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ABSTRACT
Large Language Models (LLMs) have shown impressive capabilities
in understanding and generating coherent natural language, but
they still suffer from hallucinations, i.e. answers that seem coher-
ent but are incorrect. Retrieval-Augmented Generation (RAG) aims
at reducing hallucinations by grounding the LLMs with external
relevant data sources. The Meta KDD Cup 2024 introduced the
Comprehensive RAG (CRAG) challenge, which evaluates Question-
Answering (QA) systems across five domains and eight question
types. The challenge consists of three tasks: Web-Based Retrieval
Summarization, Knowledge Graph and Web Augmentation, and
End-to-End RAG. This paper summarizes the UM6P Team’s partici-
pation in the first task. We describe our experimental framework
including hyperparameter tuning, sampling strategy selection (to
best align the offline and online results), and an extensive evalua-
tion of various RAG pipelines. We also share key insights about the
contribution of each RAG component to the overall performance,
covering chunking, retrieval, and enhancement techniques. The
pipelines were assessed offline using Llama 3 and online using GPT-
4 based on the number of correct answers, missing answers, and
hallucinations. Our experiments indicate that the best-performing
pipeline consists of Facebook AI Similarity Search (FAISS), sentence
chunking, re-ranking, and Hypothetical Document Embedding for
input enhancement (HyDE), achieving a competitive accuracy score
of 0.339 compared to the top score of 0.393, despite a lower overall
CRAG score (0.05 vs. 0.204) due to hallucinations (0.288 vs. 0.189).
We conclude with a discussion of the main technical and perfor-
mance challenges encountered during the competition, and some
pointers on future research directions.
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1 INTRODUCTION
Large Language Models (LLMs) have made significant strides in
understanding and generating natural language [15]. Despite these
advancements, challenges such as hallucinations—where the model
generates information not supported by its training data or con-
text—remain prevalent [3]. As illustrated in Figure 1, using an LLM
alone returns the wrong answer to the question "When was the
first robot used in surgery", but the correct answer when the LLM is
augmented with a search engine. To address these issues, Retrieval-
Augmented Generation (RAG) systems have been proposed to en-
hance LLMs by integrating retrieval mechanisms to fetch relevant
information before generating responses [19] [15]. This is particu-
larly important when queries require details that are not included
in the model’s training data, for example when information extends
beyond themodel’s cut-off date or needs to be retrieved from private
data sources. However, RAG systems still face many challenges, in-
cluding the persistence of hallucinations. This is due in a large part
to the extensive tuning and experimentation needed to optimize
their performance and minimize errors [3]. Addressing these hallu-
cinations and ensuring the fidelity of retrieved information remain
critical areas requiring ongoing research and evaluation [35].

Considerable efforts have beenmade to advance this field through
the development of various benchmarks [6, 9, 10, 23, 26, 30]. For
example, the benchmarks in [6, 22] assess LLMs’ performance on
several critical aspects, including integrative queries that require
combining information from multiple documents to generate a
coherent response, noisy information where irrelevant or extrane-
ous details can mislead the model, and counterfactual information
where the model might generate a correct answer based on internal
knowledge but be influenced by incorrect external data. However,
they primarily focus on the generation aspect without specifically
evaluating the accuracy of retrieval mechanisms. In contrast, [30]
introduces a dataset designed for queries that require retrieving
and reasoning from multiple pieces of evidence. The study in [9]
evaluates the impact of different RAG methods on Retrieval Preci-
sion, which measures the proportion of relevant content retrieved,
and Answer Similarity, which rates how closely generated answers
match reference answers, providing insights into the effectiveness
of various retrieval strategies.
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Figure 1: A representative CRAG pipeline that consists of: (A) a pre-processing step which (i) transforms the data (web pages)
into chunks, represents each chunk with an embedding, and loads all embeddings into a vector store, and (ii) prepares the
pre-built Knowledge Graphs; (B) a retrieval step that returns the top K chunks using a similarity search from web pages and/or
structured information from the Knowledge Graphs; (C) a prompt augmentation step that provides the LLM an input that
consists of the query and the retrieved information; (D) an LLM Generation step which generates the answer to the query.

Despite these advancements, there are still many open research
questions in this field [33]: 1) evaluating the contribution of the
retrieval content to the final generated text since current evaluation
methods focus primarily on the generation aspect; 2) selecting the
most relevant information to ensure accuracy and relevance; 3)
reducing QA latency for real-time applications; 4) improving the
synthesis of information for complex queries; and 5) developing
benchmarks that can adapt to the evolving nature of real-world
knowledge sources and assess different parts of RAG systems.

To meet these needs, the CRAG Challenge was initiated provid-
ing clear metrics and evaluation protocols to thoroughly assess
RAG systems, focusing on two key areas: Web-based summariza-
tion pipelines and Knowledge Graph (KG) extraction. Web-based
summarization involves distilling vast amounts of unstructured
web information into concise, and relevant content tailored to the
query, while KG extraction provides structured data (where nodes
represent entities and labeled edges the relationships between enti-
ties) to enhance the accuracy and relevance of generated content.
The CRAG Challenge comprises three tasks: Web-Based Retrieval
Summarization (Task 1), KG and Web-Augmentation (Task 2), and
End-to-End RAG (Task 3). The tasks are based on the same set of
Question-Answering (QA) pairs but differ in the size of the external
data available for retrieval, and the nature of the data structures
used. In Task 1, the goal is to extract and summarize information
from five web pages into accurate answers. Task 2 adds a second
data source organized as a KG, and mock Application Programming
Interfaces (APIs) to access it. Each domain in this task has its own
knowledge graph, requiring retrieval of specific entities to access

the appropriate KGs. Task 3 is similar to Task 2, except for the scale
of the web pages which is increased to 50 rather than 5 web pages,
many of which are irrelevant to the query and considered noise.

To explore these tasks, we investigated different pipelines. We ex-
amined the impact of three chunking techniques: Sentence Chunk-
ing (SeC), Semantic Chunking (SmC), and Recursive Chunking
(RC); three retrieval techniques: BestMatch 25 (BM25), Facebook
AI Similarity Search (FAISS), and a combination of both; and other
enhancement techniques such as Hypothetical Document Embed-
ding (HyDE) for input enhancement, in addition to re-ranking and
Maximal Marginal Relevance (MMR) for retrieval enhancement. We
also focused on sampling strategy selection to best align the offline
and online results. Additionally, we experimented with LLM agents.
Evaluations were conducted using LLM-specific metrics that we
describe in more detail in Section 3.3.3

In this technical report, we make the following contributions:
• we present a brief survey of the state-of-the-art RAG bench-
marks and describe the main concepts of chunking, retrieval
and input enhancement techniques, which led to the best
performance as we will demonstrate in Section 2.

• we conduct an experimental evaluation of different RAG
pipelines, and study the impact of chunking, retrieval, sam-
pling and enhancement techniques on QA accuracy over the
CRAG dataset [1]. We also show how this impact changes
depending on the type of the question.

• we share the key insights gained in this study, highlight the
main challenges encountered during our participation, and
pinpoint some interesting research directions.
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• we share our code publicly in [11].

2 PRELIMINARIES & RELATEDWORK
Existing surveys [14, 15, 35] provide an overview of the current RAG
landscape, categorizing various models based on their architecture
and enhancement approaches, and highlighting the importance of
robust evaluation methodologies in advancing RAG systems. Eval-
uating RAG systems is particularly challenging since it requires
assessing all the RAG components which are interdependent. These
include the embedding model, the chunking, the retrieval, the gen-
eration, and the prompt. Despite these contributions, examining all
the RAG components and their interactions remains a challenging
research problem. Therefore, in this section we start by present-
ing the RAG pipeline and the different techniques used during our
participation in the CRAG competition.

2.1 RAG Systems
RAG marks a notable advancement in Generative AI because it en-
hances the quality and relevance of the generated answers with the
integration of information retrieval techniques [14, 19]. It tackles
a key issue of standalone generative models, which is hallucina-
tion [3], i.e., generating responses that seem coherent but are not
factual. By retrieving relevant information from external sources,
RAG systems significantly reduce the occurrence of hallucinations;
thus improving the reliability and richness of the generated con-
tent. Figure 1 illustrates the three main tasks in the CRAG process,
beginning with: the pre-processing step (A) which (i) prepares the
retrieval corpus by extracting relevant content from the web pages,
dividing them into chunks, representing them as embeddings and
loading them into a a vector store, and (ii) connects to the set
of pre-built Knowledge Graphs (KGs) provided by the organizers.
Then, the retrieval process (B) exploits search to return the top K
chunks based from the vector store and/or the KGs according to
the query’s key entities [35]. Following this, prompt augmentation
(C) enhances the prompt with the information retrieved in (B) and
passes it to the LLM. Finally, the LLM generates the answer (D).

2.2 Chunking techniques
To enhance the ability of the RAG systems to retrieve accurately
the relevant documents, chunking techniques, which segment doc-
uments into smaller parts, are important [20]. Applying the appro-
priate chunking technique can significantly improve the quality of
the generated answer [32], as we will demonstrate in Section 4.4.
During the CRAG competition, we used three chunking techniques.

(1) Sentence Chunking (SeC) [24] divides the text to individual
sentences defined by punctuation marks (e.g., periods, excla-
mation marks, and question marks).

(2) Semantic Chunking (SmC) [12] segments the text into se-
mantically meaningful chunks. This is achieved by first split-
ting the text into sentences, converting these sentences into
vector embeddings, and calculating the cosine similarity be-
tween them. If the similarity between consecutive segments
exceeds a predefined threshold, a split is performed.

(3) Recursive Chunking (RC) [28] enables multi-level analysis
by hierarchically segmenting text into progressively smaller
chunks. This process involves initially splitting the text with

a primary separator, such as a paragraph break, and then
recursively applying different separators, such as line breaks
or commas, until the desired chunk size is reached. This
technique is implemented in tools like Langchain’s Recur-
siveCharacterTextSplitter class [18].

Both SeC and RC where implemented using the LangChain
framework [18].

2.3 Retrieval Techniques
The retrieval part of a RAG architecture represents a fundamental
building block that grounds the LLMwith factural information from
an external reliable data source. Given a text query, the retrieval
returns the embeddings in the data stores that are similar to the
query embedding, typically using a distance measure such as the
Euclidean distance or cosine similarity [35]. During the competition,
we used three retrieval techniques:

(1) BestMatch 25 (BM25) [25] is a ranking algorithm that builds
on TF-IDF [27] by incorporating term frequency saturation
and adjusting for document length, allowing it to rank doc-
uments based on query term frequency and rarity in the
overall corpus.

(2) Facebook AI Similarity Search (FAISS) [8] is a library provided
by Meta containing a set of similarity search techniques
including inverted indexes, graph-based indexes and scans,
for efficient similarity search.

(3) Hybrid Search combines different retrieval techniques. Dur-
ing the competition, we combine both FAISS [8] and BM25 [25]
through an ensemble retriever. Initially, each method ranks
the documents based on its specific criteria: FAISS based on
vector similarity, while BM25 based on term frequency and
document length. The ensemble retriever utilizes a method
called Reciprocal Rank Fusion (RRF) [7] to aggregate these
two sets of rankings and re-rank them by applying aweighted
sum of the reciprocal ranks.

2.4 Enhancement Techniques
We now explore methods that enhance the performance of RAG
systems through two key techniques: input query transformation
and retriever enhancement. We first examine an input query trans-
formation technique designed to improve the quality of the query
itself [35]. Then, we discuss retriever enhancement methods, such
as re-rankers andMaximalMarginal Relevance (MMR), which refine
the results to achieve improved diversity and overall performance.

(1) Hypothetical Document Embedding (HyDE) [13] is used in
NLP and information retrieval as an input query transforma-
tion enhancement technique, by creating embeddings based
on hypothetical retrieval scenarios that capture the context
and meaning of relevant documents.

(2) Re-rankers are machine learning models, often based on
cross-encoders, that serve as a secondary filter. After the
initial retrieval system has collected a set of potentially rele-
vant documents for the user’s query, a re-ranker refines this
selection based on similarity scores. During the competition,
we evaluated the ms-marco-MiniLM-L-2-v2 [16] re-ranker.

(3) Maximal Marginal Relevanc (MMR) [5] is an information re-
trieval technique that ensures the retrieved documents are
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both relevant to the user’s query and diverse. It achieves rele-
vance by evaluating how closely each document matches the
query, and it reduces redundancy by penalizing documents
that are too similar to those already selected.

2.5 Generation
The generation component of the RAG architecture is also a key
building block. LLMs are advanced AI systems designed to un-
derstand and produce human language [14]. At their core, LLMs
rely on a transformer architecture, which processes sequential data
more efficiently [31]. They use an encoder-decoder framework to
uncover statistical relationships between text tokens, which are in-
dividual units of text (not necessarily individual words), represented
as high-dimensional vectors through embeddings. Following the
competition guidelines, predictions were generated using Llama 3
following the prompt in Figure 2. Then we evaluated the generated
answers offline with Llama 3 [34], and online with GPT-4.

Figure 2: Sample prompt used to guide the LLM

3 THE META KDD CUP CRAG CHALLENGE:
UM6P TEAM’S APPROACH

This section describes the experimental framework we followed
during the CRAG competition, focusing on Task 1 which uses 5
web pages as a data source.

3.1 Empirical Design
Figure 3 summarizes our approach, which involved tuning hyper-
parameters such as temperature, chunk size, and the number of
retrieved documents; identifying the best sampling strategy to align
with online results; and conducting progressive studies to determine
themost effective pipeline. Our evaluation process included compar-
ing three chunking techniques—SeC, SmC, and RC—and assessing
three retrieval techniques: BM25, FAISS, and hybrid methods. Ad-
ditionally, we explored three enhancement techniques: HyDE for
input enhancement, and MMR and re-ranker for retrieval enhance-
ment. The results were evaluated based on the number of correct
answers, missing answers, hallucinations, and the CRAG score [33].

Figure 3: Experimental framework

3.2 Environment
Experiments were first conducted locally using one NVIDIA A100-
SXM4 GPU with 80GB of RAM. Once the local results were satisfac-
tory, the solution was submitted for online evaluation on a setup
with four NVIDIA T4 GPUs, each equipped with 16GB of GPU
memory. Each solution consists of an end-to-end RAG pipeline.

3.3 Experimental Setup
3.3.1 Dataset. The CRAG challenge [33] provides several datasets
designed for evaluating RAG systems on three different tasks, span-
ning five domains: Finance, Sports, Music, Movies, and Open Data.
To support retrieval tasks, the dataset incorporates:

• Web Search Results: Each question is used to retrieve up to
50 HTML pages from the Brave search API. The proportion
of relevant answers found among these pages was 84% for
web-based questions and 63% for KG-based questions [33].

• KGs: Includes mock KGs created from publicly available KG
data, featuring randomly selected entities of the same type,
and also “hard negative” entities with similar names.

• Mock APIs: Predefined mock APIs are provided to facili-
tate structured searches within the mock KGs, such as a
get_price_history(ticker) API for stock price queries.

The dataset encompasses 220,000 web pages, a KG with 2.6 mil-
lion entities, and 38 mock APIs. While the dataset supports all
tasks, this report concentrates on the first task as we encountered
challenges in submitting an agent-based solution for the other two
tasks.

3.3.2 Queries. The CRAG challenge proposes a diverse set of
queries to evaluate RAG systems. It covers simple queries, queries
with conditions, set-based queries, comparison queries, aggrega-
tion queries, multi-hop queries, post-processing heavy queries, and
queries with false premises. The variety in query types allows a
comprehensive assessment of retrieval systems, providing insights
into the strengths and weaknesses of various methods in real-world
applications. The queries consist of 2,425 QA pairs sourced from
web content and 1,984 QA pairs derived from KGs.

3.3.3 Measures. Evaluating LLMs is an ongoing research chal-
lenge and a crucial component of the RAG pipeline. The CRAG
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challenge suggests several metrics to assess the factual accuracy
and reliability of the generated text [33]:

• Hallucination refers to instances where the LLM produces
text containing incorrect or fabricated information that is
neither supported by the context nor by external sources.

• Accuracy measures how closely the generated answer aligns
with the ground truth in content, structure, and intent.

• Exact Accuracy refers to the situation where the generated
answer exactly matches the reference answer.

• Missing refers to a response that is vague or unhelpful (e.g.,
“I do not know,” “I am sorry, I cannot find the answer”),
an empty response due to a system error, or a request for
clarification of the original question.

• CRAG score is an aggregated score that considers accuracy,
missing values, and hallucinations. It applies a penalty for
the latter as they can undermine user trust significantly. The
CRAG score is computed using the following formula, n
being the number of queries:

CRAG Score =
2 × ncorrect + nmiss

𝑛
− 1

The quality of generated answers (accurate, missing, or halluci-
nated) is evaluated using an LLM. Although the online evaluation
uses GPT-4, we opted for Llama 3 in the offline evaluation for cost
considerations.

3.3.4 Preprocessing. The web pages selected for the retrieval
corpus required parsing to enable effective chunking and informa-
tion retrieval. We utilized the Python library BeautifulSoup4 [4] for
this purpose. Beautiful Soup parses HTML pages and constructs a
traversable tree structure. To extract text content efficiently, we con-
catenated the text from each web page and removed any extraneous
whitespaces.

4 RESULTS & DISCUSSION
In this section, we report our experimental results. We began the
competition by evaluating the impact of the initial pipeline, which
used the FAISS retriever and the RC technique, considered as our
baseline. We then assessed the impact of incorporating a retrieval
enhancement technique using a re-ranker. Once the best pipeline
is selected, we continued our evaluation by implementing vari-
ous chunking techniques to identify the most effective approach
and explored different retrieval techniques to refine the pipeline.
Additionally, the effects of introducing supplementary inputs and
enhancing the retriever were examined to optimize overall perfor-
mance.

4.1 Hyperparameter Tuning
We consistently used the Llama 3 model, fine-tuning various pa-
rameters, including the temperature, which we ultimately set to 0.3.
In our experiments with chunking techniques, we first focused on
RC to determine the optimal chunk size and number of retrieved
chunks. As illustrated in Figure 4, the best CRAG score was achieved
with 5 retrieved documents and a chunk size of 256. Increasing the
chunk size or the number of retrieved documents beyond these
values caused the CRAG to decline. This suggests that the LLM
benefits from a more concise context to minimize hallucinations.

Figure 4: Impact of the number of retrieved documents

Following our analysis of chunking techniques, we turned to
evaluate the impact of the number of retrieved documents per ques-
tion type, as shown in Figure 5. We maintained a chunk size of 256,
which had previously yielded the best CRAG score. Our findings
indicate that increasing the number of retrieved documents gen-
erally reduces the CRAG score for most question types, with the
exception of “set” and “false premise.” Specifically, question types
such as “simple,” “simple with condition,” and “aggregation” showed
significant performance drops when the number of retrieved docu-
ments K was very high. We believe that this may be attributed to
the lost-in-the-middle [21] problem, where the LLM struggles to
maintain focus and perform accurate reasoning when confronted
with excessive information. As the volume of retrieved documents
increases, the model may become overwhelmed and lose track of
relevant details, leading to diminished performance.

Next, we examined the effect of chunk size on performance,
fixing K to 5. Figure 6 reveals that performance decreases as chunk
size increases for most question types, except for “false premise”
and “set”. This indicates that the chunk size parameter should also
be adapted to the question type to achieve the best results.

Additionally, for "false premise" cases, we observed that the score
improves with more retrieved documents and larger chunk size.
This might be because the LLM, already prompted to handle false
assumptions as shown in Figure 2, becomes more confident in incor-
rectly identifying false premises when presented with additional,
potentially confusing information. Overall, we chose K to be 5 with
a chunk size of 256 for RC as it provided the best results for most
cases and fit within our time constraints; however, a more detailed
analysis by query type and a query-adaptive selection of these
parameters could have further enhanced performance.

We employed a similar methodology to assess various chunking
techniques and determine the optimal hyperparameters. For SmC,
the size of chunks depends on the semantic relationship between
sentences. This approach has some disadvantages, as larger chunks
can exceed the model’s context size, leading to submission failures.
Based on our experiments, using 10 sentences proved to be the most
reliable. In the case of SeC, the best performance was achieved with
20 sentences. These configurations were chosen for their ability to
enhance the CRAG score. For the hybrid retriever, which combines
keyword and semantic retrieval approaches, we assigned a weight
of 0.5 to each type.
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Figure 5: Impact of K per question type Figure 6: Impact of chunk size per question type

4.2 Evaluating Sampling Techniques
A significant challenge encountered during the competition was
the limited number of online submissions allowed per week, which
made it essential to align our internal evaluations with the online
results as accurately as possible. To address this, three sampling
techniques were tested for selecting 333 queries, consistent with
the number used in the online evaluation. (1) The first technique
selects the top 333 queries. (2) The second selects 25% of queries
from each question type. (3) The third creates three distinct non-
overlapping subsets of 333 queries, and averages results across these
subsets. The absolute error between the offline and online results
was calculated for each method. As shown in Table 1, the second
technique yielded the lowest absolute error of 0.042, compared to
0.087 for the first and 0.094 for the third. This led to the adoption of
the second technique for subsequent experiments. However, some
inconsistencies between the offline and online results persisted. This
discrepancy is explored in detail in the challenges section, where
we examine potential factors contributing to these differences.

Table 1: Evaluation of Different Sampling Strategies

Pipeline Sampling
Strategy

Offline
Result

Online
Result

Abs.
Err.

BM25 + SeC + Re-ranker
(1) 0.051 -0.036 0.087
(2) 0.006 -0.036 0.042
(3) 0.058 -0.036 0.094

4.3 Evaluating the Re-ranker
To evaluate the re-ranker, we fix the semantic retriever to be the
FAISS flat index, and the chunking approach to be RC per [29]. As
shown in Table 2, this initial setup achieved a CRAG score of -0.05,
with an accuracy of 0.224 and a hallucination rate of 0.272. These
metrics are crucial as they are the main components of the CRAG
score, reflecting the performance of a robust RAG system. Building
on existing research indicating the pivotal role of re-rankers in
enhancing RAG systems by refining retrieved documents [2, 9], we

incorporate a re-ranker as a second-stage retriever. This modifica-
tion resulted in a slight improvement in the CRAG score, bringing
it to -0.0118. This improvement was primarily due to a reduction in
the hallucination rate from 0.272 to 0.259.

4.4 Evaluating Chunking Techniques
Following the evaluation of the re-ranker, we focus on refining
chunking techniques, which are critical for enhancing the efficiency
and accuracy of the retrieval process. Effective chunking signifi-
cantly impacts the overall performance of RAG models in several
areas, including retrieval efficiency, accuracy, relevance, scalability,
manageability, and balanced information distribution [9, 20, 32].

We compare three chunking methods: RC, SeC, and SmC. The
results, presented in Table 3, reveal that while RC achieves the
highest accuracy of 0.249, it also incurs the highest hallucination
score of 0.333, resulting in a CRAG score of -0.008. In contrast,
SeC provides the best balance between accuracy and hallucination,
leading to an improved CRAG score of 0.009. On the other hand,
SmC leads to the lowest CRAG score, at -0.093. These results were
somewhat unexpected. Despite its simplicity, SeC outperformed the
more complex methods. This suggests that SeC’s straightforward
approach maintains clarity and relevance better, reducing model
confusion. RC’s high accuracy came at the cost of increased halluci-
nations, while SmC’s attempt to combine related information might
have reduced its effectiveness. This suggests that either simpler
chunking methods are satisfactory or that more effective chunking
techniques should be devised.

4.5 Evaluating Retriever Techniques
Building on insights gained from previous experiments, which
highlight improvements in the CRAG scores with the re-ranker
and SeC, we now investigate the impact of retriever techniques,
which are fundamental building blocks for RAG architectures. We
evaluate three types of retrievers: a semantic retriever using FAISS,
a keyword-based retriever using BM25, and a hybrid retriever com-
bining both FAISS and BM25. As detailed in Table 4, the perfor-
mance of each retriever varies. BM25 achieves the highest accuracy
at 0.297 but has a high hallucination rate of 0.333, resulting in a
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Table 2: Impact of The re-ranker

Pipeline Exact Accuracy Accuracy Hallucination Missing CRAG score

Offline Online Offline Online Offline Online Offline Online Offline Online

FAISS + RC (baseline) 0.0 0.047 0.348 0.224 0.308 0.272 0.344 0.5 0.04 -0.0472

FAISS + RC + Re-ranker 0.028 0.039 0.276 0.224 0.248 0.259 0.476 0.5 0.028 -0.0118

Table 3: Impact of The Chunking approaches

Pipeline Exact Accuracy Accuracy Hallucination Missing CRAG score

Offline Online Offline Online Offline Online Offline Online Offline Online

FAISS + RC + re-ranker 0.024 0.015 0.34 0.249 0.25 0.333 0.402 0.417 0.087 -0.00841

FAISS + SmC + re-ranker 0.04 0.03 0.268 0.234 0.327 0.248 0.448 0.438 0.162 -0.093

FAISS + Sec+ re-ranker 0.003 0.006 0.273 0.243 0.225 0.234 0.501 0.523 0.048 0.009

CRAG score of -0.036. This suggests that BM25, while effective
at retrieving relevant information, may generate more hallucina-
tions due to its focus on keyword matching, which can lead to less
contextually relevant results and increased errors. In contrast, the
FAISS retriever achieves a CRAG score of 0.009, demonstrating a
better balance between accuracy and hallucination. Surprisingly,
the hybrid retriever, which combines both FAISS and BM25, re-
sults in the lowest CRAG score of -0.042. This could suggest that
combining the two methods might introduce conflicting informa-
tion or fail to leverage the strengths of either approach effectively.
The hybrid approach may be diluting the advantages of each in-
dividual retriever or complicating the retrieval process, leading to
decreased overall performance. These results highlight the need
for further investigation into how combining retrieval methods
impacts performance and suggest that optimizing individual re-
trievers or refining their integration could improve results. Overall,
the FAISS retriever provides the most robust performance, offering
an effective compromise between accuracy and hallucination.

4.6 Evaluating Other Enhancement Techniques
Amongst the different pipelines we experimented with, the one
that leads to the best online CRAG score is FAISS combined with
SeC and the ms-marco-MiniLM-L-2-v2 re-ranker. To further en-
hance the pipeline performance, we explore additional techniques,
including Hypothetical Document Embedding (HyDE) [13]. This
method generates hypothetical answers, using an LLM without
external knowledge, and then extracts similar answers from the re-
trieval corpus. The underlying assumption is that answers are more
closely related to each other in semantic space than the relationship
between queries and their corresponding answers. As shown in
Table 5, integrating HyDE significantly improves accuracy from
0.243 to 0.339, leading to a better CRAG score of 0.05. This indi-
cates that generating hypothetical answers can effectively capture
relevant semantic similarities, enhancing retrieval quality. We also
investigate MMR, a technique used to select documents that are

both relevant and diverse [5]. However, in our online evaluation,
MMR does not yield positive results. Instead, it increases the hallu-
cination rate from 0.288 to 0.339, suggesting that while MMR aims
to diversify retrieved results, it may have introduced more noise
rather than improving overall performance [9]. One additional ob-
servation is the misalignment between offline evaluations with
Llama 3 and online evaluations with GPT models across all tables.
This discrepancy underscores a significant challenge in aligning
open model evaluations with closed models like GPT. To address
these differences more accurately, incorporating human evaluation
could provide a more precise analysis of the discrepancies and help
bridge the gap between different evaluation methodologies.

4.7 Summary
In this report, we summarize the results of an experimental evalua-
tion that we conducted in the context of the 2024 KDD Cup CRAG
competition. We evaluate the various components of RAG archi-
tectures to assess their individual and collective impacts on system
performance. We cover the retriever, the chunking, the re-ranking
and other enhancement techniques. Our findings underscore the
critical role of each of these components in shaping the overall
efficacy of the RAG system. The re-ranker, in particular, is highly
effective, as evidenced by its ability to improve performance metrics
and reduce the hallucination rate, thereby enhancing the CRAG
score. This success prompted further exploration of additional re-
ranker models to optimize performance even further. We observe
that the HyDE Enhancement significantly boosts accuracy by 39%,
improving it from 0.243 to 0.339. On the other hand, other methods,
like MMR, can have an adverse effect, increasing the hallucination
rate. These results highlight that the effectiveness of enhancement
techniques can vary considerably based on factors such as the type,
size, and format of the retrieval corpus and the nature of the queries.
During the competition, the best-performing pipeline utilized is
composed of the FAISS retriever, the SeC, the re-ranker, and HyDE,
achieving the highest CRAG score of 0.05 with improved accuracy
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Table 4: Impact of The Retriever approaches

Pipeline Exact Accuracy Accuracy Hallucination Missing CRAG score

Offline Online Offline Online Offline Online Offline Online Offline Online

FAISS + SeC+ re-ranker 0.003 0.006 0.273 0.243 0.225 0.234 0.501 0.523 0.048 0.009

BM25 +SeC+ re-ranker 0.012 0.009 0.369 0.297 0.264 0.333 0.366 0.369 0.105 -0.036

Hybrid +SeC+ re-ranker 0.0 0.015 0.368 0.213 0.288 0.255 0.344 0.532 0.08 -0.042

Table 5: Impact of The Enhancement techniques

Pipeline Exact Accuracy Accuracy Hallucination Missing CRAG score

Offline Online Offline Online Offline Online Offline Online Offline Online

FAISS +SeC+ re-ranker 0.003 0.006 0.273 0.243 0.225 0.234 0.501 0.523 0.048 0.009

FAISS + SeC+ re-ranker + HyDE 0.02 0.024 0.342 0.339 0.255 0.288 0.40 0.372 0.08 0.0511

FAISS +SeC+ re-ranker + HyDE + MMR 0.0 0.024 0.428 0.336 0.232 0.339 0.32 0.324 0.19 -0.003

and reduced hallucination rates. Consequently, while certain tech-
niques and enhancements can lead to improved RAG performance,
their impact is highly context-dependent. This necessitates a nu-
anced evaluation within the specific application scenario to fully
understand and leverage their potential benefits.

5 CHALLENGES
In this report, we analyze the main experimental results of different
RAG pipelines evaluated internally to select the best solution for
submission to the 2024 KDD Cup CRAG competition. Through-
out this process, we encountered several challenges, categorized
into technical difficulties related to the submission process and
performance issues with the methods we tested.

Technical challenges include: (1) The limitation on the number
of submissions allowed per week, which restricted our ability to
iteratively refine and submit multiple pipelines. (2) Submission is-
sues with Task 2, where we could not submit a competitive pipeline
that uses an agent-based solution on KGs: an LLM agent identifies
suitable APIs for specific queries and extracts relevant keywords,
while a supervisor agent classifies queries by domain and directs
them to the appropriate sub-agent. This solution required a con-
text length exceeding the 8K tokens allowed by Llama 3 [34]. This
constraint limited Llama 3’s capacity to generate a comprehensive
chain of thought and perform multiple reasoning steps. However,
our offline evaluation with Mistral [17], which has a context limit
of 32k tokens, showed improved performance. (3) Time and re-
source constraints, which prevented us from evaluating different
embedding models and re-ranking techniques to further enhance
the retrieval process and overall performance.

Performance challenges include: (4) The need for a detailed anal-
ysis based on query types, as specific enhancement techniques and
RAG components may be closely related to query complexity. (5)

Discrepancies between the scores reported by the online evalu-
ation using GPT-4 and the offline evaluation based on Llama 3.
We believe these inconsistencies could stem from differences in
model reasoning capabilities and the inherent randomness of the
evaluation sets.

6 CONCLUSION
Participation in this competition has been a highly rewarding expe-
rience, despite not securing a win. It provided a valuable opportu-
nity to contribute to and delve deeply into one of the most complex
and impactful areas of AI. Significant insights were gained into the
key components of RAG systems and their impact on performance.
We plan to leverage these insights to propose solutions that address
the challenges faced, and improve the performance of RAG systems.
In particular, we plan to (i) extend our experimental evaluation to
cover additional datasets, queries, LLMs, embedding models and
enhancement techniques to generalize our findings; and (ii) develop
a scalable hybrid retriever technique that fuses vector search and
keyword search into a single operation, dynamically adapting the
weight of each type of search in the final ranking to the dataset and
query workload.
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