
Lookaround Optimizer: k steps around, 1 step average

Jiangtao Zhang1, Shunyu Liu1, Jie Song1, :, Tongtian Zhu1, Zhengqi Xu1, Mingli Song1, 2
1Zhejiang University, 2Hangzhou City University

{zhjgtao, liushunyu, sjie, raiden, xuzhengqi, brooksong}@zju.edu.cn

Abstract

Weight Average (WA) is an active research topic due to its simplicity in ensembling
deep networks and the effectiveness in promoting generalization. Existing weight
average approaches, however, are often carried out along only one training trajec-
tory in a post-hoc manner (i.e., the weights are averaged after the entire training
process is finished), which significantly degrades the diversity between networks
and thus impairs the effectiveness. In this paper, inspired by weight average, we
propose Lookaround, a straightforward yet effective SGD-based optimizer leading
to flatter minima with better generalization. Specifically, Lookaround iterates two
steps during the whole training period: the around step and the average step. In
each iteration, 1) the around step starts from a common point and trains multiple
networks simultaneously, each on transformed data by a different data augmenta-
tion, and 2) the average step averages these trained networks to get the averaged
network, which serves as the starting point for the next iteration. The around
step improves the functionality diversity while the average step guarantees the
weight locality of these networks during the whole training, which is essential
for WA to work. We theoretically explain the superiority of Lookaround by con-
vergence analysis, and make extensive experiments to evaluate Lookaround on
popular benchmarks including CIFAR and ImageNet with both CNNs and ViTs,
demonstrating clear superiority over state-of-the-arts. Our code is available at
https://github.com/Ardcy/Lookaround.

1 Introduction

Recent research on the geometry of loss landscapes in deep neural networks has demonstrated Linear
Mode Connectivity (LMC): two neural networks, if trained similarly on the same data starting from
some common initialization, are linearly connected to each other across a path with near-constant
loss [33, 9]. LMC reveals that neural network loss minima are not isolated points in the parameter
space, but essentially forms a connected manifold [8, 35]. It has recently been attracting increasing
attention from research communities, attributed to its great potential into motivating new tools to
more efficiently reuse trained networks. A simple but effective strategy is Weight Average (WA),
which directly averages the network weights of multiple trained [46] or sampled [19, 3] networks
along the training trajectories for flatter minima and thus better generalization.

WA has become a popular approach in various fields for its efficiency in parameters and effectiveness
in performance. For example, Izmailov et al. [19] show that Stochastic Weight Averaging (SWA)
of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to
better generalization than conventional training. Following that, Cha et al. [3] propose Stochastic
Weight Averaging Densely (SWAD), i.e., averaging weights for every iteration in a region of low
validation loss , to capture flatter minima and thus achieve superior out-of-domain generalizability.
Recently, Wortsman et al. [46] propose averaging weights of multiple fine-tuned models with various
hyperparameters, coined Model Soups, to improve accuracy without increasing inference time.

†Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Ardcy/Lookaround

𝜃!"!# 𝜃$

𝜃% 𝜃&
𝜃'()"

𝜃$

𝜃% 𝜃&

Figure 1: Test set loss landscape. (Left) Around
step for diversity. (Right) Average step for locality.

Generally speaking, WA guides the model points
around the loss basin into the interior of the loss
basin to find a flatter solution, which is shown
to approximate ensembling the predictions [19].

Albeit striking results achieved in some cases,
WA easily breaks down owing to the diversity-
locality conflicts. In one end, when WA is car-
ried out within only one optimization trajectory
after the training converges (as SWA does), the
function diversity of the sampled checkpoints
whose weights are averaged is limited, impair-
ing the benefits of WA in ensembling. In the other end, if WA is conducted between models trained
independently, WA can result in a completely invalid model due to the large barrier between different
local minima (violating the locality principle that solutions should be in the same loss basin and
closed to each other in parameter space). Prior WA approaches are either limited in function diversity
or easily violating the locality principle, hindering its effectiveness and application in practice.

In this work, we propose Lookaround, a straightforward yet effective SGD-based optimizer to balance
the both. Unlike prior works where WA often carried out along only one training trajectory in a
post-hoc manner, Lookaround adopts an iterative weight average strategy throughout the whole
training period to constantly make the diversity-locality compromise. Specifically, in each iteration,
Lookaround consists of two steps: the around step and the average step, as shown in Figure 1.
The around step starts from a common point and trains multiple networks simultaneously, each on
transformed data by a different data augmentation, resulting in higher function diversity between
trained networks. The average step averages these trained networks to get the averaged network,
which serves as the starting point for the next iteration, guarantees the weight locality of these
networks during the whole training. Lookaround iteratively repeats the two steps constantly, leading
the averaged model to a flatter minima and thus enjoying better generalization. We theoretically
explain the superiority of Lookaround by expected risk and convergence analysis, and make extensive
experiments to evaluate Lookaround on popular benchmarks including CIFAR and ImageNet with
both CNNs and ViTs, demonstrating clear superiority over state-of-the-arts.

The contributions of this work can be summarized as follows.

• We propose Lookaround, a SGD-based optimizer that enjoys a diversity-in-locality exploration
strategy. To seek flat minima within the loss basins, Lookaround iteratively averages the trained
networks starting from one common checkpoint with various data augmentation.

• We theoretically analyze the convergence of different competitive optimizers in the quadratic case,
and prove that our Lookaround show lower limiting expected risk and faster convergence.

• Extensive experiments conducted on the CIFAR and ImageNet benchmarks demonstrate that
various CNNs and ViTs equipped with the proposed Lookahead optimizer can yield results superior
to the state-of-the-art counterparts, especially the multi-model ensemble methods.

2 Related Work

Mode Connectivity. Mode connectivity is an intriguing phenomenon in deep learning where
independently trained neural networks can have their minima connected by a low-loss path on the
energy loss landscape [12, 14]. Some early works [12, 8] find that different independently trained
networks can be connected by curves or multiple polylines in low-loss basins. Based on this, some
later works [35, 11] show that when training from pretrained weights, the model stays in the same
basin of the loss landscape, and different instances of such models can be connected by a straight line.
Such findings motivates weight averaging, which averages the weights of different models to obtain
higher performance. Recently, weight averaging has been widely used in the fields of neural language
processing [21, 32, 39] and multi-objective optimization [33]. We aim to use model connectivity to
give our network access to lower positions in the loss basin. In this paper, we propose a simple yet
effective method to demonstrate the practical significance of this study.

Weight Averaging. While weight averaging shares some similarities with the aggregation opera-
tions in Graph Neural Networks [24, 45, 23, 22], its primary application is distinct. In the context of

2

neural architectures, weight averaging typically represents an overall averaging of weights across
different models with the same architecture, diverging from the node-based aggregation in GNNs. His-
torically, the general idea of weight averaging can trace its roots back to convex optimization [41, 38].
And with the breakthrough of loss landscape visualization technology [12, 28], many applications
have applied this idea to neural networks [12, 49, 34]. The concept of weight averaging has been
integrated into single-trajectory training [12, 19, 49] and has seen extensive application in distributed
setups [29, 31, 50]. Specifically, [19] found that the models trained with SGD optimizer often fell on
the edge of a flat basin. Based on that, they propose the SWA method, which uses one-time weight
averaging of multiple network points after the entire training process is finished, leading the network
down to lower locations in the basin. The later work [49] proposes an optimizer that continuously
uses weight averaging to update model weight to improve performance and robustness. Averaging
weight during training is more effective than the averaging after training. Unlike single-trajectory
optimization strategy, the recent Model Soups method [46] is inspired by mode connectivity, which
starts from a typical pretrained weight and averages final fine-tuned models to improve generalizabil-
ity. These methods inspire us to employ weight averaging method with multi-data augmentations to
improve convergence and generalizability.

Ensemble. The ensemble learning is a traditional technology that combines multiple model outputs
to achieve better robustness and performance [6, 1, 2, 16, 27]. Ensemble methods usually need to
train different models to reduce variance and improve the prediction effect. However, in recent years,
some methods [18, 12] can obtain different model checkpoints to conduct the ensemble in a single
trajectory of model training, which significantly reduces the training time. Note that these methods
all require separate inference through each model, which adds to the calculation cost. In contrast, our
method does not require additional inference calculations.

3 Method

Algorithm 1 Lookaround Optimizer.

Require: Initial parameters ϕ0, objective function L, data
augmentation list AUG of size d, synchronization period
k, optimizer A, dataset D, numbers of training epochs E.
for epoch “ 1 to E do

Synchronize parameters
for j “ 1, 2, . . . , d do
θt,j,0 Ð ϕt´1

end for
Around Step: Independent model training.
for i “ 1, 2, . . . , k do

sample minibatch of data B „ D
for j “ 1, 2, . . . , d do
θt,j,i Ð θt,j,i´1 ` ApL, θt,j,i´1,AUGjpBqq

end for
end for
Average Step: Weight averaging.
Compute average weight θt,˚,k Ð 1

d

řd
j“1 θt,j,k

Perform update ϕt Ð θt,˚,k

end for
return parameters ϕ

In this section, we present our opti-
mization method Lookaround and pro-
vide an in-depth analysis of its proper-
ties. In Section 3.1, we provide a de-
tailed description of the Lookaround
optimizer. In Section 3.2, we ana-
lyze the expected risk of Lookaround,
then thoroughly study its conver-
gence at various levels and compare
it with the existing optimizer Looka-
head [49] and SGD [40]. Intuitively,
our proposed optimizer seeks flat min-
ima along the training trajectory by
iteratively looking for the diverse
model candidates around the trained
points, hence called Lookaround. The
pseudo-code of Lookaround is pro-
vided in Algorithm 1.

3.1 Lookaround Optimizer

In this subsection, we introduce the de-
tails of Lookaround. In Lookaround,
the training process is divided into
multiple intervals of length k, with each interval consisting of an "around step" and an "average step".
Let ϕ0 denote the initial weights. At tth round of Lookaround, the weights are updated from ϕt´1
to ϕt according to the around step and the average step. The resulting weights ϕt then serve as the
starting point for the subsequent round.

Around Step. Given the optimizer A, the objective function L, and the stochastic mini-batch of
data B from train dataset D. In the around step, d different models are independently trained under d

3

different data augmentations AUG “ tAUG1, . . . ,AUGdu for k batch steps, as follows:
θt,j,k “ θt,j,k´1 ` ApL, θt,j,k´1,AUGjpBqq. (1)

Thanks to the data augmentations, each model is trained in period k to a diverse location in the loss
landscape scattered around ϕt´1. The Around Step allows optimizing the region surrounding each
model iterate, which helps the search of flatter minima. Moreover, note that as the d different models
are trained independently, we can use parallel computing to speed up the whole training process.

Average Step. In the average step, we simply average θt,i,k, the weights of each independently
trained model to obtain ϕt for the next around step as follows:

ϕt “
1

d

d
ÿ

i“1

θt,i,k. (2)

It has been observed that models with the same initialization and trained on different data augmen-
tations exhibit similar loss basins [35], with the models scattered around the edges of these basins.
Therefore, incorporating a simple averaging technique into the training process may facilitate the
convergence of the models towards lower-loss regions. In Appendix A, we demonstrate how this
technique effectively guides the model to the interior of the loss basin.

3.2 Theoretical Analysis

3.2.1 Noisy Quadratic Analysis

The quadratic noise function has been commonly adopted as an effective base model to analyze
optimization algorithms [42, 49, 47, 25], where the noise incorporates stochasticity introduced by
mini-batch sampling. In this subsection, we analyze the steady-state risk of our proposed optimizer
on the quadratic noise function to gain insights into the performance of Lookaround, and compare
the result with those obtained using SGD and Lookahead.

The quadratic noise model is defined as L̂pθq “ 1
2 pθ ´ cqTApθ ´ cq. Following Zhang et al. [49],

we assume that the noise vector c „ N pθ˚,Σq, both A and Σ are diagonal matrices, and that the
optimal solution θ˚ “ 0. We denote ai and σ2

i as the i-th elements on the diagonal of A and Σ,
respectively. As the i-th element of the noise vector c satisfies Erc2i s “ pθ˚

i q2 ` σ2
i , the expected loss

of the iterates θt can be written as follows:

Lpθtq “ ErL̂pθtqs “
1

2

ÿ

i

aipErθt,is
2 ` Vrθt,is ` σ2

i q, (3)

where θt,i represents the ith item of the parameter θt. The limiting risk of SGD, Lookahead and
Lookaround are compared in the following Proposition by unwrapping Erθts and Vrθts in Equation 3.
Proposition 1 (Steady-state risk). Let 0 ă γ ă 1{L be the learning rate satisfying L “ maxi ai.
One can obtain that, in the noisy quadratic setup, the variance of the iterates obtained by SGD,
Lookahead [49] and Lookaround converge to the following matrix:

V ˚
SGD “

γ2A2Σ2

I ´ pI ´ γAq2
, (4)

V ˚
Lookahead “

α2pI ´ pI ´ γAq2kq

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

ďI, if αPp0,1q

V ˚
SGD, (5)

V ˚
Lookaround “

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq

α2pdI ´ pd ´ 1qpI ´ γAq2kq
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

ďI, if dě3 and αPr1{2,1q

V ˚
Lookahead, (6)

respectively, where α denotes the average weight factor of models with varying trajectory points, as
described in [49].

Proposition 1 implies that the steady-state variance matrix of Lookaround is element-wise smaller
than those of SGD and Lookahead if d ě 3 and α P r1{2, 1q. Moreover, Proposition 1 shows that
increasing the number of data augmentation methods d yields smaller limiting variance and thus
lower expected loss (see equation 3), which guarantees good generalizability in real-world scenarios.
The proof is deferred to Appendix B.

4

3.2.2 Convergence on Deterministic Quadratic function

In this section, we analyze the convergence of Lookaround and Lookahead in the noise-free quadratic
setting, which is important for studying the convergence of optimization algorithms [13, 37, 44].

Convergence rate ρ characterizes the speed in quadratic function at which the independent variable
converges to the optimal solution, satisfying ||θt ´ θ˚|| ď ρt||θ0 ´ θ˚||. In order to calculate the
convergence rate, we model the optimization process, and treating this function as a linear dynamical
system allows us to calculate the convergence rate, as in [30]. The value of the convergence rate will
be determined by the eigenvalues of the dynamic transition equation, and we leave the calculation of
this part to show in the Appendix B.2.

Given the emphasized significance of the condition number in paper [37], we conducted extensive
experiments under a series of conditional numbers.

101 102 103 104 105 106 107

Condition Number

10−1

10−2

10−3

10−4

1
-
C
o
n
v
e
rg
e
n
c
e
R
a
te

ρ

Optimal

CM

Lookahead

Lookaround

Figure 2: Convergence rate on quadrat-
ics of varying condition number. We
fix the step k “ 20 for Lookahead
and Lookaround, and fix the CM factor
β “ 0.99.

We evaluated the convergence rate of Lookaround, Looka-
head, and Classical Momentum (CM) under different con-
dition numbers from 101 to 107, which are shown in Fig-
ure 2. The blue dashed line represents the optimal conver-
gence rate that an algorithm can achieve in the absence
of any constraints. A value closer to the blue dashed
line indicates a faster convergence rate. CM can achieve
the optimal convergence rate on a critical condition num-
ber [30]. To the left of this critical point, there exist com-
plex eigenvalues that correspond to oscillations. In this
regime, CM exhibits a flat convergence rate, which is
known as "under-damped" behavior [30]. We show that
Lookaround and Lookahead are faster than CM in the
under-damped regime. Lookaround converges faster and
is more stable than Lookahead in the low condition num-
ber case, and realizes comparable performance with Lookahead in the high condition number case. In
subsequent experiments, we show that Lookaround achieves fast and stable convergence in training
deep neural networks on popular benchmarks.

4 Experiments

In Section 4.1 and Section 4.2, we present experimental verification on different tasks, including
both random initialization and finetuning tasks on both ViTs and CNNs architectures to validate
the effectiveness of the Lookaround optimizer. In Section 4.4, we compare the proposed method
with ensemble learning methods that require multiple models. In Section 4.5, we conduct ablation
experiments on different components of the Lookaround method to explore their contributions.
In Section 4.6, we analyze the parameter robustness of Lookaround and further investigate its
performance in the micro-domain.

Within a single epoch, both the proposed Lookaround and the competitors undergo training on an
identical times the data augmentations. With such a setup, we guarantee consistency in the data
volume utilized by each method, thereby ensuring fair comparisons in terms of computation.

4.1 Random Initialization

Random initialization is a standard model initialization method in deep learning. In this subsection,
we verify the performance of our algorithm on various networks with randomly initialized weights
based on CIFAR and ImageNet datasets.

4.1.1 CIFAR 10 and CIFAR 100

We conduct our experiments on CIFAR10 [26] and CIFAR100 [26] datasets. Both CIFAR10 and
CIFAR100 datasets have 60,000 images, 50,000 of which are used for training and 10,000 for
validation. We use SGDM [36] as our baseline, and we compare our method with SWA [19],
SWAD [3], Lookahead [49]. We validate different methods on multiple network architectures such as
VGG19 [43], ResNet50 [17], ResNet101 [17], ResNet152 [17], ResNeXt50 [48] and all methods are

5

Table 1: Test set accuracy under training procedure with random initialized models. In this table, all
models are trained for same amount of time at 32ˆ32 resolution. (To provide a more comprehensive
view of the data, we substitut the Top5 metric for CIFAR10 with the NLL loss.)

Method VGG19 ResNet50 ResNet101 ResNet152 ResNext50

Top1 NLL Top1 NLL Top1 NLL Top1 NLL Top1 NLL

CIFAR10

SGDM 93.92 0.26 95.96 0.16 96.16 0.16 96.28 0.16 95.72 0.17
SWA 94.89 0.21 96.42 0.14 96.34 0.14 96.82 0.13 96.09 0.16

SWAD 93.23 0.29 95.39 0.19 94.49 0.22 95.00 0.20 93.89 0.26
Lookahead 94.72 0.23 96.38 0.16 96.61 0.15 96.46 0.15 96.47 0.15

Ours 94.44 0.25 96.59 0.14 96.73 0.14 97.02 0.14 96.70 0.13

Method VGG19 ResNet50 ResNet101 ResNet152 ResNext50

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

CIFAR100

SGDM 73.84 91.09 79.61 95.21 79.91 95.54 80.16 95.49 79.10 94.86
SWA 73.62 90.89 80.17 95.56 80.53 95.39 80.86 95.43 79.14 94.96

SWAD 73.37 89.93 80.19 95.46 79.92 95.09 80.00 95.36 79.27 95.17
Lookahead 74.02 90.68 80.06 95.24 81.14 95.84 81.36 95.77 80.12 95.26

Ours 74.29 91.15 81.60 95.99 81.97 96.15 82.22 96.40 81.14 96.12

0 50 100 150 200
0

1

2

3

4

Tr
ai

n
Lo

ss

VGG19
SGDM
Lookahead
Lookaround

0 50 100 150 200
0

1

2

3

4

ResNet50
SGDM
Lookahead
Lookaround

0 50 100 150 200
0

1

2

3

4

ResNeXt50
SGDM
Lookahead
Lookaround

0 50 100 150 200
Epoch

40

50

60

70

To
p-

1
Ac

cu
ra

cy
(%

)

SGDM
Lookahead
Lookaround

0 50 100 150 200
Epoch

40

50

60

70

80

SGDM
Lookahead
Lookaround

0 50 100 150 200
Epoch

40

50

60

70

80

SGDM
Lookahead
Lookaround

Figure 3: Training loss and Top-1 accuracy curves of various networks on CIFAR100 under different
optimization methods.

performed on well-validated parameters. For each epoch in all experiments, we use the same mixed
data for training using three kinds of data augmentation: random horizontal flip, random vertical
flip, and RandAugment [5]. This ensures that the comparison between different methods is fair. For
the training process, we use a discount factor of size 0.2 to decay the initial learning rate 0.1 at
60, 120, 160 epochs. Please refer to Appendix C.1.1 for more specific details.

We present our results in Figure 3 and Table 1, which indicates that our method achieves stable perfor-
mance improvement on different networks. Compared to the SGDM optimizer, both Lookaround and
Lookahead demonstrate faster convergence rates and higher accuracy. However, what’s noteworthy
is that, with training losses similar to Lookahead, Lookaround not only achieves a higher accuracy
but also has better stability. This suggests that within the same training duration, we have found a
more optimal optimization path. Meanwhile, although the SWA and SWAD methods adopt the same
optimization process as the SGDM, they achieve higher performance via multiple samplings in the
training trajectory combined with an average step. In contrast to SWA and SWAD, the multi-averaging
Lookaround can achieve consistent and superior performance across different networks.

4.1.2 ImageNet

The ImageNet dataset is widely used to test the model performance. It has a training set of 1.28
million images and a validation set of 50,000 images with 1,000 classes. We train the model

6

0 10 20 30 40 50
Epoch

0

1

2

3

Tr
ai
n
Lo
ss

ResNet50

SGDM
Lookahead
Lookaround

0 10 20 30 40 50
Epoch

65

70

75

80

85

To
p-
1
Ac
cu
ra
cy
(%

)

ResNet50

SGDM
Lookahead
Lookaround

0 10 20 30 40 50
Epoch

0

1

2

Tr
ai
n
Lo
ss

ViT-B/16

Adam
Lookahead
Lookaround

0 10 20 30 40 50
Epoch

80

85

90

To
p-
1
Ac
cu
ra
cy
(%

)

ViT-B/16

Adam
Lookahead
Lookaround

Figure 4: Training loss and Top-1 accuracy curves of ResNet50 (left) and ViT-B/16 (right) on
CIFAR100 under different optimization methods.

Table 2: Top-1 accuracy of ResNet50 on Ima-
geNet under different optimization methods.

OPTIMIZER TOP-1 TOP-5

SGDM 75.97 92.89
SWA 76.78 93.18
LOOKAHEAD 76.52 93.11
LOOKAROUND 77.32 93.29

on the training set and observe the model perfor-
mance on the validation set. Based on standard hy-
perparameter settings, we train for 100 epochs and
use a multi-step scheduler to adjust the learning rate
on 30, 60 and 90 epochs with a discount factor of
size 0.1. We present our results in Table 2. We get
similar conclusions on the ImageNet as on CIFAR:
higher test set accuracy and stronger generalization
performance, which coincides with the theoretical
results in the previous section.

4.2 Finetuning

The transfer learning technique, which involves pretraining a model on a large related dataset and then
finetuning on a smaller target dataset of interest, has become a widely used and powerful approach
for creating high-quality models across various tasks.

To explore the scalability of our Lookaround method, we apply our method to scenarios that require
pre-training, including CNN or ViT [7] architecture. Unlike the previous experiments, we adopt more
appropriate hyperparameters for its training in the ViT experiments, including the Adam optimizer
and cosine annealing scheduler structure. Our results are shown in Table 3 and Figure 4. Under the
ResNet architecture, our proposed Lookaround method remains stable and performs better, while the
SGDM method shows greater fluctuations.

In contrast, the Lookaround methods based on weight averaging do not produce such a phenomenon,
which partly demonstrates the hypothesis that average weight can reduce the convergence variance.
In our comparison experiments with the other optimizations, we found that the results of ViT-B/16
under different optimizers were better than those reported in the original paper [7]. This is mainly
due to our use of more data augmentation during the training process, aiming for a fair comparison
with Lookaround. This result also indicates that Lookaround can still achieve better performance
under improved baseline conditions.

Table 3: The test set accuracy and the NLL loss under training procedure with pretrained models. In
this table, all models are fine-tuned for the same amount of time at 224ˆ224 resolution. The results
of Adam: using ViT-B/16 are taken from reference [7].

Backbone Method CIFAR10 CIFAR100

Top-1 NLL #param. Top-1 NLL #param.

ResNet50

SGDM 97.55 0.109 23.52M 84.50 0.692 23.71M
SWA 97.48 0.105 23.52M 84.81 0.668 23.71M

Lookahead 97.65 0.103 23.52M 84.78 0.676 23.71M
Ours 97.82 0.099 23.52M 85.20 0.658 23.71M

ViT-B/16

Adam: 98.13 - 85.65M 87.13 - 85.72M
Adam 98.34 0.060 85.65M 91.55 0.298 85.72M
SWA 98.47 0.049 85.65M 91.32 0.304 85.72M

Lookahead 98.51 0.047 85.65M 91.76 0.280 85.72M
Ours 98.71 0.041 85.65M 92.21 0.267 85.72M

7

Table 4: The test set accuracy under SAM and Lookaround optimization using ResNet50 or ViT-B/16.
The results of SAM: using ResNet50 are taken from [7].

Backbone Method resolution pretrain CIFAR10 CIFAR100

ResNet50
SAM: 32 - - 79.10

Lookaround 32 - 96.59 81.60
Lookaround + SAM 32 - 96.38 79.79

ResNet50
SAM 224 ✓ 97.65 85.97

Lookaround 224 ✓ 97.82 85.20
Lookaround + SAM 224 ✓ 97.88 86.21

ViT-B/16
SAM 224 ✓ 98.51 92.39

Lookaround 224 ✓ 98.71 92.21
Lookaround + SAM 224 ✓ 98.67 92.54

4.3 Compared with Sharpness-Aware Minimization

We draw a comparison between Lookaround and Sharpness-Aware Minimization (SAM) [10], an
algorithm designed to improve generalization by steering model parameters towards flatter loss
regions.1 The comparative results are presented in Table 4.

The results seem to indicate that, under the default parameters of SAM, this method is more suitable
for higher resolutions, while Lookaround achieves the best performance at lower resolutions. For
the finetuning, neither SAM nor Lookaround consistently emerges as the top choice when used indi-
vidually. However, when combined, they often enhance model performance significantly. Thus, for
higher accuracy, we recommend using both the SAM and Lookaround optimizers concurrently. Both
are orthogonal to each other. By combining the two methods, we can achieve superior performance.

4.4 Compared with Ensemble Method

Ensemble methods are traditionally used to further improve inference performance by combining the
outputs of multiple different models. We compare our Lookaround method with classical Ensemble
methods (Logit Ensemble and Snapshot Ensemble [18]), and the results are shown in Table 5.

Table 5: Performance compared with the ensemble meth-
ods (without pretrained weights) on CIFAR100 dataset.
"Ours + Logit Ensemble" means that we take the model
obtained by our method and the three models in Logit En-
semble to Logit Ensemble.

Method ResNet50 ResNet101 ResNet152
Logit Ensemble 81.16 81.92 81.89

SnapShot Ensemble 79.88 80.63 80.23
Ours (Lookaround) 81.60 81.97 82.22

Ours + Logit Ensemble 83.43 83.35 83.53

The performance of the single model
obtained by our training exceeds the
performance of the ensemble under
multiple models. Moreover, the
model obtained by our method is not
a simple superposition of Ensemble
models. We take the single model
obtained by us with the three models
obtained by Logit Ensemble to Logit
Ensemble, and get a more significant
performance improvement. This indi-
cates that the model we obtained is orthogonal to the three models obtained by Logit Ensemble and
can be combined to produce better performance.

4.5 Ablation Study
Table 6: Ablation Study of Data Augmentation (DA) and Weight
Averaging (WA) in the proposed Lookaround using ResNet50.

Dataset DA WA Acc (%) Dataset DA WA Acc (%)

CIFAR10

- - 95.84

CIFAR100

- - 78.81
✓ - 95.96 ✓ - 79.61
- ✓ 95.79 - ✓ 79.49
✓ ✓ 96.59 ✓ ✓ 81.60

In this subsection, we investigate
the impact of different compo-
nents of Lookaround on its per-
formance, including data Aug-
mentation methods and weight
averaging. As shown in Table 6,

1Intriguingly, SAM is proved to exhibit dynamics akin to a decentralized weight averaging algorithm [51].

8

1 2 5 10 20 50 100 200 5001000
Steps(k)

80.5

81.0

81.5

T
o
p
-1

A
c
c
u
ra
c
y
(%

)

Random Initialization

0 25 50 75 100 125 150 175 200
Epoch

50

60

70

80

T
o
p
-1

a
c
c
u
ra
c
y
(%

)

Finetuning

SGDM

(Ours)Small-k(5)

(Ours)Large-k(391)

Figure 5: Top-1 accuracy of ResNet50 on CIFAR100 dataset with different steps k. (Left) Error bar
of three different random seeds with random initialization weight. (Right) Top-1 accuracy of two
different k values with pretrained weight.

0 50 100 150
Iteration

45

50

55

60

65

T
o
p
-1

A
c
c
(%

)

lr=0.1

H-trajectory H-net R-trajectory R-net M-trajectory Mean-net

0 50 100 150
Iteration

60.0

62.5

65.0

67.5

70.0

72.5
T
o
p
-1

A
c
c
(%

)

lr=0.02

0 50 100 150
Iteration

72

73

74

75

T
o
p
-1

A
c
c
(%

)

lr=0.004

Figure 6: Accuracy curve of sub-model state update on the test set with different learning rates using
ResNet50 on CIFAR100. At position 0 on the horizontal axis, H-net (trained by randomly horizontally
flipped data) and R-net (trained by RandAugment data) are averaged to Mean-net. Subsequently,
during 160 weight iterations, H-net and R-net continue to be trained with their respective data, while
Mean-net represents the model obtained by averaging the weights at each itreation.

when we consider Data Augmentation (DA) or Weight Averaging (WA) independently, their im-
provement effects may be relatively small. However, when we combine them, the synergistic effect
between them can lead to more significant overall improvement. Specifically, we found that the
improvement effects of DA and WA show a nonlinear trend in the interaction case, indicating a certain
synergistic effect between them. Under the interaction, Data augmentation guides the model into
different loss basins, and Weight Averaging guides different models into lower loss basins, resulting
in higher performance improvement and a qualitative leap.

4.6 Additional Analysis

Table 7: Top-1 accuracy (%) of different data augmenta-
tion (DA) number by using ResNet50 on CIFAR100 dataset.

of DA 1 2 3 4 5 6

Top-1 (%) 78.20 80.82 81.60 81.19 81.74 82.02
Top-5 (%) 94.50 95.19 95.99 95.65 95.85 96.02

Robustness of the Parameters. For
the number of data augmentations, we
train the model with different num-
bers of data augmentations, and the
results are shown in Table 7. The re-
sults indicate that an increase in the
number of data augmentations results
in improved network performance. In
order to reduce the training time, only three data augmentation methods are selected in this paper for
experimental verification at different levels. Note that the methods compared with ours use the same
incremental data set, so the comparison is fair.

For different choices of k, the number of around steps, we select different intervals for full verification,
and the results are shown in Figure 5 (Left). Let us look at Large-k (391) versus Small-k(5) in Figure 5
(Right) (391 is determined by the number of batches in a single epoch). We find that large steps
(green line) can achieve higher accuracy and stability in the early stage of training, while small steps
can achieve higher accuracy in the later stage. In future research, we may explore a learning rate
scheduler suitable for Lookaround to help it achieve the best performance.

9

We visualize the training trajectory accuracy of the sub-models in Lookaround in Figure 6. Under
different learning rates, the model, after averaging the weights, can maintain a good baseline and
continuously improve the performance of the model under the low variance, and the sub-models also
obtain more beneficial training effects due to the weight averaging.

5 Conclusion

In this paper, we present the Lookaround optimizer, an SGD-based optimizer that employs a diversity-
in-locality exploration strategy to find solutions with high generalization ability in the loss basin.
We theoretically prove that Lookaround can obtain lower variance and faster convergence speed.
Experimental results on CIFAR and ImageNet and across various network backbones show that, our
proposed Lookaround significantly improves the training stability and achieves better generalization
performance comparable to the single-trajectory WA optimizers and ensemble methods.

Limitation. Lookaround is limited by the additional cost of network searching using different data
augmentation, resulting in a longer training time proportional to the the number of trained networks.
Notably, Lookaround incurs the same inference time as other optimization methods. Considering the
significantly superior performance, we believe the extra time consumption is worthwhile in many real-
world scenarios where the training time is not so concerned as the inference time. Moreover, training
time can be reduced due to the parallelizability of the "around step" mechanism in Lookaround.

Acknowledgements

This work is supported by the National Key Research and Development Project (Grant No:
2022YFB2703100), National Natural Science Foundation of China (62106220, 61976186,
U20B2066), and Ningbo Natural Science Foundation (2021J189) and the advanced computing
resources provided by the Supercomputing Center of Hangzhou City University. We sincerely thank
the anonymous reviewers for their valuable comments on the work.

10

References
[1] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants. Machine Learning, 1999.

[2] Leo Breiman. Bagging predictors. Machine Learning archive, 1996.

[3] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. Conference on Neural Information Processing
Systems, 2021.

[4] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. Conference on Neural Information Processing Systems, 2019.

[5] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020.

[6] Thomas G. Dietterich. Ensemble methods in machine learning. multiple classifier systems, 2000.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, and S. Gelly. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

[8] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no barriers in
neural network energy landscape. International Conference on Machine Learning, 2018.

[9] R. Entezari, H. Sedghi, O. Saukh, and B. Neyshabur. The role of permutation invariance in linear mode
connectivity of neural networks. International Conference on Learning Representations, 2022.

[10] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. International Conference on Learning Representations, 2021.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode connec-
tivity and the lottery ticket hypothesis. International Conference on Machine Learning, 2019.

[12] Timur Garipov, Pavel Izmailov, D. A. Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Conference on Neural Information Processing
Systems, 2018.

[13] Gabriel Goh. Why momentum really works. Distill, 2017.

[14] A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher. Using mode connectivity for loss landscape analysis.
arXiv: Learning, 2018.

[15] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2020.

[16] Trevor Hastie, Jerome H. Friedman, and Robert Tibshirani. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics. 2001.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE/CVF Computer Vision and Pattern Recognition Conference, 2016.

[18] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger. Snapshot
ensembles: Train 1, get M for free. In International Conference on Learning Representations, 2017.

[19] Pavel Izmailov, D. A. Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. Conference on Uncertainty in Artificial Intelligence,
2018.

[20] Samyak Jain, Sravanti Addepalli, Pawan Kumar Sahu, Priyam Dey, and R Venkatesh Babu. Dart: Diversify-
aggregate-repeat training improves generalization of neural networks. In IEEE/CVF Computer Vision and
Pattern Recognition Conference, 2023.

[21] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. Annual Meeting of the Association for Computational Linguistics,
2014.

[22] Yongcheng Jing. Efficient Representation Learning With Graph Neural Networks. PhD thesis, 2023.

11

[23] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator: Learning
to aggregate for 1-bit graph neural networks. In IEEE International Conference on Computer Vision, 2021.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2016.

[25] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Handbook
of Systemic Autoimmune Diseases, 2009.

[27] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Conference on Neural Information Processing Systems,
2017.

[28] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Conference on Neural Information Processing Systems, 2018.

[29] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, 2017.

[30] James Lucas, Shengyang Sun, Richard Zemel, and Roger Grosse. Aggregated momentum: Stability
through passive damping. In International Conference on Learning Representations, 2018.

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In International Confer-
ence on Artificial Intelligence and Statistics, 2017.

[32] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm language
models. Learning, 2017.

[33] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan Ghasemzadeh.
Linear mode connectivity in multitask and continual learning. Learning, 2020.

[34] Giung Nam, Hyungi Lee, Byeongho Heo, and Juho Lee. Improving ensemble distillation with weight
avearging and diversifying perturbation. In International Conference on Machine Learning, 2022.

[35] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning.
Conference on Neural Information Processing Systems, 2020.

[36] Q. Ning. On the momentum term in gradient descent learning algorithms. Neural Networks, 1999.

[37] Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. Founda-
tions of computational mathematics, 15:715–732, 2015.

[38] Boris T. Polyak and Anatoli Juditsky. Acceleration of stochastic approximation by averaging. Siam Journal
on Control and Optimization, 1992.

[39] Yujia Qin, Cheng Qian, Jing Yi, Weize Chen, Yankai Lin, Xu Han, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. Exploring mode connectivity for pre-trained language models. In Conference on Empirical Methods
in Natural Language Processing, 2022.

[40] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[41] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical report,
Cornell University Operations Research and Industrial Engineering, 1988.

[42] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International Conference on
Machine Learning, 2013.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. IEEE/CVF Computer Vision and Pattern Recognition Conference, 2014.

[44] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning, pages 1139–1147, 2013.

12

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

[46] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo Lopes, Ari S.
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference
time. In International Conference on Machine Learning, 2022.

[47] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in stochastic
meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

[48] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transfor-
mations for deep neural networks. IEEE/CVF Computer Vision and Pattern Recognition Conference,
2016.

[49] Michael R. Zhang, James Lucas, Jimmy Ba, and Geoffrey E. Hinton. Lookahead optimizer: k steps
forward, 1 step back. Conference on Neural Information Processing Systems, 2019.

[50] Tongtian Zhu, Fengxiang He, Lan Zhang, Zhengyang Niu, Mingli Song, and Dacheng Tao. Topology-aware
generalization of decentralized SGD. In International Conference on Machine Learning, 2022.

[51] Tongtian Zhu, Fengxiang He, Kaixuan Chen, Mingli Song, and Dacheng Tao. Decentralized SGD and
average-direction SAM are asymptotically equivalent. In International Conference on Machine Learning,
2023.

13

A Exploration in the Loss Landscape

To demonstrate the effectiveness of Lookaround during training, we set up an experiment and visualize
the loss landscape of the models under different data augmentations in Figure 7. By observing the
loss landscape, we can gain a clearer understanding of the role played by the weight averaging at
different stages during the training process.

Training Process and Parameter Settings. We first train a ResNet50 on the CIFAR100 dataset.
The learning rate is initialized to 0.1 and decay at 60, 120, and 160 epochs using a MultiStepLR
scheduler with a decay factor 0.2. The batch size is set to 128, we use stochastic gradient descent
with momentum to optimize the model and use random crops and random vertical flips augmentation
to enhance the training datasets. We use model checkpoints at epochs 50, 110, and 150 as our three
pretrained models(V-network). The three pretrained models correspond to learning rates of 0.1, 0.02
and 0.004, respectively. Using these pretrained models as the starting point, we finetune the model
with 1, 10, 100, 1000, 10000 iterations under the corresponding learning rate and the setting of
random horizontal flipping (H-network) or RandAugment (R-network).

Visualization Method. We use the visualization method in Garipov et al. [12] to plot the loss land-
scape. In this method, the weights of the three models are flattened respectively as one-dimensional
vectors wv, wh, wr, and then two orthogonal vectors are calculated between the three vectors as the
X-axis direction and the Y-axis direction: u “ pwh ´ wvq, v “ pwr ´ wv, wh ´ wvq{}wh ´ wv}2 ¨

pwh ´ wvq. Then the normalized vectors û “ u{}u}, v̂ “ v{}v} foam an orthonormal basis in the
plane contain wv, wh, wr. Then a point P with coordinates px, yq in the plane would be given by
P “ wv ` x ¨ û ` y ¨ v̂.

Discussion and Inspiring. Under different learning rates and different around steps k, Lookaround
has the tendency to lead the model trained on different data augmentation to the near-constant loss
manifold. In such circumstances, the "average step" can lead the model into the center of the loss
basin to get a lower test loss. However, weight averaging does not necessarily work in all cases. For
example, the network obtained after weight averaging gets a larger loss under a large learning rate
with a large around step (e.g., lr “ 0.1, k “ 10000). In this case, the model is located on a peak
between different basins rather than in the center of a basin. Moreover, in the case of around step
k “ 1, the weight averaging also does not achieve better performance. Nevertheless, such extreme
cases do not prevent weight averaging from being a useful tool to speed up the training process. The
center of the basin in loss landscape, which requires multi-step gradient descent to reach, can be
reached by only one weight averaging step. At other learning rates and around steps k, the models
after weight averaging all result in a lower loss than the individual model. Such phenomena encourage
us to explore more methods to find more optimal solutions in the loss landscape in the future.

B Steady-state and Convergence Analysis of Lookaround

We use quadratic functions to analyze the steady-state and convergence analysis of Lookaround. First,
we present the proof of Proposition 2.

Proposition 2 (Steady-state risk). Let 0 ă γ ă 1{L be the learning rate satisfying L “ maxi ai. One
can obtain that in the noisy quadratic setup, the variances of SGD, Lookahead [49] and Lookaround
converge to the following fixed matrix:

V ˚
SGD “

γ2A2Σ2

I ´ pI ´ γAq2
, (7)

V ˚
Lookahead “

α2pI ´ pI ´ γAq2kq

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

ďI, if αPp0,1q

V ˚
SGD, (8)

V ˚
Lookaround “

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq

α2pdI ´ pd ´ 1qpI ´ γAq2kq
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

ďI, if dě3 and αPr1{2,1q

V ˚
Lookahead. (9)

14

L
e
a
rn
in
g
R
a
te

lr
=
0
.1

around steps k=1

V-network R-network H-network Network obtained through "average step"

around steps k=10 around steps k=100 around steps k=1000 around steps k=10000

L
e
a
rn
in
g
R
a
te

lr
=
0
.0
2

L
e
a
rn
in
g
R
a
te

lr
=
0
.0
0
4

0.8

1.2

1.6

2.0

0.8

1.2

1.6

2.0

0.8

1.2

1.6

2.0

Figure 7: The test loss landscape of ResNet50 on CIFAR100. The diamond block (V-network)
represents the pretrained model trained with random vertical flipping. Then we can use random
horizontal flipping and RandAugment to finetune V-network to get H-network and R-network.

respectively, where α denotes the average weight factor of models with varying trajectory points, as
described in [49].

From Wu et al. [47], we can obtain the following dynamics of SGD with learning rate γ:

Erθpt`1qs “ pI ´ γAqErθptqs,

Vrθpt`1qs “ pI ´ γAq2 Vrθptqs ` γ2A2Σ.

Lemma 1. The expectation and variance of lookaround have the following iterates:

Erϕpt`1q
s “ pI ´ γAqk Erϕptq

s, (10)

Vrϕpt`1q
s “

d ´ 1

d
pI ´ γAq2k Vrϕptq

s `
γ2A2ΣpI ´ pI ´ γAq2kq

dpI ´ pI ´ γAq2q
. (11)

ϕt yields ϕt`1 by performing an around step and an average step.

Proof. The expected iterate follows from SGD:

Erϕt`1
s “ Er

1

d

ÿ

i

θt,i,ks “
ÿ

i

1

d
Erθt,i,ks

“
ÿ

i

1

d
pI ´ γAqk Erθt,i,0s “ pI ´ γAqk Erϕt

s.

For the variance of ϕt`1, we can break it down into two parts as follows:

Vrϕt`1
s “ Vr

1

d

ÿ

i

θt,i,ks “

d
ÿ

i

1

d2
Vrθt,i,ks `

ÿ

i‰j,1ďi,jďd

1

d2
covpθt,i,k, θt,j,kq.

15

The covariance of the different models can be calculated in the following way:

covpθt,i,k, θt,j,kq “ Erθt,i,kθt,j,ks ´ Erθt,i,ksErθt,j,ks

“ ErpI ´ γAq2kqpϕt
q2s ´ pI ´ γAq2k Erϕt

s2

“ pI ´ γAq2k Vrϕt
s.

After permuting and regrouping again, we can obtain the iterate with respect to the variance.

Vrϕt`1
s “

ÿ

i‰j,1ďi,jďd

1

d2
covpθt,i,k, θt,j,kq `

d
ÿ

i

1

d2
Vrθt,i,ks

“
1

d2
pd2 ´ dqpI ´ γAq2k Vrϕt

s `
1

d
r

k´1
ÿ

i“0

pI ´ γAq2iγ2A2Σs

“
d ´ 1

d
pI ´ γAq2k Vrϕt

s `
γ2A2ΣpI ´ pI ´ γAq2kq

dpI ´ pI ´ γAq2q
.

The proof is now complete.

Remark. From Equation 10, the expectation term for ϕ in Lookaround eventually converges to 0,
as does Lookahead and SGD.

From Zhang et al. [49], we have the following analysis about the variance fixed point of lookahead
with learning rate γ and weight factor α, which represents the average weight factor of models with
different trajectory points in the Lookahead optimizer, which is generally (0, 1):

V ˚
Lookahead “

α2pI ´ pI ´ γAq2kq

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq
V ˚
SGD. (12)

We now derive the fixed point of the variance, proceed with the proof of Proposition 1:

V ˚
Lookaround “

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq

α2pdI ´ pd ´ 1qpI ´ γAq2kq
V ˚
Lookahead.

Proof.

V ˚
Lookaround “

d ´ 1

d
pI ´ γAq2kV ˚

Lookaround `
γ2A2ΣpI ´ pI ´ γAq2kq

dpI ´ pI ´ γAq2q
.

ñ V ˚
Lookaround “

1

I ´ d´1
d pI ´ γAq2k

γ2A2ΣpI ´ pI ´ γAq2kq

dpI ´ pI ´ γAq2q

“
γ2A2ΣrI ´ pI ´ γIq2ks

rdI ´ pd ´ 1qpI ´ γAq2ksrI ´ pI ´ γAq2s

“
I ´ pI ´ γAq2k

dI ´ pd ´ 1qpI ´ γAq2k
V ˚
SGD.

According to Equation 12, we can deduce that

V ˚
Lookaround “

I ´ pI ´ γAq2k

dI ´ pd ´ 1qpI ´ γAq2k
V ˚
SGD

“
α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq

α2pdI ´ pd ´ 1qpI ´ γAq2kq
V ˚
Lookahead.

The proof is now complete.

B.1 Comparing the dynamics of Lookahead

We now proceed with the proof for the range of constraints variable α in Equation 9. When d ě 3,
and α P r0.5, 1q, the Lookaround method can obtain a smaller variance than the Lookahead method:

16

Proof. Let B “ pI ´ γAqk, due to 0 ă γ ă 1{L,L “ maxiai, so we can have BďI. Substituting
the matrix B into the expressions for the variance fixed point relation of Lookaround and Lookahead:

V ˚
Lookaround “

α2pI ´ pI ´ γAq2kq ` 2αp1 ´ αqpI ´ pI ´ γAqkq

α2pdI ´ pd ´ 1qpI ´ γAq2kq
V ˚
Lookahead

“
I ´ B2 ` 2 1´α

α pI ´ Bq

dI ´ pd ´ 1qB2
V ˚
Lookahead

“

2´α
α I ´ B2 ´ 2´2α

α B

dI ´ pd ´ 1qB2
V ˚
Lookahead.

Let the coefficient matrix be denoted as C, when d ě 3, for each diagonal element Cii of C, we can
scale the denominator of this expression as follows:

Cii ď

2´α
α ´ B2

ii ´ 2´2α
α Bii

3 ´ 2B2
ii

,

Then, we can derive the range of α by restricting the right-hand side expression as follows:
2´α
α ´ B2

ii ´ 2´2α
α Bii

3 ´ 2B2
ii

ď 1,

As 0 ď Bii ď 1, we can multiply both sides of the inequality by the denominator, then rearrange and
combine like terms to obtain the following form:

B2
ii ´

2 ´ 2α

α
Bii `

2 ´ 4α

α
ď 0.

Skipping the detailed steps, we can obtain α ě 0.5 by solving the quadratic equation. Therefore, in
the case where α P r0.5, 1q and d ě 3 (α ă 1 is subject to Lookahead’s settings), the coefficient
matrix CďI, so the convergence speed of Lookaround is slower than Lookahead.

B.2 Deterministic quadratic convergence

Our method samples data from multiple data augmentation strategies, which can be analogously
viewed as averaging the sampling of historical trajectories during the convergence analysis of
quadratic functions. Thus, for weight averaging, we select model points that align with each point
in the k-step trajectory. From this perspective, we examine and compare the convergence rates of
Lookaround and Lookahead.

We first show the state transition equation for the classical momentum method in quadratic functions:
vt`1 “ βvt ´ ∇θfpθtq “ βvt ´ Aθt, (13)
θt`1 “ θt ` γvt`1 “ γβvt ` pI ´ γAqθt. (14)

Here, v stands for the momentum term. We can generalize this to matrix form:
„

vt`1

θt`1

ȷ

“

„

β ´A
γβ I ´ γA

ȷ „

vt

θt

ȷ

.

Thus, given the initial θ0, we can obtain the convergence rate with respect to θ by the maximum
eigenvalue of the matrix. Referring to Zhang et al. [49] and Lucas et al. [30], we obtain the state
transition matrix regarding our algorithm as follows:

»

—

—

–

θt,0

θt´1,k

...
θt´1,1

fi

ffi

ffi

fl

“ LBpk´1qT

»

—

—

–

θt´1,0

θt´2,k

...
θt´2,1

fi

ffi

ffi

fl

,

where L, B and T denote the average weight matrix, the single-step transfer matrix and the position
transformation matrix respectively:

L “

»

—

—

—

—

—

—

–

1
k`1I

1
k`1I ¨ ¨ ¨ 1

k`1I
1

k`1I
I 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 I
.

...
...

. 0
...

0 ¨ ¨ ¨ 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

17

B “

»

—

—

—

—

—

–

p1 ` βqI ´ ηA ´βI 0 ¨ ¨ ¨ 0
I 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 I
.

...
...

. 0
...

0 ¨ ¨ ¨ 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

T “

»

—

—

—

—

—

—

—

—

—

—

–

I ´ ηA βI ´βI 0 ¨ ¨ ¨ 0

I 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

0 I
. . . ¨ ¨ ¨

...
...

...
. 0

...
...

... ¨ ¨ ¨ 0 I 0 0
0 ¨ ¨ ¨ 0 0 I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

After specifying the appropriate parameters and performing matrix multiplication to obtain the state
transition matrix, the convergence rate ρ can be obtained by calculating the largest eigenvalue of the
matrix. Note that since this linear dynamical system corresponds to k updates, we finally have to
compute the kth root of the eigenvalues to recover the correct convergence bounds.

C Experimental Detail

C.1 Random Initialization

C.1.1 CIFAR10 and CIFAR100

Data augmentation details. For the CIFAR10 dataset, we use [RandomCrop + ˚] for data aug-
mentation, and for the CIFAR100 dataset, we use [RandomCrop + ˚ + RandomRotation] for data
augmentation. ˚ can be replaced by three different data augmentation methods of random horizontal
flip, random vertical flip, or RandAugment [4].

Training details. For the CIFAR10 and CIFAR100 datasets, we have applied some common
settings. The initial learning rate is set to 0.1, and the batch size is set to 128. Additionally, a warm-up
phase of 1 epoch is implemented. Subsequently, different learning rate schedulers are used based on
the specific dataset. For the CIFAR100 dataset, we utilize the MultiStepLR scheduler. The learning
rate is decayed at the 60, 120, and 160 epochs, with a decay factor of 0.2. For the CIFAR10 dataset,
we employ the CosineAnnealingLR learning rate scheduler. In comparison with other optimizers or
optimization methods, we use the default settings of the other methods in the corresponding papers.

C.1.2 ImageNet.

For the ImageNet dataset, our data augmentation strategy involves [RandomResizedCrop + ˚ +
RandomRotation]. Here, ˚ can be substituted by one of the three data augmentation methods: random
horizontal flip, random vertical flip, or RandAugment [4]. We adopt the following training settings:
an initial learning rate of 0.1 and a batch size of 256. The model undergoes training for a total of 100
epochs. Additionally, we make use of the MultiStepLR scheduler, which decays the learning rate by
a factor of 0.1 at the 30th, 60th, and 90th epochs.

C.2 Finetuning

In this stage, all images are resized to 224 x 224 pixels to match the input size of the pretrained model.
All models use the ImageNet-1k pretrained weights sourced from the PyTorch library. Throughout
the finetuning process, we employed three data augmentation methods: random horizontal flip,
RandAugment, and AutoAugment.

For the training of ResNet50, we performed a grid search as shown in Table 8 to determine the
optimal learning rate and weight decay. Every training process lasted for 50 epochs with a batch size

18

Table 8: Hyperparameter search for finetuning on ResNet50.
Dataset Epochs Base LR Weight Decay

CIFAR10 50 {0.001, 0.003, 0.01, 0.03} {0.0001, 0.00005, 0.00001}
CIFAR100 50 {0.001, 0.003, 0.01, 0.03} {0.0001, 0.00005, 0.00001}

Table 9: Comparison between different training strategies with ResNet18 on Stanford Cars dataset.
Here "H" denotes random horizontal flip data augmentation. "R" denotes RandAugment data
augmentation. "A" denotes AutoAugment data augmentation. "Logit Ensemble + SWA" denotes a
logit ensemble approach that employs SWA models, which have been acquired through various data
augmentation techniques. "T-Budget" and "I-Budget" respectively represent Training budget and
Inference budget.

Method Data Augmentation Strategy Top-1 Acc Top-5 Acc T-Budget I-Budget

SGDM "H" 86.57 97.52 1x 1x
SWA "H" 87.60 98.21 1x 1x

SGDM "R" 87.30 98.01 1x 1x
SWA "R" 88.00 98.21 1x 1x

SGDM "A" 87.63 98.05 1x 1x
SWA "A" 88.11 98.15 1x 1x

Logit Ensemble "H" + "R" 89.24 98.44 2x 2x
Lookaround "H" + "R" 89.35 98.47 2x 1x

Logit Ensemble "H" + "R" + "A" 90.19 98.67 3x 3x
Lookaround "H" + "R" + "A" 90.76 98.78 3x 1x

Logit Ensemble+SWA "H" + "R" + "A" 90.39 98.80 3x 3x
Lookaround+SWA "H" + "R" + "A" 91.04 98.86 3x 1x

set to 128. For the training of ViT-B/16, we used the Adam optimizer, starting with a learning rate of
0.00001. We set β1 to 0.9, β2 to 0.999, and applied a weight decay of 0.01. To optimize memory
usage, the batch size was set to 64.

C.3 Compared with Sharpness-Aware Minimization

We adopt the default hyperparameters from the origin paper of SAM [10] and combine them with the
optimal hyperparameters found during random initialization or finetuning to conduct comparative
experiments between SAM and Lookaround.

C.4 Compared with Ensemble Method

We compare Lookaround with Logit Ensemble and Snapshot Ensemble [18]. In the setting of Logit
Ensemble, we train multiple models separately using different data augmentation methods, and then
average the outputs of these models for prediction. However, this approach requires more inference
time. In the setting of Snapshot Ensemble, we use the CosineAnnealingWarmRestarts learning rate
scheduler to collect four snapshots during the training process. Then, we average the outputs of these
different snapshots for prediction. This approach also requires more inference time.

Besides, we conducted a full experimental validation of Logit Ensemble and SWA under a new dataset
Stanford Cars, as shown in Table 9. Under the Stanford Cars dataset, Lookaround still performs
better than Logit Ensemble. Additionally, adding SWA into the training process of Lookaround can
further improve performance. Under the limit of single-model inference, Lookaround+SWA achieves
a Top-1 accuracy of 91.04%, exceeding the optimal 88.11% (SWA with AutoAugment).

C.5 Ablation Study

In our ablation experiments, we evaluate the individual contributions of two components: Data
Augmentation (DA) and Weight Averaging (WA) to the effectiveness of the Lookaround. Below are
the specific settings for different ablation experiments.

For the experiments without both DA and WA, three models were trained independently, each utilizing
a distinct data augmentation strategy, for a duration of 200 epochs. After training, we identified

19

and reported the highest accuracy achieved by these models on the test set. In the experiments that
employed only DA, we trained a single model using all data, combining the three data augmentation
strategies, without the use of weight averaging. For the experiments with only WA, three models were
trained separately for 200 epochs each, employing different data augmentation strategies. Following
this, we selected the model that showcased the best performance on the test set.

C.6 Additional Analysis

In the robustness experiments with the number of Data Augmentation methods, the six data augmen-
tation methods are given as: RandomVerticalFlip, RandomHorizontalFlip, RandAugment, AutoAug-
ment, RandomPerspective, RandomEqualize. All the Augmentation methods are from the PyTorch
library. When more data augmentation methods are used, the training time will be correspondingly
increased in our method. Therefore, in this paper’s main experiments, we only select three data
augmentation methods for comparison to reduce the time consumption.

D Contemporaneous Work

After completing our work, we discovered similar work at CVPR 2023 within the same year. Inspired
by similar motivations, the DART [20] method proposed by Samyak Jain et al. utilizes a similar
training structure that includes different data augmentation training of multiple sub-models, with
weight averaging occurring at intervals.

Methodology. DART starts weight averaging until the second half training process and adopts a
sparser weight averaging strategy. Meanwhile, the DART scheme uses the ERM [15] strategy to
initialize the model. In contrast, Lookaround maintains a consistent and dense weight averaging
strategy throughout its training, making it more user-friendly in real-world applications.

Theory. DART proves that the average while training is more robust from the perspective of noise
feature. On the other hand, Lookaround proves that it can get lower expected loss under the setting of
quadratic noise function.

Experiments. DART validates its effectiveness in domain generalization. Lookaround is tested in
the scenarios of finetuning and training from scratch.

In conclusion, although sharing a similar idea, two methods differ substantially in theoretical founda-
tions and experimental approaches. Both methodologies are complementary and furnish significant
insights for the broader research community.

Table 10: Comparison with the DART method with ResNet18
on CIFAR10 and CIFAR100. The results of DART: are taken
from reference [20].

Method CIFAR10 CIFAR100

Dart: 97.14 82.89
Lookaround 97.22 83.16

And we compared Lookaround with
DART with the same data augmenta-
tion, the results are shown in Table 10.
Our results were better than DART,
the reason behind this may come from
the fact that we used more frequent
"average steps" during training and
started "average steps" earlier in the
cycle. More frequent "average steps"
are more conducive to the training of Lookaround, as referenced in the main body of the paper.

E Relationship with Model Soups

Model Soups [46] is a framework for finetuning a common pretrained model using different hy-
perparameters and then averaging the weights of different finetuned models to improve model
performance and generalization. In the finetuning settings, we conducted an in-depth comparison
between Lookaround and Model Soups, with the related results presented in Table 11. The "Update
BN" suggestion originated from the reviewer’s feedback. Given that we employed a CNN archi-
tecture, the averaging of means and variances in the batch normalization (BN) layers of different
models within Model Soups might lead to distortions, failing to accurately represent the statistical
characteristics of the true hidden layer inputs. To address this, we passed the averaged model through

20

Table 11: Comparisons between Lookaround, Model Soups on ResNet50. "M=18" represents 18
different hyperparameters. "M=3" represents that Lookaround is trained using 3 different data
augmentation techniques. 18 different configurations come from the combinations of three data
augmentations (RandomHorizontalFlip, RandAugment, AutoAugment), three initial learning rates:
t0.01, 0.003, 0.001u and label smooth or not. Uniform Soups` represents that we use the top-10
accuracy models for uniform soups (the accuracy of these models ranges from 83.91% to 84.64%).

Method Update BN Top-1 Acc Top-5 Acc

Uniform Soups - 82.93 97.44
Uniform Soups ✓ 84.53 98.10

Uniform Soups` - 84.60 97.81
Uniform Soups` ✓ 85.57 98.04

Greedy Soups - 85.52 98.02
Greedy Soups ✓ 86.09 98.11

Lookaround (M=3) - 85.20 97.15

the entire training set using forward propagation to individually update the BN layer’s running mean
and running var.

The experimental results indicate that the Lookaround method, employing only three types of data
augmentation, still remains comparable in performance to the Model Soups method, which utilizes
18 types of data augmentation. This further attests to Lookaround’s generalization capability even
under limited data augmentation conditions. Additionally, we observed that the Lookaround method
is applicable to tasks with random initialization, while the Model Soups, due to its prerequisite of
pretrained weights, cannot be employed in such scenarios.

F Computational Complexity and Comparison

The Lookaround optimizer can be viewed as maintaining multiple backups of model weights during
the optimization process. Each backup is only trained under its corresponding data augmentation
strategy (forward and backward propagation) and updates the parameters using weight averaging
after multiple iterations.

In general, if the time for an iteration is defined as Ω, and the time to perform a weight average is
ω, given that the dataset contains B batches, the standard time complexity of SGDM to complete
an epoch is OpBΩq. The time complexity of Lookaround is OpdBΩ ` Bω

d q. Given that ω is much
smaller than Ω, this can be approximated as OpdΩBq.

In our experiments (corresponding to Table 1 to 5 in the paper), to establish fair comparisons in
computational among different approaches, we adopt the same augmentations for the competitors.
Specifically, within a single epoch, both the proposed Lookaround and the competitors undergo
training on an identical d times the data augmentations. With such a setup, we guarantee consistency in
the data volume utilized by each method, thereby ensuring fair comparisons in terms of computation.

21

	Introduction
	Related Work
	Method
	Lookaround Optimizer
	Theoretical Analysis
	Noisy Quadratic Analysis
	Convergence on Deterministic Quadratic function

	Experiments
	Random Initialization
	CIFAR 10 and CIFAR 100
	ImageNet

	Finetuning
	Compared with Sharpness-Aware Minimization
	Compared with Ensemble Method
	Ablation Study
	Additional Analysis

	Conclusion
	Exploration in the Loss Landscape
	Steady-state and Convergence Analysis of Lookaround
	Comparing the dynamics of Lookahead
	Deterministic quadratic convergence

	Experimental Detail
	Random Initialization
	CIFAR10 and CIFAR100
	ImageNet.

	Finetuning
	Compared with Sharpness-Aware Minimization
	Compared with Ensemble Method
	Ablation Study
	Additional Analysis

	Contemporaneous Work
	Relationship with Model Soups
	Computational Complexity and Comparison

