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Abstract

Group equivariance is a strong inductive bias useful in a wide range of deep learning tasks.
However, constructing efficient equivariant networks for general groups and domains is
difficult. Recent work by Finzi et al. (2021b) directly solves the equivariance constraint for
arbitrary matrix groups to obtain equivariant MLPs (EMLPs), but this method does not
scale well and scaling is crucial in deep learning. Here, we introduce Group Representation
Networks (G-RepsNets), a lightweight equivariant network for arbitrary matrix groups with
features represented using tensor polynomials. The key insight in our design is that using
tensor representations in the hidden layers of a neural network along with simple inexpensive
tensor operations leads to scalable equivariant networks. Further, these networks are universal
approximators of functions equivariant to orthogonal groups. We find G-RepsNet to be
competitive to EMLP on several tasks with group symmetries such as O(5), O(1, 3), and
O(3) with scalars, vectors, and second-order tensors as data types. On image classification
tasks, we find that G-RepsNet using second-order representations is competitive and often
even outperforms sophisticated state-of-the-art equivariant models such as GCNNs (Cohen &
Welling, 2016a) and E(2)-CNNs (Weiler & Cesa, 2019). To further illustrate the generality
of our approach, we show that G-RepsNet is competitive to G-FNO (Helwig et al., 2023) and
EGNN (Satorras et al., 2021) on N-body predictions and solving PDEs respectively, while
being efficient. Code will be released at https://github.com/merlresearch/G-RepsNets

1 Introduction
Group equivariance plays a key role in the success of several popular architectures such as translation
equivariance in Convolutional Neural Networks (CNNs) for image processing (LeCun et al., 1989), 3D
rotational equivariance in Alphafold2 (Jumper et al., 2021), and equivariance to general discrete groups in
Group Convolutional Neural Networks (GCNNs) (Cohen & Welling, 2016a).

But designing efficient equivariant networks can be challenging because they both require domain-specific
knowledge and can be computationally inefficient. E.g., there are several works designing architectures
for different groups such as the special Euclidean group SE(3) (Fuchs et al., 2020), special Lorentz group
O(1, 3) (Bogatskiy et al., 2020), discrete Euclidean groups (Cohen & Welling, 2016a; Ravanbakhsh et al.,
2017), etc. Moreover, some of these networks can be computationally inefficient, prompting the design of
simpler and lightweight equivariant networks such as EGNN (Satorras et al., 2021) for graphs and vector
neurons (Deng et al., 2021) for point cloud processing.
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Finzi et al. (2021b) propose an algorithm to construct equivariant MLPs (EMLPs) for arbitrary matrix
groups when the data is provided using tensor polynomial representations. This method directly computes
the basis of the equivariant MLPs and requires minimal domain knowledge. However, using the computed
equivariant basis can be computationally expensive, and it is impractical to use them for practical datasets
such as images and point clouds, as noted by the authors (Finzi et al., 2021a). It is also noted in prior works
(Fuchs et al., 2020; Thomas et al., 2018) that using equivariant basis, even for simple groups such as SO(3),
can be computationally expensive and it is impractical to use them to scale up to large datasets. Hence, we
propose a lightweight construction of equivariant networks which is inexpensive, and yet is competitive to
EMLPs for toy datasets and scales up to larger datasets of practical importance.

To this end, we introduce Group Representation Network (G-RepsNet), which replaces scalar representation
from classical neural networks with tensor representations of different orders to obtain expressive equivariant
networks. We use the same tensor polynomial representations as EMLP to represent the features in our
network. But unlike EMLP, we only use inexpensive tensor operations such as tensor addition and tensor
multiplication to construct our network. We show that even with these simple operations, we obtain a universal
network for orthogonal groups. EMLPs are empirically known to be computationally expensive Further, we
empirically show that G-RepsNet provides competitive results to existing state-of-the-art equivariant models
and even outperforms them in several cases while having a simple and efficient design.

Our proposal generalizes Vector Neurons (Deng et al., 2021) which use first-order O(3) tensor representations
to obtain equivariance to the O(3) group. In contrast, G-RepsNet is a construction which is equivariant
to arbitrary matrix groups, universal for orthogonal groups, and uses higher-order tensor polynomial
representations, while being computationally efficient. The main contributions as well as the summary of our
results are detailed below.

1. We propose a novel lightweight construction of equivariant architectures. We call them G-RepsNets,
which is are a class of computationally efficient architectures equivariant to arbitrary matrix groups
and easy to construct.

2. We show that G-RepsNets are universal approximators of equivariant functions for orthogonal groups.

3. On synthetic datasets from Finzi et al. (2021b), we show that G-RepsNet is computationally much
more efficient than EMLP and also performs competitively to EMLP across different groups such as
O(5), O(3), and O(1, 3) using scalars, vectors, and second-order tensor representations.

4. We show that G-RepsNet with second-order tensor representations outperforms sophisticated state-
of-the-art equivariant networks for image classification such as GCNNs (Cohen & Welling, 2016a)
and E(2)-CNNs (Weiler & Cesa, 2019) when trained from scratch, and equitune (Basu et al., 2023b)
when used with pretrained models.

5. G-RepsNet is competitive to G-FNO (Helwig et al., 2023) and EGNN (Satorras et al., 2021) on
N-body predictions and solving PDEs, respectively, while being computationally efficient.

2 Related Work
Parameter sharing A popular method for constructing group equivariant architectures involves sharing
learnable parameters in the network to guarantee equivariance, e.g. CNNs (LeCun et al., 1989), GCNNs (Cohen
& Welling, 2016a; Kondor & Trivedi, 2018), Deepsets (Zaheer et al., 2017), etc. However, all these methods
are restricted to discrete groups, unlike our work which can handle equivariance to arbitrary matrix groups.

Steerable networks Another popular approach for constructing group equivariant networks is by first
computing a basis of the space of equivariant functions, then linearly combining these basis vectors to construct
an equivariant network. This method can also handle continuous groups. Several popular architectures employ
this method, e.g. steerable CNNs (Cohen & Welling, 2016b), E(2)-CNNs (Weiler & Cesa, 2019), Tensor
Field Networks (Thomas et al., 2018), SE(3)-transformers (Fuchs et al., 2020), EMLPs (Finzi et al., 2021b)
etc. But, these methods are computationally expensive and, thus, often replaced by efficient equivariant
architectures for specific models, e.g., E(n) equivariant graph neural networks (Satorras et al., 2021) for
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Figure 1: (a) Summary of G-RepsNet layer construction with example inputs of types T0, T1, and T2, and
outputs of the same types. Each layer consists of three subcomponents: i) input feature representation shown
as Ti, ii) converting tensor types appropriately shown using arrows from Ti to Tj , and iii) neural processing
the converted tensors using appropriate neural networks, as discussed in Section 4. (b) and (c) provide
comparisons of the loss and wall time of G-RepsNets with EMLPs (Finzi et al., 2021b) and MLPs for an
O(3)-equivariant regression described in Section 5.1.

graphs and vector neurons (Deng et al., 2021) for point cloud processing. More comparisons with EMLPs are
provided in Appendix A. Kondor et al. (2018) propose using steerable higher-order permutation representation
to obtain a permutation-invariant graph neural networks. In contrast, we use higher-order tensors for arbitrary
matrix groups, work with arbitrary base models such as CNNs, Fourier Neural Operators (FNOs) (Li et al.,
2021), etc., and show that our architecture is a universal approximator for functions equivariant to orthogonal
groups.

Representation-based methods A simple alternative to using steerable networks for continuous networks
is to construct equivariant networks by simply representing the data using group representations, only using
scalar weights to combine these representations, and using non-linearities that respect their equivariance.
Works that use representation-based methods include vector neurons (Deng et al., 2021) for O(3) group and
universal scalars (Villar et al., 2021). Vector neurons are restricted to first-order tensors and Universal Scalars
face scaling issues, hence, mostly restricted to synthetic experiments. More comparisons with universal scalars
are provided in Appendix A.

Frame averaging Yet another approach to obtain group equivariance is to use frame-averaging (Yarotsky,
2022; Puny et al., 2021), where averaging over equivariant frames corresponding to each input is performed
to obtain equivariant outputs. This method works for both discrete and continuous groups but requires the
construction of these frames, either fixed by design as in Puny et al. (2021); Basu et al. (2023b) or learned
using auxiliary equivariant neural networks as in Kaba et al. (2023). Our method is, in general, different from
this approach since our method does not involve averaging over any frame or the use of auxiliary equivariant
networks. For the special case of discrete groups, the notion of frame averaging is closely related to both
parameter sharing as well as representation methods. Hence, in the context of equituning (Basu et al., 2023b),
we show how higher-order tensor representations can directly be incorporated into their frame-averaging
method.

3 Group and Representation Theory
A group is a set G along with a binary operator ‘·’, such that the axioms of a group are satisfied: a) closure:
g1 · g2 ∈ G for all g1, g2 ∈ G, b) associativity: (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G, c) identity:
there exists e ∈ G such that e · g = g · e = g for any g ∈ G, d) inverse: for every g ∈ G there exists g−1 ∈ G
such that g · g−1 = g−1 · g = e.

For a given set X , a group action of a group G on X is defined via a map α : G × X 7→ X such that
α(e, x) = x for all x ∈ X , and α(g1, α(g2, x)) = α(g1 · g2, x) for all g1, g2 ∈ G and x ∈ X , where e is the
identity element of G. When clear from context, we write α(g, x) simply as gx. Given a function f : X 7→ Y ,
we call the function f to be G-equivariant if f(gx) = gf(x) for all g ∈ G and x ∈ X .
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Let GL(m) represent the group of all invertible matrices of dimension m. Then, for a group G, a linear
group representation of G is defined as the map ρ : G 7→ GL(m) such that ρ(g1g2) = ρ(g1)ρ(g2) and
ρ(e) = I, the identity matrix. A group representation of dimension m is a linear group action on the vector
space Rm.

For a finite group G, the (left) regular representation ρ over a vector space V is a linear representation
over V that is freely generated by the elements of G, i.e., the elements of G can be identified with a basis
of V . Further, ρ(g) can be determined by its action on the corresponding basis of V , ρ(g) : h 7→ gh for all
h ∈ G. For designing G-RepsNet, note that the size of regular representation is equal to the size of G. The
size of tensor product representations considered here, m, can be written as m = |G| × d for some integer d.
We call the first dimension of size |G| as the group channel dimension.

We call any linear group representation other than the regular representation as non-regular group
representation. Examples of such representations include representations written as a Kronecker sum of
irreducible representations (basis of a group representation). In the design of G-RepsNet, we use regular
representation for finite groups and non-regular representations for continuous groups. Given some base
linear group representation ρ(g) for g ∈ G on some vector space V , we construct tensor representations
by applying Kronecker sum ⊕, Kronecker product ⊗, and tensor dual ∗. Each of these tensor operations on
the vector spaces leads to corresponding new group actions. The group action corresponding to V ∗ becomes
ρ(g−1)T . Let ρ1(g) and ρ2(g) for g ∈ G be group actions on vector spaces V1 and V2, respectively. Then, the
group action on V1 ⊕ V2 is given by ρ1(g) ⊕ ρ2(g) and that on V1 ⊗ V2 is given by ρ1(g) ⊗ ρ2(g).

We denote the tensors corresponding to the base representation ρ as T1 tensors, i.e., tensors of order one, and
T0 denotes a scalar. In general, Tm denotes a tensor of order m. Further, Kronecker product of tensors Tm

and Tn gives a tensor Tm+n of order m + n. We use the notation T ⊗r
m to denote r times Kronecker product

of Tm tensors. Kronecker sum of two tensors of types Tm and Tn gives a tensor of type Tm ⊕ Tn. Finally,
Kronecker sum of r tensors of the same type Tm is written as rTm.

O(n) refers to the orthogonal group which is the group of dimension n that preserves the distance in Euclidean
space of dimension n. The group elements of O(n) can be identified with orthogonal matrices Q of dimension
n × n which satisfy QT Q = QQT = In, where In is the n × n identity matrix. Similarly, the Lorentz group
O(1, n) is the group of all isometries of n-dimensional spacetime that leave the origin fixed, where the distance
is computed using the Minkowski metric.

4 G-RepsNet Architecture
Here, we describe the general design of the G-RepsNet architecture. Each layer of G-RepsNet consists of three
subcomponents: i) representing features using appropriate tensor representation (Section 4.1), ii) converting
tensor types of the input representation (Section 4.2), and iii) processing these converted tensors (Section 4.3).
Finally, Section 4.4 discusses some properties of our network along with existing architectures that are special
cases of G-RepsNet. Now we describe these subcomponents in detail.

4.1 Input Feature Representations

We employ two techniques to obtain input tensor representations for networks with regular and non-regular
representations as described below.

Regular representation: Regular representation is favorable to use for small finite groups, e.g., cyclic
group Cn of discrete rotations of 360

n degrees. For input features for regular representations, we simply use
the input features obtained from the E(2)-CNNs (Weiler & Cesa, 2019), but any regular representation works
with our model. Thus, if we are given an image of dimension B × C × H × W , the T1 regular representation
is of dimension |G| × B × C × H × W , where |G|, B, C, H, W are the group channel dimension, batch size,
channel size, height, and width, respectively. Similarly, for any tensor of type Ti, the group channel dimension
of size |G|i.

Non-regular representation: Non-regular representation is useful for all continuous groups as well as large
finite groups, e.g. SO(n) group of rotations, S(n) group of permutations. For non-regular representations,
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usually, the data is naturally provided in suitable tensor representations, e.g., position and velocity data
of particles from the synthetic datasets in Finzi et al. (2021b) are provided in the form of Kronecker sum
of irreducible representations of groups such as O(n). In all our experiments using continuous groups, the
inputs are already provided as tensor representations using the appropriate irreducible representations. Here,
we call the dimension of the matrix representation of the group as the group channel dimension. E.g., for the
SO(2) group elements represented as 2 × 2 matrices, we have the group channel dimension equals to 2.

4.2 Tensor Conversion

Crucial to our architecture is the tensor conversion component. The input to each layer in Fig. 1a is given as
a concatenation of tensors of varying orders. But Ti-layer in Fig. 1a only processes tensors of order Ti. Thus,
to process tensors of order Tj , j ̸= i, they must first be converted to tensors of order Ti and then passed to
the Ti-layer. Our tensor conversion algorithm is described next.

When i > j > 0, we convert tensors of type Tj to tensors of type Ti by first writing i = kj + r, where
k = ⌊i/j⌋. Then, we obtain Ti from Tj and T1 as T ⊗k

j ⊗ T ⊗r
1 . When using non-regular representations, we

assume that the input to the G-RepsNet model always consists of some tensors with T1 representations, which
is not a strong assumption that helps keep our construction simple and also encompasses all experiments
from Finzi et al. (2021b). We do not convert tensors of type Tj to Ti for 0 < i < j as (a) it requires tensor
decomposition, which can be expensive in practice, and (b) we already obtain universality for orthogonal
groups without it.

When i = 0, we convert each input of type Tj to type T0 by using an appropriate invariant operator, e.g.
Euclidean norm for Euclidean groups, or averaging over the group channel dimension for regular groups.
These design choices keep our design lightweight as well as expressive as we show both theoretically as well as
empirically. Details on processing these inputs are described next.

4.3 Neural Processing

Now we discuss how the various Ti-layers are constructed and how they process the input tensor features
that have been converted to Ti tensor types. We use different techniques for regular and non-regular tensor
representations.

Regular representation: Recall that regular representations for tensors of type Ti have group channel
dimensions equal to |G|i, where |G| is the size of the group. For tensors of dimension (|G|i × B) × C × H × W ,
we treat the group channel dimension just like the batch dimension and process the (|G|i × B) inputs
in parallel through the same model. Here we are free to choose any model of our choice for any of the
Ti-layers, e.g., MLP, CNNs, FNOs, etc. We call these models of choice our base model just like used in
frame-averaging (Puny et al., 2021) and equitune (Basu et al., 2023b).

Non-regular representation: Here, we impose certain restrictions on what models can be used for
Ti-layers and how to use them. First, the T0-layer passes all the tensors of type T0 or scalars through a
neural network such as an MLP or a CNN. Since the inputs are invariant scalars, the outputs are always
invariant and thus, there are no restrictions on the neural network used for the T0-layer, i.e., they may also
use non-linearities. Now we describe how to process the tensors of type Ti for i > 0.

Let us call the output from the T0-layer as YT0 . For a Ti-layer with i > 0, we first multiply the input with a
learnable weight matrix along the data dimension, i.e. the dimensions other than the group channel dimension
and batch dimension, with no point-wise non-linearities or bias terms. This ensures that the output is
equivariant just as in Vector Neurons (Deng et al., 2021). E.g., if the input to a Ti-layer for the SO(2) group
is B × 2 × n, then we multiply the input with a matrix of dimension n × m to get an output of dimension
B × 2 × m. Let us call the output from this linear layer as HTi .

Then, to mix the Ti tensors with the T0 tensors better, we update HTi
as HTi

= HTi
∗ YT0

inv(HTi
) , where inv(·)

is a group-invariant function such as the Euclidean norm for a Euclidean group. We note here that this
mixing function bears similarity to the bilinear layers used in EMLPs (Finzi et al., 2021b). However, we
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differ in its motivation. In EMLPs, the motivation is solely to enhance performance, whereas, in our design,
it is motivated from the to make the design universal for orthogonal groups (see Appendix C.

Finally, we pass HTi
through another linear layer without any bias or pointwise non-linearities to obtain

YTi
. This mixing of various tensor types is crucial to make our network expressive and is required for the

universality of our network.

Both (a) tensor conversion, that allows higher order tensor features and (b) tensor mixing that combines
information among tensors of different orders/types are novel aspects of the proposed G-RepsNet architecture
that generalize earlier works (see Appendix A) (Deng et al., 2021; Zaheer et al., 2017; Basu et al., 2023b). Our
proofs on universality of G-RepsNets to orthogonal groups (see Appendix C) make use of this tensor-mixing
step to show that no theoretical representation ability is lost in spite of the simple construction, in the case
of orthogonal groups.

4.4 Properties

Equivariance: For regular representations, any group action applied to the input appears as a permutation
in the group channel dimension. Further, since the data is processed in parallel along the group channel
dimension, the output permutes accordingly, making our model equivariant. For non-regular representation,
the T0 layer only processes invariant tensors and, hence, preserves equivariance of the overall model. Moreover,
the Ti-layers simply perform a linear combination of tensors, making the overall model equivariant. A proof
for equivariance of our model is given in Appendix B.

Universality: Here, we show that our models are universal approximators of equivariant functions for
orthogonal groups. This ensures that our models are expressive. For models constructed for regular
representations, it is easy to verify that there exist G-RepsNets that are universal approximators of equivariant
functions. To that end, note that restricting G-RepsNet to only T1 tensors and taking an average with group
inverses along the group channel dimension gives group symmetrization in equitune (Basu et al., 2023b;
Yarotsky, 2022). It is well known that the symmetrization of universal approximators such as MLPs give
universal approximators of equivariant functions (Yarotsky, 2022). It follows that G-RepsNets are universal
approximators of equivariant functions for regular representations. Note that even though our models using
features of type T1 themselves are universal approximators, we illustrate empirically that higher order tensors
significantly boost the performance of G-RepsNet with regular representation.

For non-regular representations, we provide simple constructive proofs showing the universality properties
of the G-RepsNet architecture. We first show that G-RepsNet can approximate arbitrary invariant scalar
functions of vectors from O(d) and O(1, d) groups. Then, we extend the proof to vector-valued functions
for the same groups. First, recall the Fundamental Theorem of Invariant Theory for O(d) as described in
Lemma .1.
Lemma 1 (Weyl (1946)). A function of vector inputs returns an invariant scalar if and only if it can be
written as a function only of the invariant scalar products of the input vectors. That is, given input vectors
(X1, X2, . . . , Xn), Xi ∈ Rd, any invariant scalar function h : Rd×n 7→ R can be written as

h(X1, X2, . . . , Xn) = f(⟨Xi, Xj⟩n
i,j=1), (1)

where ⟨Xi, Xj⟩ denotes the inner product between Xi and Xj, and f is an arbitrary function.

As mentioned in Villar et al. (2021), a similar result holds for the O(1, d) group. In Thm. 1, we show that
G-RepsNet can approximate arbitrary invariant scalar functions for O(d) or O(1, d) groups. The main idea of
the proof is to show that G-RepsNet can automatically compute the necessary inner products ⟨Xi, Xj⟩ in
equation 1 and the function f in equation 1 can be approximated using an MLP in the T0 layer. Detailed
proof is provided in Appendix C.
Theorem 1. For given T1 inputs (X1, X2, . . . , Xn) corresponding to O(d) or O(1, d) group, Xi ∈ Rd, any
invariant scalar function h : Rd×n 7→ R, there exists a G-RepsNet model that can approximate h.

Similarly, this result can be extended to vector functions as described in Thm. 2. The proof for Thm. 2 is
also constructive and is provided in Appendix C.
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Theorem 2. For given T1 inputs (X1, X2, . . . , Xn) corresponding to O(d) or O(1, d) group, Xi ∈ Rd, any
equivariant vector function h : Rd×n 7→ Rd, there exists a G-RepsNet model that can approximate h.

Finally, in Appendix A.2 we show how several popular models such as Vector Neurons (Deng et al., 2021),
harmonic networks (Worrall et al., 2017), Deepsets (Zaheer et al., 2017), and equitune (Basu et al., 2023b)
are special cases of G-RepsNet.

5 Applications and Experiments
We conduct several experiments to show that our model is competitive with state-of-the-art equivariant
models across various domains while also being easy to design and computationally efficient.

For non-regular representation, we provide two experiments: i) in Section 5.1 we compare G-RepsNet with
EMLP on synthetic datasets, which encompass equivariance to several groups such as O(5), O(3), and O(1, 3)
and involves tensors of different orders; ii) in Section 5.2 we compare G-RepsNet with EGNN on N-body
dynamics prediction. Note that the groups considered are restricted to orthogonal groups, even though
G-RepsNets work for arbitrary matrix groups just like EMLPs. This is because we directly take the datasets
from Finzi et al. (2021b); Satorras et al. (2021), which are restricted to orthogonal groups.

For regular representation, we provide two more experiments: i) for image classification we show in Section 5.3
that G-RepsNet with higher-order tensors and CNNs as the base model can outperform popular equivariant
models such as GCNNs and E(2)-CNNs when trained from scratch and equitune when used with pretrained
models; ii) for solving PDEs, in Appendix 5.4 we construct a G-RepsNet with FNOs as the base model,
where we find G-RepsNets is competitive to more sophisticated equivariant models such as G-FNOs (Helwig
et al., 2023) while being much faster than them.

5.1 Comparison with EMLPs

Datasets: We consider three regression tasks from Finzi et al. (2021b): O(5)-invariant task, O(3)-equivariant
task, and O(1, 3) invariant task. In O(5)-invariant regression, we have input X = {xi}2

i=1 of type 2T1 and
output f(x1, x2) = sin (∥x1∥) − ∥x2∥3/2 + xT

1 x2
∥x1∥∥x2∥ of type T0. Then, for O(3)-equivariant task we have

input X = {(mi, xi)}5
i=1 of type 5T0 + 5T1 corresponding to 5 masses and their positions. The output is the

inertia matrix I =
∑

i mi(xT
i xiI − xix

T
i ) of type T2. Finally, for the O(1, 3)-equivariant task, we use the

electron-muon scattering (e− + µ− → e− + µ−) task from Finzi et al. (2021b), originally from Bogatskiy et al.
(2020). Here, the input is of type 4T(1,0) corresponding to the four momenta of input and output electron
and muon, and the output is the matrix element of type T(0,0) (Finzi et al., 2021b).

Model design: For all the experiments here, we design G-RepsNet using different tensor representations
in each of the models depending on the application. We call the number of tensors in a hidden layer as its
channel size. We fix a channel size of 100.

O(5)-invariant model: The input consists of two tensors of T1 type that are passed through the first layer
consisting of T0-layers and T1-layers similar to vector neurons shown in Fig. 6a, but our design differs from
vector neurons in that we use simple Euclidean norm to compute the T0 converted tensors instead of dot
product used by vector neurons. All Ti layers are made of MLPs. The number of output tensors is equal to
the channel size, and the channel sizes used for our experiments in discussed in Section 5.1. This is followed
by three similar layers consisting of T0-layers and T1-layers, all of which take as input T1 tensors, and output
tensors of the same type. Additionally, these layers use residual connections as shown in Fig. 5a. Finally, the
T1 tensors are converted to T0 tensors by taking their norms, which are passed through a final T0-layer that
gives the output.

More precisely, in our experiments, we consider a model with 5 learnable linear layers with no bias terms,
where the dimensions of the layers are (2 × 100, 100 × 100, 100 × 100, 100 × 100, 100 × 1). The input of type
2T1 is of dimension (2 × 5). The input is first passed through the first layer of dimension 2 × 100 to obtain a
hidden layer output of type 100T1. Then, this output is also converted to type 100T0 by simply taking the
norm. Thus, we have a tensor of type 100T0 + 100T1. Finally, we convert this tensor of type 100(T0 + T1) to
100T1 by simply multiplying the 100T0 scalars with the 100T1 vectors. This is basically a simplified version

7



Published in Transactions on Machine Learning Research (05/2025)

(a) (b) (c)

Figure 2: Comparison of G-RepsNets with EMLPs (Finzi et al., 2021b) and MLPs for (a) O(5)-invariant
synthetic regression task with input type 2T1 and output type T0, (b) O(3)-equivariant regression with input
as masses and positions of 5 point masses using representation of type 5T0 + 5T1 and output as the inertia
matrix of type T2, (c) SO(1, 3)-invariant regression computing the matrix element in electron-muon particle
scattering with input of type 4T1 and output of type T0.

Table 1: Comparison of MLP, G-RepsNet and EMLP on tasks using non-regular representation. Train time
per epoch (in seconds), test time per sample (in milliseconds) and number of parameters for models with the
same channel size of 384 for training datasets of size 1000 are provided.

Task
Model MLP G-RepsNet EMLP

# params Train time (s) Test time (ms) # params Train Time (s) Test time (ms) # params Train time (s) Test time (ms)
O(5)-invariant 300,289 0.0083 0.33 30,300 0.013 0.52 480,694 3.00 7.73

O(3)-equivariant 307,209 0.0087 0.32 233,200 0.084 1.55 572,121 3.19 7.13
SO(1, 3)-invariant 302,593 0.0080 0.33 30,500 0.049 1.05 446,688 2.86 8.01

of the tensor mixing process described in Section 4.3. This gives a tensor of type 100T1, which is the input
for the next layer. We repeat the same process of converting to T0 and back to T1 for the next two layers.
For the final two layers, we convert all the tensors to scalars of type 100T0 and process through the last two
layers and use ReLU activation function in between.

O(3)-equivariant model: The model contains four layers that take in 5 input tensors each of type T0 + T1
and output a single tensor of type T2. A detailed description of the four layers are as follows.

First layer: Let the input and output of the first layer be XT0 , XT1 and HT0 , HT1 , HT2 , respectively. Here,
XTi

denotes tensors of type Ti and similarly for HTi
.

To compute HT0 , we first convert XT1 to type T0 by taking its norm and concatenating it with XT0 . Let us
assign this concatenated value to HT0 . Then, the final value of HT0 is obtained by passing HT0 through two
linear layers with a ReLU activation in between.

To compute HT1 , we simply perform W2(HT0 ∗ W1(XT1)/∥W1(XT1)∥) as the tensor mixing process from
Section 4.3, where W1, W2 are single linear layers with no bias terms. To compute HT2 , we first convert XT0 to
type T2 by multiplying it with an identity matrix of dimension of XT2 . Let us call this HT20 . Then, we convert
XT1 to type T2 by taking the outer product with itself. Let us call this HT21 . We concatenate HT20 and HT21 ,
and call this HT2 . Then, we update HT2 as follows. We simply perform W2(HT0 ∗ W1(HT2)/∥W1(HT2)∥) as
the tensor mixing process from Section 4.3, where W1, W2 are single-layered linear layers with no bias terms.
In all cases, the number of tensors obtained is equal to the channel size used for the experiments discussed in
Section 5.1.

Second and third layers: The first layer above is followed by two layers of input and output types T0 +T1 +T2.
Let the input and output of the this type of layer be XT0 , XT1 , XT2 and HT0 , HT1 , HT2 , respectively. Here,
XTi

denotes tensors of type Ti and similarly for HTi
. To compute HT0 , we first convert XT1 and XT2 to type

T0 by taking its norm and concatenate it to XT0 . Let us assign this concatenated value to HT0 . Then, the
final value of HT0 is obtained by passing HT0 through two linear layers with a ReLU activation in between.

The rest of the computations for obtaining HT1 and HT2 are identical to the first layer, which is described
below for completeness.
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(a) (b) (c)

Figure 3: Times per epoch (in seconds) for different MLPs, G-RepsNets, and EMLPs for varying dataset sizes.
Here the figures correspond to the experiments described next. a) O(5)-invariant synthetic regression task
with input type 2T1 and output type T0, (b) O(3)-equivariant regression with input as masses and positions
of 5 point masses using representation of type 5T0 + 5T1 and output as the inertia matrix of type T2, (c)
SO(1, 3)-invariant regression computing the matrix element in electron-muon particle scattering with input
of type 4T1 and output of type T0.

Table 2: Comparison of EGNN and G-RepsGNN on the O(3)-equivariant 5-body dynamics prediction task.
Note that G-RepsGNN is constructed by simply replacing the representation in the GNN architecture
from Gilmer et al. (2017) with T1 representations along with tensor mixing from Section 4.3, whereas EGNN
is a specialized GNN designed for E(n)-equivariant tasks.

Model Test Loss Forward Time (ms) Number of parameters
EGNN 0.0069 1.76 69215

G-RepsGNN (ours) 0.0049 2.02 106288

To compute HT1 , we simply perform W2(HT0 ∗ W1(XT1)/∥W1(XT1)∥) as the mixing process from Section
4.3, where W1, W2 are single linear layers with no bias terms.

To compute HT2 , we first convert XT0 to type T2 by multiplying it with an identity matrix of dimension of
XT2 . Let us call this HT20 . Then, we convert XT1 to type T2 by taking the outer product with itself. Let us
call this HT21 . We concatenate HT20 , HT21 , and XT2 , and call this HT2 . Then, we update HT2 as follows.
We simply perform W2(HT0 ∗ W1(HT2)/∥W1(HT2)∥) as the tensor mixing process from Section 4.3, where
W1, W2 are single-layered linear layers with no bias terms.

These layers also use residual connections similar to the ones shown in Fig. 5a.

Fourth layer: Finally, the T2 tensors of the output of the penultimate layer are passed through a final T2
layer, which gives the final output.

O(1, 3)-invariant model This design is identical to the design of the O(5)-invariant network above except for
a few changes: a) the invariant tensors is obtained using Minkowski norm instead of the Euclidean norm, b)
the number of channels are decided by the number of channels chosen for this specific experiment in Section
5.1.

Experimental results: We train MLPs, EMLPs, and G-RepsNet on the datasets discussed above for 100
epochs. Further details on the hyperparameters are given in Section D.1. From Fig. 2, we find that across
all the tasks, G-RepsNets perform competitively to EMLPs and significantly outperform non-equivariant
MLPs. Moreover, Fig. 3 and Tab. 1 show that G-RepsNets are computationally much more efficient than
EMLPs, while being only slightly more expensive than naive MLPs. This shows that G-RepsNet can provide
competitive performance to EMLPs on equivariant tasks. Moreover, the lightweight design of G-RepsNets
motivates its use in larger datasets.
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Table 3: Table shows mean (std) of classification accuracies on Rot90-CIFAR10 dataset for T1-G-RepsCNN,
T2-G-RepsCNN, GCNN, and T2-G-RepsGCNN for 100 epochs. The base model used here is Resnet18, and
the T2 layers in the T2 models are added only in the last layer as described in Appendix D.2. Results are
over 3 seeds.

Dataset \ Model CNN T1-G-RepsCNN T2-G-RepsCNN GCNN T2-G-RepsGCNN
Rot90-CIFAR10 72.8 (0.2) 79.5 (0.2) 80.4 (0.4) 73.8 (0.9) 76.6 (0.5)

5.2 Modelling a Dynamic N-Body System with GNNs

Dataset details: We consider the problem of predicting the dynamics of N charged particles given their
charges and initial positions, where the symmetry group for equivariance is the orthogonal group O(3). Each
particle is placed at a node of a graph G = {V, E}, where V and E are the sets of vertices and edges. We use
the N-body dynamics dataset from Satorras et al. (2021), where the task is to predict the positions of N = 5
charged particles after T = 1000 steps given their initial positions ∈ R3×5, velocities ∈ R3×5, and charges
∈ {−1, 1}5.

Model design and experimental setup: Let the edge attributes of G be aij , and let hl
i be the node feature

of node vi ∈ V at layer l of a message passing neural network (MPNN). An MPNN as defined by Gilmer et al.
(2017) has an edge update, mij = ϕe(hl

i, hl
j , aij) and a node update hl+1

i = ϕh(hl
i, mi), mi =

∑
j∈N (i) mij ,

where ϕe and ϕh are MLPs corresponding to edge and node updates, respectively.

We design G-RepsGNN by making small modifications to the MPNN architecture. In our model, we use
two edge updates for T0 and T1 tensors, respectively, and one node update for T1 update. The two edge
updates are mij,T0 = ϕe,T0(∥hl

i∥, ∥hl
j∥, aij), mij,T1 = ϕe,T1(hl

i, hl
j , aij), where ∥·∥ obtains T0 tensors from T1

tensors for the Euclidean group, ϕe,T0(·) is T0-layer MLP, and ϕe,T1(·) is a T1-layer made of an MLP without
any pointwise non-linearities or biases. The final edge update is obtained as mij = mij,T1 ∗ mij,T0/∥mij,T1∥.
Finally, the node update is given by hl+1

i = ϕh,T1(hl
i, mi), where mi =

∑
j∈N (i) mij and ϕh,T1(·) is an MLP

without any pointwise non-linearities or biases. Thus, the final node update is a T1 tensor. We compare
G-RepsGNN with EGNN (Satorras et al., 2021), which is a popular equivariant graph neural network.

We closely followed Satorras et al. (2021) to generate the dataset: we used 3000 trajectories for train, 2000
trajectories for validation, and 2000 for test. Both EGNN and G-RepsGNN models have 4 layers and were
trained for 10000 epochs, same as in Satorras et al. (2021).

Results and Observations: From Tab. 2, we find that even though EGNN is a specialized architecture for
the task, G-RepsGNN performs competitively to EGNN. Note that here the comparison is made to EGNN
since it is a computationally efficient expressive equivariant model just like G-RepsGNN, although restricted
for processing graphs. Here our goal is not to achieve state-of-the-art results on this task but to simply show
that our model is competitive with popular models even with minimal design changes to the non-equivariant
base model MPNN. Further results of test losses and forward times for various other models are reported in
Tab. 7 in Appendix E.1 for completeness. Since G-RepsGNN has a comparable computational complexity to
EGNN, it is computationally much more efficient than many specialized group equivariant architectures that
use spherical harmonics for E(n)-equivariance as noted from Tab. 7.

5.3 Second-Order Image Classification

We perform two sets of experiments: i) in the first, we train various image classification models from scratch
and compare them with G-RepsNet and ii) we perform equivariant finetuning of non-equivariant models
with higher-order tensors, hence extending the equivariant finetuning method of Basu et al. (2023b) to
second-order tensors.

Dataset: For ablation studies to understand the effect of second-order tensors in image classification and
for experiments involving training from scratch, we test on different datasets obtained by applying random
rotations to the CIFAR10 dataset. When the random rotations are a multiple of 360

n for integer n, we
call the dataset Rot 360

n -CIFAR10, else if the rotations are by arbitrary angles in (0, 360], we simply call
it Rot-CIFAR10. These rotations are applied to ensure that the dataset exhibits the Cn of multiples of
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Table 4: Table shows mean (std) test accuracies for equituning using a pretrained Resnet with Rot90-CIFAR10
and Galaxy10. For the T2 models, the T2 layers are added only in the last layer.

Dataset\Model Finetune T1-Equitune T2-Equitune
Rot90-CIFAR10 82.7 (0.5) 88.1 (0.3) 89.6 (0.3)

Galaxy10 76.9 (3.2) 79.3 (1.6) 80.7 (4.0)

(a) (b)

Figure 4: In (a), we analyze the performance of a rot90-equivariant CNN with 3 convolutional layers and 5
fully connected layers on rot90-CIFAR10. Here, T2 representations are introduced in layer i ∈ [1, . . . , 8]. We
find that using T2 representations in the final layers of the CNN easily outperforms non-equivariant CNNs
as well as traditional equivariant representations with T1 representations. (b) shows the T1 and T2 features
obtained from one channel of a pretrained Resnet corresponding to T1-equitune and T2-equitune, respectively.
360
n -degree rotations or SO(2) symmetry, which helps test the working of equivariant networks. For our

experiments on equivariant finetuning, we test on Rot90-CIFAR10 and Galaxy10 without any rotations. We
do not apply rotations on Galaxy10 since it naturally has the C4 symmetry.

Experimental setup and model design: We first design a rot90-equivariant CNN with 3 conv layers
followed by 5 fully connected layers and train it from scratch on CIFAR10 with random rotations. We use T1
representations for the first i layers and use T2 representations for the rest, where the T2 representations are
obtained by simple outer product of the T1 representation in the group channel dimension. Fig. 5 shows a
simple way to add residual connections in G-RepsNet as well as a general architecture for T 2-G-RepsCNN. It
is easy to verify the equivariance is maintained for both T1 and T2 for regular representations. It is also easy
to see that because of our simple design, the number of parameters for the base CNN, T1-G-RepsCNN and
T2-G-RepsCNN are exactly the same (about 150K parameters, and takes only about 0.8ms for a forward pass
on an Nvidia A5500). We train each model for 10 epochs. The results reported in Fig. 4a indicate that using
T2 representations in the later layers of the same network significantly outperforms both non-equivariant as
well as equivariant T1-based CNNs. Fig. 4b provides a visualization of the T2 features compared to the T2
features. The T1 or T2 features are convered to Cn-invariant T0 features by taking the mean along the group
dimension. Hyperparameter values are provided in Appendixs D.2. We compare with baseline equivariant
architectures such as GCNNs (Cohen & Welling, 2016a) and E(2)-CNNs (Weiler & Cesa, 2019).

First, for comparison with GCNNs, we use CNN as well as GCNN as our base model for constructing
G-RepsNets. We use the resnet architecture (He et al., 2016) as our CNNs. For GCNNs and E(2)-CNNs, we
simply replace the convolutions with group convolutions (Cohen & Welling, 2016a) and E(2)-CNNs (Weiler
& Cesa, 2019), respectively in the same CNN and adjust the channel sizes to ensure a nearly equal number of
parameters.

We design two G-RepsCNN architectures: a) T1-G-RepsCNN, where each layer has a T1 representation, and
b) T2-G-RepsCNN, where all the layers except the last layer use T1 representation and the last layer uses T2
representation. Using GCNN as the base model, we construct T2-G-RepsGCNN, by simply replacing the
CNN model with a GCNN in the T2-G-RepsCNN. Note that we do not construct T1-GCNN as it results in
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Table 5: Table shows mean (std) of classification accuracies on Rot-CIFAR10 dataset (CIFAR10 with random
rotations in (-180◦, +180◦]) for various G-RepsCNNs and E(2)-CNNs with different group equivariances, and
tensor orders. he base model used here is Resnet18, and the T2 layers in the T2 models are added only in
the last layer as described in Appendix D.2. All models are trained for 100 epochs and results are over 3
fixed seeds.

Model Equivariance Tensor Orders Test Acc.
CNN – – 65.21 (0.4)

T1-G-RepsCNN C8 (T1) 73.4 (0.4)
T2-G-RepsCNN C8 (T1, T2) 73.8 (0.4)

E(2)-CNN C8 (T1) 49.6 (1.6)
T2-G-RepsE(2)-CNN C8 (T1, T2) 57.3 (1.4)

T1-G-RepsCNN C16 (T1) 73.8 (0.1)
T2-G-RepsCNN C16 (T1, T2) 75.2 (0.5)

E(2)-CNN C16 (T1) 46.8 (0.8)
T2-G-RepsE(2)-CNN C16 (T1, T2) 55.4 (1.9)

(a) Simple T1 residual connections (b) T2-CNN design

Figure 5: (a) shows a simple way to add residual connections in G-RepsNet. (b) shows the architecture used
for T2 CNNs and equituning, where the first k layers are made of T1-layers to extract features, then the
extracted features are converted in T2 tensors, which are then processed by T2-layers. Finally T0 tensors, i.e.,
scalars are obtained as the final output.

the same model as GCNN. These models are compared on the Rot90-CIFAR10 dataset. The base architecture
for constructing the G-RepsCNNs is ResNet18 and the T2 layers are only used in the last layer. Here, we note
that, if we decompose the features in G-RepsCNNs in terms of irreps, our design can be seen as a special
case of Steerable CNNs (Weiler & Cesa, 2019), except that for constructing G-RepsCNN, we do not need to
analytically solve for the equivariant layers. Moreover, in some cases such as SE(3)-tranformers Fuchs et al.
(2020), even when the analytical solution is given, they can be computationally expensive.

For comparison with E(2)-CNNs, we perform a similar comparison as that with GCNNs. Here we work with
Rot-CIFAR10 dataset. This is because E(2)-CNNs are equivariant to larger groups than that of 90-degree
rotations, so, we want to test the model’s capabilities for these larger group symmetries. Here we build four
variants of G-RepsCNNs: T1-G-RepsCNN, T2-G-RepsCNN, each for both C8 and C16 equivariance. Here Cn

for n ∈ {8, 16} corresponds to the groups of 360
n -degree rotations. The layer representations for T1-G-RepsCNN

are all T1 tensors of the Cn group. Whereas for T2-G-RepsCNN, all layer representations except the last layer
are T1 representations and the last layer uses T2 representations. Note that T1-E(2)-CNN is the same as the
traditional E(2)-CNN for the Cn group, which has T1 representation at each layer. T2-G-RepsE(2)-CNN has
T1 representations for each layer except for the last layer that uses a T2 representation. That is, the base
architecture for constructing the G-RepsE(2)-CNN is E(2)-CNN with similar number of parameters and the
T2 layers are only used in the last layer. Please check Appendix D.2 for additional details on architecture.

For experiments on equivariant finetuning, we take the equituning algorithm of Basu et al. (2023b) that uses
T1 representations and extend it to use T2 representations in the final layers. We use pretrained Resnet18 as
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Table 6: The table shows mean (std) of percentage relative mean square errors over 3 seeds, and mean
training time (in seconds) per epoch over 5 epochs and mean testing time per sample (in milliseconds) over
100 samples for solving PDEs with FNOs. G-RepsFNOs use regular T1 representations with FNO as the base
model. Both FNO and G-RepsFNO contain about 468K trainable parameters while G-FNO is much larger
with about 3.4M parameters.

Dataset
Model FNO G-RepsFNO G-FNO

MSE Train time (s) Test time (ms) MSE Train Time (s) Test time (ms) MSE Train time (s) Test time (ms)
NS 8.41 (0.4) 49.8 7.46 5.31 (0.2) 53.9 7.71 4.78 (0.4) 109.9 21.20

NS-Sym 4.21 (0.1) 19.2 5.31 2.92 (0.1) 20.8 7.52 2.24 (0.1) 43.8 20.99

our non-equivariant base model and perform non-equivariant finetuning and equivariant finetuning with T1
and T2 representations. Additional experimental details are provided in Appendix D.

Results: In Tab. 3 and Tab. 5, we provide the results for training from scratch. From Tab. 3 and 5,
we make two key observations: a) T2-G-RepsCNNs are competitive and often outperform the baselines
GCNNs and E(2)-CNNs, b) T2 features, when added to the baselines to obtain T2-G-RepsGCNNs and
T2-G-RepsE(2)CNNs, they outperform the original T1 counterpart for both C8 and C16 equivariance. This
shows the importance of higher-order tensors in image classification. Thus, we not only provide competitive
performance to baselines using our models but also improve the results from these baselines by adding T2
features in them. Finally, from Tab. 4, we find that on both rot90-CIFAR10 and Galaxy10, T2-equitune easily
outperforms equitune, confirming the importance of T2 features.

5.4 Solving PDEs with FNOs

Datasets and Experimental Setup: We consider two versions of the incompressible Navier-Stokes equation
from Helwig et al. (2023); Li et al. (2021). The first version is a Navier-Stokes equation without any symmetry
(NS dataset) in the data, and a second version that does have 90◦ rotation symmetry (NS-SYM dataset).
The general Navier-Stokes equation considered is written as,

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), (2)
∇ · u(x, t) = 0 and w(x, 0) = w0(x),

where w(x, t) ∈ R denotes the vorticity at point (x, t), w0(x) is the initial velocity, u(x, t) ∈ R2 is the velocity at
(x, t), and ν = 10−4 is the viscosity coefficient. f denotes an external force affecting the dynamics of the fluid.
The task here is to predict the vorticity at all points on the domain x ∈ [0, 1]2 for some t, given the previous
values of vorticity at all point on the domain for previous T steps. As stated by Helwig et al. (2023), when f is
invariant with respect to 90◦ rotations, then the solution is equivariant, otherwise not. We use the same forces
f as Helwig et al. (2023). For non-invariant force, we use f(x1, x2) = 0.1(sin (2π(x1 + x2))+cos (2π(x1 + x2)))
and as invariant force, we use finv = 0.1(cos (4πx1) + cos (4πx2)). We use T = 20 previous steps as inputs
for the NS dataset and T = 10 for NS-SYM and predict for t = T + 1, same as in Helwig et al. (2023). We
train our models with batch size 20 and learning rate 10−3 for 100 epochs.

Model design: We use the FNO and G-FNO models directly from Helwig et al. (2023). And we construct
G-RepsFNO by directly using T1 representation corresponding to the C4 group of 90◦ rotations for all the
features. Further, G-RepsFNO uses FNO as the base model.

Results and Observations: In Tab. 6, we find that G-RepsFNO clearly outperforms traditional FNOs
on both datasets NS and NS-SYM. Note that the NS dataset does not have rot90 symmetries and yet
G-RepsFNOs outperform FNOs showing that using equivariant representations may be more expressive for
tasks without any obvious symmetries as was also noted in several works such as Cohen & Welling (2016a);
Helwig et al. (2023). Moreover, we find that the G-RepsFNO models perform competitively with the more
sophisticated, recently proposed, G-FNOs. Thus, we gain benefits of equivariance by directly using equivariant
representations on non-equivariant base models and making minimal changes to the architecture. Further,
in Tab. 6 we show that G-RepsFNOs are computationally much more efficient than the more sophisticated
G-FNOs.
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6 Limitations
Here we provide the limitations to our method to the best of our knowledge.

• Our method constructs lightweight networks equivariant to arbitrary matrix groups. However, the
universality of our method is limited to orthogonal groups as discussed in §. 4.4. Universality for
efficient practical equivariant architecture to general matrix groups is a challenging open problem
and left for future research. Nevertheless, since orthogonal groups form a large class of groups of
practical importance, we believe that the scalability of our network compared to equivariant networks
as general as ours, e.g. Finzi et al. (2021b), Villar et al. (2021), makes it an important equivariant
network construction method.

• While the G-RepsNet architecture is indeed general and applicable to arbitrary matrix groups, the
function that is invariant to group action may not be easy to define or compute in general, unlike the
case of orthogonal groups O(n) and O(1, n).

• Tensor operations used in our construction in Section 4 can be expensive for tensor of very high order.
But in the majority of applications we use tensor multiplications only when the applications require
such higher-order tensor features, e.g. in Section 5.1. In such cases, the applications themselves
require higher-order features in the network to achieve good performance. E.g., the O(3)-equivariant
regression task in Section 5.1 has second-order tensor outputs, hence, any equivariant network for
this task must have higher-order tensors and hence, are computationally more expensive than non-
equivariant networks. In second-order image classification in Section 5.3, we only use second-order
tensor in the final few layers where it leads to significant improvement in performance and the feature
dimensions are relatively not too large, hence, maintaining a comparable computational complexity
(cf. Tab. 9, 10) to the equivariant networks using first-order features.

• The G-RepsNet architecture is designed to be simple and efficient (and universal for orthogonal
groups) which means that we avoid tensor decomposition (e.g., required if T2 tensors need to be
converted to T1). However, this leads to higher memory requirements. In cases with more extreme
memory constraints, tensor decomposition may be worth despite the slower speed.

7 Conclusion
We present G-RepsNet, a lightweight yet expressive architecture designed to provide equivariance to arbitrary
matrix groups. We find that G-RepsNet gives competitive performance to EMLP on various invariant and
equivariant regression tasks taken from Finzi et al. (2021b), at much less computational expense. For image
classification, we find that G-RepsNet with second-order tensors outperforms existing equivariant models such
as GCNNs and E(2)-CNNs as well as methods such as equitune when trained using pretrained models such as
Resnet. Further illustrating the simplicity and generality of our design, we show that using simple first-order
tensor representations in G-RepsNet achieves competitive performance to specially designed equivariant
networks for several different domains. We considered diverse domains such as PDE solving and N -body
dynamics prediction using FNOs and MPNNs, respectively, as the base model.
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Appendix

A Additional Details on Related Works
A.1 EMLPs and Universal Scalars

EMLPs Given the input and output types for some matrix group, the corresponding tensor representations
can be derived from the given base group representation ρ. Using these tensor representations, one can solve
for the space of linear equivariant functions directly from the obtained equivariant constraints corresponding
to the tensor representations. Finzi et al. (2021b) propose an elegant solution to solve these constraints by
computing the basis of the linear equivariant space and construct an equivariant MLP (EMLP) from the
computed basis. Our work is closest to this work as we use the same data representations as Finzi et al.
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(a) Vector neurons (O(3) only) (b) Equitune

Figure 6: (a) and (b) show layers from vector neurons Deng et al. (2021) and equitune Basu et al. (2023b),
which are special cases of G-RepsNet..

(2021b), but we propose a much simpler architecture for equivariance to arbitrary matrix groups. Because of
the simplicity of our approach, we are able to use it for several larger datasets, which is in contrast to Finzi
et al. (2021b), where the experiments are mostly restricted to synthetic experiments. Moreover, using these
bases are in general known to be computationally expensive (Fuchs et al., 2020).

Universal scalars Villar et al. (2021) propose a method to circumvent the need to explicitly use these
equivariant bases. The First Fundamental Theorem of Invariant Theory for the Euclidean group O(d) states
that “a function of vector inputs returns an invariant scalar if and only if it can be written as a function only
of the invariant scalar products of the input vectors" (Weyl, 1946). Taking inspiration from this theorem and
a related theorem for equivariant vector functions, Villar et al. (2021) characterize the equivariant functions
for various Euclidean and Non-Euclidean groups. They further motivate the construction of neural networks
taking the invariant scalar products of given tensor data as inputs. However, the number of invariant scalars
for N tensors in a data point grows as N2, hence, making it an impractical method for most real life machine
learning datasets. Hence, their experiments are also mostly restricted to synthetic datasets like in EMLP.

Moreover, Villar et al. (2021, §. 5) show that even though the number of resulting scalars grows proportional
to N2, when the data is of dimension d, approximately N × (d + 1) number of these scalars is sufficient to
construct the invariant function. But, it might not be trivial to find this subset of scalar for real life datasets
such as images. Hence, we propose to use deeper networks with equivariant features that directly take the
N tensors as input, instead of N2 scalar inputs, which also circumvent the need to use equivariant bases.
Additional related works and comparisons are in Section 2.

A.2 Special Cases and Related Designs

Here, we look at existing group equivariant architectures popular for their simplicity that are special cases or
closely related to our general design.

Vector Neurons Popular for its lightweight SO(3)-equivariant applications such as point cloud, the vector
neurons (Deng et al., 2021) serve as a classic example of special cases of our design as illustrated in Fig. 6a.
Their T1-layer simply consists of a linear combination T1 inputs without bias terms, same as ours. The
T0-layer first converts the T1 tensors into T0 tensors by taking inner products. Then, pointwise non-linearities
are applied to the T0 tensor and then mixed with the T1 tensors, by multiplying them with T1 tensors and
further linearly mixing the T1 tensors.

Harmonic networks Harmonic networks or H-nets (Worrall et al., 2017) employ a similar architecture
to ours and vector neurons, but specialized for the SO(2) group. They also take as input T1 inputs, then
obtain the T0 scalars by computing the Euclidean norms of the inputs. All non-linearities are applied only to
the scalars. The T1 tensors are processed using linear circular cross-correlations that preserve equivariance.
Further, higher order tensors are obtained by chained-cross correlations. The use of cross-correlations is
very different from our design , but it is designed in a similar spirit of building tensors of various orders and
construct simple, yet expressive equivariant features.
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Deepsets Deepsets (Zaheer et al., 2017) is a popular architecture equivariant to permutations. Here, we
show how Deepsets can be constructed using non-regular representation for the S(n) group of permutations
using the G-RepsNet construction in §. 4.

First, we recall that the Deepsets architecture. Suppose the input to the Deepsets is given by X = [X1, X2, X3],
then the output of each layer of Deepsets is given by Y = [Y1, Y2, Y3], where Yi = W1(Xi) + W2(

∑3
i=1 Xi),

where W1 and W2 are two learnable weight matrices. Usually, we also have pointwise activation functions
used on the output, which we ignore here since they do not affect the equivariance of permutation groups. It
is easy to verify that the Deepsets layer is equivariant to permutations on X, since, if we replace Xi by Xj in
the input for i ̸= j, then Yi is replaced by Yj in the output.

Now, consider the construction of G-RepsNet corresponding to the S(n) group using non-regular representation
from Section 4. For the input X = [X1, X2, X3], the group channel dimension is equal to 1. We first obtain
the T0 and T1 representations of the data as XT0 =

∑3
i=1 Xi, XT1 = [X1, X2, X3]. Then, we obtain

YT0 = [W1(XT0), 1], which is a concatenation of the invariant term W1(XT0) and a scalar 1 independent of the
input. Similarly, obtain the HT1 = [1, W2(XT1)], where W2(XT1) := [W2(X1), W2(X2), W2(X3)]. Now, we get
Y ′

T1
= HT1 ∗ YT0 = [W1(XT0), W2(XT1)]. From Y ′

T1
, it is easy to obtain YT1 by summing the two components

W1(XT0) and W2(XT1) of Y ′
T1

. Thus, establishing the similarity between Deepsets and G-RepsNet for the
permutation group. Note that here we used the inv(·) as a constant, which is a valid choice, to obtain a
similar form of the output as Deepsets.

Equitune Finally, recent works on frame-averaging such as equitune and related symmetrization tech-
niques (Basu et al., 2023a; Kim et al., 2023; Kaba et al., 2023; Mondal et al., 2023) construct equivariant
architecture by performing some sort of averaging over groups. This can be seen as using a regular T1
representation as the input and output type as illustrated in Fig. 6b. These works have mainly focused on
exploring the potential of equivariance in pretrained models. In this work, we further explore the capabilities
of regular T1 representations and find their surprising benefits in equivariant tasks. Moreover, this also
inspires us to explore beyond regular T1 representations, e.g., we find T2 representations can yield better
results than T1 representations when used in the final layers of a model for image classification.

B Proof of Equivariance
Here we provide the proof of equivariance of a G-RepsNet layer to matrix groups. Further, since stacking
equivariant layers preserve the equivariance of the resulting model, the equivariance of the G-RepsNet model
follows directly. The argument is similar to the proof of equivariance of vector neurons to the SO(3) group.

First, consider regular representation. Note from Section 4 that the group channel dimension is treated like a
batch dimension in regular representations for discrete groups. Thus, any permutation in the input naturally
appears in the output, hence, producing equivariant output.

Now we consider non-regular representations. Assuming that the input to a G-RepsNet layer consists of
tensors of types T0, T1, . . . , Tn, we first note that the output of the T0-layer in Fig. 1a is invariant, following
which we find that the Ti-layer outputs equivariant Ti tensors.

The output of the T0-layer is clearly invariant since all the inputs to the network are of type T0, which are
already invariant.

Now, we focus on a Ti-layer. Recall from Section 4 that a Ti layer consists only of linear networks without
any bias terms or pointwise non-linearities. Suppose the linear network is given by a stack of linear matrices.
We show that any such linear combination performed by a matrix preserves equivariance, hence, stacking
these matrices would still preserve equivariance of the output. Let the input tensor of type Ti be X ∈ Rc×k,
i.e., we have c tensors of type Ti and size of the representation of each tensor equals to k. Consider a matrix
W ∈ Rc′×c, which multiplied with X gives Y = W × X ∈ Rc′×k, where Y is a linear combination of the c
input tensors each of type Ti. Let the group transformation on the tensor Ti be given by G ∈ Rk×k. Then
the group transformed input is given by X ′ = X × G ∈ Rc×k. The output of X ′ through the Ti-layer is given
by Y ′ = W × X × G ∈ Rc′×k = (W × X) × G = Y × G, where the second last equality follows from the
associativity property of matrix multiplication. Thus, each Ti-layer is equivariant.
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C On the Universality of the G-RepsNet Architecture

Proof to Thm. 1. Let the tensors of type i at layer l be written as H l
i . Given input (X1, X2, . . . , Xn) ∈ Rd of

type T1, we construct a G-RepsNet architecture that can approximate h by taking help from the approximation
properties of a multi-layered perceptron (Hornik et al., 1989).

Let the first layer consist only of T1-layers, i.e., linear layers without any bias terms such that the obtained
hidden layer H1

1 is of dimension Rd×(n2+n) and consists of the T1 tensors Xi + Xj for all i, j ∈ {1, . . . , n}
and Xi for all i ∈ {1, . . . , n}. This can be obtained by a simple linear combination. Now, construct the
second layer by first taking the norm of all the T1 tensors, which gives ∥Xi∥ + ∥Xj∥ + 2 × ⟨Xi, Xj⟩ for all
i, j ∈ {1, . . . , n} and ∥Xi∥ for all i ∈ {1, . . . , n}. Then, using a simple linear combination of the converted
T0 tensors give ⟨Xi, Xj⟩ for all i, j ∈ {1, . . . , n}. Finally, passing ⟨Xi, Xj⟩ for all i, j ∈ {1, . . . , n} through
an MLP gives H2

0 . Now, from the universal approximation capability of MLPs, it can approximate f from
equation 1. Thus, we obtain the function h from Lem. 1.

Now, recall from Villar et al. (2021), a statement similar to Lem. 1, but for vector functions.
Lemma 2 (Villar et al. (2021)). A function of vector inputs returns an equivariant vector if and only if it
can be written as a linear combination of invariant scalar functions times the input vectors. That is, given
input vectors (X1, X2, . . . , Xn), Xi ∈ Rd, any equivariant vector function h : Rd×n 7→ Rd can be written as

h(X1, X2, . . . , Xn) =
n∑

t=1
ft(⟨Xi, Xj⟩n

i,j=1)Xt, (3)

where ⟨Xi, Xj⟩ denotes the inner product between Xi and Xj, and fts are some arbitrary functions.

Proof to Thm. 2. The proof closely follows the proof for Thm. 1. Let the tensors of type i at layer l be
written as H l

i . Given input (X1, X2, . . . , Xn) ∈ Rd of type T1, we construct a G-RepsNet architecture that
can approximate h by taking help from the approximation properties of a multi-layered perceptron Hornik
et al. (1989).

Let the first layer consist only of T1-layers, i.e., linear layers without any bias terms such that the obtained
hidden layer H1

1 is of dimension Rd×(n2+n) and consists of the T1 tensors Xi + Xj for all i, j ∈ {1, . . . , n}
and Xi for all i ∈ {1, . . . , n}. This can be obtained by a simple linear combination.

Let the second layer consist of both a T0 layer and a T1 layer. Let the T0 layer output, H1
0 , be ⟨Xi, Xj⟩ for

all i, j ∈ {1, . . . , n} and ∥Xi∥ for i ∈ {1, . . . , n} in a similar way as done in the proof for Thm. 1. And let the
T1 layer output, H1

1 , be Xi for i ∈ {1, . . . , n}.

Again, let the third layer also consist of a T0 layer and a T1 layer. Let the T0 layer consist of MLPs
approximating the output ∥Xt∥ × ft(⟨Xi, Xj⟩n

i,j=1) for t ∈ {1, . . . , n}. Denote ∥Xt∥ × ft(⟨Xi, Xj⟩n
i,j=1) as

H3,t
0 . Then, let the T1 layer consist of first mixing the scalars H3,t

0 with Xt as described in Section 4 as

H3,t
1 = Xt × H3,t

0
∥Xt∥

,

where H3,t
1 for t ∈ {1, . . . , n} represent the output of the T1 layer of the third layer. Note that from

the universal approximation properties of MLPs (Hornik et al., 1989), we get that H3,t
1 approximates

Xt × ft(⟨Xi, Xj⟩n
i,j=1). Finally, the fourth layer consists of a single T1 layer that sums the vectors H3,t

1 for
t ∈ {1, . . . , n}, which combined with Lem. 2 concludes the proof.

Thus, we find that a simple architecture can universally approximate invariant scalar and equivariant vector
functions for the O(d) or O(1, d) groups. This is reminiscent of the universality property of a single-layered
MLP. However, in practice, deep neural networks are known to have better representational capabilities than
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Table 7: Test loss and running time for various neural network architectures for the 5-body dynamics
prediction task. The results for SEGNN are taken from Brandstetter et al. (2022), rest are taken from
Satorras et al. (2021).

Model Test Loss Forward Time
Linear 0.0819 0.0001

SE (3) Transformer Fuchs et al. (2020) 0.0244 0.1346
Tensor Field Network Thomas et al. (2018) 0.0155 0.0343
Graph Neural Network Gilmer et al. (2017) 0.0107 0.0032
Radial Field Network Köhler et al. (2019) 0.0104 0.0039

EGNN Satorras et al. (2021) 0.0071 0.0062
SEGNN Brandstetter et al. (2022) 0.0043 0.0260

a single-layered MLP. In a similar way, in practice, we design deep equivariant networks using the G-RepsNet
architecture that provides good performance on a wide range of domains.

D Additional Experimental Details
D.1 Comparison with EMLPs

Here we provide the learning rate and model sizes used for the experiments on comparison with EMLPs in
Section 5.1.

For each task and model, we choose model sizes between small (with channel size 100) and large (with channel
size 384). Similarly, we choose the learning rate from {10−3, 3 × 10−3}.

In the O(5)-invariant regression task, for MLPs and EMLPs, we use a learning rate of 3 × 10−3 and channel
size 384. Whereas for G-RepsNets, we use a learning rate of 10−3 and channel size 100.

For the O(3)-equivariant task, we use learning rate 10−3 and channel size 384 for all the models.

For the O(1, 3)-invariant regression task, we use a learning rate of 3 × 10−3 for all the models. Further, we
use a channel size of 384 for MLPs and EMLPs, whereas for G-RepsNets, a channel size of 100 was chosen as
it gives better result.

D.2 Second-Order Image Classification

Training CNNs from scratch: The CNN used for the ablation experiments for the plot in Fig. 4a consists
of 3 convolutional layers each with kernel size 5, and output channel sizes 6, 16, and 120, respectively.
Following the convolutional layers are 5 fully connected layers, each consisting of features of dimension of 120.
For training from scratch, we train each model for 10 epochs, using stochastic gradient descent with learning
rate of 10−3, momentum of 0.9. Further, we also use a stepLR learning rate scheduler with γ of 0.1, step size
of 7, which reduces the learning rate by a factor of γ after every step size number of epochs.

Comparison to GCNNs and E(2)-CNNs when trained from scratch: For each of the models, we use
the Resnet18 architecture (either with naive convolutions or group convolutions). We train each model for
100 epochs using stochastic gradient descent, with a learning rate 10−3, momentum of 0.9, weight decay of
5 × 10−4.

Second-Order Finetuning: For finetuning the pretrained Resnet18, we use 5 epochs, using stochastic
gradient descent with learning rate of 10−3, momentum of 0.9. For equivariant finetuning with T2 representa-
tions, we first extract T1 featured from the pretrained model same as done for equituning (Basu et al., 2023b),
following which we convert it to T2 representations using a simple outer product. Once the desired features
are obtained, we pass it through two fully connected layers with a ReLU activation function in between to
obtain the final classification output.
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Table 9: Table shows mean training time (in minutes) taken by each of the models per epoch for the
experiments in Tab. 3. We note that T2-G-RepsCNN is computationally comparable to T1-G-RepsCNN as
the second-order features in T2-G-RepsCNN are only used in the final layers with small dimensions. Similarly,
GCNN is computationally comparable to T2-G-RepsGCNN.

Dataset \ Model CNN T1-G-RepsCNN T2-G-RepsCNN GCNN T2-G-RepsGCNN
Rot90-CIFAR10 1.07 3.19 3.21 5.50 5.50

Table 10: Table shows mean training time (in minutes) taken by each of the models per epoch for the
experiments in Tab. 5. We note that T2-G-RepsCNN is computationally comparable to T1-G-RepsCNN as
the second-order features in T2-G-RepsCNN are only used in the final layers with small dimensions. Similarly,
E(2)-CNN is computationally comparable to T2-G-RepsE(2)CNN.

Model Equivariance Tensor Orders Training time (min)
CNN – – 1.55

T1-G-RepsCNN C8 (T1) 6.77
T2-G-RepsCNN C8 (T1, T2) 6.8

E(2)-CNN C8 (T1) 5.52
T2-G-RepsE(2)-CNN C8 (T1, T2) 5.52

T1-G-RepsCNN C16 (T1) 9.80
T2-G-RepsCNN C16 (T1, T2) 9.17

E(2)-CNN C16 (T1) 6.81
T2-G-RepsE(2)-CNN C16 (T1, T2) 6.81

E Additional Results
E.1 Comparison of time for forward passes in GNN models

We present the results of forward pass times for various equivariant and non-equivariant graph neural
network models in Tab. 7 taken directly from Satorras et al. (2021). It shows that networks constructed
from equivariant bases such as tensor field networks (TFNs) and SE(3)-equivariant transformers can be
significantly slower than non-equivariant graph neural networks.

E.2 Additional results on compute required for second-order image classification using GCNNs,
E(2)-CNNs

Tab. 9 and 10 show the average training time taken per epoch for various models for the experimental results
in Tab. 3 and 5, respectively.
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