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Abstract

Artifacts, blur, and noise are the common distortions degrading MRI images during the
acquisition process, and deep neural networks have been demonstrated to help in improving
image quality. To well exploit global structural information and self-similarity details,
we propose a novel MR image enhancement network, named Feedback Graph Attention
Convolutional Network (FB-GACN). As a key innovation, we consider the global structure
of an image by building a graph network from image sub-regions that we consider to
be node features, linking them non-locally according to their similarity. The proposed
model consists of three main parts: 1) The parallel graph similarity branch and content
branch, where the graph similarity branch aims at exploiting the similarity and symmetry
across different image sub-regions in low-resolution feature space and provides additional
priors for the content branch to enhance texture details. 2) A feedback mechanism with
a recurrent structure to refine low-level representations with high-level information and
generate powerful high-level texture details by handling the feedback connections. 3) A
reconstruction to remove the artifacts and recover super-resolution images by using the
estimated sub-region self-similarity priors obtained from the graph similarity branch. We
evaluate our method on two image enhancement tasks: i) cross-protocol super resolution of
diffusion MRI; ii) artifact removal of FLAIR MR images. Experimental results demonstrate
that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Magnetic resonance imaging, image enhancement, self-similarity, graph simi-
larity branch, feedback mechanism.

1. Introduction

For Magnetic Resonance Imaging (MRI) sequences, it is an inevitable dilemma to achieve a
balance between image resolution, signal-to-noise ratio, and acquisition time (Brown et al.,
2014). Higher resolution imaging grasps more structural details and provides more diagnos-
tic information, but requires longer acquisition time (Sui et al., 2019). Since the signal-to-
noise ratio is proportional to the slice thickness and the square root of scanning time, the
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longer acquisition time leads to the performance drop of the signal-to-noise ratio and tends
to generate artifacts caused by physiologic motion such as respiratory motion and physical
movement of subjects. Considering the limited and costly MRI resource, some thick slices
and low scan time MRI images are usually utilized to get a desired signal-to-noise ratio
(Lee et al., 2020; Wu et al., 2019; Meurée et al., 2019). Consequently, the use of image
enhancement techniques is an established field of research in medical image computing and
imaging physics (Shi et al., 2015), for example, to prevent blurring and information loss
when co-aligning different image volumes in a multi-parametric sequence.

Recently, Convolutional Neural Network (CNN) based approaches have shown dramatic
improvements over traditional super-resolution (SR) methods and exhibited state-of-the-
art performance in natural and medical images. A super-resolution convolutional neural
network (SRCNN) (Dong et al., 2014) was proposed to learn a nonlinear mapping between
the low-resolution (LR) and high-resolution (HR) images. Wide residual networks with
fixed skip connections (Shi et al., 2018) was presented for MR images super-resolution. A
new CNN-based model (Tanno et al., 2017) was proposed for a diffusion tensor imaging SR
task. Besides, Graph Neural Networks (GNN) have also shown their powerful ability to
exploit structural information dealing with data of graph structure. The notation of GNN
was firstly introduced (Gori et al., 2005), and then further elaborated as a generalization
of recursive neural networks, which is widely used to explore the structural characters in
various applications including chemistry, recommender systems, and social network study
to deal with challenge tasks, e.g., finding the chemical compounds that are most similar
to a query compound, tackling the graph similarity computation for query systems (Bai
et al., 2019). Nowadays, it is an interesting trend to combine GNN and CNN to develop
their corresponding advantages (Veličković et al., 2018). GNNs help with reducing the data
dimensionality from image features extracted by CNN to high-level and compact features
in graph nodes. FCNs are limited in the receptive field. Adding a GNNs could increase the
receptive field of networks when dealing with large images. The combination of CCN and
GNN is a convolutional graph neural network that generalizes the operation of convolution
from grid data to graph data. It plays a central role in building up many complex GNN
models (Wu et al., 2020).

To avoid generating inconsistent HR results after replacing the LR patches, in our
method, the similar patch pairs are matched in feature space and the graph attention
mechanism is used to update features representation of each patch (node) with the adap-
tive weight combination of those similar patches’ features. As far as we know, it is the first
work to explore the self-similarity and continuous relationship of MRI and fully exploit the
feedback mechanism to increase the reconstruction accuracy for MR images. More specifi-
cally, in this paper, we propose a novel biomedical image enhancement network based on the
feedback mechanism and graph attention convolutional network, where graph networks are
employed as a self-similarity strategy which assigns larger weights to the more important
and similar nodes or features.

The main contributions of this paper are:

1) We propose a Feedback Graph Attention Convolutional Network (FB-GACN) for MR
image enhancement. To the best of our knowledge, it is the first work to construct
a graph-based network into the image enhancement by exploring globally structural
similarity among similar paired sub-regions.
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Figure 1: Architecture of the proposed FB-GACN model. Our FB-GACN contains three
parts: 1) The content block to generate the high-level texture details. 2) The
graph attention branch to exploit the similarity and symmetric knowledge across
MRI patches. 3) A reconstruction to remove the artifact and reconstruct super-
resolution MRI by using the estimated patch correlation priors. The feedback
mechanism is the recurrent structure to refine x features with high-level xT by
the feedback connections.

2) We propose a self-similarity learning strategy to update the features of each node in
a graph. Learning the symmetry and similarity relationship of each pair, the content
with same texture (e.g., edges, corners, and lesions) gets sharper and can be used to
remove some artifacts. It recovers more texture details by employing the feedback
mechanism (consecutive iterations) to facilitate LR images to reconstruct SR images.

3) We demonstrate the performance in two crucial tasks: i) cross-protocol super resolu-
tion of diffusion MRI and ii) MRI artifacts removal. The proposed network achieves
better high-resolution criteria and superior visual quality compared to state-of-the-art
methods.

2. Method

The whole pipeline consists of following three steps. Firstly, a stack of convolution layers
extracts the low-resolution features of input distortion images. Afterward, the content
branch and graph similarity branch work parallel to exploit the texture and self-similarity
information. Finally, the upsampling block reconstructs final super-resolution results using
the estimated patch correlation and texture priors.
Specialized design for MR images: Our method aims to learn the symmetry and self-
similarity relationship of patch-based features in multi-modal brain MR images where the
structure of the brain is normally symmetry, shown in Fig. 2 (a). To meet this requirement,
we designed a specialized Graph-based structure to merge the high-similarity information of
sub-regions by updating larger weights to the more important and similar nodes or features
in a graph attention fashion.
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Figure 2: (a) Exploring the self-similarity features to remove artifacts: Swapping the arti-
facts features in Patch 2 with clear features of Patch 1. (b) The employed at-
tention mechanism. A shared linear transformation W is applied to every node.
Afterwards, a self-attention mechanism a is calculated on features to learn the
correlation among nodes. (c) An illustration of multi-head attention mechanism
by node 1 on its neighbors.

2.1. Architecture of FB-GACN

The structure of the proposed FB-GACN is illustrated in Fig. 1. A long skip connection
is added to pass the upsampled LR image to the output result as we only want to learn
the residual modifications. After feature extraction, the output are low-resolution features
with the dimension of h × w × d, where h and w denote the spatial dimension of the LR
input and d is the number of feature channels. Then the LR features are imported into
the content branch and graph similarity branch, respectively. The upsampling block U is
made up of deconvolution layers to upscale the HR features, and convolutional layers to
recover a residual image. The final reconstruction SR images are the pixel-wise sum of the
upsampled LR input and the residual image. The mathematical formulation is elaborated
as:

ISR = fU
[
fG
(
fE
(
ILR

))
+ fF

(
fE
(
ILR

))]
+ ILRup , (1)

where fE(·), fG(·), fF (·), and fU (·) represent the operations of the feature extraction E,
graph similarity branch G, content branch F and upsamling U blocks, respectively. The
objective function is L1 norm-based loss function. The network is trained by minimizing
the objective function as following:

`(θ) =
1

n

n∑
i=1

∥∥ISRi − IHRi

∥∥
1
, (2)

whre θ and n are the parameters of the network and the number of images pairs, respectively.
ISRi is the reconstruction of super-resolution MRI, and IHRi is the corresponding ground
truth.

2.2. Graph Similarity Branch

Graph similarity branch employs graph attention network layers (GAT) (Veličković et al.,
2018) to make use of the contextual information among image patches to help recover struc-
ture and remove artifacts. After feeding the extracted LR feature maps to a convolutional
layer with stride of s and kernel size of p, we form a graph using the n × d matrix where
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we assume there exist n nodes with d-th dimensional features. Each node is connected
with five neighboring nodes and the attention coefficient of each node is updated. The
single graph attention layer is shown in Fig. 2. The input of the single attention layer is

a set of node features, h = {
−→
h 1,
−→
h 2, ...,

−→
h N }, hi ∈ RF , where N is the number of nodes,

and F is the number of features in each node. The GAT layer updates a new set of node

features, h
′

= {
−→
h

′
1,
−→
h

′
2, ...,

−→
h

′
N }, h

′
i ∈ RF ′

. Then a learnable linear transformation and
self-attention is performed on the nodes (a shared attention mechanism a : RF

′×RF ′ → RF

computes attention coefficients):

eij = a(W
−→
h i,W

−→
h j), (3)

which represents the importance of node j to node i. Afterwards, the attention coefficients
are normalized by the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈N
exp(eij), (4)

Following (Veličković et al., 2018), the attention mechanism a is a single-layer feedforward
neural network, parametrized by weight matrix −→a ∈ R2F ′

. After applying the LeakyReLU
nonlinearity, the coefficients are also expressed as:

αij =
exp(LeakyReLU(−→a T [W

−→
h i‖W

−→
h j ]))∑

k∈Ni
exp(LeakyReLU(−→a T [W

−→
h i‖W

−→
h k]))

, (5)

where (·)T represents the transposition operations and ‖ means the concatenation. Then
the final output of each node is updated on the strength of the similar neighborhood LR

feature nodes
−→
h j :

−→
h

′
i = σ

∑
j∈N

αijW
−→
h j

 , (6)

We also employ the content branch to recover texture details shown in Fig. 1, which is
a stack of 3 deconvlutional and 3 convolutional layers.

2.3. Feedback Mechanism

The feedback mechanism is a loop iteration to allow the network to correct previous states
and regenerate high-level representations. Such iterative cause-and-effect process helps to
achieve the principle of the feedback scheme for image SR: high-level information can guide
an LR image to recover a better SR image (Li et al., 2019). In our network, we utilize
the feedback mechanism to transfer the feature summation with high-level information
got from two branches to the low-level information of an input x. The judgment of the
feedback connection controller (shown in Fig. 1) determines the time (T ) of the feedback
iteration, also named the feedback connection. The feedback mechanism is the recurrent
CNN structure to refine x features with high-level xT by the feedback connections (T − th
iteration). It can be unfolded to T iteration, in which each iteration t is temporally ordered
from 1 to T. The hidden state of each iteration is tied with the loss function and the weight
parameters of each iteration are shared. The input of t-th iteration receives the feedback
information t-1 iteration to correct original low-level inputs.
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Table 1: Quantitative results of cross-protocol super-resolution and artifacts removal tasks.
The best results are highlighted in bold.

Methods Super-Resolution Artifacts Removal
PSNR SSIM PSNR SSIM

Bicubic 27.34±1.32 0.8882±0.0232 22.58±3.59 0.6855±0.1345
SRCNN (Dong et al., 2014) 29.46±1.68 0.9042±0.0796 24.68±3.38 0.7294±0.1216

VDSR (Kim et al., 2016) 29.66±1.18 0.9026±0.0731 25.39±2.72 0.7588±0.0921
EDSR (Lim et al., 2017) 30.23±1.56 0.9145±0.0229 25.68±3.61 0.7824±0.0952

DDBPN (Haris et al., 2018) 30.34±1.56 0.9171±0.0208 25.58±3.56 0.7821±0.0952
FB-GACN (Ours) 30.48±1.63 0.9185±0.0194 25.78±3.71 0.7839±0.1003

3. Experimental Results

3.1. Datasets

Two experiments were conducted to evaluate the performance of the feedback graph atten-
tion convolutional network. The first experiment is solving a cross-protocol super-resolution
problem on diffusion MRI data (MUSHAC) (Tax et al., 2019). The HR images were ob-
tained by state-of-the-art diffusion MRI acquisition by Prisma scanner with voxel size (1.5
× 1.5 × 1.5 mm3), and the corresponding LR images were scanned by the standard acqui-
sition of Prisma with a larger voxel size (2.4 × 2.4 × 2.4 mm3). Nine subjects are used
as training set and one subject for testing. For the second experiment, we utilize the pro-
posed network to remove the MRI artifacts and regenerate HR images by the scale ×2. We
randomly divided the public WMH dataset (Kuijf et al., 2019) into training (2225 images
from 48 patients), validation (278 images from 6 patients) and test parts (278 images from
6 patients). Afterward, the simulated artifacts of FLAIR modality (Kuijf et al., 2019) were
generated by the physical model of MRI motion artifacts.

Ground truth Proposed VDSR SRCNN Bicubic

Figure 3: Comparison with state-of-the-art methods of cross-protocol super-resolution on
the diffusion MRI data (MUSHAC). Best viewed by zooming in on the screen.
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3.2. Implementation Details

In each training batch, nine LR patches are randomly extracted as inputs. We train our
model 300 epochs with ADAM optimize and learning rate is set as 10−4 initially and is
divided by 2 every 80 epochs. We implement experiments with PyTorch using a NVIDIA
TITAN X GPU.

3.3. Comparisons with State-of-the-Art Methods

In order to evaluate the performances of our algorithms, we compare them with the start-
of-the-art methods qualitatively and quantitatively. The four most recent state-of-the-art
super-resolution methods are listed as follows: the Very Deep Super Resolution Network
(VDSR) from (Kim et al., 2016), the Super-Resolution Convolutional Neural Network (SR-
CNN) from (Dong et al., 2014),the Enhanced Deep Residual Networks (EDSR) from (Lim
et al., 2017), and the Deep Back-Projection Networks For Super-Resolution (DBPN) from
(Haris et al., 2018). We use open-resource implementations from the authors and train all
the networks on the same dataset for a fair comparison.

Ground truth Proposed VDSR SRCNN Bicubic

Figure 4: Comparison with state-of-the-art methods of artifacts removal with magnification
factors ×2 and the input size 100×100. Best viewed by zooming in on the screen.

3.4. Quantitative Results

The quantitative evaluation of the network using the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) scores are listed in Table 1.
Cross-Protocol Super-Resolution: This task is to evaluate the the performance of our
method on the cross-protocol diffusion MRI quality enhancement. Our method achieves
better results in comparison with other state-of-the-art methods, especially 3.46 dB higher
than the traditional bicubic interpolation method.
Artifacts Removal: To verify the effectiveness of our proposed network towards removing
MRI artifacts and super-resolution scale ×2, the PSNR and SSIM results of MRI artifacts
are listed in Table 1. Our method outperforms all the state-of-the-art algorithms with the
best PSNR 25.78 dB and SSIM 0.7839.
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3.5. Qualitative Evaluation

Cross-Protocol Super-Resolution: The qualitative results of our methods on the diffu-
sion MRI data (MUSHAC) by the standard and the start-of-the-art acquisition of Prisma
are shown in Figure 6. It can be observed that our proposed method obtains higher visual
quality and recovers clearer structures with finer contrast.
Artifacts Removal: The qualitative results of our methods at magnifications ×2 with
artifacts are shown in Figure 5. It can be observed that our proposed method can remove
artifacts and obtain the super-resolution results from the LR images. It recovers clearer
structures with finer contrast, edges and lesion information.

3.6. Ablation study

Table 2: Ablation study results (PSNR/SSIM): Comparisons our proposed model with the
configuration without (w/o) the graph similarity knowledge.

Ablation configuration Super-Resolution Artifacts Removal

w/o graph similarity 30.35/0.9177 25.65/0.7735

ours 30.48/0.9185 25.77/0.7835

Graph similarity knowledge: We conduct an ablation study to demonstrate the effec-
tiveness of the graph similarity branch. We compare the proposed network with and without
patch-based similarity knowledge in terms of PSNR and SSIM on the test data, shown in
Table 2. The graph similarity branch boosts the performance both in the super-resolution
and artifacts removal tasks.
Feedback Mechanism: We explore the effect of the iterative number of feedback connec-
tions. It can be observed from Table 3 that the reconstruction performance is improved
when the iterative number increases from T = 1 to T = 4. Considering the balance between
the computational time and the performance, T = 4 is chosen as the iterative number in
our paper.

Table 3: The impact of the iterative number T of feedback connection.
Feedback Connection T=1 T=2 T=3 T=4

Super-Resolution 30.22/0.9172 30.28/0.9173 30.34/0.9177 30.48/0.9185

Artifacts Removal 25.26/0.7632 25.41/0.7647 25.49/0.7682 25.77/0.7835

4. Conclusion

In this paper, we proposed a novel feedback graph attention convolutional network to en-
hance the visual quality and remove the common distortions (e.g., artifacts) of MR images,
considering the self-similarity and correlations across MRI sub-regions. We regard each
sub-region as a node and construct a graph to capture the global structure. We employ
the feedback mechanism to recover texture details by refining low-level representations with
high-level information in a time-series way. Comprehensive qualitative and quantitative ex-
periments show that our algorithm can remove artifacts and further generate high-resolution
MRI with finer structure, contrast and lesion information.

——————————————–
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Appendix A. Brats experiments

Considering the patients of MUSHAC datasets are limited, we also verified our models
on BRATS 2018 public dataset with noise and blur for super-resolution problem. We
generated the LR images with the same method used in [1, 2] while the original MRIs
were used as the HR ground truth images. 200 patients, 25 patients, and 25 patients are
used as the training, validation, and test data, respectively. For each patient, we picked 25
most informative slices. Our model also achieves the best performance (34.486/ 0.956) than
other baselines (e.g.,EDSR (33.989 /0.953), DDBPN(34.264/0.954), VDSR(32.742/0.945),
SRCNN(27.195/0.918), Bicubic (22.818 0.882)).
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Appendix B. Training details

In each training stage, nine LR patches with the size of 50x50 are randomly extracted as
inputs. The number of neighboring nodes is set as 5. We train our model 300 epochs
with ADAM optimize and learning rate is set as 104 initially and is divided by 2 every 80
epochs. We implement experiments with PyTorch using a NVIDIA TITAN X GPU. The
total training process takes almost 18 hours and can process a 256x256 image within 0.2s.

Appendix C. Qualitative Evaluation

Proposed VDSR SRCNNGround_truth DDBPN EDSR Bicubic

Figure 5: Comparison with state-of-the-art methods of artifacts removal with magnification
factors ×2 and the input size 100×100. Best viewed by zooming in on the screen.

Proposed VDSR SRCNNGround_truth DDBPN EDSR Bicubic

Figure 6: Comparison with state-of-the-art methods of cross-protocol super-resolution on
the diffusion MRI data (MUSHAC). Best viewed by zooming in on the screen.
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