its design. One viable approach is transitioning to a spring-
loaded mechanism, where a low-power actuator could release the stored energy quickly on demand.
Another promising alternative is utilizing CO2 canisters to drive the dispensing mechanism.

Another area of improvement lies in the integration of a flight plan feature. By allowing the user to
define the perimeter of a desired area to be explored, the system can autonomously check the perimeter
without much human intervention.

Expanding the image recognition capabilities is also a vital direction for improvement. Currently
trained to detect trees, the model could be enhanced to identify more complex features such as signs
of wild boar damage or the animals themselves. This would involve training the system on more chal-
lenging datasets because such damage is often subtle and varies in appearance depending on the
terrain and vegetation. Detecting these patterns accurately may involve integrating more sophisticated
sensors, such as thermal imaging or multi-spectral sensors, to provide additional data.

ACKNOWLEDGMENTS
We want to thank our supervisor, Dr. Krystian Wojtkiewicz, PhD, for providing access to the drone from the
university, procuring essential components needed for completing the project and providing constant
guidance throughout the project.

We also thank Dr. Piotr Zabawa, PhD, a licensed drone operator, for his contribution to field testing
the system, operating the drone for us in an actual usage scenario, and helping us acquire photos of
the system in use in the field.

REFERENCES
[1] Ashot VOSKANYAN and Lusine TSPNETSYAN. Efficiency assessment for the main directions of pro-

posed state policy to increase the competitiveness of agriculture in the republic of armenia. AL-
TERNATIVE, pages 27–42, 01 2023.

[2] Manoj Karkee, Qin Zhang, Uddhav Bhattarai, and Xin Zhang. Advances in the use of robotics in
orchard operations. Burleigh Dodds Science Publishing, 2024.

[3] Sujan Adaka, Nandita Mandala, Partha Pratim Maitya, and Arkadeb Mukhopadhyaya. Drones: a
modern breakthrough for smart farming. Food Sci Rep, 2022.

[4] Debbie Saunders. Wildlife drones - innovative radio-tracking capabilities. Technical report, Wildlife
Drones, 05 2021.

[5] Wildlife drones | how to use drones for wildlife conservation? https://www.jouav.com/blog/
wildlife-drone.html. Accessed: 2024-11-24.

[6] Thomas Holm, Lars Rasmussen, Johan Henrik Castenschiold, Kees Koffijberg, and Thomas Bregn-
balle. Usage of drones in assessing bird numbers along the east atlantic flyway. Technical report,
AARHUS University, Danish Centre for Environment and Energy, 09 2024.

[7] Paige Laurain. Using technology to save endangered species, 2018.

[8] Freepik. Paintball. https://www.flaticon.com/free-icon/paintball_4567217?term=
paintball&page=1&position=27&origin=search&related_id=4567217. Licensed under
https://media.flaticon.com/license/license.pdf.

[9] Icons_Field. Smart technology. https://www.flaticon.com/packs/smart-technology-14150479.
Licensed under https://media.flaticon.com/license/license.pdf.

https://www.jouav.com/blog/wildlife-drone.html
https://www.jouav.com/blog/wildlife-drone.html
https://www.flaticon.com/free-icon/paintball_4567217?term=paintball&page=1&position=27&origin=search&related_id=4567217
https://www.flaticon.com/free-icon/paintball_4567217?term=paintball&page=1&position=27&origin=search&related_id=4567217
https://media.flaticon.com/license/license.pdf
https://www.flaticon.com/packs/smart-technology-14150479
https://media.flaticon.com/license/license.pdf


ZPI 2024

[10] DJI SDK. Mobile sdk android. https://github.com/dji-sdk/Mobile-SDK-Android, 2024.

[11] Ultralytics. Yolov8: Cutting-edge, state-of-the-art object detection, 2023.

[12] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[13] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

https://github.com/dji-sdk/Mobile-SDK-Android

