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ABSTRACT

We explore the node classification task in the context of graph domain adaptation,
which uses both source and target graph structures along with source labels to en-
hance the generalization capabilities of Graph Neural Networks (GNNs) on target
graphs. Structure domain shifts frequently occur, especially when graph data are
collected at different times or from varying areas, resulting in poor performance
of GNNs on target graphs. Surprisingly, we find that simply incorporating an aux-
iliary loss function for denoising graph edges on target graphs can be extremely
effective in enhancing GNN performance on target graphs. Based on this insight,
we propose our framework, GRAPHDET, a framework that integrates this auxil-
iary edge task into GNN training for node classification under domain adaptation.
Our theoretical analysis connects this auxiliary edge task to the graph general-
ization bound with A-distance, demonstrating such auxiliary task can imposes a
constraint which tightens the bound and thereby improves generalization. The
experimental results demonstrate superior performance compared to the existing
baselines in handling both time and regional domain graph shifts.

1 INTRODUCTION

Graph Neural Network (GNN) has shown success in learning on graph data on various web appli-
cations including social network Rossi et al. (2020); Fan et al. (2019), recommendation Wu et al.
(2022); Lee et al. (2024), fraud detection Wang et al. (2019); Liu et al. (2021); He et al. (2022),
etc. However, one major challenge is that real-world graph data continuously evolves over time,
introducing changes in both graph structure and node/edge features between the training and testing
graphs, which is a graph domain adaption problem. This may result in a substantial disparity be-
tween training and testing performance. However, collecting new labels and retraining models on
the latest datasets is expensive or sometimes infeasible. For instance, it may take days or weeks for
a customer to report a damaged or missing product, by which time the graph has already become
outdated. Therefore, designing a GNN training method that can solve or alleviate this graph domain
adaption challenges is essential for deploying GNNs in real-world applications.

However, the domain adaption problem on graph data is still under-explored. Unlike image data,
graphs are non-grid data and inherently contain valuable structural information, which plays a cru-
cial role in determining the final predictions. In particular, for node classification tasks, node la-
bels are highly influenced by connectivity patterns within the graph structures (Huang et al., 2020).
Therefore, domain adaptation methods should consider such structural information, making it chal-
lenging to directly apply existing computer vision techniques to graph domain adaption. Moreover,
graph domain adaption has a wide application in real-world scenarios. For example, GNNs need
to be trained on graphs collected from a specific time period with scarce and costly labels, while
they are expected to have the ability to perform the classification tasks on future graphs where labels
are unavailable. Similarly, labeled graphs may be collected from one region, while people expect
trained GNNs to generalize well when applied to graphs gathered from other regions. However,
variations in time and geographical domains inevitably introduce shifts in graphs, particularly in
their structural information.

In this work, we propose our framework GraphDeT, incorporating the edge tasks on target graphs
when training GNNs, improving the GNN generalization bound. We summarize our contributions
here:
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• We find that incorporating auxiliary edge tasks in our framework GRAPHDET is highly effective,
demonstrating significant performance improvements over existing baselines. Specifically, the
accuracy improvement on Arxiv is from 7.30% to 21.83%, and GRAPHDET achieves significant
improvement on 8 out of 10 graph domain adaption tasks on MAG with improvement from 3.45%
to 26.75%. This insight may provide valuable guidance for future method design in graph domain
adaption problem.

• We extend the domain generalization bound by explicitly incorporating the structural informa-
tion of graph data. By building the connection between this bound and our proposed auxiliary
edge task, we demonstrate that the task can effectively constrain the A-distance for graph domain
generalization problem.

2 PRELIMINARY AND RELATED WORKS

2.1 PRELIMINARY

Graph Data, denoted as G, is formally defined as G = (V, E) with n nodes. Specifically, V =
{v1, · · · , vn} represents a set of nodes containing n elements with node features X ∈ Rn×d, where
d is the dimension of input node features. The set of edges, denoted as E , is formally defined as
E ⊆ V × V . Typically, it can be represented by the adjacent matrix A ∈ {0, 1}n×n, which is a
binary matrix. In this matrix, Aij = 1 if there exists an edge connecting node vi to vj , and Aij = 0
otherwise. For the node classification task in this paper, each node has its label, denoted as Y ∈ Nn.
For the graph domain adaption problem, source graphs also known as training graphs are separated
from target graphs also known as test graphs. We use these settings in the following sections.

Graph Neural Networks (Kipf and Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018;
Corso et al., 2020; Li et al., 2019; Gao and Ji, 2019) follow a message passing scheme (Scarselli
et al., 2008; Gori et al., 2005). Given the hidden features from layer l, the hidden features in next
layer l + 1 are defined as

h(l+1) = UPDATE
(

AGGREGATE(h(l),A);h(l)
)
. (1)

The aggregation module gathers the neighbors’ information of each node using this adjacent matrix
A in the aggregation module, and then the update module uses aggregated features to update the
original node features h(l) to get the new node features h(l+1). The GNN model with t message
passing layers takes the graph G as the input of the model, denoted f(G), and outputs the hidden
feature h(t). This hidden feature is then fed into a classifier g to make the final prediction g(h(t)) =

g ◦ f(G) = Ŷ , where Ŷ is the predicted label. Besides, linear GNNs precompute the node features
and then feed these precomputed features into the later Multi-Layer Perceptrons (MLPs) to learn the
classifier. For example, Frasca et al. (2020); Chien et al. (2021); Wu et al. (2019); Lee et al. (2024)
precompute the k-hop aggregated features using the variant adjacent matrix Âk, denoted as:

Θk = ÂkX, (2)

where Θk denotes the features aggregated from k-hops.

Unsupervised Domain Adaption (UDA) is a widely discussed problem in the computer vision do-
main (Zhang and Gao, 2022; Zhao et al., 2020; Wilson and Cook, 2020; Csurka, 2017). Especially
for autonomous driving tasks (Schwonberg et al., 2023), where obtaining real-world labels across
various conditions is challenging and costly, simulated environments provide a practical alternative
by generating synthetic data that is easier to produce and label. Therefore, in these tasks, simulated
synthetic images with labels will be treated as the source domain, and the model will be trained on
these and then tested on the real-world data. Various works have explored the potential to apply
adversarial methods (Xiao et al., 2024; Rangwani et al., 2022; Du et al., 2021; Wei et al., 2021),
optimal transport (Nguyen et al., 2021; Fatras et al., 2021), pseudo-label based methods (Shin et al.,
2020; Chen et al., 2020) to help improve the model trained on source data to have a better perfor-
mance on test data. To analyze the domain adaption problem and provide theoretic guidance for the
following methods, several works (Ben-David et al., 2006; 2010; Zhao et al., 2019) exploring the
generalization upper bound for the domain adaption problem.
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Theorem 2.1 (Ben-David et al. (2006); Zhao et al. (2019)): Let H be a hypothesis space of VC-
dimension d and D̂S (resp. D̂T ) be the empirical distribution induced by a sample of size n drawn
from DS (resp. DT ). Then w.p. at least 1− δ,∀h ∈ H,

ϵT (g) ≤ϵ̂S(g) + λ∗ +O

(√
d logn+ log(1/δ)

n

)

+
1

2
dH∆H

(
D̂S , D̂T

)
, (3)

where ϵT denotes the expected error on target domain, and ϵ̂S denotes the empirical error on
source domain. The classifier g belongs to hypothesis space H .

In this bound equation, the A-distance is denoted as

dH∆H

(
D̂S , D̂T

)
= |PrDS

[Zg1∆Zg2 ]− PrDT
[Zg1∆Zg2 ]| ,

where Zg = {z ∈ Z : g(z) = 1}, Z is the input embedding space, g1 is the best classifier learned
from source domain, and g2 learns from both domains, denoted as g2 = argmaxg∈H(ϵS(g) +
ϵT (g)). The λ∗ = λS +λT which represent the summation of errors of g2 on source and target data.
Moreover,

Zg1∆Zg2 =

{
1 if g1(Z) ̸= g2(Z),
0 if g1(Z) = g2(Z)

This above error bound has a more simpler version (Ben-David et al., 2006),

ϵT (h) ≤ λT + PrDT
[Zg1∆Zg2 ] (4)

Intuitively, this bound is related to the different prediction results between the classifiers g1 and g2.

In this work, we focus on the node classification problem, where we have a source graph GS =
(VS , ES) and a target graph GT = (VT , ET ), with unpaired nodes between these two graphs. The
source graph GS comes with node labels YS , while the target graph GT is unlabeled during training.
Compared to prior UDA approaches, in this work, we emphasize that the structural information of
both source and target graphs are important for tightening the generalization bound for graph UDA
problems.

2.2 RELATED WORKS

Graph domain adaption (Shi et al., 2024; Dai et al., 2022; Shen et al., 2023) is challenging when
training GNNs on a source graph and testing on target graphs due to distribution shifts between them.
Various works (Mao et al., 2024; Pang et al., 2023; Cai et al., 2024; Zhang et al., 2019; Wu et al.,
2020; Zhu et al., 2021; 2022; Fang et al.) have been explored to tackle this problem. StruRW and
Pairwise Alignment (PA) (Liu et al., 2023) study conditional structure shifts (CSS) and label shifts,
using pseudo labels to calculate edges weights alleviating CSS during training for graph domain
adaption.

SpecReg (You et al., 2023) analyzes the domain adaptation generalization bound using optimal
transport and introduces a regularization term on graph spectrum to constrain the bound’s constant
coefficients. A2GNN (Liu et al., 2024a) further tightens the bound of the constant coefficients in
SpecReg shown in Lemma3 of A2GNN. Compared to SpecReg and A2GNN, our framework lever-
ages an auxiliary edge-prediction task to explicitly constrain the A-distance. As stated in Section 4.1
of SpecReg, ”Other data-relevant properties (e.g. W1(PS(G), PT (G))) are left to future works”.
This part is related to A-distance, which naturally captures the data-relevant property. Our proof
builds on this insight and represents a step forward from prior work in graph domain generaliza-
tion by directly constraining the A-distance. Although the proposed auxiliary edge tasks are simple
and straightforward, they provide an effective mechanism for constraining the generalization bound
while incorporating structural information, and our work offers the theoretical justification for why
this approach is effective.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The pipeline of our proposed GRAPHDET. For the graph domain adaption task, both
source graphs and target graphs are used. In the upper branch, the source graph is fed into the GNN
model get node embeddings which are applied to MLPs for the class prediction tasks with the labels
from source graph. In the bottom branch, the target graphs are attached with random noisy edges
and then fed into the shared GNN architectures. The obtained embeddings are then fed into MLPs
to perform classification on these edges.

3 METHOD - GRAPHDET

In this section, we firstly present several data analyses using the Arxiv dataset and illustrate the intu-
ition of leveraging link tasks on target graphs for enhancing graph domain adaptation generalization
performance. Next, based on these observations, we propose GRAPHDET.

3.1 PROPOSED GRAPHDET AND ITS VARIATIONS

In this subsection, we introduce GRAPHDET, which is simple and straightforward. It integrates
auxiliary edge tasks trained alongside the classification loss on source graphs. After the details about
this framework, we then provide a theoretical justification to provide insights for its effectiveness on
graph domain adaptation tasks.

First, we show one of the potential edge task aiming to denoise the target graphs within our frame-
work. Specifically, we first add random edges on the target graph, denoted as:

ÃT = AT +A
′

T , (5)

where A
′

T is a sparse matrix randomly sampled from the possible node pairs, treated as the negative
edges. This noisy graph is fed into GNNs to get the node embeddings which are served to perform
the link classification task to detect which edges are noisy edges:

h̃T = f
(
G̃T (ÃT ,XT )

)
s̃uv = σ

(
ϕ(h̃T

u ◦ h̃T
v )
)
, (6)

where u, v are two nodes, ◦ denotes the Hadamard product and ϕ denotes the MLPs for edge pre-
diction. For the edge denoising loss function, it is defined as:

ℓDeT = E(u,v)∼AT
log s̃uv + E(u,v)∼A

′
T
log(1− s̃uv), (7)

which performs edge classification task on the input noisy target graphs to figure out the real edges
within the original target graphs. The training procedure also contains the classification loss function
on source graphs:

ℓcls = DKL(YS∥softmax(g ◦ f(GS(AS ,XS))). (8)
During training, the GNNs are trained with both loss functions and the overall pipeline is demon-
strated in Figure 1. Note that there are various edge tasks. For example, we can take use of the
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GAE (Kipf and Welling, 2016), taking all edges as input and reconstructing these edges. We can
also use link prediction tasks to split part of edges as input of target graphs, and predict the remaining
edges (Zhang and Chen, 2018). We compare these multiple potential edge tasks in Section 4.2.

Selecting the edge denoising task for target graphs offers several intuitive advantages. Firstly, unlike
traditional link prediction tasks that require withholding only a portion of edges during training,
edge denoising retains all edges as input. This approach ensures that the GNNs are exposed to the
complete graph structure, facilitating a more comprehensive learning process. Secondly, compared
to GAE, our method, GRAPHDET, deliberately introduces fake edges into the target graphs. This
intentional addition prevents the model from merely memorizing existing connections. Instead, it
compels the model to learn to distinguish between original and fake graph patterns, thereby enhanc-
ing its ability to generalize and recognize meaningful structures within the data.

Algorithm 1 GRAPHDET: graph domain adaption with auxiliary edge tasks on target graphs, e.g.
denoising target graphs

Require: Input source graph GS(AS ,XS) with labels YS and target graph GT (AT ,XT ).
Ensure: w

1: Randomly initialize the model parameters w
2: for epoch = 0 to N do
3: Add random edges on target graphs according to Eqn. equation 5
4: Calculate the edge score on all true and fake node pairs according to Eqn. equation 6
5: Get ŶS = g ◦ f(SS) on source graph
6: Calculate the denoising target graph loss according to Eqn. equation 7
7: Calculate the node classification loss according to Eqn. equation 8
8: Update the model parameters w with optimizer
9: end for

3.2 THEORETICAL JUSTIFICATION

In this section, we present the theoretical justification for how auxiliary edge tasks on target graphs
contribute to solving the graph domain adaptation problem.

Auxiliary Edge Tasks and Generalization Bound. The auxiliary edge-prediction task aims to
make embeddings of connected nodes in the target graph similar in the embedding space. Since
the downstream classifier is Lipschitz continuous, this similarity in embeddings translates into small
differences in the classifier outputs for connected nodes. Consequently, the disagreement between
the classifier trained on the source graph (g1) and the hypothetical classifier trained on the target
graph (g2) is reduced. A smaller disagreement score directly tightens the A-distance term in the
domain adaptation generalization bound, leading to improved generalization. We provide the proof
in Appendix A for the proposition 3.1.
Proposition 3.1 (Generalization Bound for GRAPHDET on Graph Domain Adaption Task):
For the graph domain adaption problem, let R : G(A,X) → Z be a fixed representation function
mapping from target graphs to a latent space. Let g1 and g2 to be two classifiers defined on Z ,
and g1 = argming ϵS(g), g2 = argming(ϵS(g) + ϵT (g)). Meanwhile, g1 and g2 are L1 and
L2-Lipschitz continuous, respectively. Let Cu∗ denote a connected component in target graph
with node u∗ have the lowest d (g1(u∗), g2(u

∗)), NCu∗ denotes the number of nodes within this
connected component and N denotes the number of nodes in target graph, and Kavg(Cu∗) be the
average hop distance between the nodes within Cu∗ and u∗. Let ξ1 be the constrains of l2-distance
on node embeddings along any edge and ξ2 be the constrain on the disagreement scores. Under
these conditions, the A-distance between g1 and g2 on DT is bounded with probability 1− δ by

PrDT
(Zg1∆Zg2) ≤

1

ξ2

∑
Cu∗ (GT )

NCu∗ (GT )

N

(d (g1 (xu∗) , g2 (xu∗)) +Kavg(Cu∗)(L1 + L2)ξ1) . (9)
With the proposition 3.1, we can get that when we constrain the node embeddings along the edges
to be similar, which is one of the goals of these edge tasks. The upper bound tends to be smaller
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Table 1: Statistics and properties of the datasets.

Dataset # of nodes # of edges Avg. degree # of features # of classes Train/Val/Test # of dummy nodes # of edges connected to dummy nodes

Arxiv (1950, 2007) 4,980 11,698 2.35 128 40 2,988/-/- - -
Arxiv (1950, 2009) 9,410 26,358 2.80 128 40 5,646/-/- - -
Arxiv (1950, 2011) 17,401 60,972 3.50 128 40 10,440/-/- - -
Arxiv (2014, 2016) 69,499 464,838 6.69 128 40 -/5,674/22,700 - -
Arxiv (2016, 2018) 120,740 1,230,830 10.19 128 40 -/10,248/40,993 - -
MAG US 132,558 1,394,900 10.52 128 20 79,534/14,123/56,586 61,849/(0.47) 716,612/(0.51)
MAG CN 101,952 571,122 5.60 128 20 61,171/7,703/30,318 63,931/(0.63) 420,096/(0.74)
MAG DE 43,032 253,326 5.88 128 20 25,819/4,326/17,288 21,418/(0.50) 146,738/(0.58)
MAG JP 37,498 181,888 4.85 128 20 22,498/2,969/11,988 22,541/(0.60) 130,026/(0.71)
MAG RU 32,833 135,988 4.14 128 20 19,699/992/3,882 27,959/(0.85) 125,278/(0.92)
MAG FR 29,262 156,444 5.35 128 20 17,557/2,765/11,152 15,345/(0.52) 87,314/(0.56)
ogbn-products 2, 449, 029 61, 859, 140 25.26 100 47 0.100/0.020/0.880 - -

as ξ1 becomes smaller if d (g1 (xu∗) , g2 (xu∗)) is fixed. That is the motivation why such edge tasks
can help improve the generalization ability of graph domain adaption. However, we will also realize
that if all the node embeddings on target graphs are the same, the node embeddings do not contain
any information, and this bound is meaningless as d (g1 (xu∗) , g2 (xu∗)) will be the same for all
nodes. Therefore, at the same time, we need to consider the other goal of these edge tasks. Usually,
they will ensure the embeddings of connected nodes have high similarity while the nodes that are
far away have low similarity. These edge tasks are trying to extract informative node embeddings
considering the graph structures, and force the node embeddings to be different. As widely discussed
in Xie et al. (2022), we can treat these edge tasks as a loss to extract information to avoid that
the node embeddings collapse to the same embeddings. When the node embeddings can capture
informative structural information, with the inherent relationship between source and target graphs,
we can expect d (g1 (xu∗) , g2 (xu∗)) yield reasonable values for large connected components within
the target graphs.

In conclusion, the edge tasks should consider both perspectives. Trying to extract informative struc-
tural information to avoid the collapse of node embeddings, and make the node embeddings along
the edges to be similar to tighten the generalization upper bound.

4 EXPERIMENTS

Software and Hardware. The code implementatioin is based on PyTorch (Paszke et al., 2019),
Pytorch geometric (Fey and Lenssen, 2019) and DGL (Wang, 2019). Moreover, we conduct our
experiments on NVIDIA A10G with 24GB memory, and AMD EPYC 7R32 CPU with 3271 MHz.

4.1 GRAPHDET

Dataset. We evaluate our proposed algorithm, GRAPHDET, through extensive graph domain adap-
tation node classification tasks. These include the time-domain adaptation dataset Arxiv (Hu et al.,
2021; Liu et al., 2024c) and the regional-domain adaptation dataset MAG (Wang et al., 2020; Hu
et al., 2021; Liu et al., 2024c). For the Arxiv dataset, there are three experimental settings. The
source graphs consist of papers published from 1950 to 2007, 1950 to 2009, and 1950 to 2011,
while the testing is conducted separately on target graphs containing papers published from 2014 to
2016 and from 2016 to 2018. For the MAG dataset, graphs are collected from six different countries:
the US, China (CN), Germany (DE), Japan (JP), Russia (RU), and France (FR). The experiment will
take one graph as the source graph to perform training and then test on target graphs collected in the
other countries. Additionally, we use the ogbn-products dataset (Hu et al., 2021) for further inves-
tigation into semi-supervised learning tasks. In this setting, the training and test sets are split based
on different sales rankings, introducing a distribution shift. Detailed statistics for these datasets are
presented in Table 1.

Baselines. We compare our methods with the following baselines: ERM, which denotes the
training of GNNs by minimizing the empirical risk and serves as a standard baseline to illustrate
the outcome when no specific techniques are applied to address the domain adaptation problem;
DANN (Ganin et al., 2016); IWDAN (Tachet des Combes et al., 2020); UDAGCN (Wu et al., 2020);
SPECREG (You et al., 2023); StruRW (Liu et al., 2023); and Pairwise Alignment (PA) (Liu et al.,
2024c).
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Table 2: Comparison between our proposed GRAPHDET and other baselines on Arxiv dataset. The
reported results are based on three random runs with accuracy scores as metric. The top performance
is highlighted with bold font. Underline indicates that the corresponding methods have the second
best performance.

1950− 2007 1950− 2009 1950− 2011
DOMAINS 2014− 2016 2016− 2018 2014− 2016 2016− 2018 2014− 2016 2016− 2018

ERM 37.91± 0.31 35.22± 0.71 43.50± 0.35 40.19± 3.62 51.76± 0.93 52.56± 1.06
DANN 37.31± 1.54 36.84± 1.40 43.57± 0.47 42.04± 2.70 53.02± 0.67 52.69± 1.26
IWDAN 36.16± 2.91 25.48± 9.77 41.26± 2.08 35.91± 4.28 46.73± 0.62 42.70± 3.21
UDAGCN 38.10± 1.62 OOM 42.85± 2.09 OOM 53.13± 0.31 OOM
SPECREG 37.09± 0.62 33.46± 0.83 43.14± 2.16 43.06± 1.09 52.63± 1.29 52.46± 0.83

StruRW 38.56± 0.77 37.17± 2.75 43.55± 2.37 43.55± 2.37 53.19± 0.45 53.64± 0.65
PA-BOTH 39.98± 0.77 40.23± 0.30 44.60± 0.42 44.43± 0.34 53.56± 0.98 51.60± 0.24

GRAPHDET 50.51± 2.35 51.47± 1.16 52.19± 2.08 53.01± 2.26 57.78± 0.57 58.16± 1.02
Improvement 20.84% 21.83% 14.54% 16.18% 7.30% 7.78%

Setup. We first employ the GraphSAGE (Hamilton et al., 2017) model within our framework to
conduct experiments on both the Arxiv and MAG datasets. All other baselines follow previous
works (Liu et al., 2024c), with the same GNN architecture. Specifically, we use a three-layer GNN
with a hidden feature size of 300, followed by a two-layer MLPs as classifier with hidden features of
200 and a two-layer MLPs as link predictor with hidden features of 80. Additionally, the Hadamard
product is applied to fuse the node features for each node pair in the link predictor. There is no
normalization or residual connection within the GNNs following the previous works. For the target
graph denoising procedure, we set the number of sampled negative edges to be the same as the edges
in the original target graphs, ensuring a balanced distribution of real and fake node pairs. For the
training hyper-parameters, we select the learning rate from {0.1, 0.03, 0.01, 0.005, 0.001, 0.0005}
and dropout from {0, 0.1, 0.2, 0.3, 0.5}. Meanwhile, for the weight decay, we explore from the
range {1e − 3, 5e − 4, 1e − 4}. Moreover, for the MAG datasets, we also apply the Pairwise
Alignment (PA) within our framework. Thus, we also explore the hyper-parameters of PA following
the previous parameter selection (Liu et al., 2024c). Specifically, we select λβ from {0.005, 0.01}
related to alleviating the label shifting, δ from {1e − 4, 1e − 3} related to the degree of structure
shift, λw from {1, 5, 10} related to the conditional structure shift.

Our experiments are conducted over three runs with different random seeds. The final results are
reported as the average accuracy on the target graphs along with the standard deviation. Additionally,
in the MAG dataset, there is a dummy class, indicating that all nodes assigned to this class belong
to other unknown classes. Therefore, following previous settings, the accuracy scores on test graphs
are computed excluding nodes belonging to this dummy class, while during training, these nodes
are treated the same as all other nodes.

Results. First, we evaluate the performance of our proposed methods on the time-domain adap-
tation dataset Arxiv. The corresponding accuracy on the target dataset is presented in Table 2. We
observe a significant performance improvement in our methods compared to other baselines. Specif-
ically, when the time gap is large, such as training on Arxiv (1950–2007) and testing on the target
graph from Arxiv (2016–2018), our approach achieves a substantial improvement of 21.83% over
the second-best baseline, PA-BOTH, with a 11.24 accuracy score increase. As the time difference
decreases, meaning that the source graph includes papers that are closer to the target graphs, we
observe that the performance of both the baselines and our method improves as the distribution shift
reduces. Although the improvement ratio becomes smaller, our method still achieves a notable gain
of 7.30% on the source graph Arxiv (1950–2011) and target graph Arxiv (2014–2016) compared to
the second-best baseline, PA-BOTH, with an accuracy score improvement of 4.22.

Then, we evaluate the performance of our proposed methods on the regional domain adaptation
dataset MAG. The corresponding accuracy on the target dataset is presented in Table 3. When
analyzing the graph data statistics, we find that dummy nodes have a significant impact on the MAG
dataset. As shown in Table 1, a large proportion of nodes within the graphs are dummy nodes, and
the edges connected to these dummy nodes dominate the overall graph connectivity. For instance, in
the RU dataset, dummy nodes account for 85% of all nodes, while 92% of the edges are connected
to dummy nodes. Notably, the proportion of dummy nodes and the ratio of edges connected to them
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Table 3: Comparison of performance on MAG datasets with accuracy scores. The bold font and
underline indicate the best model and second best performance respectively. We compare the meth-
ods with CSS and without CSS, individually.

Domains US → CN US → DE US → JP US → RU US → FR
ERM 26.92± 1.08 26.37± 1.16 37.63± 0.36 21.71± 0.38 20.11± 0.34
DANN 24.20± 1.19 26.29± 1.44 37.92± 0.25 21.76± 1.58 20.71± 0.29
IWDAN 23.39± 0.93 25.97± 0.41 34.98± 0.68 22.80± 3.03 21.75± 0.81
UDAGCN OOM OOM OOM OOM OOM
SPECREG 23.74± 1.32 26.68± 1.44 37.68± 0.25 21.47± 0.84 20.91± 0.53
GRAPHDET 32.42± 0.51 34.75± 1.62 45.01± 0.43 30.60± 1.58 28.04± 1.03
Improvement 16.96% 23.22% 15.75% 25.50% 22.43%

STRURW 31.58± 3.10 30.03± 2.23 37.20± 0.27 28.97± 2.98 22.73± 1.73
PA-BOTH 40.06± 0.99 38.85± 4.71 47.43± 1.82 37.07± 5.28 25.21± 3.79
GRAPHDET + PA-BOTH 39.92± 0.60 40.24± 0.48 51.55± 1.47 40.24± 0.48 32.29± 0.25
Improvement - 0.35% 3.45% 7.99% 7.88% 21.93%

Domains CN → US CN → DE CN → JP CN → RU CN → FR
ERM 31.47± 1.25 13.29± 0.36 22.15± 0.89 10.92± 0.82 20.11± 0.34
DANN 30.23± 0.99 13.46± 0.40 21.48± 1.26 11.94± 1.90 20.71± 0.29
IWDAN 31.72± 1.24 13.39± 1.06 19.86± 1.21 10.93± 1.33 21.75± 0.81
UDAGCN OOM OOM OOM OOM OOM
SPECREG 26.52± 1.75 13.76± 0.65 20.50± 0.08 10.50± 0.53 20.91± 0.53
GRAPHDET 42.08± 0.57 27.18± 1.21 34.45± 2.00 22.35± 1.10 21.04± 0.17
Improvement 24.61% 49.37% 35.70% 46.58% -3.25%

STRURW 37.08± 1.09 19.93± 1.82 29.76± 2.56 17.94± 9.82 22.73± 1.73
PA-BOTH 45.16± 0.50 26.19± 1.01 38.26± 2.27 33.34± 1.94 25.21± 3.79
GRAPHDET + PA-BOTH 45.42± 2.11 31.55± 2.50 43.28± 3.11 36.68± 1.59 34.42± 2.51
Improvement 0.57% 16.9% 11.60% 9.11% 26.75%

Table 4: Comparison of various edge tasks on Arxiv.

SOURCE TARGET ERM GAE Loss Link Prediction Loss DeT Loss

1950− 2007
2014− 2016 37.91± 0.31 47.91± 0.96 48.82± 1.47 50.51± 2.35
2016− 2018 35.22± 0.71 49.90± 2.58 50.17± 0.76 51.47± 1.16

1950− 2009
2014− 2016 43.50± 0.35 50.71± 3.24 49.09± 4.27 52.19± 2.08
2016− 2018 40.19± 3.62 47.19± 6.64 45.94± 7.67 53.01± 2.26

1950− 2011
2014− 2016 51.76± 0.93 57.29± 0.53 57.13± 0.17 57.78± 0.57
2016− 2018 52.56± 1.06 57.80± 0.75 58.08± 0.08 58.16± 1.02

vary significantly across different graphs, ranging from 47% to 85% for dummy nodes and from
51% to 92% for edges. This unavoidable difference on the influence of dummy nodes leads to a
significant conditional structure shift (CSS), as discussed in (Liu et al., 2023; 2024c). Therefore,
we compare our methods with baselines that do not incorporate specific techniques to address this
issue. Additionally, we integrate PA-BOTH within our framework and evaluate its final performance
against StruRW and PA-BOTH. We can find a clear performance improvement compared to all the
other baselines on most regions without alleviating CSS techniques. Specifically, the improvement
of domain adaption from US to other five regions from 15.75% to 25.5%. For domain adaptation
from CN to other areas, the improvement is significant, increasing from 24.61% to 46.58%, except
in the case of adaptation from CN to FR. Notably, while our method does not enhance performance
for CN-to-FR adaptation, applying the CSS reduction technique PA-BOTH with our method boosts
the improvement to 26.75%, indicating that such adaption relies on reduction CSS technique a lot
and our approach is particularly effective when addressing CSS-related challenges. Furthermore,
incorporating PA-BOTH enhances the overall performance of our method. While the adaptation
between the US and CN with PA-BOTH shows similar results with or without our approach, our
method significantly improves performance compared to the previous PA-BOTH without auxiliary
edge tasks, increasing from 3.45% to 26.75% on all the other adaption settings. Above all, we
believe the improvements on both time and regional domain adaption settings are impressive.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Performance on the ogbn-products dataset.

Methods ERM GRAPHDET

GraphSAGE 78.28± 0.16 80.02± 0.23
SIGN 80.52± 0.16 81.14± 0.13

4.2 ABLATION STUDIES ON VARIOUS EDGE TASKS

In this section, we explore three different edge tasks within our framework. As discussed in sec-
tion 3.1, there are multiple ways to implement edge tasks that achieve similar goals discussed in
section 3.2. Specifically, we conduct our experiments following the previous settings on Arxiv
datasets, and the final results are reported in Table 4. We can observe that all of these edge tasks can
improve the model performance on these datasets. When the time difference is close, these methods
do not have a clear difference on the performance, such as source graph Arxiv (1950-2011) and tar-
get graph Arxiv (2014-1016). When the time difference is a little larger, such as source graph Arxiv
(1950, 2007) and target graph Arxiv (2016-2018) and the case source graph Arxiv (1950-2009) and
target graph Arxiv (2016-2018), DeT Loss is constantly better than the other two.

4.3 STUDY ON SEMI-SUPERVISED LARGE-SCALE DATASET WITH DISTRIBUTION SHIFTING

The domain adaptation settings are similar to those of the semi-supervised learning task with distri-
bution shifting. Both tasks use training (source) and testing (target) graphs during training, as well
as the labels from the training graphs. The key difference lies in the connectivity between train-
ing and testing nodes. In semi-supervised learning settings, nodes in the training and testing sets
are interconnected by edges, whereas in graph domain adaptation tasks, such edges typically do not
exist. Given their similarities, we choose to evaluate our method on the large-scale, real-world ogbn-
products dataset, which consists of millions of nodes and edges. The dataset is split based on sales
ranking, with high sales ranking nodes included in the training set. This leads to a distribution shift,
making it particularly interesting to explore whether our framework can enhance generalization on
test graphs under these conditions.

Setup. We employ GraphSAGE Hamilton et al. (2017) and SIGN Frasca et al. (2020) model within
our framework to conduct experiments on the ogbn-products dataset. Specifically, for GraphSAGE,
we use a three-layer SAGE with a hidden feature size of 256 followed by a two-layer MLPs as
classifier and another two-layer MLPs as link predictor with hidden features of 256. 1 For SIGN,
we use a five-layer SIGN with a hidden size of 512 followed by a two-layer MLPs as classifier and
another two-layer MLPs as link predictor with hidden features of 512. 2

Results. Our experiments are conducted over ten runs with different random seeds, and the final
results are reported as the average accuracy in Table 5. We observe a constant performance im-
provement of our method compared to the baseline. Specifically, our approach achieves 1.74% and
0.62% accuracy improvement on GraphSAGE and SIGN, respectively.

5 CONCLUSIONS

In this work, we introduce GRAPHDET, a framework designed to enhance graph domain adaptation
performance. It uses auxiliary edge tasks, such as denoising target graphs, to achieve this objective.
Our experiments demonstrate superior performance compared to existing baselines in both time
and regional graph domain adaptation. Additionally, we provide a theoretical justification, offering
insights into the role of auxiliary edge tasks in tightening the graph domain adaptation bound.

For future directions, given these insights, it would be interesting to explore the extension of auxil-
iary edge tasks in graph domain adaptation. In real-world applications, particularly in online learning
scenarios where graphs are continuously collected over time and instant labels are difficult to obtain,
applying domain adaptation algorithms in an online learning setting presents a critical and emerging
challenge.

1Following: https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-products/graphsage
2Following: https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/sign

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.

Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain
adaptation: A generative view. ACM Transactions on Knowledge Discovery from Data, 18(3):
1–24, 2024.

Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma. Self-training avoids using spurious
features under domain shift. Advances in Neural Information Processing Systems, 33:21061–
21071, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velicković. Principal
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A PROOF FOR PROPOSITION 3.1

First, for edge tasks, we consider that their objective is to compute heuristic node similarity scores,
representing the likelihood of links (Liben-Nowell and Kleinberg, 2003; Kumar et al., 2020). GNNs
can be used to learn the node embeddings, which are used to perform link prediction tasks (Zhang
and Chen, 2018). With a slight abuse of the objective targets, we can consider one of the goals of
these edge tasks to be ensuring that the embeddings of connected nodes have high similarity, denoted
as:

∥xu − xv∥ ≤ ξ1, (10)
where ET represents the edges in the target graphs, and the node embeddings xu and xv denote
the embeddings of the nodes at the endpoints of the edge after being processed by the GNN model
f(GT ). In this case, the link tasks aim to tighten ξ1 and encourage connected nodes to learn closer
node embeddings. Meanwhile, the node embeddings will also be used for the subsequent classifica-
tion task with a classifier g. We assume that the classifier is lipschitz continuous with a constant L,
a commonly adopted assumption (You et al., 2023). Therefore, we have:

∥g(xu)− g(xv)∥ ≤ L ∥xu − xv∥ ≤ Lξ1. (11)

Next, we first recall the generalization bound in Eqn. equation 4 and the definition of these two clas-
sifiers g1 and g2. We then apply this on the embeddings of the connected nodes xu and xv . Instead
of directly analyze, we consider the disagreement score value d(g1(x), g2(x)) = ∥g1(x)− g2(x)∥
measuring the difference on the output of g1(x) and g2(x). As the classifiers g1 and g2 are L1 and
L2-lipschitz continuous, we have:

|d (g1(xu), g2(xu))− d (g1(xv), g2(xv))|
≤ | ∥g1(xu)− g2(xu)∥ − ∥g1(xv)− g2(xv)∥ |
≤ ∥(g1(xu)− g2(xu))− (g1(xv)− g2(xv))∥
≤ ∥(g1(xu)− g1(xv)) + (g2(xu))− g2(xv))∥
≤ L1∥xu − xv∥+ L2∥xu − xv∥
≤ (L1 + L2)ξ1, (12)

with the reverse triangle inequality. Then, we perform this on all the nodes instead of edges, we
have:

d (g1(xu), g2(xu))

≤ min

{
min
v∈Nu

d (g1(xv), g2(xv)) + (L1 + L2)ξ1, d (g1(xu), g2(xu))

}
≤ d (g1(xu∗), g2(xu∗)) +K(u, u∗)(L1 + L2)ξ1, (13)

where u∗ = argminu′∈Cu(GT ) d (g1(xu′), g2(xu′)) s.t.u ∈ Cu(GT ) denotes the node that have the
lowest disagreement score in the graph component Cu(GT ) which contains node u. Nu denotes the
neighbors of node u. Additionally, K(u, u∗) represents the hop distance between node u and u∗.

When it comes to PrDT
[Zg1∆Zg2 ], which is the upper bound in Eqn. equation 4, it can be ap-

proximated by the disagreement scores of all nodes within the target graphs. We assume that when
the disagreement scores are smaller than a constrain ξ2, the g1 and g2 tend to agree on the final
prediction with probability 1− δ on DT . Formally, it can be expressed as follows:

PrDT
(Zg1∆Zg2) ≤

1

ξ2
Exu∼DT

[d (g1 (xu) , g2 (xu))] , (14)

with 1 − δ probability. When we perform link tasks to constrain the ξ1, the overall disagreement
scores on target will also be constrained, forcing the domain adaption bound to be tighter.

Summary is shown here:

• Our work focuses on analyzing and constraining the generalization bound in this context.
We do not explicitly match the nodes on source or target graphs, but constrain the GNN
to obtain the node embeddings in which a classifier, denoted as g1, trained with source
graph embeddings and source graph labels can have comparable performance compared to
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the classifier, denoted as g2, trained using target graph embeddings and target labels when
testing. In particular, we only have source graph labels to train g1, but we can make the per-
formance of g1 on target graphs become closer to g2, that is, achieve better generalization
ability.

• We first find the node on the target graph that has the most similar results under g1 and
g2, denoted as xu∗ . This is a bridge node on g1 and g2, and the probability of making a
different prediction is shown as d(g1(xu∗), g2(xu∗)). Then, we need to extend it to all the
nodes on target graphs, shown as Kavg(Cu∗)(L1 + L2)ξ1, by using the assumption that g1
and g2 are L1- and L2-Lipschitz continuous. Since we only need to extend it to all the
nodes on target graphs, we just apply this loss function on target graphs. While the term ξ1
becomes the similarity of node embeddings on the target edges, the proposed method can
help improve the generalization ability of graph domain adaptation by constraining ξ1.

B ABLATION STUDIES

(a) From 1950 to 2007. (b) From 2016 to 2018. (c) The difference in label con-
nectivity relationships between
the previous two graphs.

Figure 2: Figures show the normalized label connectivity relationship for the graphs extracted on
Arxiv with time period 1950-2007, 2016-2018, and the difference of between these two time periods,
highlighting the structural changes over time.

(a) Node embedding visualization for
class 1 class 16 and class 30 on target
graphs Arxiv (2016-2018). Note that
model is trained via ERM on source
graph Arxiv (1950–2007).

(b) Node embedding visualization for
classes 1, 16 and 30, trained on the
Arxiv (1950–2007) with an auxiliary
denoising target graph task on target
graphs Arxiv (2016–2018).

Figure 3: Comparison of visualization of node embeddings on target graphs Arxiv (2016–2018).

The visualizations of node embeddings on target graph from the previous example are shown in
Figure 3. When training GNNs solely by minimizing the empirical risk, we observe that while
nodes of class 1 (denoted in blue in Figure 3a) tend to form clusters highlighted by circle, many are
scattered throughout the entire figure. Notably, the blue points are scattered among the orange and
green points, indicating that the node embeddings of class 1 may be similar to those of other classes.
As observed in the label connectivity relationship, class 1 should be disconnected from class 30.
However, node embeddings from these two classes exhibit substantial overlap. In Figure 3b, we
present the node embeddings on target graph using our framework. Here, most class 1 nodes are

15
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Table 6: Performance comparison on graph domain adaptation tasks. Best results in each column
are in bold, and underline denotes the second best performance.

Models Airport Blog ArnetMiner
E→U U→E B1→B2 B2→B1 C→A D→A

DANE 31.18 ± 3.26 33.75 ± 0.31 32.17 ± 3.20 32.77 ± 0.66 62.87 ± 1.40 59.19 ± 1.66
DGDA 43.45 ± 2.16 43.78 ± 2.90 22.10 ± 1.06 21.06 ± 2.20 52.20 ± 2.46 56.31 ± 2.04
PairAlign 42.38 ± 0.77 36.84 ± 1.48 32.17 ± 10.88 41.16 ± 0.86 58.06 ± 2.62 56.68 ± 0.89
SpecReg 37.59 ± 2.55 28.91 ± 8.77 28.27 ± 4.22 30.30 ± 1.35 68.90 ± 4.78 66.30 ± 4.28
A2GNN 50.64 ± 1.47 53.47 ± 0.24 22.58 ± 0.01 33.04 ± 4.12 76.15 ± 0.16 74.12 ± 0.18
GraphDeT 50.14 ± 0.39 55.47 ± 0.66 52.20 ± 0.51 46.19 ± 8.54 73.91 ± 0.22 70.85 ± 0.15

well-clustered within the circle, with only a few overlapping with class 30. Some nodes are placed
near class 16, which may be reasonable since classes 1 and 16 are densely connected in the target
graphs shown in Figure 2b.

Here, we can have an intutive example. We take a three classes with node features 1, δ and 0.
Previously, it is hard to distinguish δ and 0 in source graphs. But with the node embedding learned
with link prediction on target graphs, which contains lots of connection between class 1 and class 2.
The node belongs to class 2 can be distinguished with class 3. While in training graphs, it is hard to
distinguish these two as these two are connected together without connection with class 1.

C EXPERIMENTAL RESULTS ON PYGDA.

We follow the same experimental setting as the pygda (Liu et al., 2024b) benchmark. And the
propose GraphDeT achieves the best performance on three tasks, and second best performance on
the other three tasks.
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