
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CARETS: A MULTI-TASK FRAMEWORK UNIFYING
CLASSIFICATION AND REGRESSION FOR TIME SERIES
FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in deep forecasting models have achieved remarkable perfor-
mance, yet most approaches still struggle to provide both accurate predictions and
interpretable insights into temporal dynamics. This paper proposes CaReTS, a
novel multi-task learning framework, that combines classification and regression
tasks for multi-step time series forecasting problems. The framework adopts a
dual-stream architecture, where a classification branch learns the stepwise trend
into the future, while a regression branch estimates the corresponding deviations
from the latest observation of the target variable. The dual-stream design pro-
vides more interpretable predictions by disentangling macro-level trends from
micro-level deviations in target variable. To enable effective learning in output
prediction, deviation estimation, and trend classification, we design a multi-task
loss with uncertainty-aware weighting to adaptively balance the contribution of
each task. Furthermore, four variants (CaReTS1–4) are instantiated under this
framework to incorporate the mainstream temporal modelling encoders, includ-
ing convolutional neural networks (CNNs), long short-term memory networks
(LSTMs), and Transformers. Experiments on real-world datasets demonstrate that
CaReTS outperforms state-of-the-art (SOTA) algorithms in forecasting accuracy,
while achieving higher trend classification performance.

1 INTRODUCTION

Time series forecasting is a fundamental problem for a wide range of applications, including energy
demand management (Grandón et al., 2024), financial data analysis (Bhambu et al., 2024), health-
care monitoring (Ni et al., 2024), and climate modeling (Hittawe et al., 2024). Accurate multi-step
forecasting is particularly critical to enable informed decision-making that can capture short- and
long-horizon temporal dynamics of the system. Despite its importance, multi-step forecasting re-
mains challenging: prediction accuracy typically decreases as the forecast horizon increases (Yao
et al., 2025b), while model interpretability is often limited, reducing trust in high-stakes scenarios
(Chakraborty et al., 2024).

The past decade has witnessed remarkable progress through deep learning. Early approaches em-
ployed convolutional neural networks (CNNs) to capture local temporal patterns (Wibawa et al.,
2022; Durairaj & Mohan, 2022), as well as recurrent neural networks (RNNs) such as long short-
term memory (LSTM) and gated recurrent unit (GRU) to model sequential dependencies (Waqas
& Humphries, 2024; Yunita et al., 2025). Most recently, Transformers (Vaswani et al., 2017) have
emerged as the dominant backbone for both short- and long-horizon forecasting, with many vari-
ants improving efficiency and representation: Informer (Zhou et al., 2021) introduced ProbSparse
attention; Autoformer (Wu et al., 2021) applied seasonal–trend decomposition with autocorrela-
tion attention; FEDformer (Zhou et al., 2022) leveraged frequency-domain filtering; PatchTST (Nie
et al., 2022) utilized patch-based embeddings; and iTransformer (Liu et al., 2023) inverted the mod-
eling axis to focus on variable dependencies. Collectively, these advances significantly improved
accuracy on various benchmarks (Wang et al., 2024b). More related work can be found in Appendix
A.1.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Two types of dual-stream CaReTS architectures

Despite these advances, most deep forecasting models still formulate forecasting as a single re-
gression task, focusing exclusively on numerical prediction of future values. This design makes
it difficult to disentangle macro-level future trends (e.g., upward or downward trajectories) from
micro-level deviations, thereby limiting interpretability and robustness in multi-step settings (Wang
et al., 2018; Tessier & Armstrong, 2015). To overcome these limitations, we propose CaReTS, a
multi-task learning framework that unifies classification and regression for multi-step time series
forecasting. This framework not only improves prediction accuracy but also enhances interpretabil-
ity by disentangling macro-level trends from micro-level deviations. Our main contributions are
summarized as follows:

• CaReTS introduces a dual-stream architecture, where a classification branch predicts step-
wise macro-level trends, and a regression branch estimates fine-grained deviations relative
to the latest observation.

• CaReTS designs a multi-task loss with uncertainty-aware weighting to jointly optimize
classification and regression tasks, adaptively learning their contributions.

• Four variants (CaReTS1–4) are instantiated to work alongside mainstream temporal en-
coders (e.g., CNNs, LSTMs, and Transformers), demonstrating the framework’s compati-
bility with diverse modeling paradigms.

• Extensive experiments show that CaReTS achieves state-of-the-art accuracy while provid-
ing enhanced interpretability with manageable computational overhead.

2 CARETS FRAMEWORK

This section introduces a novel multi-task learning framework for multi-step time series forecast-
ing - CaReTS. Specifically, two types of CaReTS architectures are presented, each consisting of a
classification branch that captures the stepwise trend of future values and a regression branch that
estimates the corresponding deviations. Moreover, a multi-task loss formulation, together with an
uncertainty-based loss weighting algorithm, is designed to jointly optimize three tasks including the
output prediction, deviation estimation, and trend classification.

2.1 CARETS ARCHITECTURE

Unlike traditional regression-based approaches that directly predict future values, this work designs
two types of dual-stream CaReTS architectures that combine classification and regression tasks, as
illustrated in Figure 1. In both architectures, time series models such as CNNs, LSTMs, and Trans-
formers are employed to encode temporal features from the input sequence x = {x1, x2, . . . , xn}.
Here, n denotes the total number of input variables, with the last entry xn must denote the most
recent observation of the target variable.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The encoded temporal features are then processed through dual-stream pathways but differ in their
fusion strategies. In architecture (a), these features are fed in parallel into two separate fully con-
nected (FC) streams: a classification stream to model the stepwise trend (i.e., upward or downward)
and a regression stream to estimate the corresponding deviations relative to the latest observation
xn. The final prediction ŷ = {ŷ1, ŷ2, . . . , ŷK} = {x̂n+1, x̂n+2, . . . , x̂n+K} is obtained in a resid-
ual form to fuse the outputs from both streams, i.e. the sum of xn and the predicted deviation ∆̂.
In contrast, architecture (b) adopts a sequential dual-stream design. The encoded temporal features
are first processed by the classification stream to infer the trend. The resulting classification output
is then concatenated with the original temporal features and passed into the regression stream for
deviation estimation. Therefore, a separate fusion module is no longer required. Finally, similar to
architecture (a), the final predictions ŷ are produced by combining the predicted deviations ∆̂ with
the latest observation xn.

2.2 MULTI-TASK LEARNING

Building upon the dual-stream architectures introduced above, the CaReTS framework adopts a
multi-task learning strategy to jointly model three interrelated tasks: trend classification, deviation
estimation, and output prediction. This design is intended to improve forecasting accuracy while
enhancing interpretability by explicitly separating the modelling of trend from that of magnitude. In
architecture (a), all three tasks are learned in parallel. The overall loss function L(a) is formulated
as:

L(a) = αcaLca + αdeLde + αopLop (1)
where Lca corresponds to the trend classification loss, evaluating the correctness of predicted trend
(e.g., upward or downward movement) across multiple future steps; Lde represents the deviation
estimation loss, responsible for quantifying the magnitude of deviations at each step relative to
xn; Lop denotes the output prediction loss, aimed at minimizing the discrepancy between the final
predicted value ŷ and the ground truth; αca, αde, and αop are the balancing weights of each tasks. A
detailed formulation of each loss will be presented in Section 3.

In contrast, architecture (b) simplifies the learning objective to two tasks, as it does not use an explicit
fusion module. Here, the deviation estimation and output prediction are effectively combined into a
single regression task, resulting in the following loss function:

L(b) = αcaLca + αopLop (2)

By structuring the prediction process into distinct but related tasks, the CaReTS framework facili-
tates more transparent forecasting. It explicitly models how the trend influences the predicted output,
thereby offering valuable insights for multi-step time series prediction.

Optimizing the three interrelated tasks simultaneously poses significant challenges, particularly due
to discrepancies in loss scales, convergence dynamics, noise levels, and potential conflicts between
task objectives. To address these issues, an uncertainty-based loss weighting algorithm (Kendall
et al., 2018) is employed to adaptively adjust the contribution of each task during training. As defined
in (3), each task’s weight is modelled as the inverse of its predicted variance, reflecting the principle
that tasks with higher uncertainty should contribute less to the overall loss. As a result, αca, αde,
and αop are not treated as static hyperparameters but are instead parameterized through learnable
variables that capture the relative confidence of the model in each task. This formulation enables the
model to focus on more informative and reliable tasks throughout the optimization process, thereby
improving training stability and predictive performance.

αi =
1

2σ2
i

, i ∈ {ca, de, op} (3)

where σ2
ca, σ

2
de, and σ2

op represent the predicted variance (uncertainty) for each task.

In our implementation, the uncertainty-based task weights are modelled through their logarithmic
counterparts (log σ2

i ) to improve numerical stability and allow unconstrained gradient-based opti-
mization. Specifically, each (log σ2

i ) is treated as a learnable parameter, and the corresponding task
weight is derived via exponential transformation. Accordingly, the overall loss function for archi-
tecture (a) and (b) are reformulated as:

L(a) =
∑

i∈{ca,de,op}

(
1

2
e− log σ2

i Li +
1

2
log σ2

i

)
(4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

L(b) =
∑

i∈{ca,op}

(
1

2
e− log σ2

i Li +
1

2
log σ2

i

)
(5)

This formulation integrates both adaptive loss weighting and uncertainty regularization, allowing
the model to automatically calibrate the relative importance of each subtask throughout training. As
a result, the CaReTS framework achieves improved robustness and predictive performance in multi-
step time series forecasting, while preserving interpretability by explicitly modelling task-specific
uncertainty.

It should be noted that two stabilization strategies are used here to prevent pathological solutions
(e.g., the model assigning arbitrarily large uncertainty to minimize its contribution). On the one
hand, each log-variance parameter is softly regularized by an additional penalty term added to the
total loss. On the other hand, during training, the log-variance values are constrained within a
bounded range [−10, 10] via clamping. These mechanisms jointly help stabilize uncertainty learning
and avoid degenerate minima.

3 CARETS MODELS

This section presents the design of the proposed approaches, i.e., the temporal encoder and the
CaReTS models. To ensure broad applicability rather than introducing novel feature extractors,
we adopt three mainstream temporal modeling algorithms, CNNs, LSTMs, and Transformers, as
interchangeable encoders for extracting sequential features from the input time series. The structures
of these encoders are illustrated in Appendix A.2. The primary focus of this section is the design
of the CaReTS models. Building upon the dual-stream CaReTS architectures introduced in Section
2.1, four specific model variants (CaReTS1, CaReTS2, CaReTS3, and CaReTS4) are developed to
explore different strategies for combining classification-based trend modelling with regression-based
deviation estimation, as illustrated in Table 1. Specifically, CaReTS1–CaReTS3 adopt architecture
(a), where the two streams operate in parallel, and CaReTS4 adopts architecture (b), where the trend
prediction precedes and conditions the deviation estimation. Each model can be paired with any of
the three temporal encoders described in Appendix A.2.

Table 1: Comparison of CaReTS1–4 models

Model Arch. Trend Deviation Fusion Loss
CaReTS1 (a) Binary label

d̂(k) ∈ {+1,−1}
Non-negative devia-
tion δ̂(k)

ŷ(k) = xn + d̂(k) · δ̂(k) L(a) = Lca + Lde + Lop

Eq. (9), (10), (11)

CaReTS2 (a) Binary label
d̂(k) ∈ {+1,−1}

Non-negative devia-
tions (δ̂(k)up , δ̂

(k)
down)

If up: ŷ(k) = xn + δ̂
(k)
up ,

else: ŷ(k) = xn − δ̂
(k)
down

L(a) = Lca + Lde + Lop

Eq. (9), (13), (11)

CaReTS3 (a) Probabilities
(p

(k)
up , p

(k)
down)

Non-negative devia-
tions (δ̂(k)up , δ̂

(k)
down)

ŷ = xn + p
(k)
up δ̂

(k)
up −

p
(k)
downδ̂

(k)
down

L(a) = Lca + Lde + Lop

Eq. (16), (13), (11)

CaReTS4 (b) Probabilities p(k) Signed deviation δ̂(k) ŷ = xn + δ̂(k) L(b) = Lca + Lop

Eq. (18), (19)

3.1 CARETS1

This variant follows architecture (a) with two parallel fully connected (FC) streams. For each fore-
cast step k, the trend branch predicts a binary class label d̂(k) ∈ {+1,−1}, where +1 denotes an
upward trend and −1 a downward trend. In implementation, a single logit z(k) is predicted and
transformed into a probability p(k) ∈ (0, 1) via the sigmoid function:

d̂(k) =

{
+1, if p(k) ≥ 0.5,

−1, if p(k) < 0.5,
(6)

where
p(k) =

1

1 + e−z(k)
. (7)

Meanwhile, the deviation branch predicts a single non-negative δ̂(k) ≥ 0, representing the absolute
magnitude of change from the latest observation xn, independent of direction.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Finally, the forecast ŷ(k) is obtained by combining the predicted trend direction and magnitude:

ŷ(k) = xn + d̂(k) δ̂(k). (8)

The detailed loss of classification, deviation regression, and output prediction are defined as:

Lca =
1

K

K∑
k=1

BCE
(
p(k), t(k)

)
, (9)

Lde =
1

K

K∑
k=1

MSE
(
δ̂(k), δ(k)

)
, (10)

Lop =
1

K

K∑
k=1

MSE
(
ŷ(k), y(k)

)
, (11)

where t(k) ∈ {0, 1} is the ground-truth trend label (1 for upward trend, 0 for downward trend),
δ(k) =

∣∣y(k) − xn

∣∣ is the true absolute deviation, MSE(·, ·) denotes mean squared error, and
BCE

(
p(k), t(k)

)
= −

[
t(k) log p(k) +

(
1− t(k)

)
log

(
1− p(k)

)]
denotes the binary cross-entropy

loss. Note that the ground-truth trend label t(k) is used for BCE loss, which corresponds to
d̂(k) = +1 when t(k) = 1 and d̂(k) = −1 when t(k) = 0. CaReTS1’s simple architecture en-
ables efficient parallel learning of trend movement and deviation magnitude, making the model both
tractable and interpretable. Nevertheless, applying a uniform deviation magnitude across either di-
rections in the trend means that any misclassification of trend inevitably results in forecast errors,
with no capacity to capture direction-specific variations.

3.2 CARETS2

CaReTS2 also adopts architecture (a) and retains the binary trend classifier from CaReTS1, but
addresses one of CaReTS1’s limitations: the inability to differentiate magnitude patterns between
upward and downward movements. Specifically, CaReTS2 replaces the single deviation output with
direction-specific deviations, allowing the model to learn separate regression functions for positive
and negative trends. This provides greater flexibility in capturing asymmetric dynamics or time
series behaviors. Identical to CaReTS1, CaReTS2 outputs a binary trend label d̂(k) as defined in (6).
In contrast, its deviation branch produces two non-negative, direction-specific estimates: δ̂up(k) for
upward movements and δ̂down(k) for downward movements. The final forecast then combines the
predicted direction with the corresponding deviation, giving:

ŷ(k) =

{
xn + δ̂

(k)
up , if d̂(k) = +1,

xn − δ̂
(k)
down, if d̂(k) = −1.

(12)

The loss function retains the classification term Lca and output prediction term Lop from CaReTS1.
The deviation loss Lde, however, is computed using the deviation estimate corresponding to the
ground-truth trend direction:

Lde =
1

K

K∑
k=1

[
t(k)MSE

(
δ̂(k)up , δ(k)up

)
+

(
1− t(k)

)
MSE

(
δ̂
(k)
down, δ

(k)
down

)]
, (13)

where δ
(k)
up = max

(
y(k) − xn, 0

)
and δ

(k)
down = max

(
xn − y(k), 0

)
are the true upward and

downward deviations, respectively.

3.3 CARETS3

Similarly, CaReTS3 is based on architecture (a) and adopts the same deviation branch as CaReTS2,
producing two separate non-negative estimates: δ̂up(k) for upward deviations and δ̂down(k) for
downward deviations. The key innovation of CaReTS3 lies in the soft probabilistic trend model-
ing. Instead of producing a hard binary decision, the trend branch first generates a pair of logits
(z

(k)
up , z

(k)
down), which are then transformed via a softmax into the output probabilities (p(k)up , p

(k)
down):

p(k)up =
ez

(k)
up

ez
(k)
up + ez

(k)
down

, p
(k)
down = 1− p(k)up . (14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Unlike selecting a single deviation value based on a hard sign decision, CaReTS3 fuses the two
deviation predictions in a soft-weighted manner:

ŷ(k) = xn + p(k)up δ̂
(k)
up − p

(k)
downδ̂

(k)
down. (15)

This formulation allows both deviation predictions to contribute proportionally to the final forecast,
enabling smoother transitions between upward and downward trends and potentially improving ro-
bustness when the trend movement is uncertain.

The loss design is same as CaReTS2 in terms of the deviation loss Lde and the output prediction
loss Lop, but the classification loss Lca is redefined to handle probabilistic outputs:

Lca =
1

K

K∑
k=1

CE(p(k), t(k)), (16)

where p(k) =
(
p
(k)
up , p

(k)
down

)
, t(k) =

(
t
(k)
up , t

(k)
down

)
, with t

(k)
up ∈ {0, 1}, t(k)down ∈ {0, 1} denoting

the ground truth vector (1 for upward trend, 0 for downward trend), and the categorical cross-entropy
is defined as: CE(p(k), t(k)) = −

[
t
(k)
up log p

(k)
up + t

(k)
down log p

(k)
down

]
.

3.4 CARETS4

CaReTS4 adopts architecture (b) and represents a sequential dual-stream approach, where the trend
prediction stage precedes and conditions the deviation estimation stage. For each forecast step k,
the model outputs the trend probability p(k) using a softmax-based classifier (similar to the trend
branch of CaReTS1 and CaReTS2). Then, the predicted trend probabilities are concatenated with
the temporal feature vector h ∈ Rd extracted by the encoder, i.e., h′ =

[
h, p

]
. This operation

allows the subsequent regression branch to condition its deviation estimation on the predicted trend
context. Using the fused feature vector h′ as input, the model predicts a single signed deviation δ̂,
which may be positive or negative. This design differs fundamentally from CaReTS1–CaReTS3,
where deviations were constrained to be non-negative and combined with a separate trend sign.

The final forecast is obtained as:
ŷ(k) = xn + δ̂(k). (17)

In contrast to earlier variants, CaReTS4 does not include a separate deviation loss Lde. Instead, the
training jointly optimizes two objectives:

Lca =
1

K

K∑
k=1

CE
(
p(k), t(k)

)
, (18)

Lop =
1

K

K∑
k=1

MSE
(
ŷ(k), y(k)), (19)

4 EXPERIMENTATION AND EVALUATION

We conducted a comprehensive evaluation of CaReTS1–4 on two distinct time-series forecasting
tasks (Yao et al., 2025b;a): (i) electricity price forecasting and (ii) import/export power demand
(i.e., unmet power) forecasting , both spanning one year with 8,784 hourly observations. Following
the original setup, both tasks adopted a 15-to-6 prediction scheme, where the inputs consist of the
month, weekday, and hour of the current time step along with the previous 12 observations of the
target variable, and the outputs are the predicted values of the target variable in next 6 time steps.
Illustrations of the two time series are provided in Appendix A.3, and detailed dataset descriptions
can be found in Sec. 5.2 of Yao et al. (2025b). All model evaluations were performed using 10-fold
cross-validation (CV), with the mean and standard deviation reported. Implementation details are
provided in Appendix A.4. The experiments proceeded in three stages: we first evaluated the ef-
fectiveness of the proposed CaReTS architecture against three designed baselines (structural details
and motivations in Appendix A.5), then assessed the superiority of multi-task learning, and finally
compared CaReTS with 10 state-of-the-art (SOTA) forecasting algorithms.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 CARETS ARCHITECTURE EVALUATION

We first evaluated CaReST 1–4 with three encoders (i.e., CNN, LSTM, and Transformer) on electric-
ity price and unmet power time series. Table 2 reports the average RMSE for multi-step forecasting
(mean ± std on 10-fold CV), while Figures 2 and 3 present the corresponding RMSE results on the
test set. It can be observed that the proposed CaReST 2–4 models outperformed all baselines on
both variables in the test set, regardless of the encoder employed. Among these, CaReST2 achieved
the best overall performance, yielding the lowest RMSE in four cases and the second-best results in
two others (as marked with ‘⋆’ in the two figures). Within its configurations, CaReST2 combined
with the Transformer encoder represented the best-performing setup, achieving the lowest RMSE of
0.0691 ± 0.0018 for unmet power and 0.0465 ± 0.0012 for electricity price. However, CaReST1
did not demonstrate a clear advantage over the baselines, which can be attributed to the simplified
design of its deviation branch.

Table 2: Average RMSE (mean ± std) for multi-step forecasting across approaches (test set)

Approach Unmet power Electricity price
Train Validation Test Train Validation Test

LSTM
Baseline1 0.0460 ± 0.0040 0.0666 ± 0.0030 0.0758 ± 0.0016 0.0198 ± 0.0017 0.0378 ± 0.0027 0.0533 ± 0.0011
Baseline2 0.0454 ± 0.0046 0.0691 ± 0.0016 0.0754 ± 0.0016 0.0215 ± 0.0019 0.0423 ± 0.0018 0.0536 ± 0.0017
Baseline3 0.0453 ± 0.0049 0.0682 ± 0.0021 0.0761 ± 0.0027 0.0218 ± 0.0015 0.0393 ± 0.0013 0.0500 ± 0.0022
CaReTS1 0.0550 ± 0.0033 0.0723 ± 0.0021 0.0767 ± 0.0016 0.0265 ± 0.0020 0.0427 ± 0.0017 0.0488 ± 0.0011
CaReTS2 0.0512 ± 0.0023 0.0684 ± 0.0025 0.0744 ± 0.0010 0.0262 ± 0.0019 0.0400 ± 0.0025 0.0486 ± 0.0013
CaReTS3 0.0474 ± 0.0036 0.0691 ± 0.0030 0.0750 ± 0.0021 0.0240 ± 0.0018 0.0408 ± 0.0020 0.0491 ± 0.0013
CaReTS4 0.0519 ± 0.0032 0.0714 ± 0.0019 0.0755 ± 0.0021 0.0314 ± 0.0014 0.0435 ± 0.0024 0.0481 ± 0.0015

CNN
Baseline1 0.0619 ± 0.0024 0.0679 ± 0.0022 0.0711 ± 0.0008 0.0410 ± 0.0015 0.0463 ± 0.0018 0.0505 ± 0.0011
Baseline2 0.0550 ± 0.0026 0.0661 ± 0.0021 0.0731 ± 0.0020 0.0317 ± 0.0015 0.0408 ± 0.0017 0.0489 ± 0.0010
Baseline3 0.0576 ± 0.0020 0.0655 ± 0.0020 0.0704 ± 0.0012 0.0310 ± 0.0019 0.0413 ± 0.0018 0.0490 ± 0.0011
CaReTS1 0.0696 ± 0.0012 0.0739 ± 0.0029 0.0738 ± 0.0014 0.0443 ± 0.0013 0.0499 ± 0.0013 0.0497 ± 0.0009
CaReTS2 0.0658 ± 0.0013 0.0694 ± 0.0025 0.0695 ± 0.0013 0.0427 ± 0.0010 0.0470 ± 0.0017 0.0473 ± 0.0007
CaReTS3 0.0609 ± 0.0020 0.0665 ± 0.0022 0.0692 ± 0.0010 0.0377 ± 0.0013 0.0443 ± 0.0015 0.0474 ± 0.0008
CaReTS4 0.0626 ± 0.0018 0.0678 ± 0.0022 0.0696 ± 0.0015 0.0428 ± 0.0014 0.0475 ± 0.0018 0.0482 ± 0.0012

Transformer
Baseline1 0.0561 ± 0.0084 0.0683 ± 0.0066 0.0755 ± 0.0055 0.0322 ± 0.0025 0.0412 ± 0.0028 0.0507 ± 0.0018
Baseline2 0.0530 ± 0.0056 0.0683 ± 0.0036 0.0750 ± 0.0037 0.0359 ± 0.0037 0.0436 ± 0.0031 0.0511 ± 0.0031
Baseline3 0.0542 ± 0.0044 0.0667 ± 0.0030 0.0715 ± 0.0024 0.0353 ± 0.0037 0.0443 ± 0.0034 0.0491 ± 0.0015
CaReTS1 0.0583 ± 0.0022 0.0702 ± 0.0028 0.0724 ± 0.0027 0.0341 ± 0.0016 0.0444 ± 0.0026 0.0473 ± 0.0010
CaReTS2 0.0588 ± 0.0016 0.0686 ± 0.0016 0.0691 ± 0.0018 0.0333 ± 0.0020 0.0445 ± 0.0027 0.0465 ± 0.0012
CaReTS3 0.0536 ± 0.0026 0.0665 ± 0.0022 0.0699 ± 0.0019 0.0327 ± 0.0017 0.0428 ± 0.0028 0.0487 ± 0.0009
CaReTS4 0.0588 ± 0.0031 0.0696 ± 0.0024 0.0716 ± 0.0011 0.0375 ± 0.0027 0.0453 ± 0.0022 0.0466 ± 0.0017

Figure 2: RMSE on power across approaches Figure 3: RMSE on price across approaches

Table 3 presents the average trend prediction accuracy achieved by the classification branch in
multi-step forecasting, evaluated with CaReTS1-4 using different encoders on both electricity price
and unmet power series. For CaReTS3 and CaReTS4, the predicted trend is defined by the di-
rection with the higher probability (Pup or Pdown), which is then used to compute the trend pre-
diction accuracy. All variants achieved over 90% accuracy, confirming the framework’s ability to
capture temporal dynamics. Among the encoders, Transformer consistently outperformed LSTM
and CNN, with the CaReTS2-Transformer combination yielding the highest classification accuracy,
which aligns with the RMSE results above. Figures 4 and 5, obtained using this best-performing
CaReTS2–Transformer model on test set, further illustrate the evolution of classification accuracy
and RMSE across six forecasting steps. As expected, RMSE gradually increased with longer fore-
cast horizons due to error accumulation, consistent with prior studies (Yao et al., 2025b; Yunpeng
et al., 2017; Venkatraman et al., 2015). Interestingly, trend classification accuracy did not exhibit a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

declining pattern, indicating the robustness of the proposed framework in maintaining reliable trend
detection even for an extended period of forecasting. This stability arises from the complementary
design of the framework: the classification branch captures macro-level trend directions to safe-
guard long-term consistency, while the regression branch refines micro-level predictions to ensure
accuracy.

Table 3: Average trend accuracy for multi-step forecasting across approaches (test set)

Encoder CaReTS1 CaReTS2 CaReTS3 CaReTS4
Unmet power

LSTM 0.9111 ± 0.0020 0.9096 ± 0.0019 0.9086 ± 0.0030 0.9068 ± 0.0041
CNN 0.9125 ± 0.0032 0.9127 ± 0.0033 0.9125 ± 0.0032 0.9140 ± 0.0020
Transformer 0.9191 ± 0.0032 0.9192 ± 0.0022 0.9168 ± 0.0029 0.9166 ± 0.0025

Electricity price
LSTM 0.9073 ± 0.0027 0.9071 ± 0.0030 0.9066 ± 0.0032 0.9056 ± 0.0038
CNN 0.9032 ± 0.0015 0.9036 ± 0.0030 0.9024 ± 0.0041 0.9016 ± 0.0043
Transformer 0.9142 ± 0.0029 0.9146 ± 0.0019 0.9135 ± 0.0021 0.9136 ± 0.0051

Figure 4: RMSE across forecasting steps using
CaReTS2-Transformer

Figure 5: Trend accuracy across forecasting
steps using CaReTS2-Transformer

4.2 MULTI-TASK LEARNING EVALUATION

We then took the Transformer encoder as a representative case to further evaluate the effectiveness
of the multi-task learning mechanism in CaReTS1-4. Table 4 shows the comparison between multi-
task and single-task learning. Here, the single-task setting used the same backbone network but
with only the output prediction loss (Lop) optimized, while disregarding the classification (Lca) and
deviation (Lde) losses. To ensure the classification branch remained trainable under this setting,
the trend direction was implemented in a continuous form, allowing gradients to propagate through
the stream. The time used was reported as the average per fold across 10-fold cross-validation.
It can be observed that multi-task learning achieved lower RMSE, suggesting that joint optimiza-
tion promotes complementary learning rather than task interference. By explicitly separating trend
classification and deviation estimation within the CaReTS architecture, the model provides more
transparent insights into decision factors. Under multi-task learning, the trend classification branch
attained over 91% accuracy, yielding reliable trend predictions. Conversely, single-task training,
which lacks explicit classification supervision, achieved lower accuracy. Regarding computational
cost, the overhead of multi-task learning is negligible. The additional parameters are limited to
three task-weight scalars, leaving the overall model size virtually unchanged. Moreover, forward
computation introduces only a few extra exponential operations, and backward propagation involves
calculation of gradients of only these three scalars, resulting in no significant increase in runtime
compared with single-task training.

4.3 COMPARISON WITH SOTA ALGORITHMS

Table 5 summarizes the results of ten representative state-of-the-art (SOTA) algorithms, which are
compared against the proposed multi-task CaReTS variants in Table 4. The results are reported un-
der the 15-input–6-output setting, while comparisons and further analysis with other input–output
configurations are provided in Appendix A.6. The comparison clearly demonstrates that CaReTS
achieves state-of-the-art performance, particularly in reducing RMSE while maintaining strong trend
consistency. For unmet power forecasting, CaReTS2 and CaReTS3 yielded the lowest RMSE values
(0.0691 and 0.0699, respectively) with trend accuracy above 0.916, outperforming the best SOTA
model TimeXer (RMSE = 0.0700, trend accuracy = 0.9066). Even CaReTS1 and CaReTS4 deliv-
ered competitive results, with their performance closely following that of TimeXer. For electricity

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Test results of CaReTS1–4 with Transformer: multi-task vs. single-task learning

Approach Proposed multi-task Single-task
RMSE Trend Acc. Time (s) RMSE Trend Acc. Time (s)

Unmet power
CaReTS1 0.0724 ± 0.0027 0.9191 ± 0.0032 253.39 0.0758 ± 0.0036 0.8874 ± 0.0046 216.37
CaReTS2 0.0691 ± 0.0018 0.9192 ± 0.0022 256.69 0.0704 ± 0.0029 0.9060 ± 0.0023 261.37
CaReTS3 0.0699 ± 0.0019 0.9168 ± 0.0029 296.31 0.0721 ± 0.0017 0.8965 ± 0.0036 236.11
CaReTS4 0.0716 ± 0.0011 0.9166 ± 0.0025 306.44 0.0716 ± 0.0026 0.9053 ± 0.0058 313.37

Electricity price
CaReTS1 0.0473 ± 0.0010 0.9142 ± 0.0029 357.20 0.0539 ± 0.0023 0.8663 ± 0.0028 333.96
CaReTS2 0.0465 ± 0.0012 0.9146 ± 0.0019 388.49 0.0470 ± 0.0020 0.8939 ± 0.0033 379.79
CaReTS3 0.0487 ± 0.0009 0.9135 ± 0.0021 401.18 0.0474 ± 0.0012 0.8860 ± 0.0014 386.43
CaReTS4 0.0466 ± 0.0017 0.9136 ± 0.0051 321.93 0.0472 ± 0.0018 0.8889 ± 0.0042 318.14

price forecasting, the proposed CaReTS family (CaReTS1–4) demonstrated consistently strong per-
formance, outperforming all SOTA algorithms except TimeXer. Among them, CaReTS2 achieved
the best balance, delivering a competitive RMSE (0.0465) together with the highest trend accuracy
(0.9146). While TimeXer obtained the lowest RMSE (0.0463), it suffered from lower trend accuracy
(0.9013) and required considerably more computation effort. A distinctive advantage of CaReTS
lies in the consistently high accuracy in the trend prediction across all variants. This improvement
stems from our multi-task optimization design, which explicitly separates the trend classification,
enhancing the learning efficiency and results interpretability.

From the perspective of efficiency, CaReTS runs within a moderate cost (≈200–400s), which is
much faster than heavier architectures such as Autoformer (>460s) or SOIT2FNN-MO (>860s).
Although slower than lightweight baselines (e.g., Nlinear/Dlinear <70s and TimeMixer < 85s),
CaReTS achieves a favorable trade-off, where the additional computation is modest compared to the
substantial accuracy gains.

Table 5: Test results of SOTA algorithms on unmet power and electricity price forecasting

Approach Unmet power Electricity price
RMSE Trend Acc. Time (s) RMSE Trend Acc. Time (s)

Autoformer (Wu et al., 2021) 0.0731 ± 0.0009 0.8891 ± 0.0036 510.05 0.0487 ± 0.0021 0.8713 ± 0.0073 467.97
FEDformer (Zhou et al., 2022) 0.0908 ± 0.0005 0.8345 ± 0.0023 222.80 0.0874 ± 0.0011 0.7477 ± 0.0086 239.34
Non-stationary Transformer (Liu et al., 2022) 0.1588 ± 0.0025 0.7384 ± 0.0076 541.35 0.1176 ± 0.0036 0.6970 ± 0.0172 422.41
D-CNN-LSTM(Yao et al., 2022) 0.0732 ± 0.0009 0.8924 ± 0.0034 103.28 0.0573 ± 0.0012 0.8821 ± 0.0067 112.02
TimesNet (Wu et al., 2023) 0.0729 ± 0.0012 0.8990 ± 0.0028 273.15 0.0500 ± 0.0015 0.8737 ± 0.0074 314.40
Dlinear (Zeng et al., 2023) 0.0859 ± 0.0004 0.8335 ± 0.0028 68.75 0.0701 ± 0.0005 0.7337 ± 0.0085 70.07
Nlinear (Zeng et al., 2023) 0.1327 ± 0.0002 0.8033 ± 0.0017 48.44 0.1060 ± 0.0004 0.7259 ± 0.0036 50.33
TimeXer (Wang et al., 2024c) 0.0700 ± 0.0022 0.9066 ± 0.0022 448.62 0.0463 ± 0.0013 0.9013 ± 0.0054 573.75
TimeMixer (Wang et al., 2024a) 0.1471 ± 0.0008 0.6983 ± 0.0048 76.25 0.1134 ± 0.0010 0.5831 ± 0.0100 84.60
SOIT2FNN-MO (Yao et al., 2025b) 0.1638 ± 0.0012 0.7021 ± 0.0020 863.05 0.1439 ± 0.0018 0.7153 ± 0.0042 926.81

Despite these encouraging results, our evaluation remains limited for long-horizon forecasting con-
strained by the available GPU resources. Nevertheless, the proposed approach shows strong poten-
tial for reliable multi-step time series prediction. As illustrated in Figure 5, the trend classification
accuracy remains stable (even shows a slight improvement) as the prediction horizon increases,
rather than deteriorating. This would provide an insightful indicator that supports the applicability
of CaReTS algorithms to situations requiring extended periods of forecasting. Here, we welcome
future investigations, particularly by research groups with greater computational capacity, to further
validate and extend the CaReTS framework in large-scale and long-horizon forecasting scenarios.

5 CONCLUSION

We proposed CaReTS, a dual-stream multi-task framework, for multi-step time series forecasting
that separates trend classification from deviation estimation. An uncertainty-aware weighting was
employed to enable multi-task optimization. Four variants (CaReTS1–4) based on this framework
were designed to support various temporal encoders, with Transformer-based CaReTS2 achieving
the best performance. Experiments showed that CaReTS outperformed SOTA algorithms in both
value forecasting and trend classification, while the dual-stream design improves the explainability
of prediction with manageable compute resource.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Anonymous code is available at: https://anonymous.4open.science/r/CaReTS-6A8F/README.md

REFERENCES

Aryan Bhambu, Ruobin Gao, and Ponnuthurai Nagaratnam Suganthan. Recurrent ensemble random
vector functional link neural network for financial time series forecasting. Applied Soft Comput-
ing, 161:111759, 2024.

Sanjay Chakraborty, Ibrahim Delibasoglu, and Fredrik Heintz. Edformer: Embedded decom-
position transformer for interpretable multivariate time series predictions. arXiv preprint
arXiv:2412.12227, 2024.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Dr M Durairaj and BH Krishna Mohan. A convolutional neural network based approach to financial
time series prediction. Neural Computing and Applications, 34(16):13319–13337, 2022.

Steven Elsworth and Stefan Güttel. Time series forecasting using lstm networks: A symbolic ap-
proach. arXiv preprint arXiv:2003.05672, 2020.

T González Grandón, Johannes Schwenzer, Thomas Steens, and Julia Breuing. Electricity de-
mand forecasting with hybrid classical statistical and machine learning algorithms: Case study
of ukraine. Applied Energy, 355:122249, 2024.

Mohamad Mazen Hittawe, Fouzi Harrou, Mohammed Amine Togou, Ying Sun, and Omar Knio.
Time-series weather prediction in the red sea using ensemble transformers. Applied Soft Comput-
ing, 164:111926, 2024.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in neural information processing systems, 35:
9881–9893, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Haowei Ni, Shuchen Meng, Xieming Geng, Panfeng Li, Zhuoying Li, Xupeng Chen, Xiaotong
Wang, and Shiyao Zhang. Time series modeling for heart rate prediction: From arima to trans-
formers. In 2024 6th International Conference on Electronic Engineering and Informatics (EEI),
pp. 584–589. IEEE, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Lamyaa Sadouk. Cnn approaches for time series. Time Series Analysis: Data, Methods, and Appli-
cations, 57, 2019.

Thomas H Tessier and J Scott Armstrong. Decomposition of time-series by level and change. Jour-
nal of Business Research, 68(8):1755–1758, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Arun Venkatraman, Martial Hebert, and J Bagnell. Improving multi-step prediction of learned time
series models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

10

https://anonymous.4open.science/r/CaReTS-6A8F/README.md


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decomposition network
for interpretable time series analysis. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2437–2446, 2018.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024a. Poster.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024b.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables. Advances in Neural Information Processing Systems, 37:469–498,
2024c.

Muhammad Waqas and Usa Wannasingha Humphries. A critical review of rnn and lstm variants in
hydrological time series predictions. MethodsX, 13:102946, 2024.

Aji Prasetya Wibawa, Agung Bella Putra Utama, Hakkun Elmunsyah, Utomo Pujianto, Felix Andika
Dwiyanto, and Leonel Hernandez. Time-series analysis with smoothed convolutional neural net-
work. Journal of big Data, 9(1):44, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations (ICLR), 2023.

Fulong Yao, Wenju Zhou, Mostafa Al Ghamdi, Yang Song, and Wanqing Zhao. An integrated
d-cnn-lstm approach for short-term heat demand prediction in district heating systems. Energy
Reports, 8:98–107, 2022.

Fulong Yao, Wanqing Zhao, Matthew Forshaw, and Yang Song. A holistic power optimization ap-
proach for microgrid control based on deep reinforcement learning. Neurocomputing, pp. 131375,
2025a.

Fulong Yao, Wanqing Zhao, Matthew Forshaw, and Yang Song. A self-organizing interval type-2
fuzzy neural network for multi-step time series prediction. Applied Soft Computing, pp. 113221,
2025b.

Ariana Yunita, MHD Iqbal Pratama, Muhammad Zaki Almuzakki, Hani Ramadhan, Emelia
Akashah P Akhir, Andi Besse Firdausiah Mansur, and Ahmad Hoirul Basori. Performance anal-
ysis of neural network architectures for time series forecasting: A comparative study of rnn, lstm,
gru, and hybrid models. MethodsX, 15:103462, 2025.

Liu Yunpeng, Hou Di, Bao Junpeng, and Qi Yong. Multi-step ahead time series forecasting for
different data patterns based on lstm recurrent neural network. In 2017 14th web information
systems and applications conference (WISA), pp. 305–310. IEEE, 2017.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Tianping Zhang, Yizhuo Zhang Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li.
Less is more: Fast multivariate time series forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Zhang, Rui Wu, Sergiu M Dascalu, and Frederick C Harris Jr. A novel extreme adaptive gru
for multivariate time series forecasting. Scientific Reports, 14(1):2991, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

A APPENDIX

A.1 RELATED WORK

Deep learning has substantially advanced time series forecasting, with models ranging from CNNs
and RNNs to Transformers. CNN-based methods (Durairaj & Mohan, 2022; Sadouk, 2019) are ef-
fective in extracting local spatial or temporal patterns, while RNN variants such as LSTM and GRU
(Elsworth & Güttel, 2020; Zhang et al., 2024) are good at capturing sequential dynamics over time.
Hybrid models such as D-CNN-LSTM (Yao et al., 2022) combine convolution and recurrence to
capture both local and sequential structures. At present, Transformer-based architectures (Vaswani
et al., 2017) have emerged as the dominant backbone in time series forecasting. Representative ex-
amples include Autoformer (Wu et al., 2021), which incorporates trend-seasonal decomposition and
autocorrelation mechanisms; FEDformer (Zhou et al., 2022), which introduces frequency-domain
decomposition; TimesNet (Wu et al., 2023), which captures temporal variations in a 2D representa-
tion; and Non-stationary Transformer (Liu et al., 2022), which addresses distributional shifts in non-
stationary series. In parallel, researchers have also explored alternatives beyond pure Transformer
architectures. For instance, TimeMixer (Wang et al., 2024a) introduces a lightweight MLP-based
design for multiscale temporal mixing, while TimeXer (Wang et al., 2024c) focuses on jointly mod-
eling endogenous and exogenous signals through tailored interaction mechanisms. While highly
effective, these models predominantly adopt a regression-only learning objective, limiting inter-
pretability in multi-step prediction.

A complementary line of research focuses on decomposition and interpretability. DLinear and NLin-
ear (Zeng et al., 2023) demonstrate that simple linear trend–seasonal decomposition can outperform
complex architectures. Transformer variants including ETSformer (Woo et al., 2022), Autoformer
(Wu et al., 2021), and FEDformer (Zhou et al., 2022) explicitly model trend, seasonal, or frequency
components, thereby enhancing interpretability. However, these methods largely operate at the input
or representation level, without directly disentangling the prediction targets. In contrast, CaReTS in-
troduces an output-level decomposition, separating macro-level trends via classification from micro-
level fluctuations via regression, which improves both predictive accuracy and interpretability.

Another emerging direction explores multi-task and modular architectures to capture heteroge-
neous temporal dynamics. TimeXer explicitly distinguishes endogenous from exogenous signals,
while TimesNet leverages multi-period modules to model diverse temporal scales. Attention-free
MLP-based designs such as TimeMixer (Wang et al., 2024a), LightTS (Zhang et al., 2022), and
TSMixer (Chen et al., 2023) achieve competitive results with lightweight architectures. These ap-
proaches primarily focus on input-level modularization. By contrast, CaReTS introduces an output-
level dual-stream framework that jointly optimizes classification and regression objectives under an
uncertainty-aware loss, providing a new perspective on multi-task learning for time series forecast-
ing.

In summary, prior studies have advanced the field in three main areas: encoder innovations (e.g.,
Informer and TimesNet), signal-level decompositions (e.g., Autoformer, FEDformer, DLinear, and
NLinear), and lightweight or multi-branch architectures (e.g., TimeMixer and TimeXer). CaReTS
follows the decomposition principle, but explicitly disentangling trend directions from deviation
magnitudes. This dual-stream design complements existing encoder improvements while enhancing
interpretability, and the proposed uncertainty-aware multi-task loss introduces adaptive task balanc-
ing - an aspect rarely explored in current forecasting frameworks.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 TEMPORAL ENCODER

Three typical temporal encoding algorithms, Convolutional Neural Networks (CNNs), Long Short-
Term Memory networks (LSTMs), and Transformers, are considered to extract sequential features
from the input time series. The structures of these encoders are illustrated in Figure 2.

CNN layers ×

(a) CNN Encoder

Inputs

Average pooling layer × 1

Temporal features

LSTM layers ×

Inputs

Temporal features

Projection: FC layer ×1

Inputs

Add positional encoding

Temporal features

Transformer layers ×

Multi-head attention & FFN

(b) LSTM Encoder (c) Transformer Encoder

Figure A.1: Three typical temporal encoders

CNN Encoder: The CNN-based encoder consists of Nl stacked convolutional layers, designed to
capture local temporal patterns and dependencies in the input sequence. The convolutional output
is subsequently aggregated through a single average pooling layer to produce compact temporal
feature representations.

LSTM Encoder: The LSTM-based encoder is composed of Nl stacked LSTM layers, capable
of modelling long-range dependencies in sequential data. By processing the input sequence step-
by-step, the LSTM encoder generates hidden state sequences enriched with historical contextual
information, thereby extracting global temporal dynamics.

Transformer Encoder: The Transformer-based encoder begins with a fully connected projection
layer that maps the input to a unified feature dimension, followed by the addition of positional
encodings to retain sequential order information. The transformed inputs are then processed by Nl

standard Transformer encoder layers, each consisting of multi-head self-attention and feed-forward
network modules, enabling the capture of complex and global temporal dependencies.

Additional implementation details regarding the three encoders are provided in Appendix A.4.

A.3 VISUALIZATION OF TWO TIME-SERIES DATASETS

The training set contains 6,048 points and the test set contains 2,736 points, for both unmet power
and electricity price. As illustrated in Figures A.2 and A.3, the two time series exhibit markedly dif-
ferent patterns to evaluate the robustness and generalization ability of forecasting algorithms under
diverse conditions.

A.4 IMPLEMENTATION DETAILS

Configurations: Experiments were implemented in Python and executed on Google Colab with a
single T4 GPU. CaReTS used two fully connected layers with 64 hidden units for both the trend
classification branch and the deviation estimation branch. Training was performed for up to 600
epochs with early stopping if no improvement is observed for 50 consecutive epochs. The Adam
optimizer was employed with a learning rate of 0.001, and the batch size was set to 64. The random
seed is fixed at 2025. All datasets were preprocessed using Min-Max normalization, and ReLU
was applied as the activation function. For the encoder design, Nl = 2 layers with 64 hidden units
were adopted in three encoder variants. Specifically, a kernel size of 3 with padding of 1 was used

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure A.2: Illustration of unmet power Figure A.3: Illustration of electricity price

in the CNN encoder, while all Transformer encoders were configured with 4 attention heads. For
the Baseline1–3 algorithms described in Appendix A.5, we set Nb = Nl = 2 with fully connected
layers of 64 units each.

10-Fold Cross-Validation: We adopted 10-fold cross-validation to robustly evaluate our model.
The training set was partitioned into 10 equally sized folds; for each fold, the model was trained
on 9 folds and validated on the remaining fold, producing independent performance metrics. After
completing all 10 folds, we reported the mean and standard deviation of the metrics on the held-out
test sets. Each fold was treated equally, and the procedure was fully isolated from the final test set
to prevent any data leakage.

A.5 THREE DESIGNED BASELINES

Figure A.4: Structures of three new baselines

Here, we design three baselines to provide fair and transparent comparisons, as illustrated in Figure
A.4. Baseline3 adopted a structure closely aligned with our proposed CaReTS, but replaced the
fusion formulation in CaReTS with a single fully connected layer. Baseline2 simplified Baseline3
by removing the residual connection, such that the network directly outputs ŷ instead of predicting
the deviation with respect to the latest observation xn. Baseline1 corresponds to a more conven-
tional encoder-decoder design, where the encoder (CNN, LSTM, or Transformer layers) is directly
followed by Nb fully connected layers that map the input sequence to multi-step predictions. In
summary, these baselines were constructed to progressively reduce modeling capacity, thereby en-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

abling us to clearly demonstrate the contribution of each design component and to highlight the
effectiveness of the proposed CaReTS framework.

A.6 EXTENDED EXPERIMENTAL RESULTS FOR ALTERNATIVE INPUT–OUTPUT SETTINGS

Table 6 reports the extended experimental results on the unmet power and electricity price datasets
under the 15-4 and 15-8 forecasting settings, where the input length was fixed at 15 and the pre-
diction horizon was either shortened or extended. For each case, the lowest three RMSEs and the
highest three trend accuracies among all algorithms are highlighted in bold. It can be observed
that our proposed CaReTS1–4 models consistently deliver strong performance, surpassing all other
baselines except TimeXer. In particular, CaReTS2 achieved the best overall results, always among
the top three in terms of both RMSE and trend accuracy.

Table 6: Comparison of SOTA algorithms for 15-4 and 15-8 multi-step forecasting of unmet power
and electricity price

Approach 15-4 Unmet power 15-4 Electricity price 15-8 Unmet power 15-8 Electricity price
RMSE Trend Acc. RMSE Trend Acc. RMSE Trend Acc. RMSE Trend Acc.

CaReTS1 0.0650 ± 0.0014 0.9193 ± 0.0024 0.0418 ± 0.0011 0.9091 ± 0.0022 0.0763 ± 0.0021 0.9095 ± 0.0030 0.0521 ± 0.0024 0.9090 ± 0.0019
CaReTS2 0.0646 ± 0.0016 0.9208 ± 0.0026 0.0408 ± 0.0013 0.9086 ± 0.0021 0.0758 ± 0.0025 0.9085 ± 0.0040 0.0512 ± 0.0019 0.9183 ± 0.0033
CaReTS3 0.0641 ± 0.0021 0.9207 ± 0.0031 0.0422 ± 0.0013 0.9096 ± 0.0022 0.0764 ± 0.0024 0.9066 ± 0.0025 0.0520 ± 0.0015 0.9107 ± 0.0023
CaReTS4 0.0654 ± 0.0023 0.9186 ± 0.0033 0.0412 ± 0.0013 0.9060 ± 0.0037 0.0756 ± 0.0029 0.9090 ± 0.0050 0.0518 ± 0.0013 0.9185 ± 0.0011
Autoformer 0.0683 ± 0.0020 0.8875 ± 0.0055 0.0437 ± 0.0018 0.8815 ± 0.0086 0.0785 ± 0.0019 0.8856 ± 0.0031 0.0579 ± 0.0026 0.8608 ± 0.0082
FEDformer 0.0841 ± 0.0003 0.8407 ± 0.0038 0.0843 ± 0.0006 0.7536 ± 0.0072 0.1097 ± 0.0004 0.8165 ± 0.0028 0.1035 ± 0.0014 0.7607 ± 0.0071
Non-stationary 0.1408 ± 0.0018 0.7341 ± 0.0126 0.1032 ± 0.0023 0.6842 ± 0.0157 0.1581 ± 0.0018 0.7250 ± 0.0031 0.1286 ± 0.0015 0.7118 ± 0.0099
D-CNN-LSTM 0.0651 ± 0.0018 0.8813 ± 0.0040 0.0503 ± 0.0015 0.7899 ± 0.0036 0.0790 ± 0.0024 0.8663 ± 0.0027 0.0631 ± 0.0011 0.8007 ± 0.0026
TimesNet 0.0648 ± 0.0014 0.8962 ± 0.0067 0.0434 ± 0.0021 0.8834 ± 0.0093 0.0776 ± 0.0011 0.8939 ± 0.0017 0.0578 ± 0.0038 0.8827 ± 0.0101
Dlinear 0.0744 ± 0.0004 0.8391 ± 0.0039 0.0664 ± 0.0006 0.7336 ± 0.0170 0.0805 ± 0.0003 0.8179 ± 0.0015 0.0633 ± 0.0004 0.7492 ± 0.0038
Nlinear 0.1105 ± 0.0002 0.8116 ± 0.0029 0.0903 ± 0.0005 0.7272 ± 0.0111 0.1360 ± 0.0002 0.7855 ± 0.0017 0.1127 ± 0.0006 0.7424 ± 0.0025
TimeXer 0.0637 ± 0.0016 0.9066 ± 0.0034 0.0417 ± 0.0015 0.8993 ± 0.0064 0.0769 ± 0.0033 0.8934 ± 0.0060 0.0532 ± 0.0034 0.9049 ± 0.0042
TimeMixer 0.1248 ± 0.0005 0.6646 ± 0.0037 0.0971 ± 0.0014 0.5687 ± 0.0091 0.1307 ± 0.0003 0.7125 ± 0.0011 0.1240 ± 0.0003 0.6252 ± 0.0051
SOIT2FNN-MO 0.1519 ± 0.0020 0.6955 ± 0.0027 0.1287 ± 0.0022 0.5946 ± 0.0039 0.1689 ± 0.0026 0.6886 ± 0.0023 0.1304 ± 0.0019 0.6599 ± 0.0039

15


	Introduction
	CaReTS Framework
	CaReTS Architecture
	Multi-Task Learning

	CaReTS Models
	CaReTS1
	CaReTS2
	CaReTS3
	CaReTS4

	Experimentation and Evaluation
	CaReTS Architecture Evaluation
	Multi-Task Learning Evaluation
	Comparison with SOTA Algorithms

	Conclusion
	Appendix
	Related Work
	Temporal Encoder
	Visualization of Two Time-Series Datasets
	Implementation Details
	Three Designed Baselines
	Extended Experimental Results for Alternative Input–Output Settings


