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Abstract

In healthcare analytics, addressing binary diagno-
sis or prognosis tasks presents unique challenges
due to the inherent asymmetry between positive
and negative samples. While positive samples, in-
dicating patients with a disease, are defined based
on stringent medical criteria, negative samples
are defined in an open-ended manner and remain
underexplored in prior research. To bridge this
gap, we propose an innovative approach to facil-
itate cohort discovery within negative samples,
leveraging a Shapley-based exploration of interre-
lationships between these samples, which holds
promise for uncovering valuable insights concern-
ing the studied disease, and related comorbidity
and complications. We quantify each sample’s
contribution using data Shapley values, subse-
quently constructing the Negative Sample Shapley
Field to model the distribution of all negative sam-
ples. Next, we transform this field through mani-
fold learning, preserving the essential data struc-
ture information while imposing an isotropy con-
straint in data Shapley values. Within this trans-
formed space, we pinpoint cohorts of medical
interest via density-based clustering. We empiri-
cally evaluate the effectiveness of our approach on
the real-world electronic medical records from Na-
tional University Hospital in Singapore, yielding
clinically valuable insights aligned with existing
knowledge, and benefiting medical research and
clinical decision-making.
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1. Introduction
Healthcare analytics leverages diverse healthcare data
sources to perform many analytic tasks including diag-
noses (Lipton et al., 2016) and prognoses (Mould, 2012).
Electronic Medical Records (EMR) are perhaps the most
important of these data sources, since they play a crucial
role in recording patients’ essential information and provid-
ing a comprehensive view of their health conditions. The
recently increasing availability of EMR data has spawned
the development of healthcare analytic models for effective
patient management and medical resource allocation.

Without loss of generality, let us delve into a diagnosis or
prognosis problem of predicting whether a patient has de-
veloped/will develop a certain disease based on the EMR
data. This problem is a binary classification, where patients
who develop the disease are “positive samples,” while those
who do not are “negative samples.” Notably, we identify the
unique nature of such binary classifications in healthcare
analytics, as compared to traditional classification tasks. For
instance, when classifying cats vs. dogs, both positive and
negative samples are based on objective facts. However, in
healthcare analytics, positive samples are defined accord-
ing to rigorous medical criteria, based on medical theories
and experience. Contrarily, negative samples are defined
in an unrestricted manner, as the complementary set of the
positive samples. Consequently, the negative samples may
include a wide range of healthy individuals or those outside
the studied disease. This leads to an inherent asymmetry:
positive samples are well-defined and bounded, while nega-
tive samples are diverse and open-ended.

Despite such fundamental asymmetry in healthcare analyt-
ics, previous research has not adequately addressed the role
of negative samples. One potential reason for this research
gap is the enormous challenge posed by investigating an
infinitely large negative sample space, which cannot be eas-
ily addressed using existing approaches, e.g., it could be
difficult to understand why general healthy individuals do
not develop a disease. Nonetheless, it is crucial to investi-
gate negative samples to comprehensively study the disease.
While the disease may not have developed in these samples,
some may exhibit similar symptoms or develop related con-
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ditions, like comorbidity or complications. Hence, these
negative samples urgently need close medical attention, of-
fering clinicians a chance to better understand the disease
and facilitate diagnoses, prognoses, and treatment plans.

In this paper, we aim to address this gap by exploring neg-
ative samples in healthcare analytics. Given the diversity
of negative samples, it may not be meaningful to consider
them all as one “group.” Instead, we examine the underlying
distribution of negative samples to automatically identify
medically insightful groups of patients with shared charac-
teristics, i.e., “cohorts” (Mahmood et al., 2014; Zhou et al.,
2020). Such cohort discovery among negative samples can
provide fresh insights to clinicians on the studied disease,
e.g., comprehending the factors contributing to the absence
of the disease and the development of related conditions.

Solution. We bring a unique perspective to guide our
methodology design in effectively discovering cohorts
among negative samples. In Section 3, we elaborate on
our approach with three components. Firstly, we propose to
quantify each negative sample’s contribution to the predic-
tion task using data Shapley values (Ghorbani & Zou, 2019;
Rozemberczki et al., 2022). We then construct the Neg-
ative Sample Shapley Field, an inherently existing scalar
field describing the distribution of all negative samples (Sec-
tion 3.1). Secondly, to effectively discover cohorts, we
transform the original field by manifold learning (Bengio
et al., 2013) while preserving the original data structure in-
formation and ensuring that changes in data Shapley values
are isotropic in all orientations (Section 3.2). Thirdly, in the
transformed manifold space, we identify densely-connected
clusters among the negative samples with high data Shap-
ley values through DBSCAN (Section 3.3). These clusters
identify “hot zones,” our target cohorts, exhibiting similar
medical characteristics with high data Shapley values.

Novelty. (i) In contrast to mainstream medical cohort stud-
ies, we adopt a distinct perspective by focusing on negative
samples, and emphasize the significance of cohort discovery
among negative samples, as they can reveal future positives,
pathological correlations, or similar conditions. This recip-
rocal relationship between negative and positive samples
could contribute to defining positive samples in theoreti-
cal medical research. (ii) Existing studies on data Shapley
values predominantly measure the value of individual data
samples, e.g., for federated learning, or apply them at finer
levels for feature explainability (Rozemberczki et al., 2022).
What distinguishes our paper is its innovative Shapley-based
exploration of interrelationships between samples, extend-
ing beyond traditional feature-based similarity methods. It
asserts that valuable cohorts should exhibit similar distribu-
tions with high data Shapley values.

Contributions. (i) We bridge the research gap caused by
the asymmetry between positive and negative samples in

healthcare analytics by exploring negative samples for co-
hort discovery. (ii) We propose an innovative approach
for effective cohort discovery: constructing the Negative
Sample Shapley Field, transforming the field by manifold
learning with structure preservation and isotropy constraint,
and discovering cohorts in the manifold space via DBSCAN.
(iii) We evaluate the effectiveness of our approach using the
EMR data from National University Hospital in Singapore
(Section 4). Our approach reveals insights consistent with
domain knowledge, verified by clinicians, and has the po-
tential to assist medical practitioners by advancing research
and enhancing clinical decision-making.

2. Problem and Our Solution
Distinctiveness of negative samples and the unbounded
negative sample space. Let us take hospital-acquired acute
kidney injury (AKI), a disease we strive to handle in practice,
as an example. In this AKI prediction task, we aim to predict
if a patient will develop AKI in the future. A positive sample
is a patient who meets the stringent KDIGO criteria (Kellum
et al., 2012), and has a closed definition, whereas a negative
sample has an open definition without restrictions. Hence,
negative samples form an unbounded space, demonstrating
an asymmetry compared to positive samples.

Construction of the Negative Sample Shapley Field for
cohort discovery. To facilitate the analysis of negative sam-
ples, we investigate their distribution and identify those that
are most relevant to the prediction task (e.g., AKI prediction
task above) and hence worth exploring. In this regard, we
propose to measure the valuation of each negative sample
to the task by its data Shapley value, which quantifies the
sample’s contribution to the prediction task. Based on such
valuations, we construct a scalar field, the Negative Sample
Shapley Field, in which each point is a negative sample,
and the point’s value is its data Shapley value. This field
depicts the distribution of negative samples (see Figure 1(a)
for an example). Accordingly, negative samples exhibiting
high data Shapley values denote those of considerable im-
portance to the prediction task, thus warranting particular
scrutiny in our investigation. We define “hot zones” in this
field, identified by points with high data Shapley values, as
“cohorts.” Our objective is to automatically detect these
cohorts, revealing medically meaningful patterns.

Cohort discovery via manifold learning and density-
based clustering. We note that the vast number of negative
samples renders an exhaustive search infeasible. Although
the Negative Sample Shapley Field is continuously differen-
tiable, the high computational overhead makes it intractable
to find local optima via gradient descent. To overcome this
obstacle, we make the assumption that a subset of negative
samples collected in clinical practice carries significant med-
ical value, e.g., patients who visit hospitals for examinations
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(b) Mis-discovered hot zones in the
Negative Sample Shapley Field

(a) Discovered hot zone in the Negative Sample Shapley
Field by clustering high-value negative samples

(c) Manifold space integrating data structure
information and isotropy constraint

Figure 1: Discovery of hot zones in the Negative Sample Shapley Field.

but do not develop the disease. We posit that these real-
world negative samples should be proximate to our desired
hot zones in the space and can effectively sample our hot
zone boundaries, which are hence of medical interest.

In Figure 1, we exemplify how to discover hot zones in the
Negative Sample Shapley Field. Figure 1(a) and (b) demon-
strate four points situated on the same contour line, indicat-
ing their inclusion in the same hot zone. However, only the
former case yields the expected discovered cohort, while
the latter leads to mis-discovery. This highlights that the
originally constructed Negative Sample Shapley Field is sub-
optimal for cohort discovery among negative samples, due
to its anisotropy in data Shapley values. To overcome this is-
sue, we propose a manifold learning approach. Specifically,
we leverage manifold learning to reduce the dimensionality
of the raw, sparse EMR data to derive compact representa-
tions that not only preserve the underlying data structure
information but also benefit subsequent spatial clustering
analysis. Further, we introduce an isotropy constraint to
ensure uniform changes in data Shapley values across all
orientations, preventing the mis-discovery as in Figure 1(b).
This transformed space, integrating the data structure in-
formation and the isotropy constraint, is more suitable for
subsequent cohort discovery as shown in Figure 1(c).

Our objective is then to identify medically meaningful co-
horts, specifically dense regions formed by negative samples
with high data Shapley values in the manifold space. We set
a data Shapley value threshold to extract negative samples
with high values and employ the DBSCAN to detect the hot
zones among them. The derived cohorts could shed light on
the studied disease, its related comorbidity and complica-
tions, aiding clinicians in practical healthcare delivery.

3. Methodology
3.1. Negative Sample Shapley Field Construction

Given EMR data D = {di}, where di is a sample with
i ∈ {0, . . . , N − 1} and N denotes the total sample number.
We focus on binary classification, and each di consists of
input features and a binary label. To investigate negative
samples for cohort discovery, we divide D into D+ and

D−, representing positive and negative samples. We denote
D− = {d−i }, where d−i is a negative sample with i ∈
{0, . . . , N− − 1} and N− is the negative sample number.

Each negative sample d−i = (xi, yi) comprises the input
features xi and its binary label yi. Our objective is to mea-
sure the value of each negative sample by quantifying its
contribution to the prediction performance, which we refer
to as data valuation. The data Shapley value (Ghorbani &
Zou, 2019), stemming from the Shapley value in cooper-
ative game theory, has made significant advances in data
valuation (Rozemberczki et al., 2022), which inspires our
proposal to calculate the data Shapley value of each negative
sample as its value. Specifically, let F denote the prediction
model and suppose we are interested in evaluating F ’s per-
formance on a subset of negative samples Q ⊆ D−, along
with all the positive samples D+. We define M as the per-
formance metric function, and then M(D+ ∪Q, F ) is the
performance achieved on the combined set of D+ and Q.
We define si as the data Shapley value for the negative sam-
ple d−i . si satisfies three properties of Shapley values: (i)
null player, (ii) symmetry, and (iii) linearity, which are the
essential properties of an equitable data valuation (Ghorbani
& Zou, 2019). We calculate si as follows.

Proposition 3.1. The data Shapley value si for a negative
sample d−i is defined as:

H
∑

Q⊆D−−{d−
i }

M(D+ ∪Q ∪ {d−i }, F )−M(D+ ∪Q, F )(
N− − 1
|Q|

)
(1)

where H is a constant, and the summation is taken over all
subsets of negative samples except d−i .

Equation 1 can be re-expressed in the following form:

si = Eπ∼Π[M(D+∪Ad−
i

π ∪{d−i }, F )−M(D+∪Ad−
i

π , F )]
(2)

where Π represents a uniform distribution of all the per-

mutations among D−, and A
d−
i

π denotes all the negative
samples before d−i in a permutation π. Given the exponen-
tial complexity of computing the data Shapley values for
negative samples, we further adopt the Monte Carlo permu-
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tation sampling technique to approximate the computation
of si (Castro et al., 2009). By repeating this approximation
over multiple Monte Carlo permutations, we efficiently de-
rive the estimated data Shapley value si. After computing
the data Shapley value of each negative sample, we proceed
to define the Negative Sample Shapley Field.

Definition 3.2. (Negative Sample Shapley Field) We define
the Negative Sample Shapley Field S as an inherently exist-
ing scalar field representing the distribution of data Shapley
values across all negative samples in space. In this field,
each point denotes a negative sample d−i and is associated
with its data Shapley value si. Therefore, S is a mathemati-
cal function that maps the input of each negative sample to
its corresponding data Shapley value: xi 7→ si.

With this field S constructed, cohort discovery among neg-
ative samples is reframed as the task of identifying “hot
zones,” regions within S with high data Shapley values.

3.2. Manifold Learning with Structure Preservation and
Isotropy Constraint

As in Figure 1(a) and (b), although we hope to detect a
similarly clustered cohort in the Negative Sample Shapley
Field in both scenarios, the anisotropic nature of the space,
i.e., the non-uniform distribution of negative samples with
similar data Shapley values, presents significant challenges.
To mitigate these challenges, we propose to employ mani-
fold learning (Bengio et al., 2013) to transform the original
space S into a new geometric space S ′. As elaborated in
Section 2, to avoid mis-discovery such as Figure 1(b), we
should preserve the underlying structural information in the
data while imposing an isotropy constraint on the data Shap-
ley values in S ′. The resulting S ′ will be more amenable to
accurate identification of medically relevant cohorts.

We employ a stacked denoising autoencoder (SDAE) (Vin-
cent et al., 2010) as the backbone model for manifold learn-
ing due to its capability of handling input data corruption.
Further, we integrate the isotropy constraint while preserv-
ing the data structure information in xi. Consider an SDAE
consisting of K denoising autoencoders (DAEs). For the
k-th DAE (k ∈ {0, . . . ,K − 1}), the encoder takes h

(k)
i

as input, where h
(0)
i = xi is the original input. We define

h̃
(k)
i as the corrupted version of h(k)

i with masking noise
generated by a stochastic mapping, h̃(k)

i ∼ gD(h̃
(k)
i |h

(k)
i ),

which randomly sets a fraction of the elements of h(k)
i to 0.

The encoder transforms the corrupted h̃
(k)
i into an abstract

representation ĥ
(k+1)
i , which is then used by the decoder to

recover the uncorrupted h
(k)
i . This process enables the DAE

to extract useful information for denoising, which is crucial
for healthcare analytics given the missing data and noise
in real-world EMR data (Lasko et al., 2013). The model
architecture is depicted in Figure 7 of Appendix D.1.

Encoder of the k-th DAE. The encoder of the k-th DAE
transforms the corrupted representation using an affine trans-
formation followed by a non-linear activation function:

ĥ
(k+1)
i = f

(k+1)
θ (h̃

(k)
i ) = σ(W

(k+1)
θ h̃

(k)
i + b

(k+1)
θ ) (3)

where f
(k+1)
θ (·) is the encoder with W

(k+1)
θ and b

(k+1)
θ

as the weight matrix and bias vector, respectively. The
rectified linear unit (ReLU) activation function σ(·) is used
for non-linearity.

Decoder of the k-th DAE. The derived abstract represen-
tation ĥ

(k+1)
i is subsequently mapped back to the previous

latent space in the decoder, with the aim of recovering the
uncorrupted representation:

z
(k)
i = f

(k+1)
ϕ (ĥ

(k+1)
i ) = σ(W

(k+1)
ϕ ĥ

(k+1)
i + b

(k+1)
ϕ )

(4)
where f

(k+1)
ϕ (·) is the decoder of the k-th DAE, with

W
(k+1)
ϕ , b(k+1)

ϕ and the ReLU activation.

Structure Preservation. To attain a stable and robust ab-
stract representation that is resilient to data corruption, it is
crucial to recover the uncorrupted representation as accu-
rately as possible. To achieve this, we adopt a reconstruc-
tion loss that preserves the data structure information. For a
given batch of negative samples B, the reconstruction loss
per sample within this batch is defined as:

L(k)
rec =

1

|B|
∑
i∈B
∥h(k)

i − z
(k)
i ∥

2 (5)

Isotropy Constraint. In addition to the reconstruction loss,
it is essential to enforce an isotropy constraint to ensure that
data Shapley value changes are uniform across orientations.
To achieve this, we introduce a penalty that accounts for
the change in data Shapley values relative to the Euclidean
distance between two samples:

L(k)
iso =

1

|B|2
∑
i,j∈B

(
sj − si
µij

)2 (6)

where i, j are two samples with si, sj as their data Shapley
values, µij as the distance between ĥ

(k+1)
i and ĥ

(k+1)
j . The

overall loss is then a weighted sum of the reconstruction loss
and the isotropy penalty, jointly integrating the structural
information and the isotropy constraint:

L(k) = ωrecL(k)
rec + ωisoL(k)

iso (7)

The weights ωrec and ωiso are introduced to address the is-
sue of the two loss terms being on different scales, which en-
sures that both losses are decreased at similar rates, leading
to a better balance between the optimization objectives (Liu
et al., 2019; Groenendijk et al., 2021). Specifically, the
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weights are set to the loss ratio between the current iteration
(t) and the previous iteration (t− 1):

ωrec = L(k)
rec(t)/L(k)

rec(t− 1), ωiso = L(k)
iso(t)/L

(k)
iso(t− 1)

(8)

We have introduced how to learn the k-th DAE using the
loss function in Equation 7. The corrupted input is only used
during the initial training to learn robust feature extractors.
After the encoder f (k+1)

θ (·) is trained, it will be applied to
the clean input:

h
(k+1)
i = f

(k+1)
θ (h

(k)
i ) = σ(W

(k+1)
θ h

(k)
i + b

(k+1)
θ ) (9)

h
(k+1)
i is used as input for the (k + 1)-th DAE to continue

the repeated training process. When the last DAE is trained,
we obtain the encoded representation h

(K)
i in the manifold

space S ′, which preserves the data structure information in
xi and integrates the desired isotropy constraint.

3.3. Cohort Discovery Among High Data Shapley Value
Negative Samples

We proceed to perform cohort discovery in the encoded
manifold space S ′, where each negative sample’s input xi

is transformed into h
(K)
i . We begin by setting a threshold

value τ to filter out negative samples with data Shapley val-
ues below τ , which focuses our analysis on negative samples
with high data Shapley values, i.e., high contributions to
the prediction task. Among the remaining negative samples
with high data Shapley values, we target to detect the hot
zones in S ′, which may represent medically meaningful
cohorts of arbitrary shape.

To achieve this, we employ DBSCAN, short for density-
based spatial clustering of applications with noise (Ester
et al., 1996; Gan & Tao, 2015; Schubert et al., 2017) on such
samples. The core idea of DBSCAN is to group samples
that are close to each other in the manifold space S ′ into
clusters, which could locate potential cohorts, while treating
the remaining samples as noise or outliers. DBSCAN has
three main steps: (i) identify the points within each point’s
ε- neighborhood and determine the “core points” with over
Pmin neighbors; (ii) detect the connected components of
the core points in the neighbor graph, disregarding any non-
core points; (iii) assign each non-core point to the clusters
which are the ε-neighborhood of the point; otherwise, label
the point as noise. This process results in a set of clusters
{C1, C2, . . . , CR} and a set of noisy samples Ψ. Given the
clusters, we define cohorts as follows.

Definition 3.3. (Cohorts) For a dense cluster Cr identified
by DBSCAN, we consider each of its core points and define
a spherical space with the core point as its center and ε as
its radius. The joint space of all such spherical spaces is the
cohort we aim to discover from this cluster.

2 days
Time

7 days

Input Window Output Window

sCr

sCr rises to 1.5×lowest sCr
within 7 days

Relative AKI Criterion

rise of sCr ≥ 26.5umol/L
within 2 days

Absolute AKI Criterion

lowest sCr

Figure 2: Definition of absolute AKI and relative AKI in
hospital-acquired AKI prediction.

Table 1: Key statistics of our dataset.

Statistics Our Dataset

# of admissions 20732
# of positive samples 911
# of negative samples 19821

# of lab tests 709
Input Window 7 days

Output Window 2 days

These discovered cohorts provide a promising avenue for fur-
ther exploration of medically meaningful patterns in EMR
data analytics, potentially revealing important insights.

4. Experimental Evaluation
In this section, we first detail the experimental setup. We
then evaluate our proposal’s capability for cohort discovery
in AKI prediction (Section 4.2), delve into the discovered
cohorts for in-depth analysis (Section 4.3), and validate the
effectiveness of its individual components (Section 4.4). To
provide a comprehensive evaluation, we also present supple-
mentary experiments in Appendix G, encompassing an abla-
tion study on the impact of our proposed isotropy constraint
(G.1) and comparisons with diverse baselines, including
contrastive principal component analysis (G.2), positive-
unlabelled learning methods (G.3), influence function-based
data valuation (G.4), deep clustering methods (G.5) and clus-
tering all negative samples (G.6). Additionally, we validate
the broad applicability of our proposal by conducting co-
hort discovery analysis on the MIMIC-III public benchmark
dataset (Johnson et al., 2016) (G.7).

4.1. Experimental Setup

We focus on hospital-acquired AKI (short for acute kidney
injury), which is a disease we strive to handle in our medical
practice. According to the KDIGO criteria (Kellum et al.,
2012), the definition of AKI is based on the rise of sCr (i.e.,
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(a) Data Shapley value histogram
among all negative samples

(b) Data Shapley value distribution among all 
negative samples in the manifold space

(c) Discovered cohorts among high 
data Shapley value negative samples

Figure 3: Cohort discovery of our proposal for AKI prediction.

serum creatinine), a lab test, beyond a threshold limit within
a defined timeline. The definition includes two criteria:
absolute AKI and relative AKI, as depicted in Figure 2.
Absolute AKI is defined as an increase in sCr of more than
26.5 umol/L within the past two days. Relative AKI, on the
other hand, is defined as a rise in sCr of 1.5 times or higher
compared to the lowest sCr value within the last seven days.

In hospital-acquired AKI prediction, our goal is to predict
whether a patient will develop AKI in hospital with a two-
day prediction lead time. We evaluate our approach on the
EMR data from National University Hospital in Singapore,
containing 709 lab tests as input features. Each hospitalized
admission in the data is treated as a sample for analysis.
In total, we receive 20,732 admissions, with 911 of them
resulting in AKI development. We partition the dataset into
90% training data and 10% testing data.

For positive samples where AKI develops during the hospi-
tal stay, we record the time of AKI detection and define a
two-day window, referred to as the “Output Window,” that
counts backward from the detection time. This window is
not used as input but is crucial in medical practice as it pro-
vides a 48-hour lead time, enabling clinicians to take timely
interventions following AKI prediction if necessary. The
“Input Window,” which serves as input for analysis, spans
seven days prior to the Output Window. The relationship
between the Input Window and the Output Window is de-
picted in Figure 2. For negative samples, the time of the last
recorded lab test is used to determine both the Output Win-
dow and the Input Window, respectively. In summary, our
approach utilizes 709 lab tests within the Input Window to
predict the likelihood of each sample developing AKI after
the Output Window. We perform the min-max standardiza-
tion on the lab test values and then calculate the average to
derive input features. Table 1 presents key statistics of our
dataset for hospital-acquired AKI prediction.

We employ the logistic regression (LR) model to compute
the data Shapley value for each negative sample, using the
area under the ROC curve (AUC) as the evaluation met-
ric. More implementation details are elaborated in Appen-

dices C.3, D.2 and E.3. We conduct the experimental
evaluation on a server equipped with two Intel Xeon Gold
6248R CPUs, 768GB of memory, and eight NVIDIA V100
GPUs interconnected by NVLINK, using PyTorch 1.12.1.

4.2. Cohort Discovery Results

We present the cohort discovery results in Figure 3, where
we first display the data Shapley value histogram among all
the negative samples in Figure 3(a). It is noteworthy that this
histogram can be well fitted by a Gaussian mixture model,
consisting of three distinct and interesting components. The
first component on the left represents the negative samples
with negative data Shapley values. These samples have a
negative impact on the prediction task, meaning that they
are detrimental to predicting the AKI occurrence. In prior
studies, one generally plausible explanation for the presence
of such samples is the existence of mislabeled data (Ghor-
bani & Zou, 2019). However, for a representative acute
disease like AKI, these negative samples are highly likely to
be positive samples in the future but have not yet exhibited
symptoms of AKI within the monitored time duration. Mov-
ing on to the second component in the middle, we observe
that its data Shapley values are centered around a mean
value close to zero. This implies that these negative samples
are generally healthy without any apparent AKI-associated
risk factors. Notably, these healthy samples constitute a
relatively significant portion of the data, which is commonly
observed in clinical practice and aligns with our initial ex-
pectations. The third component on the right represents
negative samples that are particularly valuable for the pre-
diction task and merit special attention in our study. To
further investigate these samples, we introduce a separation
line between the second and third components, i.e., a thresh-
old 60% to exclude the lower 60% negative samples based
on their data Shapley values while retaining the remaining
40% for further analysis. Our focus is on these 40% samples
for identifying the hot zones, as illustrated in Figure 1.

The distribution of all negative samples, in terms of their
data Shapley values in the manifold space, is presented in
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(a) Cohort 2 (b) Cohort 4 (c) Cohort 6
Figure 4: Lab test patterns of discovered Cohorts 2, 4, and 6. In each cohort, the colored region (blue, green, and yellow)
represents the lab test value probability density of the samples in the cohort, while the grey region denotes that of all the
other samples outside the cohort.

Figure 3(b). Upon performing DBSCAN on the extracted
40% samples with high data Shapley values (points brighter
than dark blue), we identify seven distinct cohorts of interest
that are visually displayed using t-SNE plots in Figure 3(c),
where grey points are either with low data Shapley values
or labeled as noise by DBSCAN. We observe that these
discovered cohorts are distinguishable from one another,
potentially corresponding to medically meaningful patterns.

4.3. In-depth Analysis of Discovered Cohorts

Cohort 2: inflammatory cohort. Figure 4(a) and (b) indi-
cate an altered neutrophil-to-lymphocyte ratio (NLR) (Za-
horec et al., 2001) in this patient group, marked by a more
uniform trend of neutrophils (FNM) across feature values
and relatively lower feature values of lymphocytes (FLM),
compared with those of other negative samples. Altered
NLR is often tied to infectious and inflammatory conditions,
suggesting an overactive immune response leading to re-
duced lymphocyte counts (Nathan, 2006; Dhabhar, 2009).
An elevated NLR, a reliable inflammatory marker, indicates
a propensity for invasive infections (Huang et al., 2020b);
yet, the more stable FNM trend in Cohort 2 may suggest
less severe inflammatory response and correspondingly no
AKI in patients. The feature Cotrimoxazole (SXT2) is the
minimal inhibitory concentration of SXT2, an antibiotic,
which is the lowest concentration of the antibiotic at which
the specific bacterial growth of interest is completely inhib-
ited in-vitro (Kowalska-Krochmal & Dudek-Wicher, 2021).
SXT2 MIC is often tested against staphylococcus species
and values may therefore reflect the degree of underlying
antibiotic resistance by the pathogen that infected respective
patients; treatment resistance affects the control of infection
which in turn impacts on end-organ or kidney injury. Mean-
while, the level of Vancomycin (VAN), administered to treat
infections associated with methicillin-resistant staphylococ-
cus aureus (Holmes & Howden, 2014), are found elevated
in the serum of these patients. Severe infections can cause
systemic inflammatory response syndrome and kidney in-

jury. Antibiotics like vancomycin can worsen kidney stress
and have nephrotoxic properties (Wu & Huang, 2018), po-
tentially leading to kidney dysfunction during treatment.
However, modern medical practice can effectively manage
these cases. Infections are promptly treated with broad-
spectrum antibiotics. Dosage of vancomycin is routinely
reduced in response to potentially toxic serum levels and
kept within safe limits in clinical practice; thus, the patients
may not develop significant AKI (Goldstein et al., 2016).

Cohort 4: hepatic and hematological disorders cohort.
As delineated in Figure 3(c), Cohort 4 exhibits an augmented
region and an increased quantity of sampling points, indica-
tive of a more expansive patient population. A compre-
hensive analysis of the lab test indicator distribution for
this cohort, portrayed in Figure 4(b), reveals differences
in levels of serum proteins. Specifically, derangements in
levels of albumin (ALB) and the albumin-globulin ratio
(AGR) signify aberrant protein synthesis in patients. Low
serum ALB and abnormal AGR are associated with hepatic
dysfunction or hematological diseases such as myeloma
or monoclonal gammopathy (Spinella et al., 2016; Laudin
et al., 2020); comparatively, higher levels of ALB and AGR
may be found in negative samples. Hepatic diseases can
lead to impaired production of other proteins such as an-
tithrombin III (AT3) (Knot et al., 1984); AT3 levels fall pre-
cipitously in the early phases of severe sepsis (Mesters et al.,
1996), or undergo accelerated consumption in disseminated
intravascular coagulation (Mammen, 1998). Diminished
reticulocyte hemoglobin (RETH) is associated with iron de-
ficiency anemia (Auerbach et al., 2021), and could either be
linked to hematological disorders or chronic kidney disease.
In addition, imbalances in albumin and globulin may also
be associated with dehydration. Therefore, our observation
derived from Cohort 4 may support the pathophysiological
relationship that exists between disorders of the hematologi-
cal and hepatic systems, which increases the propensity for
kidney disease. Clinicians should exercise vigilance in care
when managing these cases.
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Figure 5: AKI prediction performance for three different
settings of our proposal and IF -based data valuation.

Cohort 6: respiratory failure and metabolic acidosis co-
hort. Figure 4(c) reveals significant metabolic imbalances
in patients, leading to an acid-base imbalance. Specifically,
increased carbon dioxide pressure (PCO2), reduced oxygen
pressure (PO2), and insufficient blood oxygen saturation
(SAT) suggest respiratory failure (Breen, 2001). Concur-
rently, reduced base excess (BE), bicarbonate ion (HCO3)
levels, and blood pH values hint at metabolic acidosis, indi-
cating possible acute illnesses causing lactic or ketoacido-
sis (Kraut & Madias, 2010), or impaired renal acidification
in early kidney tubular injury (Winaver et al., 1986). These
results suggest potential severe respiratory complications,
that arise from advanced pneumonia, heart failure-induced
pulmonary edema, or chronic obstructive pulmonary dis-
ease (COPD) (Kempker et al., 2020). Alternatively, acute
conditions like hypoxia, shock, or severe infection could
disrupt aerobic metabolism, leading to anaerobic glucose
conversion to lactate, which accumulates in the bloodstream
and causes acidosis. The former acute disease states are
risk factors for AKI. Severe pneumonia and infections and
heart failure could cause end-organ injury including kidney
tubular injury, but the latter may remain subclinical and
not necessarily manifest with raised serum creatinine and
AKI (Yang et al., 2022).

4.4. Validation of Effectiveness of Each Component

We validate the effectiveness of each component in our ap-
proach for AKI prediction. Specifically, we evaluate three
settings of the negative sample usage in the training data
(with positive samples the same): (i) all d−i : use all negative
samples; (ii) d−i with si > 0: only use the negative samples
with positive data Shapley values; (iii) z(0)i of all d−i : use
the decoded representations from the SDAE-based manifold
learning. z(0)i is in the same dimension as the raw input but
is in the decoding space after transformation by SDAE. We
further compare with another data valuation baseline: (iv)
d−i with IF > 0: use the negative samples with positive IF
values, where IF denotes influence functions measuring

how the model changes when a single sample’s weight is
altered slightly (Weisberg & Cook, 1982). We evaluate
several widely adopted classifiers: LR, gradient-boosting
decision tree (GBDT), adaptive boosting (AdaBoost), ran-
dom forest (RF), and multilayer perceptron (MLP). The
experimental results in AUC (mean ± std) from five repeats
are illustrated in Figure 5.

Effectiveness of Data Shapley Values for Negative Sam-
ples. By comparing (i) and (ii), it is clear that after removing
negative samples with data Shapley values smaller than 0,
all the classifiers exhibit an improvement in AUC. This sub-
stantiates the rationale behind our approach of associating
samples of significant medical concern with their respective
data Shapley values. Further, the efficacy of approximat-
ing data Shapley values through Monte Carlo permutation
sampling is validated. In comparing data valuation meth-
ods, “d−i with IF > 0” underperforms “d−i with si > 0,”
as IF -based data valuation deletes informative negative
samples, limiting its effectiveness in AKI prediction. Fur-
ther, IF fails to satisfy equitability conditions due to its
inability to consider complex sample interactions, deviating
from our focus on cohort discovery and posing robustness
issues (Ghorbani et al., 2019). Hence, IF -based data valua-
tion is unsuitable for AKI prediction. Detailed analyses of
this comparison are in Appendices G.4.

Effectiveness of Manifold Learning. By changing the in-
put data from the raw space to the decoder’s output space af-
ter our proposed SDAE-based manifold learning (settings (i)
vs. (iii)), we observe a moderate decrease in AUC, approxi-
mately 5% in most classifiers. This decrease aligns with our
expectations, as the transformation in SDAE introduces a
certain level of information loss. However, the performance
degradation remains within an acceptable range. These
findings demonstrate that our proposed manifold learning
manages to preserve the original data structure information
and effectively model the original raw data space, despite
a significant reduction in data dimension from 709 to 64
(as detailed in Appendix D.2). Thus, this corroborates our
design rationale of employing SDAE for manifold learning
with structure preservation and isotropy constraint. Further,
we compare with contrastive principal component analysis
(cPCA) (Abid et al., 2017; 2018) and our proposal without
isotropy constraint, with results detailed in Appendices G.2
and G.1. Both methods primarily identify one large co-
hort and a few smaller cohorts, failing to identify medi-
cally meaningful cohorts. This limitation is also observed
in deep clustering methods like deep clustering network
(DCN) (Yang et al., 2017) and deep embedded K-means
clustering (DEKM) (Guo et al., 2021), as discussed in Ap-
pendix G.5. Common to these methods is a process en-
tailing dimensionality reduction followed by clustering on
the embedded representations. However, their lack of our
proposed isotropy constraint—crucial for uniform changes
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Figure 6: Data Shapley value histogram of the samples
within our discovered cohorts.

in data Shapley values across orientations—limits their ef-
ficacy. This is because they overlook the key insight that
negative samples indicate different types with distinct symp-
toms, implying diverse cohorts with varied data Shapley
value distributions. Consequently, they cannot effectively
discover medically relevant cohorts.

Effectiveness of Cohort Discovery. We further validate
the ability of our approach to decompose high data Shap-
ley value samples into distinct, medically relevant cohorts.
Figure 6 presents the data Shapley value histogram of our
identified cohorts, with the upper part aligned with Fig-
ure 3(a) but color-coded by cohort proportion. The lower
part shows each cohort’s data Shapley value distribution. We
note seven cohorts effectively partition Figure 3(a)’s third
component into Gaussian distributions, implying consistent
data Shapley values within each cohort. Cohort 2, identified
as the inflammatory group, exhibits relatively lower data
Shapley values, as immune abnormalities cannot serve as
specific features for kidney injury. Conversely, Cohorts 4
and 6, involving critical metabolic systems, display higher
data Shapley values, which indicates their significant medi-
cal relevance to AKI prediction. These observations confirm
the homogeneity in each cohort due to DBSCAN’s detec-
tion capability and similarity in data Shapley values, further
substantiating our proposed isotropy constraint in manifold
learning. Clinically validated by medical professionals, our
derived cohort discovery results validate the correctness of
the outcomes and the medical utility of our approach.

5. Related Work
The Shapley value, originally introduced in cooperative
game theory (Shapley et al., 1953), offers a solution for the
equitable distribution of a team’s collective value among
its individual members (Chalkiadakis et al., 2011). No-
table applications of the Shapley value in machine learning
encompass data valuation, feature selection, explainable ma-
chine learning, etc (Lundberg & Lee, 2017; Ghorbani & Zou,
2019; Williamson & Feng, 2020; Liu et al., 2022; Rozem-

berczki et al., 2022). Among these, data valuation holds
significance in quantifying the contributions of individual
data samples toward predictive models. In this research line,
the data Shapley value (Ghorbani & Zou, 2019) presents an
equitable valuation framework for data value quantification
with subsequent research focusing on enhancing computa-
tional efficiency (Jia et al., 2019; Ghorbani et al., 2020).

Representation learning is a crucial research area con-
tributing to the success of many machine learning algo-
rithms (Bengio et al., 2013). Among the representation
learning methods, manifold learning stands out due to its
capability of reducing the dimensionality and visualizing
the underlying structure of the data. Traditional manifold
learning methods include Isomap (Tenenbaum et al., 2000),
locally linear embedding (Roweis & Saul, 2000), and multi-
dimensional scaling (Borg & Groenen, 2005). In recent
years, autoencoders (AEs) have gained significant attention,
offering efficient and effective representations of unlabeled
data. Researchers develop various AE variants for spe-
cific application scenarios, among which DAEs and their
advanced stacked variant SDAEs (Vincent et al., 2010) are
highly suitable to tackle EMR data, where missing and noisy
data remains a notorious issue (Lasko et al., 2013).

DBSCAN, short for density-based spatial clustering of ap-
plications with noise, is introduced to alleviate the burden
of parameter selection for users, facilitate the discovery of
arbitrarily shaped clusters, and demonstrate satisfactory effi-
ciency when dealing with large datasets (Ester et al., 1996;
Gan & Tao, 2015; Schubert et al., 2017).

6. Conclusion
This paper proposes to examine negative samples for cohort
discovery in healthcare analytics, which has not been ex-
plored in prior research. In pursuit of this goal, we delve
into an innovative, Shapley-based approach to uncover inter-
relationships among these samples, positing that cohorts of
medical significance should manifest similar distributions
with high data Shapley values. In particular, we propose
to measure each negative sample’s contribution to the pre-
diction task via its data Shapley value and construct the
Negative Sample Shapley Field to model the distribution
of all negative samples. To enhance the cohort discovery
quality, we transform this original field into an embedded
space using manifold learning, incorporating the original
data structure information and isotropy constraint. In the
transformed space, we manage to identify medically mean-
ingful cohorts within negative samples by DBSCAN. The
experiments on the EMR data from National University
Hospital in Singapore demonstrate the effectiveness of our
proposal. Further, the medical insights derived from our
discovered cohorts are validated by clinicians, underscoring
our approach’s substantial medical value.
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defined through domain knowledge, the data valuation of
negative samples can serve as a representation of the effec-
tive adversarial degree against the positive definition. Such
an approach is entirely novel and has not been considered in
previous literature. Our study explores the use of this novel
representation for clustering analysis of negative samples,
significantly aiding in uncovering the distribution character-
istics of negative samples collected in real-world scenarios.
We have validated its efficacy in medical applications and
believe this representation holds considerable potential for
further utilization beyond clustering in the healthcare do-
main. We are confident in its superiority as a state-of-the-art
methodology for patient cohort discovery and its potential
impact on subsequent related research directions.
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A. Notation Table
In this paper, scalars are denoted by symbols such as x, vectors are represented by boldface symbols such as x, and matrices
are described by uppercase boldface symbols such as X. To provide a comprehensive overview of the notations used
throughout the paper, we present a summary of notations in Table 2.

Table 2: Notations.

Notation Description

D, di EMR data, each sample in EMR data
D+, D− Positive samples, negative samples

d−i Each negative sample
xi, yi Input features of d−i , binary label of d−i
F Prediction model
Q A subset of negative samples
M Performance metric function
si Data Shapley value for d−i
π A Monte Carlo permutation

A
d−
i

π All the negative samples before d−i in π
S The Negative Sample Shapley Field
S ′ Transformed space after SDAE-based manifold learning
K Number of DAEs in SDAE
k Each DAE in SDAE, k ∈ {0, . . . ,K − 1}

h
(k)
i Input to the encoder of the k-th DAE

h̃
(k)
i Corrupted version of h(k)

i with masking noise
f
(k+1)
θ (·) Encoder of the k-th DAE
ĥ
(k+1)
i Output from the encoder of the k-th DAE

f
(k+1)
ϕ (·) Decoder of the k-th DAE
z
(k)
i Output from the decoder of the k-th DAE
L(k)
rec Reconstruction loss in the k-th DAE
L(k)
iso Isotropy constraint in the k-th DAE
L(k) Overall loss in the k-th DAE
h
(k+1)
i Input to the encoder of the (k + 1)-th DAE
h
(K)
i Input for medical cohort discovery
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B. Extended Related Work
B.1. Cohort Studies

Healthcare analytics capitalizes on the rich insights derived from patients’ EMR data to facilitate a wide spectrum of analytic
tasks, ranging from diagnostic (Lipton et al., 2016) to prognostic applications (Mould, 2012). Current research in this field
primarily focuses on addressing the intrinsic challenges associated with EMR data, such as irregularity and missing data (Lee
et al., 2017; Zheng et al., 2017b; Che et al., 2018; Cao et al., 2018; Zhang et al., 2023), as well as bias (Zheng et al., 2017a).
Additionally, significant efforts are directed towards enhancing the capabilities of EMR analytic models by improving
interpretability (Bai et al., 2018; Zheng et al., 2020; Cai et al., 2021; Chua et al., 2021; Cai et al., 2022), augmenting
reliability (Chen et al., 2021; Zheng et al., 2021), and integrating multimodal EMR processing (Xu et al., 2018; Zheng et al.,
2022; Zhang et al., 2023). This field is experiencing rapid growth, fueled by the increasing availability of EMR data and
continuous advancements in computational methodologies, notably deep learning (Ooi et al., 2015). Within the realm of
healthcare analytics, cohort studies represent a compelling research avenue (Grimes & Schulz, 2002; Wang & Kattan, 2020;
Cai et al., 2024). As a specific subtype of longitudinal studies, cohort studies focus on selecting a group of patients who
share a common defining characteristic in order to investigate a particular outcome of interest. Cohort studies are well-suited
for identifying potential risk factors and causes and monitoring the progression of diseases in patients’ health conditions.
For instance, in Mahmood et al. (2014), significant medical insights into the epidemiology of cardiovascular disease and its
associated risk factors are provided through a cohort study. Another notable example pertains to the coronavirus disease
2019 (COVID-19), where multiple cohort studies have consistently demonstrated the critical role of D-dimer as a risk factor
contributing to the mortality of COVID-19 patients (Huang et al., 2020a; Wang et al., 2020; Zhou et al., 2020). Leveraging
cohort studies, researchers acquire the capacity to meticulously scrutinize various medical conditions, yielding invaluable
medical insights. This, in turn, has the potential to drive substantial advancements in patient management and healthcare
delivery (Szklo, 1998; Wu et al., 2020).

B.2. Related Work on Each Component of Our Approach

The Shapley value, originally introduced in cooperative game theory (Shapley et al., 1953), offers a solution for the equitable
distribution of a team’s collective value among its individual members (Chalkiadakis et al., 2011). This value allocation
mechanism embodies key principles such as fairness, symmetry, and efficiency (Chalkiadakis et al., 2011), rendering it
widely applicable across various machine learning applications (Rozemberczki et al., 2022). Notable applications of the
Shapley value in machine learning encompass data valuation, feature selection, explainable machine learning, etc (Lundberg
& Lee, 2017; Ghorbani & Zou, 2019; Williamson & Feng, 2020; Liu et al., 2022; Rozemberczki et al., 2022). Among these
applications, data valuation holds particular significance in quantifying the contributions of individual data samples toward
predictive models. In this research line, the data Shapley value (Ghorbani & Zou, 2019) presents an equitable valuation
framework for data value quantification. Subsequent research efforts primarily focus on enhancing the computational
efficiency of the data Shapley value through the application of specific techniques (Jia et al., 2019; Ghorbani et al., 2020).

Representation learning, i.e., learning data representations that benefit downstream tasks, is a crucial research area contribut-
ing to the success of many machine learning algorithms (Bengio et al., 2013). Among the representation learning methods,
manifold learning, which operates under the assumption that the probability mass of the original data tends to concentrate in
lower-dimensional regions compared to the original space, stands out due to its capability of reducing the dimensionality and
visualizing the underlying structure of the data. Traditional manifold learning methods include Isomap (Tenenbaum et al.,
2000), locally linear embedding (Roweis & Saul, 2000), and multi-dimensional scaling (Borg & Groenen, 2005). In recent
years, AEs have garnered substantial interest in representation learning. AEs excel in capturing underlying data structures by
reconstructing input data, thereby providing efficient and effective representations of unlabeled data. Researchers develop
various AE variants for specific application scenarios, e.g., regularized AEs (Alain & Bengio, 2014), sparse AEs (Makhzani
& Frey, 2014), DAEs (Vincent et al., 2008). For example, regularized AEs (Alain & Bengio, 2014) are proposed to prevent
AEs from learning trivial identity mappings and to enhance their ability to capture comprehensive information from data.
More specifically, sparse AEs (Makhzani & Frey, 2014), inspired by the sparse coding hypothesis in neuroscience, aim
to learn sparse representations, and DAEs (Vincent et al., 2008) are introduced to learn representations robust to noise
and outliers, hence effectively handling input data corruption. Specifically, DAEs and their advanced stacked variant
SDAEs (Vincent et al., 2010) are highly suitable to tackle EMR data, in which missing and noisy data remains a notorious
issue (Lasko et al., 2013). These models could effectively address the complexities associated with EMR data and contribute
to improved representation learning.
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DBSCAN, short for density-based spatial clustering of applications with noise, is introduced to alleviate the burden of
parameter selection for users, facilitate the discovery of arbitrarily shaped clusters, and demonstrate satisfactory efficiency
when dealing with large datasets (Ester et al., 1996; Gan & Tao, 2015; Schubert et al., 2017). A subsequent study, ρ-
approximate DBSCAN further advances the quality of cluster approximation and computational efficiency (Gan & Tao,
2015). Then in Schubert et al. (2017), it is shown that the original DBSCAN algorithm, when equipped with appropriate
indexes and parameters, can achieve performance comparable to that of the ρ-approximate DBSCAN algorithm. Up till now,
DBSCAN remains one of the most widely adopted clustering algorithms.

B.3. Related Work on Baseline Methods

Contrastive principal component analysis (cPCA) is a generalized variant of the standard PCA. Its primary purpose is to
visualize and investigate patterns specific to a target dataset in contrast to an existing background dataset. In this manner,
cPCA excels at identifying crucial dataset-specific patterns that might be missed by PCA (Abid et al., 2017; 2018).

In the setting of learning from positive and unlabeled data, generally referred to as PU learning, we only have access to
positive examples and unlabeled data for analytics. PU learning has garnered increasing interest within the machine learning
community, and among the notable research endeavors, three influential PU learning methods have emerged: Classic
Elkanoto (Elkan & Noto, 2008), Weighted Elkanoto (Elkan & Noto, 2008), and Bagging-based PU-learning (Mordelet &
Vert, 2014). The first two are founded on the assumption of samples being “selected completely at random,” while the latter,
Bagging-based PU-learning, leverages bootstrap aggregating (bagging) techniques to achieve improved performance.

Influence functions, as introduced in Weisberg & Cook (1982), present an alternative approach for assessing the value of
individual samples. Influence functions quantitatively measure how the prediction model changes when the weight of a
single sample is perturbed slightly. To compute the influence function value per sample, it is common practice to employ the
leave-one-out (LOO) method, a well-established technique in the field (Ghorbani & Zou, 2019; Rozemberczki et al., 2022).

Recently, there has been a growing interest in deep clustering methods that simultaneously optimize representation learning
and clustering. One noteworthy example is the deep clustering network (DCN) (Yang et al., 2017). DCN combines
dimensionality reduction and K-means clustering, where the dimensionality reduction component is accomplished via
learning a deep neural network. Another noteworthy approach is deep embedded K-means clustering (DEKM) (Guo et al.,
2021). DEKM alternately employs an autoencoder to learn a deep embedding space, and identifies clusters within this space,
thereby revealing valuable cluster-structure information.
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C. Negative Sample Shapley Field Construction
C.1. Proof of Data Shapley Values for Negative Samples

We establish the proof of data Shapley values for negative samples by relating our problem to the original context of the
Shapley value in game theory (Shapley et al., 1953), i.e., reducing it to a cooperative game (Chalkiadakis et al., 2011;
Ghorbani & Zou, 2019; Rozemberczki et al., 2022).

Specifically, our problem is framed as a negative sample valuation game for a fair distribution of the collective performance
achieved by the prediction model to each participating negative sample in the training data (with positive samples the same),
while maintaining consistency with the three fundamental properties of an equitable data valuation: (i) null player, (ii)
symmetry, and (iii) linearity.

Null player. We define a negative sample d−i as a “null player” and set its data Shapley value to zero if its inclusion
in any subsets of the negative sample set in training data does not influence the performance of the prediction model.
Formally, for a negative sample d−i = (xi, yi) and ∀R ⊆ D− \ d−i , if the performance remains unchanged by adding d−i ,
i.e., M(D+ ∪ R, F ) = M(D+ ∪ R ∪ {d−i }, F ), then si = 0. In this negative sample valuation game, the null player
property ensures that the negative samples with no impact on the prediction performance are assigned zero values for their
data Shapley values.

Symmetry. Two negative samples, d−i , and d−j , are assigned the same value if they consistently influence the performance
of the prediction model when added to any subsets of the negative sample set in training data. This property arises from the
concept of symmetry. Formally, for two negative samples d−i = (xi, yi) and d−j = (xj , yj), and ∀R ⊆ D− \ {d−i , d

−
j }, if

the prediction performance remains the same after adding d−i or d−j , i.e., M(D+∪R∪{d−i }, F ) = M(D+∪R∪{d−j }, F ),
then si = sj . This property ensures that the negative samples with equivalent marginal contributions are assigned the same
data Shapley values.

Linearity. The influence of a negative sample d−i on the overall pooled data is equivalent to its influence on constituent
sub-datasets. We could denote si as si(d−i ,Dtest), representing the data Shapley value of the negative sample d−i evaluated
on all test data Dtest. The linearity property states that for two sets of test data, D1

test and D2
test, the following holds:

si(d
−
i ,D

1
test ∪ D2

test) = si(d
−
i ,D

1
test) + si(d

−
i ,D

2
test) (10)

This linearity property ensures that the data Shapley value of a negative sample on the pooled test dataset is equal to the sum
of its data Shapley values on the two individual test datasets, in this negative sample valuation game.

Proof. We prove Proposition 3.1 by establishing the connection between our negative sample valuation game and the
cooperative game theory context (Chalkiadakis et al., 2011). In a cooperative game, there exists a set of n players
and a characteristic function m : 2[n] 7→ R that assigns a payment value to each selected player (Rozemberczki et al.,
2022). In our case, the players correspond to individual negative samples, and the characteristic function m(Q) represents
the performance obtained when the subset of negative samples Q (Q ⊆ D−) is included in the prediction model. By
leveraging the three properties discussed above, our negative sample valuation game ensures the fair distribution of collective
performance to the participating negative samples. Therefore, each negative sample acts as a player, and the prediction
model F incorporates all the participating negative samples Q (along with the positive samples D+) to achieve the overall
performance m = M(D+ ∪ Q, F ). Consequently, the data Shapley value of each negative sample corresponds to the
payment received by each player in this cooperative game analogy.

C.2. Monte Carlo Permutation Sampling

We adopt Monte Carlo permutation sampling to approximate the data Shapley values for negative samples. The detailed
procedure of each Monte Carlo iteration is presented in Algorithm 1. The algorithm begins by initializing the necessary
variables for computation in lines 1-8. Subsequently, for a given permutation, we calculate the marginal contribution of each
negative sample in the current Monte Carlo iteration towards its overall data Shapley value, as described in lines 9-24.

In particular, for each indexed negative sample, we include it in the training data and retrain the classifier. Then, we measure
its marginal contribution by calculating the difference in the AUC metric (lines 10-14). Additionally, in line 15, we compute
the absolute difference between the full AUC (which uses all the training data and evaluates the trained model on the test
data) and the new AUC (which includes the current negative sample). If this difference falls below a predefined threshold,
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Algorithm 1 Data Shapley Value Computation for Negative Samples by Monte Carlo Sampling

Input: Negative training data (X−
train,y

−
train), Positive training data (X+

train,y
+
train), Test data (Xtest,ytest).

Output: Marginal contribution of each negative sample in current Monte Carlo iteration to its overall data Shapley value.
1: Initialize permutation of indices of X−

train: perm← random permutation
2: Initialize marginal contributions of X−

train with zeros: marginal contribs← zeros
3: Initialize truncation counter: truncation counter← 0
4: Initialize new score with a random score: new score← random score ▷ 0.5 for AUC
5: Initialize a classifier: clf← create a new classifier
6: Fit the classifier with all training data: clf.fit(X−

train ∪X+
train, y−

train ∪ y+
train)

7: Evaluate the classifier on test data: full score← AUC(clf, Xtest, ytest)
8: Initialize training data: (X′,y′)← (X+

train,y
+
train)

9: for idx in perm do
10: Set old score to the current new score: old score← new score
11: Update training data with current negative sample: (X′,y′)← (X′ ∪X−

train[idx],y′ ∪ y−
train[idx])

12: Create a new classifier and train it: clf← new classifier, clf.fit(X′,y′)
13: Update new score: new score← AUC(clf, Xtest, ytest)
14: Calculate marginal contribution of the current negative sample: marginal contribs[idx]← new score− old score
15: Calculate the distance to the full score: distance to full score← |full score - new score|
16: if distance to full score ≤ truncation tolerance × full score then
17: Increment truncation counter: truncation counter← truncation counter + 1
18: if truncation counter > 5 then
19: break
20: end if
21: else
22: Reset truncation counter: truncation counter← 0
23: end if
24: end for
25: return marginal contribs

specifically “truncation tolerance” times the full AUC, for more than five consecutive negative samples, we terminate the
current Monte Carlo iteration by early stopping (lines 16-20). This early stopping criterion is based on the observation that
further inclusion of negative samples is unlikely to yield a significant improvement in AUC.

After calculating the marginal contribution of each negative sample in each Monte Carlo iteration, the overall data Shapley
value of a particular negative sample is derived by taking the mean of its marginal contributions across different iterations.

C.3. Implementation Details

In our experiments, we employ the LR model to approximate the data Shapley values for negative samples. We use AUC as the
evaluation metric with the aforementioned early stopping criterion. Specifically, we set the threshold truncation tolerance
to 0.025. This means that if the absolute difference between the full AUC and the new AUC remains within 0.025 times the
full AUC for more than five consecutive negative samples, the current Monte Carlo iteration will be terminated.
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D. Manifold Learning with Structure Preservation and Isotropy Constraint
D.1. Model Architecture of SDAE-based Manifold Learning
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Figure 7: Model architecture of SDAE-based manifold learning.

The architecture of our SDAE-based manifold learning model is presented in Figure 7. Specifically, Figure 7 (a) illustrates
the computation details of the k-th DAE (denoising autoencoder). Both the reconstruction loss and our proposed isotropy
constraint are employed in this process, and hence contribute to the training of robust feature extractors, utilizing clean and
corrupted inputs simultaneously. Subsequently, after training the encoder of the k-th DAE, it is applied to clean inputs for
transformation, as depicted in Figure 7 (b). This iterative training process continues, as shown in Figure 7 (c), until the
last DAE generates the final encoded representation within the manifold space. This encoded representation serves as the
foundation for subsequent cohort discovery.

D.2. Implementation Details

We utilize an SDAE comprising 3 DAEs. These DAEs serve to transform the 709-dimension input data, which corresponds
to 709 lab tests (refer to Section 4.1), using encoders with dimensions of 256, 128, and 64, respectively. We utilize the
Adam optimizer to train the SDAE in an unsupervised manner, using the loss function described in Equation 7. Our
objective is to obtain an optimal manifold space to support subsequent density-based clustering for automatic cohort
identification. To determine the optimal learning rate for training, we perform a grid search over a range of values, i.e.,
[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005], and run 10 repeats per learning rate. The model run with the lowest loss is selected
as the optimal model for subsequent cohort discovery, which corresponds to a learning rate of 0.005. Other parameters are
held constant during the training process, including a batch size of 1024, a mask probability of 0.2 for the denoising process,
and a total of 100 epochs. These parameters provide stability and ensure sufficient training iterations to learn meaningful
representations in the SDAE.
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E. Cohort Discovery Among High Data Shapley Value Negative Samples
E.1. Details for DBSCAN

The DBSCAN (density-based spatial clustering of applications with noise) algorithm follows a specific process to perform
clustering. It requires two essential parameters: (i) ε, which specifies the maximum distance between two samples for them
to qualify as neighbors, and (ii) Pmin, which defines the minimum number of samples required to form a dense region.

The detailed description of the DBSCAN algorithm is as follows. (i) Start by selecting an unvisited sample arbitrarily.
(ii) Retrieve its ε-neighborhood, consisting of all samples within a distance of ε from the selected sample. (iii) If the
ε-neighborhood contains more than Pmin samples, initiate a new cluster and designate the selected sample as a “core point.”
The core point is a sample that has a sufficient number of neighbors within its ε-neighborhood to form a dense region. (iv) If
the ε-neighborhood has fewer than Pmin samples, label the selected sample as noise. However, note that this sample may
later fall within the ε-neighborhood of another sample, causing it to be assigned to a different cluster. (v) For each sample
that is determined to belong to a dense region within a cluster, consider its ε-neighborhood as part of the same cluster. Add
all the samples found within this neighborhood to the cluster and check if these samples’ respective ε-neighborhoods are
also dense (if so, add them to the cluster as well). This process continues recursively until the entire densely connected
cluster is detected. (vi) Proceed to the next unvisited sample and repeat steps (ii) to (v) until all samples have been assigned
to a cluster or labeled as noise. By following this process, DBSCAN identifies densely connected clusters {C1, C2, . . . , CR}
and recognizes noisy samples Ψ.

E.2. Clusters vs. Cohorts
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Figure 8: Relationship between clusters and cohorts in a DBSCAN example.

We illustrate the relationship between clusters and cohorts using an example within the DBSCAN algorithm, as depicted in
Figure 8. In this example, we set Pmin to 4, and the value of ε is indicated in the figure as the radius of the circles.

As shown in the figure, Point A and all the other blue points are core points because their ε-neighborhoods contain at least
Pmin points. Therefore, they form a single cluster. Additionally, Point B and Point C are reachable from Point A via existing
paths, making them belong to the same cluster as well. However, Point N is labeled as noise since it does not meet the
criteria to be a core point and is not reachable from any core points.

According to Definition 3.3, for this identified cluster by the DBSCAN algorithm, we consider each core point (i.e., all the
blue points) and define a spherical space with the core point as its center and ε as its radius. The combined area covered by
all such spherical spaces, depicted in blue, represents the cohort that we aim to discover from this cluster.

E.3. Implementation Details

The choice of parameters in the DBSCAN algorithm, specifically the search radius (ε) and the minimum number of points
(Pmin), has a significant impact on the quality of the clustering results. To determine the optimal parameter combination,
we start by exploring various values for Pmin.

Given a specific Pmin value, we calculate the 75th percentile of the distribution of (Pmin/2)-nearest distances for the
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extracted 40% samples with high data Shapley values (as described in Section 4.2). We consider this calculated value as the
appropriate ε for the clustering process. The underlying rationale is that regions with local densities exceeding twice the
upper bound of the global density represent distinct high-density areas.

By iterating over different values of Pmin and adjusting the corresponding ε values, we assess the clustering quality achieved
by each parameter combination using the Silhouette score, which measures the cohesion and separation of clusters to
evaluate their quality. After a thorough evaluation, we determine that a value of Pmin equal to 100 yields the most suitable
parameter choice for our DBSCAN clustering. This method ensures that the clustering process considers the distribution of
distances within high-density areas and selects an appropriate value for ε, leading to improved clustering results based on
the Silhouette score assessment.
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F. In-depth Analysis of Our Proposed Approach
F.1. Design Choices of Components

K-means clustering results. We first present the K-means clustering results that comprise two subsets: the first involves
K-means clustering analysis of the constructed Negative Sample Shapley Field without our proposed isotropy constraint,
and the second applies the isotropy constraint to K-means clustering. Each subset includes two figures: one displaying
the t-SNE plots of the K-means clustering results, incorporating a heatmap of data Shapley values along with multiple
K-means outcomes for various K values1; the other, based on a trained K-means model with K = 7, presents a histogram
of data Shapley values for samples within the corresponding identified cohorts. The choice of K = 7 as our primary focus
stems from its emergence as the cohort number via DBSCAN analysis as shown in Figure 3, alongside a detailed medical
examination based on these clustering results, affirming their medical relevance.

Figure 9: Cohort discovery results of our proposal using K-means without isotropy constraint.

Let us first focus on the K-means outcomes without the isotropy constraint. As observed in Figure 9, the degree of
differentiation between the clusters formed is not particularly ideal. Further, Figure 10a starkly demonstrates that spatial
clustering of high-temperature points2 within the Negative Sample Shapley Field, aimed at automatically identifying hot
zones, is completely ineffective in the absence of the isotropy constraint. This is explicitly manifested in the undifferentiated
distribution of data Shapley values, which appears to be unrelated to the data Shapley values themselves, resembling a nearly
random grouping. This scenario precisely encapsulates the situation we are facing at the beginning of our work.

Following further investigation, we have identified the cause of the difficulty as the irregular shapes of the hot zones in the
unconstrained high-dimensional Negative Sample Shapley Field, as illustrated in Figure 1. Traditional clustering methods
based on spatial distance struggle to function effectively in this context. To address this issue, we propose an isotropy
constraint as a solution.

Figures 11 and 10b present the second subset of results, specifically the K-means clustering results under the isotropy
constraint. As evident from Figure 11, the quality of the clustering results has significantly improved. Moreover, Figure 10b
further supports this assessment, demonstrating that the obtained clusters exhibit a clear similarity in data Shapley values
within each cluster, approximating a normal distribution. This indicates that K-means clustering holds promise when the
isotropy constraint is in place.

1Disambiguation: “K” herein denotes the number of clusters to partition in K-means clustering.
2We use “temperature” to refer to data Shapley values, where high-temperature points correspond to data samples with high data

Shapley values.
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(a) K-means without isotropy constraint.
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(b) K-means with isotropy constraint.

Figure 10: Data Shapley value histograms of samples within discovered cohorts using K-means clustering.

We emphasize that the comparison between clustering methods is orthogonal to the core concerns of this paper, and the
related discussion has already been sufficiently addressed in the existing literature. The prevailing view suggests that
DBSCAN, by adopting a method of expanding and merging high-density regions, offers a more flexible clustering result.
This approach is deemed potentially superior in handling high-dimensional scenarios where the boundaries of clusters are
irregular, compared to direct spatial partitioning based on kernels as performed by K-means.

Such assertions are observable in our results, for instance, in the subplot at the lower left corner of Figure 11 (K = 7),
where a portion of Cohort 4 (green) is clustered into Cohort 2 (blue). This clustering evidently stems from the rigid spatial
segmentation inherent to kernel-based partitioning, as intuitively, these blue points should belong to a dense cluster of green
points. Contrastingly, our proposed approach utilizing DBSCAN does not cluster this small subset of blue points into Cohort
2 (i.e., the hepatic and hematological disorders cohort, that is, Cohort 4 in Figure 3(c)), attributing to a more refined analysis
of the cases associated with these points. We believe that the DBSCAN-based clustering is more accurate, indicating that
these blue points indeed do not share pathological characteristics with the cohort. Thus, in this specific case, DBSCAN
demonstrates superior performance.

Moreover, K-means assigns every point to a cluster, whereas DBSCAN, by expanding and merging based on high-density
regions, allows discrete, low-density points to remain un-clustered. This approach is more suitable for our specific application,
where attention can be deferred from isolated points to concentrate on high-density areas, often indicating significant medical
insights. Furthermore, unlike K-means, DBSCAN does not require the a priori specification of a cluster number K, a
parameter challenging to determine in complex, uncertain analysis scenarios. These considerations lead us to conclude that
DBSCAN is a preferable choice for our application.

Choice of clustering methods. Our experience during the development of our cohort discovery approach informs our
choice of clustering methods. Initially, we employ K-means but find it inadequate for cohort discovery due to its assumption
of evenly distributed data samples around centroids, which may not hold in high-dimensional medical data contexts (as
discussed above and also noted by Yang et al. (2017)).

To address these limitations, we further explore deep clustering methods such as DCN (Yang et al., 2017) and DEKM (Guo
et al., 2021), which jointly optimize representation learning and clustering, with the underlying assumption that the
latent representations derived from deep neural networks will be inherently well-suited for clustering. Nonetheless, both
methods fail to identify medically meaningful cohorts, resulting in only one large cohort and a few smaller ones (with the
corresponding results presented in Appendix G.5). Further investigation reveals that this unsatisfactory outcome is due to
the anisotropic nature of the constructed Negative Sample Shapley Field, indicating the non-uniform distribution of negative
samples with similar data Shapley values.

To mitigate this issue, we propose the isotropy constraint to ensure uniform data Shapley value changes across orientations,
rendering our approach more amenable to subsequent spatial clustering. We further adopt DBSCAN as a mature and proven
spatial clustering method with broad applicability across various scenarios. DBSCAN is capable of identifying high-density
connected subspaces of arbitrary shape without requiring a pre-assumed number of clusters K (Ester et al., 1996; Gan &
Tao, 2015; Schubert et al., 2017). Furthermore, our approach seeks to identify high-temperature connected subspace in the
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Figure 11: Cohort discovery results of our proposal using K-means with isotropy constraint.

constructed Negative Sample Shapley Field, aligning well with DBSCAN’s mechanism. Equipped with both our proposed
isotropy constraint and DBSCAN, we successfully avoid the mis-discovery, as exemplified in Figure 1(b), and consequently,
contribute to uncovering medically meaningful cohorts.

It is essential to clarify that the primary contribution of our proposal lies in exploring negative samples for cohort discovery
through a Shapley-based exploration of interrelationships between these samples. Consequently, after constructing the
Negative Sample Shapley Field, the choice of the subsequent spatial clustering method is somewhat orthogonal to our
primary contribution. Therefore, we remain open to the possibility of replacing DBSCAN with more innovative and
better-performing spatial clustering alternatives, should they become available, to further enhance the cohort discovery
results for the benefit of clinicians.

Choice of data valuation methods. The central concept of our proposed approach revolves around incorporating data
valuation into spatial clustering analysis among negative samples, through a Shapley-based exploration of interrelationships
between the samples. We opt to utilize data Shapley values for this purpose, given that data Shapley values are recognized
as a prominent and well-established equitable data valuation technique in recent years, offering distinct advantages over
alternative methods examined in related work (Ghorbani & Zou, 2019; Rozemberczki et al., 2022).

In our investigation, we have also compared data Shapley values with other data valuation methods, such as the influence
function discussed in Section 4.4. However, we find that the influence function-based data valuation deletes informative data
samples from all negative samples rather than retaining them, leading to degraded performance. Additionally, influence
functions have also been identified to have robustness issues in prior research (Ghorbani et al., 2019). Further experimental
results and corresponding analyses are detailed in Appendix G.4.

F.2. Limitations and Failure Modes

As outlined in Section 2, our approach comprises two primary phases: (i) leveraging data Shapley values for data validation
and constructing the Negative Sample Shapley Field for cohort discovery, and (ii) conducting cohort discovery via manifold
learning and density-based clustering. From this perspective, two potential failure modes emerge: unsuitable data valuation
methods, and improper representation learning or clustering models. Besides, another possible failure mode of our approach
lies in the limited capability of predictive models. We next elaborate on these three failure modes in detail.

Unsuitable data valuation methods. Achieving the goal of exploring interrelationships among negative samples via data
valuation necessitates accurate and suitable methods. If an unsuitable method, such as the influence function discussed in
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Section 4.4 (with corresponding results and analyses detailed in Appendix G.4), is adopted—resulting in the deletion rather
than retention of informative data samples and exhibiting robustness issues—it could compromise the integrity of the data
valuation results, potentially leading to degraded performance and reliability of our approach.

Improper representation learning or clustering models. Subsequent to the construction of the Negative Sample Shapley
Field, effective representation learning and clustering are pivotal for cohort discovery. However, employing improper models
for representation learning or clustering can significantly impede this process. For instance, utilizing models such as cPCA
or our proposed model without isotropy constraint in Section 4.4 (details in Appendices G.2 and G.1, respectively), or opting
for deep clustering models like DCN and DEKM in Section 4.4 (details in Appendix G.5), may result in the detection of
only one large cohort and a few smaller cohorts, thereby failing to identify medically meaningful cohorts. These models
follow a similar process of dimensionality reduction followed by clustering on embedded representations. Without the
integration of our proposed isotropy constraint, which ensures uniform changes in data Shapley values across orientations,
their efficacy is limited. Consequently, such improper representation learning or clustering models would adversely affect
the quality of cohort discovery results in our approach.

Limited capability of predictive models. We present an innovative approach centered on data Shapley values to explore the
interrelationships among negative samples. We posit that valuable cohorts should exhibit similar distributions characterized
by high data Shapley values. Ideally, highly accurate predictive models could facilitate the computation of data Shapley
values and subsequent cohort discovery within the constructed Negative Sample Shapley Field. However, in practical
scenarios, particularly in challenging prediction tasks, learning such accurate models may prove difficult, impeding the
computation of data Shapley values and the identification of cohorts.

F.3. Complexity Analysis

We analyze the complexity of our proposed cohort discovery approach in a step-wise manner as outlined below. Here, f
represents the feature dimension, N is the total number of samples, and N− is the number of negative samples. Since N
and N− are on the same order, we use N consistently in the following complexity analysis for simplicity.

Step 1. Negative Sample Shapley Field Construction. We employ Monte Carlo permutation sampling to calculate the
data Shapley values for negative samples. Each Monte Carlo permutation involves using the LR model to compute the
data Shapley value for each selected negative sample, with AUC serving as the evaluation metric. The computational
complexity of LR is O(Nf), while that of AUC calculation is O(N logN). As suggested by Ghorbani & Zou (2019), the
convergence of Monte Carlo permutation sampling is generally reached with a sampling number on the order of N , and in
our experiments, we run over 5N permutations. Further, considering the retraining of the LR model per negative sample, the
complexity of Step 1 is O(N3(f + logN)).

Step 2. Manifold Learning with Structure Preservation and Isotropy Constraint. Our SDAE consists of K DAEs,
where the input dimension of the k-th DAE’s encoder is nk and the output dimension is mk. The overall complexity
of SDAE is O(N

∑K−1
k=0 (nkmk)), which could be simplified to O(N), considering that K, nk and mk are constants.

Next, for the isotropy constraint, we calculate the distance between each pair of samples within each batch, resulting in(|B|
2

)
= |B|(|B| − 1)/2 distance calculations. Since the complexity of computing the distance between each pair of samples

is O(f), the complexity of imposing the isotropy constraint for each batch is O((|B|(|B| − 1)/2)f) = O(|B|2f). With a
total of N/|B| batches, the overall complexity of imposing the isotropy constraint is O(N |B|f). Combining the computation
in both the SDAE and the isotropy constraint, the complexity of Step 2 is O(N |B|f).

Step 3. Cohort Discovery Among High Data Shapley Value Negative Samples. In this step, we mainly conduct DBSCAN
on all the negative samples. The average complexity of this process is O(N logN) by employing an accelerating indexing
structure, while the worst-case complexity is O(N2).

In summary, our proposed cohort discovery approach, encompassing all three aforementioned steps, demonstrates an overall
complexity of O(N3 logN), with the major computational overhead occurring in Step 1. During this step, we calculate
the data Shapley values for negative samples using Monte Carlo permutation sampling in O(N2) time and subsequently
compute the AUC metric of LR for each permutation per negative sample in O(N logN) time.
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(a) Cohort discovery results of our proposal.

(b) Cohort discovery results of our proposal without isotropy constraint.

Figure 12: Comparison between our proposal with vs. without isotropy constraint in cohort discovery.

G. Supplementary Experimental Results
G.1. Experimental Results on Effectiveness of Isotropy Constraint

The comprehensive results of the ablation study, comparing the cohort discovery results of our proposal with and without the
isotropy constraint, are presented in Figure 12, encompassing various Pmin settings. According to the comparison results,
we observe that the results of our proposal (with the isotropy constraint) remain relatively stable across varied Pmin settings
(Pmin = 100 for Figure 3(c) as described in Appendix E.3). Notably, upon removing the isotropy constraint, effective
cohort discovery through DBSCAN is impeded, irrespective of the chosen Pmin values.

This is because DBSCAN, as a spatial clustering method, necessitates appropriate handling of spatial information within
the Negative Sample Shapley Field to achieve meaningful cohort discovery. Therefore, the introduced isotropy constraint
plays a pivotal role by ensuring uniform changes in data Shapley values across orientations, thereby rendering our proposal
more amenable to subsequent spatial clustering. Consequently, we mitigate the risk of mis-discovery, as exemplified in
Figure 1(b), and ensure robust cohort discovery outcomes resilient to variations in spatial clustering algorithm parameters,
ultimately contributing to unveiling medically meaningful cohorts.

G.2. Comparison with cPCA

cPCA, short for contrastive principal component analysis, represents a generalization of the standard PCA. By utilizing a
background dataset to eliminate common patterns, cPCA’s objective is to unveil the unique patterns within the target dataset
relative to the background dataset (Abid et al., 2017; 2018). In this regard, cPCA shares a conceptual similarity with our
proposal. Therefore, we proceed to conduct a comparative analysis between our approach and cPCA for cohort discovery.

Considering our focus on identifying cohorts within negative samples, we construct the background dataset using positive
samples, while the negative samples constitute the target dataset. Following the projection of the data through cPCA,
we retain 64 contrastive principal components, a dimension that is consistent with the output of SDAE in our approach.
Subsequently, we employ DBSCAN on the projected data resulting from cPCA to achieve cohort discovery. In essence,
cPCA can be regarded as an embedding technique, serving as a counterpart to the combination of the first two components
in our proposed approach: Negative Sample Shapley Field Construction, and Manifold Learning with Structure Preservation
and Isotropy Constraint.

Comprehensive experimental results of cPCA are depicted in Figure 13, presenting cohort discovery outcomes for four
distinct α values: 0, 1.06, 5.54, and 74.44 (automatically determined by cPCA), across different Pmin settings. Comparing
these cPCA results with our proposal’s results illustrated in Figure 12(a), it is observed that our proposal demonstrates a
clear superiority over cPCA in cohort discovery across different α values as well as varying Pmin settings.
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(a) Cohort discovery results of cPCA with α = 0.

(b) Cohort discovery results of cPCA with α = 1.06.

(c) Cohort discovery results of cPCA with α = 5.54.

(d) Cohort discovery results of cPCA with α = 74.44.

Figure 13: Cohort discovery results of cPCA with four different α settings.

G.3. Comparison with Positive-Unlabelled (PU) Learning Methods

While our primary focus centers on effective cohort discovery among negative samples rather than rectifying the asymmetry
between positive and negative examples for enhanced performance, our approach holds relevant implications for the latter.
Therefore, we compare our approach against three PU learning methods: Classic Elkanoto (Elkan & Noto, 2008), Weighted
Elkanoto (Elkan & Noto, 2008), and Bagging-based PU-learning (Mordelet & Vert, 2014). Specifically, we train these three
baseline methods, treating negative samples as unlabeled data, and evaluate their performance on the testing data.

The experimental results of these baseline methods in terms of AUC (mean ± std) from five repeats are presented in
Figure 14. Among the benchmarked baselines, Bagging-based PU-learning outperforms the other two methods and also
surpasses the performance of the “all d−i ” setting, where all negative/unlabeled samples are included in the training. This
validates the effectiveness of Bagging-based PU-learning, achieved through its bootstrap aggregating techniques. On the
other hand, both Classic Elkanoto and Weighted Elkanoto fail to achieve satisfactory performance. They merely marginally
outperform the “all d−i ” setting when employing LR and AdaBoost. This observation suggests that the “selected completely
at random” assumption inherent in these two baselines may not hold in our hospital-acquired AKI prediction utilizing
real-world EMR data.

In contrast to these baselines, the “d−i with si > 0” setting of our proposal, which filters out the negative samples with
negative data Shapley values, consistently achieves substantially higher AUC values across different classifiers. This
firmly establishes the superiority of our approach in identifying negative samples in real-world medical data, which further
underscores the validity of our constructed Negative Sample Shapley Field, thus providing a robust foundation for subsequent
cohort discovery.

28



Exploiting Negative Samples: A Catalyst for Cohort Discovery in Healthcare Analytics

LR GBDT AdaBoost RF MLP
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

All d −
i

d −
i  with si > 0

z(0)
i  of all d −

i

Classic Elkanoto
Weighted Elkanoto
Bagging-based PU-learning

Figure 14: AKI prediction performance of widely adopted classifiers for three different settings of our proposal and three
PU learning baselines.

G.4. Comparison with Influence Function-based Data Valuation

As an alternative data valuation technique, influence functions (Weisberg & Cook, 1982) assess how the prediction model
changes when the weight of a single sample is slightly altered. In this experiment, we compare our proposed data
valuation technique, specifically data Shapley values for negative samples, against influence functions for negative samples.
Specifically, in line with standard practice for comparing with influence functions, we employ the standard leave-one-out
(LOO) method (Ghorbani & Zou, 2019; Rozemberczki et al., 2022) to calculate the influence function value for each
negative sample.

The cohort discovery results of the influence function-based data valuation for AKI prediction are presented in Figure 15.
Figure 15(a) displays the histogram of influence function values among all negative samples. This distribution can be
fitted by a single Gaussian distribution with a mean of zero, which is different from the distribution of data Shapley values
presented in Figure 3(a). To focus our analysis on the most influential negative samples, we set a threshold of 60% and
exclude the lower 60% of negative samples based on their influence function values. Figure 15(b) illustrates the distribution
of all negative samples in terms of their influence function values in the manifold space. From this figure, we cannot discern
significant hot zones (i.e., with high influence function values), as samples with different temperatures are completely mixed
together. This suggests that if influence functions are used for data valuation, they do not exhibit a clear trend of spatial
proximity similarity in the feature vector space, which may make it challenging to effectively benefit spatial clustering
algorithms for further cohort discovery. This concern is further experimentally validated, as shown in Figure 15(c). We
implement the same subsequent clustering steps as in Figure 3(c) in the negative sample space based on influence functions
(i.e., selecting 40% of high influence function values as input for DBSCAN). From Figure 15(c), it can be seen that DBSCAN
fails to generate meaningful clustering results and only produces a single cluster. These cohort discovery results indicate
that influence function-based data valuation does not reveal meaningful medical cohorts for AKI prediction.

Next, we compare the AKI prediction performance achieved by a new setting, “d−i with IF > 0,” which includes only the
negative samples with positive influence function values, with three different settings of our proposal. The experimental
results in terms of AUC (mean ± std) from five repeats are shown in Figure 5. It is observed that influence functions
underperform data Shapley values (“d−i with IF > 0” vs. “d−i with si > 0”) and generally achieve lower AUC than using
all negative samples (the setting “All d−i ”). This indicates that the setting “d−i with IF > 0” deletes informative data
samples from all negative samples rather than retaining them. Consequently, this set of experiments confirms that, compared
to influence functions, data Shapley values are a more suitable and effective data valuation measure for the discovery of the
relevant medical cohorts in AKI.

It is worth noting that data Shapley values and influence functions have also been compared as data valuation techniques in
prior work (Ghorbani & Zou, 2019), where data Shapley values exhibit a significant performance advantage over influence
functions. This aligns with our findings from the evaluation results, confirming the superiority of data Shapley values over
influence functions. Moreover, influence functions, calculated as the performance difference of the prediction model with
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(a) Influence function value histogram
among all negative samples

(b) Influence function value distribution among all
negative samples in the manifold space

(c) Discovered cohorts among high influence
function value negative samples

Figure 15: Cohort discovery of influence function-based data valuation for AKI prediction.

and without a specific negative sample, do not satisfy equitability conditions. This limitation of influence functions arises
from their inability to account for a sample’s complex interactions with other samples (Ghorbani & Zou, 2019). However,
this limitation deviates from our research focus on cohort discovery. Specifically, if there is a particular cohort, meaning
there is a cluster of samples with a sufficient number of samples in it, and they are close to each other in the feature space
and in terms of their data valuation, then the influence function value of any single sample in that cohort should be relatively
low. Hence, influence functions may be more suited for identifying rare or isolated medical cases, which, while interesting,
falls outside the scope of our research. Additionally, influence functions have also been identified to have robustness issues
in prior work (Ghorbani et al., 2019).

G.5. Comparison with Deep Clustering Baselines

In recent years, the concept of deep clustering, which involves simultaneously optimizing representation learning and
clustering, has gained increasing attention. We further compare our proposed cohort discovery approach with two deep
clustering baselines: the deep clustering network (DCN) (Yang et al., 2017) and the deep embedded K-means clustering
(DEKM) (Guo et al., 2021). Specifically, DCN achieves joint dimensionality reduction by training a deep neural network
alongside K-means clustering, while DEKM transforms the embedding space further to a new space in order to reveal
cluster-structure information.

The comparison of cohort discovery results among high data Shapley value negative samples for our approach, DCN,
and DEKM is shown in Figure 16. In terms of results, neither of the baseline methods can identify significant cohorts
as effectively as our proposed approach does. Instead, they classify the majority of points into one large cluster with a
few smaller cohorts (indicated in the legend by the number of samples per cohort). Notably, these results align with those
obtained using cPCA in Figure 13 and our proposal without the isotropy constraint in Figure 12(b) in the ablation study. A
shared characteristic of these methods is their two-step process: (i) dimensionality reduction of raw data using methods
such as AE, SAE, SDAE, or cPCA, and (ii) clustering on the embedded representations using K-means or DBSCAN. This
indicates that the subtle differences resulting from specific implementations of dimensionality reduction and clustering
methods do not lead to significant differences in cohort discovery in the application scenario.

The key difference between them and our proposed approach lies in the absence of our proposed isotropy constraint, which
ensures uniform changes in data Shapley values across orientations, facilitating the identification of hot zones in the field.
These results substantiate the innovative contribution we have made in this paper by incorporating data valuation into
medical cohort discovery. This highlights the importance of our approach, as traditional methods solely based on feature
similarity struggle to effectively differentiate between different cohorts in complex and high-dimensional medical data. This
Shapley-based exploration of interrelationships between samples is our primary innovation for real-world clinical practice.

In summary, these comparison results with DCN and DEKM, along with the previous results of cPCA and our proposal
without the isotropy constraint, further validate the effectiveness of our proposed cohort discovery approach, underscoring
its medical value.
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(a) Data Shapley value histogram
among all negative samples

(b) Our approach’s discovered cohorts 
among high data Shapley value 
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(c) DCN’s discovered cohorts 
among high data Shapley value 
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(d) DEKM’s discovered cohorts 
among high data Shapley value 

negative samples

Figure 16: Comparison of cohort discovery results between our approach, DCN and DEKM.

(a) Data Shapley value distribution among all negative 
samples in the manifold space

(b) Discovered cohorts among high data 
Shapley value negative samples

(c) Discovered cohorts among all
negative samples

Figure 17: Comparison of cohort discovery results between clustering high data Shapley value negative samples and
clustering all negative samples.

G.6. Comparison with Clustering All Negative Samples

We conduct a comparison between our approach’s cohort discovery results among high data Shapley value negative samples
and results among all negative samples. The experiment results are presented in Figure 17, with Figure 17(a) illustrating
the data Shapley value distribution among all negative samples in the manifold space, and Figure 17(b) and (c) serving as
counterparts for comparison. In Figure 17(b), grey points represent samples either possessing low data Shapley values or
being labeled as noise by DBSCAN. Conversely, in Figure 17(c), grey points exclusively correspond to samples labeled as
noise by DBSCAN.

Our approach, even after incorporating all negative samples for clustering, remains capable of identifying representative
cohorts primarily composed of high data Shapley value negative samples, with only a few merging with the large cluster of
low data Shapley value negative samples.

It is essential to highlight that cohorts with high positive data Shapley values demonstrate a clear ability to facilitate the
model to identify positive samples, indicating their fundamental value in medical research, and hence, we only focus on
them in this paper. In contrast, the medical significance of cohorts without high positive data Shapley values (negative
or near zero) becomes very unclear. They can either hinder the prediction task by potentially being erroneous or noisy
data points, as indicated by negative data Shapley values, or they may represent complex and healthy samples of limited
relevance, with data Shapley values close to zero.
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Table 3: Key statistics of the MIMIC-III dataset for in-hospital mortality prediction.

Statistics MIMIC-III Dataset

# of admissions 51826
# of positive samples 4280
# of negative samples 47546

# of lab tests 428
Input Window 48 hours

(a) Data Shapley value histogram
among all negative samples

(b) Data Shapley value distribution among all negative 
samples in the manifold space

(c) Discovered cohorts among high data 
Shapley value negative samples

Figure 18: Cohort discovery of our proposal for in-hospital mortality prediction on the MIMIC-III dataset.

G.7. Evaluation on the MIMIC-III Public Benchmark Dataset

We evaluate our proposed cohort discovery approach on the widely recognized MIMIC-III dataset (Johnson et al., 2016).
This dataset is esteemed as a benchmark in healthcare analytics and comprises EMR data for dozens of thousands of patients
who are admitted to intensive care units (ICU) between 2001 and 2012. Our focus centers on predicting in-hospital mortality
on the MIMIC-III dataset, leveraging laboratory test data as input. We define each patient admission as an individual sample
if the duration of the admission exceeds 48 hours. Subsequently, we label each admission by assessing whether the patient
passes away during their stay at the hospital. Utilizing a set of 428 laboratory tests within a 48-hour “Input Window,” we
predict the likelihood of mortality for each admission. Prior to using these test values as input features, we apply min-max
standardization, followed by averaging the results. The key statistics pertaining to the MIMIC-III dataset for in-hospital
mortality prediction are summarized in Table 3.

To validate the broad applicability of our proposed approach, we conduct the same cohort discovery analysis on the
MIMIC-III dataset as described, with the results shown in Figure 18. By fitting the data to a Gaussian mixture model,
we unveil three distinct components within the data Shapley value histogram, as depicted in Figure 18(a). To focus our
investigation on the third component that holds significant relevance to the prediction task, we set a 50% threshold to exclude
the lower 50% negative samples based on their data Shapley values while retaining the remaining 50% for further analysis.
Figure 18(b) displays the data Shapley value distribution of all negative samples in the manifold space. Subsequently, we
perform DBSCAN on the extracted 50% of negative samples exhibiting high data Shapley values, successfully discerning
fifteen distinct cohorts, as demonstrated in the t-SNE plots in Figure 18(c). These fifteen cohorts effectively decompose the
third component of Figure 18(a) into respective Gaussian distributions, as confirmed in Figure 19, validating consistent data
Shapley values within each identified cohort. Compared to the results found in the AKI prediction, we can see that in terms
of ICU mortality prediction, the negative sample cohorts are more distinct and prominent in the constructed Negative Sample
Shapley Field. This aligns with expectations, as the negative samples in mortality (i.e., cases where patients are successfully
resuscitated and discharged alive) among patients on the brink of death admitted to ICU often stem from causes that are
more multi-sourced and more explicit, compared to those in a single-specialty nephrology department. This substantiates
the robustness and capability of our cohort discovery approach in decomposing samples with high data Shapley values into
medically relevant and distinct cohorts.
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Figure 19: Data Shapley value histogram of the samples within our discovered cohorts on the MIMIC-III dataset.

The outcomes of this cohort discovery evaluation hold substantial promise in advancing our comprehension of ICU patients,
and they are poised to contribute significantly to patient care and survival, particularly when combined with systematic
and cross-sectoral analytical research. Our experimental findings underscore the efficacy of our proposed approach on
this well-established public benchmark dataset, demonstrating its potential for broader application in the analysis of other
medical datasets, thus highlighting its versatility and robustness.
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H. Clinical Impact and Implications
H.1. Clinical Value of the Identified Cohorts in AKI Prediction

The identified cohorts among negative samples hold significant medical value as they unveil medically meaningful patterns,
as exemplified in Section 4.3 of our paper. These patterns shed light on the investigated medical problem, in this case,
AKI prediction. Further, the discovered cohorts can reveal potential future positives, pathological correlations, or similar
conditions. This reciprocal relationship between negative and positive samples can contribute to defining positive samples
in theoretical medical research. Such insights can significantly enhance clinicians’ comprehension of the disease and the
distribution of visiting patients during practical clinical consultations.

Let us illustrate with a more specific example. In this paper, we propose a cohort discovery approach on AKI negative sample
cases admitted to the nephrology department, resulting in the identification of several cohorts (discussed in Section 4.3).
Among them, our further investigation leads us to classify Cohort 2 as an “inflammatory cohort.”

We believe this cohort reveals a clinical insight: patients with infections are often treated with antibiotics; some develop
sepsis which in turn increases the metabolic burden on the kidneys. In some instances, the antibiotics used may carry
nephrotoxic potential and contribute to drug-induced AKI, leading to the patients being triaged to nephrology for diagnosis
and treatment.

However, even in cases of severe infection, physicians adhere to prompt resuscitation and early antimicrobial therapy,
meaning that, in most cases, this does not lead to further renal damage (AKI). Nephrotoxic antimicrobials are administered
with vigilance and frequent drug level monitoring with appropriate dose adjustments could reduce kidney risks. From a data
perspective, these cases form a cohort with distinctive infection characteristics and antibiotic usage, and kidney injury may
be subclinical and not be severe sufficiently to manifest with raised serum creatinine levels, representing a cohort among
negative samples.

The clinical insights derived from the analysis of this cohort are of great medical value. For instance, nephrologists,
when assessing patients, consider the toxicity of antibiotics administered recently. If a patient’s profile matches these
characteristics, a more conservative approach and further observation may be preferred. Such an approach may limit the
extent of subclinical kidney injury and may reduce cumulative kidney damage over time in the case of repeated organ insults
from acute illnesses.

Traditionally, clinical treatment strategies based on cohort insights rely on human experience and considering the complexity
of clinical treatment, these experiences often tend to be one-sided. In the era of data science, we can use learning techniques
to help us gain a deeper understanding of diseases and their treatments from new perspectives.

H.2. Clinical Impact Beyond AKI Prediction

Our proposed cohort discovery approach has the potential to yield significant medical impact across diverse medical
applications beyond AKI prediction.

For instance, when a patient exhibits symptoms of respiratory tract infection, outpatient physicians typically prioritize
measuring the patient’s body temperature and inquiring about any recent travel history or epidemiological contacts. This
essentially constitutes leveraging an identified negative sample cohort for efficient medical delivery, specifically for the
diagnosis of high-risk infectious viral diseases such as COVID-19. This is crucial because, in this scenario with limited
medical resources, it is impractical to triage all coughing patients into isolation wards.

In this routine example, the “patient without fever” can be considered to exhibit a high data Shapley value in the context of
the COVID-19 task, representing a high-temperature zone within the constructed Negative Sample Shapley Field. Although
our proposed approach stems from clinical experience and the examination of relevant medical data, we believe that
this innovative approach offers valuable insights for other application domains (e.g., to discover typical classification
and exclusion strategies in complex problems). Its recognition aids in deepening the understanding of negative samples,
particularly in discerning the typical patterns of negative samples specific to certain tasks.
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