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Abstract

Recent work suggests that feature constraints in the training datasets of deep neu-1

ral networks (DNNs) drive robustness to adversarial noise (Ilyas et al., 2019).2

The representations learned by such adversarially robust networks have also been3

shown to be more human perceptually-aligned than non-robust networks via image4

manipulations (Santurkar et al., 2019; Engstrom et al., 2019). Despite appearing5

closer to human visual perception, it is unclear if the constraints in robust DNN6

representations match biological constraints found in human vision. Human vision7

seems to rely on texture-based/summary statistic representations in the periphery,8

which have been shown to explain phenomena such as crowding (Balas et al., 2009)9

and performance on visual search tasks (Rosenholtz et al., 2012). To understand10

how adversarially robust optimizations/representations compare to human vision,11

we performed a psychophysics experiment using a metamer task similar to Freeman12

& Simoncelli (2011); Wallis et al. (2019); Deza et al. (2017) where we evaluated13

how well human observers could distinguish between images synthesized to match14

adversarially robust representations compared to non-robust representations and a15

texture synthesis model of peripheral vision (Texforms (Long et al., 2018)). We16

found that the discriminability of robust representation and texture model images17

decreased to near chance performance as stimuli were presented farther in the18

periphery. Moreover, performance on robust and texture-model images showed19

similar trends within participants, while performance on non-robust representa-20

tions changed minimally across the visual field. These results together suggest21

that (1) adversarially robust representations capture peripheral computation better22

than non-robust representations and (2) robust representations capture peripheral23

computation similar to current state-of-the-art texture peripheral vision models.24

More broadly, our findings support the idea that localized texture summary statis-25

tic representations may drive human invariance to adversarial perturbations and26

that the incorporation of such representations in DNNs could give rise to useful27

properties like adversarial robustness.28

1 Introduction29

Texture-based summary statistic models of the human periphery have been shown to explain key30

phenomena such as crowding (Balas et al., 2009; Freeman & Simoncelli, 2011) and performance31

on visual search tasks (Rosenholtz et al., 2012) when used to synthesize feature-matching images.32

These analysis-by-synthesis models have also been used to explain mid-level visual computation (e.g.33

V2) via perceptual discrimination tasks on images for humans and primates (Freeman & Simoncelli,34

2011; Ziemba et al., 2016; Long et al., 2018).35
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Figure 1: A sample un-perturbed (left) and synthesized adversarially robust (right) image are shown
peripherally. When a human observer fixates at the orange dot (center), both images – now placed
away from the fovea – are perceptually indistinguishable to each other (i.e. metameric). In this paper
we investigate if there is a relationship between peripheral representations in humans and learned
representations of adversarially trained networks in machines in an analysis-by-synthesis approach.
We psychophysically test this phenomena over a variety of images synthesized from an adversarially
trained network, a non-adversarially trained network, and a model of peripheral computation as we
manipulate retinal eccentricity over 12 humans subjects.

While summary statistic models can succeed at explaining peripheral computation in humans, they36

fail to explain foveal computation and core object recognition that involve other representational37

strategies (Logothetis et al., 1995; Riesenhuber & Poggio, 1999; DiCarlo & Cox, 2007; Hinton, 2021).38

Modelling foveal vision with deep learning indeed has been the focus of nearly all object recognition39

systems in computer vision (as machines do not have a periphery) (LeCun et al., 2015; Schmidhuber,40

2015). Despite their success, however, they are vulnerable to adversarial perturbations. This phenom-41

ena indicates: 1) a critical failure of current artificial systems (Goodfellow et al., 2014; Szegedy et al.,42

2013); and 2) a perceptual mis-alignment of such systems with humans (Golan et al., 2019; Feather43

et al., 2019; Firestone, 2020; Geirhos et al., 2021; Funke et al., 2021) – with some exceptions (Elsayed44

et al., 2018). Indeed, there are many strategies to alleviate these sensitivities to perturbations, such as45

data-augmentation (Rebuffi et al., 2021), biologically-plausible inductive biases (Dapello et al., 2020;46

Reddy et al., 2020; Jonnalagadda et al., 2021), and adversarial training (Tsipras et al., 2018; Madry47

et al., 2017). This last strategy in particular (adversarial training) is popular, but has been criticized as48

being non-biologically plausible – despite yielding some perceptually aligned images when inverting49

their representations (Engstrom et al., 2019; Santurkar et al., 2019).50

We know machines do not have peripheral computation, yet are susceptible to a type of adversarial51

attacks that humans are not. We hypothesize that object representation arising in human peripheral52

computation holds a critical role for high level robust vision in perceptual systems, but testing this has53

not been done. Inspired by recent works that test have tested summary statistic models via metameric54

discrimination tasks (Deza et al., 2017; Wallis et al., 2016, 2017, 2019), we can evaluate how well the55

adversarially robust CNN model approximates the types of computations present in human peripheral56

vision with a set of rigorous psychophysical experiments with respect to synthesized stimuli (Figure 1).57

We evaluated the rates of human perceptual discriminability as a function of retinal eccentricity across58

the synthesized stimuli from an adversarially trained network vs synthesized stimuli from models59

of mid-level/peripheral computation. If the decay rates of perceptual discriminability are similar60

across stimuli, then it suggests that the transformations learned in an adversarially trained network61

are isomorphic to the transformations done by models of peripheral computation – and thus, to the62

human visual system.63

2 Human Psychophysics: Discriminating between stimuli as a function of64

retinal eccentricity65

We designed two human psychophysical experiments: the first was a an oddity task similar to66

Wallis et al. (2016), and the second was a matching, two-alternative forced choice task (2AFC).67

Two different tasks were used to evaluate how subjects viewed synthesized images both only in the68

periphery (oddity) and those they saw in the fovea (matching 2AFC). The oddity task consisted of69

finding the oddball stimuli out of a series of 3 stimuli shown peripherally one after the other (100ms)70
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Figure 2: A sub-collection of synthesized stimuli used in our experiments that show differences
across (columns) and within (rows) perceptual models. The original stimuli is shown on the left,
with two parallel Noise Seeds that give rise to synthesized samples for the Standard, Robust and
Texform stimuli. Critically, an adversarially trained network – which was used to synthesize the
Robust stimuli (Engstrom et al., 2019) – has implicitly learned to encode a structural prior with
localized texture-like distortions similar to the physiologically motivated Texforms that account for
several phenomena of human peripheral computation (Freeman & Simoncelli, 2011; Rosenholtz
et al., 2012; Long et al., 2018). However, Standard stimuli, which are images synthesized from a
network with Regular (Non-Adversarial) training have no resemblance to the original sample.

masked by empty intervals (500ms) while holding center fixation. Chance for the oddity task was 171

out of 3 (33.3%). The matching 2AFC task consisted of viewing a stimulus in the fovea (100ms) and72

then matching it to two candidate templates in the visual periphery (100 ms) while holding fixation.73

A 1000 ms mask was used in this experiment and chance was 50%.74

We used 3 types of stimuli in our experiments: Standard stimuli which were synthesize by a non-75

adversarially (standard) trained networks, Robust stimuli which are synthesized by an adversarially76

trained stimuli, and Texform stimuli which are synthesized by a model of peripheral and mid-ventral77

computation (Figure 2). More information on stimuli synthesis can be seen in Appendix A.78

For both experiments, we also had interleaved trials where observers had to engage in a Original79

stimuli vs Synthesized stimuli task, or a Synthesized stimuli vs Synthesized stimuli discrimination80

task (two stimulus pairs synthesized from different noise seeds to match model representations). The81

goal of these experimental variations (called ‘stimulus roving’) was two-fold: 1) to add difficulty to82

the tasks thus reducing the likelihood of ceiling effects; 2) to gather two psychometric functions per83

family of stimuli, which portrays a better description of each stimuli’s perceptual signatures.84

We had 12 participants complete both the oddity and matching 2AFC experiments as shown in85

Figure 3. The oddity task was always performed first so that subjects would never have foveated86

on the images before seeing them in the periphery. We had two stimulus conditions (1) robust &87

standard model images and (2) texforms. Condition 1 consisted of the inverted representations of88

the adversarially robust and standard-trained models. The two model representations were randomly89

interleaved since they were synthesized with the same procedure. Condition 2 consisted of texforms90

synthesized with a fixed and perceptually optimized fixation and scaling factor which yielded images91

closest in structure to the robust representations at foveal viewing (robust features have no known92

fixation and scaling – which is why we evaluate multiple points in the periphery. Recall Figure 5).93

We randomly assigned the order in which participants saw the different stimuli.94

The main results of our 2 experiments can be found in Figure 4, where we show how well Humans95

can discriminate per type of stimuli class and task. Mainly Human observers achieve near perfect96

discrimination rates for the Standard stimuli wrt to their original references, but near chance levels97

when discriminating to another synthesized sample. This occurs for both experimental paradigms98

(Oddity + 2AFC), suggesting that the network responsible for encoding standard stimuli is a poor99

model of human peripheral vision given no interaction with retinal eccentricity.100
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Figure 3: A schematic of the two human psychophysics experiments conducted in our paper. The first
(A1.,A2.) illustrates an Oddity task where observers must determine the ‘oddball’ stimuli without
moving their eyes for brief presentation times (100 ms) which do not allow for eye-movements
or feedback processing. The second experiment (B1.,B2.) shows the 2 Alternative Forced Choice
(2AFC) Matching Tasks where observers must match the foveal template to 2 potential candidates on
the left or right of the image. All trials are done while observers are instructed to remain fixating at
the center of the image. Differences across rows indicate the type of interleaved trials shown to the
observers: (1) Original vs Synthesized, and (2) Synthesized vs Synthesized.

However, we observe that Humans show similar perceptual discriminability rates for Robust and101

Texform stimuli – and that these vary in a similar way as a function of retinal eccentricity. Indeed, for102

both of these stimuli their perceptual discrimination rates appear to follow a sigmoidal decay-like103

curve when comparing the stimuli to the original, and also between synthesized samples. The104

similarity between the blue and magenta curves from Figure 4 suggests that if the texform stimuli do105

capture some aspect of peripheral computation, then – by transitivity – so do the adversarial stimuli106

which were rendered from an adversarially trained network. These results empirically verify our107

initial hypothesis that adversarially trained networks encode a similar set of transformations as the108

human visual periphery. A superposition of these results in reference to the Robust stimuli for a better109

interpretation can also be seen in Figure 4 (B.).110

3 Discussion111

We found that stimuli synthesized from an adversarially trained (and thus robust) network are112

metameric to the original stimuli in the further periphery (slightly above 30 deg) for both Oddity and113

2AFC Matching tasks. However, more important than deriving a critical eccentricity for metameric114

guarantees across stimuli in Humans – we found a surprisingly similar pattern of results in terms of115

how perceptual discrimination interacts with retinal eccentricity when comparing the adversarially116

trained network’s robust stimuli with classical models of peripheral computation and V2 encoding117

(mid-level vision) that were used to render the texform stimuli (Freeman & Simoncelli, 2011; Long118

et al., 2018; Ziemba et al., 2016; Ziemba & Simoncelli, 2021). Further, this type of eccentricity-driven119

interaction does not occur for stimuli derived from non-adversarially trained (standard) networks.120

More generally, now that we found that adversarially trained networks encode a similar class of121

transformations that occur in the visual periphery – how do we reconcile the fact that adversarial122

training is biologically implausible in humans? Recall from the work of Ilyas et al. (2019) that per-123

forming standard training on robust images yielded similar generalization and adversarial robustness124
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Figure 4: Pooled observer results of both psychophysical experiments are shown (top and bottom
row). (A.) Left: we see that observers almost perfectly discriminate the original image from the
standard stimuli, in addition to chance performance when comparing against synthesized stimuli.
Critically there is no interaction of the standard stimuli with retinal eccentricity which suggests that
the model used to synthesize such stimuli is a poor model of peripheral computation. Middle: Human
observers do worse at discriminating the robust stimuli from the original as a function of eccentricity
and also between synthesized robust samples. Given this decay in perceptual discriminability, it
suggests that the adversarially trained model used to synthesize robust stimuli does capture aspects
of peripheral computation. This effect is also seen with the texforms (Right) – which have been
extensively used as stimuli from derived models that capture peripheral and V2-like computation.
(B.) Superimposed human performance for Robust and Texform stimuli. Errorbars are computed via
bootstrapping and represent the 95% confidence interval.

as performing adversarial training on standard images; how does this connect then to human learning125

if we assume a uniform learning rule in the fovea and the periphery?126

We think the answer lies in the fact that as humans learn to perform object recognition, they not127

only fixate at the target image, but they also look around, and can eventually learn where to make128

a saccade given candidate object peripheral template – thus learning certain invariances when the129

object is placed both in the fovea and the periphery (Cox et al., 2005; Williams et al., 2008; Poggio130

et al., 2014; Han et al., 2020). This is an idea that dates back to Von Helmholtz (1867) as highlighted131

in Stewart et al. (2020) on the interacting mechanisms of foveal and peripheral vision in humans.132

Altogether, this could suggest that spatially-uniform high-resolution processing is redundant and133

sub-optimal in the o.o.d. regime – as translation invariant adversarially-vulnerable CNNs have134

no foveated/spatially-adaptive computation. Counter-intuitively, the fact that our visual system is135

spatially-adaptive could give rise to a more robust encoding mechanism of the visual stimulus as136

observers can encode a distribution rather than a point as they move their center of gaze. Naturally,137

from all the possible types of transformations, the ones that are similar to those shown in this paper –138

which loosely resemble localized texture-computation – are the ones that potentially lead to a robust139

hyper-plane during learning for the observer (See Fig. 9; Appendix).140

Future work is looking into reproducing the experiments carried out in this paper with a physiological141

component to explore temporal dynamics (MEG) and localization (fMRI) evoked from the stimuli.142

While it is not obvious if we will find a perceptual signature of the adversarial robust stimuli in143

humans, we think this novel stimuli and experimental paradigm presents a first step towards the road144

of linking what is known (and unknown) across texture representation, peripheral computation, and145

adversarial robustness in humans and machines.146
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A Synthesizing Stimuli as a window to Model Representation274

Suppose we have the functions gAdv(◦) and gStandard(◦) that represent the adversarially trained and275

standard (non-adversarially) trained neural networks; how can we compare them to human peripheral276

computation if the function gHuman(◦) is computationally intractable?277

One solution is to take an analysis-by-synthesis approach and to synthesize a collection of stimuli278

that match the feature response of the model we’d like to analyze – this is also known as feature279

inversion (Mahendran & Vedaldi, 2015; Feather et al., 2019). If the inverted features (stimuli) of two280

models are perceptually similar, then it is likely that the learned representations are also aligned. For281

example, if we’d like to know what is the stimuli x′ that produces the same response to the stimuli x282

for a network g′(◦), we can perform the following minimization:283

x′ =x0 [||g′(x)− g′(x0)||2] (1)

In doing so, we find x′ which should be different from x for a non-trivial solution. This is known as a284

metameric constraint for the stimuli pair {x, x0} wrt to the model g′(◦) : g′(x) = g′(x′) s.t. x 6= x′285

for a starting pre-image x0 that is usually white noise in the iterative minimization of Eq.1. Indeed,286

for the adversarially trained network of Ilyas et al. (2019); Engstrom et al. (2019); Santurkar et al.287

(2019), we can synthesize robust stimuli wrt to the original image x via:288

x̃ =x0 [||gAdv(x)− gAdv(x0)||2] (2)

which implies – if the minimization goes to zero – that:289

||gAdv(x)− gAdv(x̃)||2 = 0 (3)

Recalling the goal of this paper, we’d like to investigate if the following statement is true: “a transfor-290

mation resembling peripheral computation in the human visual system can closely be approximated291

by an adversarially trained network”, which is formally translated as: gAdv ∼ gr∗Human for some292

retinal eccentricity (r∗), then from Eq. 3 we can also derive:293

||gr∗Human(x)− g
r∗
Human(x̃)||2 = 0 (4)

However, gHuman(◦) is computationally intractable, so how can we compute Eq.4? A first step is294

to perform a psychophysical experiment such that we find a retinal eccentricity r∗ at which human295

observers can not distinguish between the original and synthesized stimuli – thus behaviourally296

proving that the condition above holds, without the need to directly compute gHuman.297

More generally, we’d like to compare the psychometric functions between stimuli generated from a298

standard trained network (standard stimuli), an adversarially trained network (robust stimuli), and299

a model that captures peripheral and mid-level visual computation (texform stimuli (Freeman &300

Simoncelli, 2011; Long et al., 2018)). Then we will assess how the psychometric functions vary as a301

function of retinal eccentricity. If there is significant overlap between psychometric functions between302

one model wrt the model of peripheral computation; then this would suggest that the transformations303

developed by such model are similar to those of human peripheral computation. We predict that this304

will be the case for the adversarially trained network (gAdv(◦)). Formally, for any model g, and its305

synthesized stimuli xg – as shown in Figure 2, we will define the psychometric function δHuman,306

which depends on the eccentricity r as:307

δHuman(g; r) = ||grHuman(x)− grHuman(xg)||2 (5)

where we hope to find:308

δHuman(gAdv; r) = δHuman(gTexform; r);∀r. (6)

A.1 Standard and Robust Model Stimuli309

To evaluate robust vs non-robust feature representations, we used the ResNet-50 models of Santurkar310

et al. (2019); Ilyas et al. (2019); Engstrom et al. (2019). We used their models so that our results311

could be interpreted in the context of their findings that features may drive robustness. Both models312

were trained on a subset of ImageNet (Russakovsky et al., 2015), termed Restricted ImageNet (Table313

1). The benefit of Restricted ImageNet, stated by Ilyas et al.; Engstrom et al., is models can achieve314

better standard accuracy than on all of ImageNet. One drawback is that it is imbalanced across classes.315

Although the class imbalance was not problematic for comparing the adversarially robust model to316
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B.

Texforms Texform Perceptual Optimization

Original Texform[Synthesis]

Minimize Difference across
Stimuli w.r.t Original

Figure 5: (A.) A cartoon depicting the texform generating process where log-polar receptive fields are
used as areas over which localized texture synthesis is performed – imitating the type of texture-based
computation found in the human periphery and area V2. (B.) The perceptual optimization framework
where the goal is to find the set of texform parameters (s∗, z∗) over which the loss is minimized to
match the levels of distortions of the robust stimuli before performing human psychophysics. (C.)
The texform perceptual optimization pipeline results show the DISTS scores (Ding et al., 2020) of
texforms synthesized across different scaling factors and fixations points compared to adversarially
robust stimuli synthesized from the same noise seed across 45 images (5 per RestrictedImageNet
class selected randomly). Error bars indicate two standard errors from the mean.

standard-trained one, we did ensure that there was a nearly equal number of images per class when317

selecting images for our stimulus set to avoid class effects in our experiment (i.e. people are better at318

discriminating dog examples than fishes independent of the model training).319

Using their readily available models, we synthesized robust and standard model stimuli using an320

image inversion procedure (Mahendran & Vedaldi, 2015; Gatys et al., 2015; Santurkar et al., 2019;321

Engstrom et al., 2019; Ilyas et al., 2019). We used gradient descent to minimize the difference322

between the representation of the second-to-last network layer of a target image and an initial noise323

seed as shown in Figure 6. Target images were randomly chosen from the test set of Restricted324

ImageNet. We chose 100 target images for each of the 9 classes and synthesized a robust and standard325

stimulus for 2 different noise seeds. 5 target images were later removed as they were gray-scale and326

could not also be rendered as Texforms with the same procedure as the majority. All stimuli were327

synthesized at a size of 256 by 256 pixels, this was equivalent to 7× 7 degree of visual angle (d.v.a.)328

when performing the psychophysical experiments.329

A.2 Texform Stimuli330

Texforms (Long et al., 2018) are object-equivalent rendered stimuli from the Freeman & Simoncelli331

(2011); Rosenholtz et al. (2012) models that break the metameric constraint to test for mid-level332

visual representations in Humans. These stimuli – initially inspired by the experiments of Balas et al.333

(2009) – preserve the coarse global structure of the image and its localized texture statistics (Portilla334

& Simoncelli, 2000). Critically, we use the texform stimuli – voiding the metameric constraint – as a335

perceptual control for the robust stimuli, as the texforms incarnate a sub-class of biologically-plausible336

distortions that loosely resemble the mechanisms of human peripheral processing.337

As the texform model has 2 main parameters which are the scaling factor s and the simulated point338

of fixation z, we must perform a perceptual optimization procedure to find the set of texforms x̂339

that match the robust stimuli x̃ as close as possible (w.r.t to the original image) before testing their340

discriminability to human observers as a function of eccentricity. To do this, we used the accelerated341

texform implementation of Deza et al. (2019) and generated 45 texforms with the same collection of342

initial noise seeds as the robust stimuli to be used as perceptual controls. Similar to Deza & Konkle343

(2020) we minimize the perceptual dissimilarity Z to find (s∗, z∗) over this subset of images that we344

will later use in the human psychophysics (∼ 900 texforms):345
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Figure 6: The Robust Image Synthesis pipeline: A noise image x0 is passed through an adversarially
trained ResNet-50 and the penultimate layer features gAdv(x0) are matched wrt the original images’
penultimate feature activation gAdv(x) via an L2 loss, and is repeated until convergence (Santurkar
et al., 2019; Engstrom et al., 2019). Critically we use gAdv(◦) as a summary statistic of peripheral
processing in our experiments.

(s∗, z∗) =(s,z) Z = ||E(x,x̃)∼D[Q(x, x̃)]− E(s,z)
(x,x̂)∼D[Q(x, x̂)]||2 (7)

for an image quality assessment (IQA) function Q(◦, ◦). We selected DISTS in our perceptual346

optimization setup given that it is the IQA metric that is most tolerant to texture-based transforma-347

tions (Ding et al., 2020, 2021). A cartoon illustrating the texform rendering procedure, the perceptual348

optimization framework and the respective results can be seen in Figure 5. In our final experiments349

we used texforms rendered with a simulated scale of 0.5 and horizontal simulated point of fixation350

placed at 640 pixels. Critically, this value is immutable and texforms (like robust stimuli) will not vary351

as a function of eccentricity to provide a fair discriminability control in the human psychophysics.352

For a further discussion on texforms and their biological plausibility and/or synthesis procedure,353

please see Supplement B.2.354

B Image Synthesis Details355

Classes
RIN Dog Cat Frog Turtle Bird Primate Fish Crab Insect
IN 151-268 281-285 30-32 33-37 68-100 365-382 389-397 118-121 300-319

Table 1: Classes of RestrictedImageNet (RIN) and the corresponding ImageNet (IN) class ranges.

B.1 Standard and Robust Stimuli356

We used the publicly available code from Santurkar et al. (2019); Engstrom et al. (2019); Ilyas357

et al. (2019) found here to synthesize both standard and robust stimuli which where derived from a358

regularly and adversarially trained model respectively: https://github.com/MadryLab/robust_359

representations360

A schematic that illustrates the robust stimuli rendering pipeline can be seen in Figure 6. Standard361

stimuli is generated with the same procedure, and number of iterations, but the network gAdv(◦) is362

replaced with gStandard(◦) instead.363
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B.2 Texform Stimuli364

Texform stimuli were synthesized using the publicly available code of Deza et al. (2019): https:365

//github.com/ArturoDeza/Fast-Texforms366

The following images (class:[image id’s]) were removed as they did not converge:367

• texform0: 0:[49],1:[9],2:[],3:[44],4:[],5:[],6:[10],7:[40],8:[].368

• texform1: 0:[49],1:[9,44],2:[],3:[44],4:[],5:[],6:[10],7:[40],8:[]369

In addition the following image id’s were removed from our psychophysical analysis from the texform370

stimuli as they converged to the exact same image even when starting from different noise seeds.371

This was found while doing a post-hoc IQA analysis as the one shown in Figure ??. These stimuli372

only occurred for classes 0 (dog) and 1 (cat):373

• texform: 0:[22,25,26,27,29,93,94,95,96,97,98,99],1:[20,21,22,23,73,74]374

We found that Standard and Robust stimuli did not have this identical convergence problem over the375

900 rendered pairs (1800 stimuli in total for Standard and 1800 in total for Robust).376

Note 1a: A common mis-conception is that Freeman & Simoncelli (2011)-derived stimuli (such377

as texforms) do not contain structural priors and only performs localized texture synthesis over378

smoothly overlapping log-polar receptive fields. This has been investigated with great detail in Wallis379

et al. (2016, 2017); Liu et al. (2016) that showed that without spectral constraints it is impossible to380

generate metameric images from non-stationary textures for the human observer when showing such381

stimuli in the visual periphery. For texforms the metameric constraint is purposely broken because382

we’d like to test how a specific biologically-plausible family of transformations (embodied through383

the synthesis procedure) interacts with eccentricity when the eccentricity-dependent and scaling384

factors texform parameters are fixed. See (z∗, s∗) from Eq. 7.385

Note 1b: The Freeman & Simoncelli (2011) synthesis model is not equivalent to the Portilla &386

Simoncelli (2000) synthesis model. The Freeman & Simoncelli (2011) is a super-ordinate synthesis387

model class that locally uses the Portilla & Simoncelli (2000) synthesis model over smoothly388

overlapping receptive fields in addition to adding a global structural prior. Texforms are rendered389

with the Freeman & Simoncelli (2011) model, by placing he simulated point of fixation outside the390

image (Long et al., 2018; Deza et al., 2019).391

Note 1c: Usual texform rendering time is about 1 day per image, though the rendering procedure392

has been accelerated to the order of minutes as shown in Deza et al. (2019). We used their publicly393

available code in our experiments. Thus, it is worth noting that synthesizing texforms in the order of394

hundreds of thousands (or millions) for supervised learning experiments – has not been done before395

and is computationally expensive (may take months), which is why Figure 2 displays no information396

on texform-trained CNN’s. This direction is current work.397

Note 2: A first naive criticism to the selection of making texforms fixed and not varying as a function398

of eccentricity – given the model they were based on (Freeman & Simoncelli, 2011) – is that they399

will not create metameric stimuli. Our anticipated reply to this is three-fold, and partially aligned400

with the motivation of Long et al. (2018):401

1. Our goal is not to make metameric stimuli out of texforms or robust stimuli, but to examine402

how perceptual discriminability rates of a fixed stimuli change as a function of retinal403

eccentricity. By checking if these perceptual decays are similar (which we show) we can404

connect both functions that give rise to these apparently un-related transformations (the405

stimuli). Recall Eq. 6.406

2. Having a “metameric texform” that changes as a function of eccentricity would defeat the407

purpose of using it as a control in our experiments. Had this been the road taken, we would408

now have a control curve that will presumably be horizontal and at chance, providing no409

information about how the transformation that gives rise to the robust stimuli is linked to the410

texform transformation.411

3. The goal of this paper is not to make a foveated metamer model that fools human observers412

similar to that of Freeman & Simoncelli (2011); Rosenholtz et al. (2012); Deza et al. (2017);413
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Wallis et al. (2019) that would be based on a foveated adversarially trained network. The414

previous idea however is highly interesting and is being explored in current work, and this415

work provides a proof of concept that it is tractable.416

B.3 Sample Stimuli417

Figure 7: A collection of sample stimuli for each image class used in our experiments.
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Figure 8: Here we evaluate how the different stimuli differ to each other wrt to the original (top row)
or synthesized samples (bottom row) via two IQA metrics: DISTS and MSE. This characterization
allows us to compare which model discards more information (MSE) while yielding a greater degree
of model based perceptual invariance. We find that Texform and Robust stimuli are similar terms of
both IQA scores, suggesting their models compute the same transformations. This is observed at the
0th level (simulated fovea) and 3rd level (simulated periphery) of the Gaussian Pyramid.

C Simulated Fovea/Periphery Image Quality Assessment (IQA) across418

stimuli419

Some distortions are more perceptually noticeable than others for human observers and deep neural420

networks (Berardino et al., 2017) – so how do we assess which model better accounts for peripheral421

computation, if there are many distortions (derived from the synthesized model stimuli) that can422

potentially yield the same perceptual sensitivity in a discrimination task?423

Our approach consists of computing two IQA metrics (DISTS & MSE) over the entire psychophysical424

testing set over 2 opposite levels of a Gaussian Pyramid decomposition (Burt & Adelson, 1987).425

This procedure checks which stimuli presents the greatest distortion (MSE), and yet yields greater426

perceptual invariance (DISTS). A Gaussian Pyramid decomposition was selected as it stimulates the427

frequencies preserved given changes in human contrast sensitivity and cortical magnification factor428

from fovea to periphery (Anstis, 1974; Geisler & Perry, 1998). These two metrics were one that is429

texture-tolerant and perceptually aligned (DISTS), and another that is a non-perceptually aligned430

metric: Mean Square Error (MSE). Both IQA metrics were computed in pixel space for both the431

Original vs Synthesized and Synthesized vs Synthesized conditions.432

Results are explained in Figure 8, where Standard Stimuli yields low perceptual invariance to the433

original image at both levels of the Gaussian Pyramid, but robust and texform stimuli have a similar434

degree of perceptual invariance. Critically, robust stimuli are slightly more distorted via MSE than435

texform stimuli suggesting that the adversarially trained model has learned to represent peripheral436

computation better than the texform model by maximizing the perceptual null space and throwing437

away more useless low-level image features (hence achieving greater Mean Square Error).438
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Figure 9: Here we show a 2D projection using t-SNE (Van der Maaten & Hinton, 2008) to visualize
the outputs of the last layer of the Adversarially trained network (that was used to synthesize the
Robust Stimuli), and the Standard trained network (that was used to synthesize the Standard stimuli),
both on a family of different stimuli: Original, Standard, Robust and Texform. The Adversarially
trained network – similar to the human – can not distinguish between 2-class Standard Stimuli (unlike
the Standard Network that has a near perfect 2-class hit rate). Most importantly, the Adversarially
trained network yields a near double hit rate on Texform classification wrt the Standard trained
network. This suggests that the Adversarially trained network has a representation that is more
perceptually aligned to models of Peripheral Computation than the Standard trained model.
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