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Abstract

Coordinating large teams of heterogeneous mobile agents to perform complex tasks
efficiently has scalability bottlenecks in feasible and optimal task scheduling, with
critical applications in logistics, manufacturing, and disaster response. Existing
task allocation and scheduling methods, including heuristics and optimization-
based solvers, often fail to scale and overlook inter-task dependencies and agent
heterogeneity. We propose a novel Simultaneous Decision-Making model for
Heterogeneous Multi-Agent Task Allocation and Scheduling (HM-MATAS), built
on a Residual Heterogeneous Graph Transformer with edge and node-level attention.
Our model encodes agent capabilities, travel times, and temporospatial constraints
into a rich graph representation and is trainable via reinforcement learning. Trained
on small-scale problems (10 agents, 20 tasks), our model generalizes effectively to
significantly larger scenarios (up to 40 agents and 200 tasks), enabling fast, one-shot
task assignment and scheduling. Our simultaneous model outperforms classical
heuristics by assigning 164.10% more feasible tasks given temporal constraints
in 3.83% of the time, metaheuristics by 201.54% in 0.01% of the time and exact
solver by 231.73% in 0.03% of the time, while achieving 20×-to-250× speedup
from prior graph-based methods across scales.

1 Introduction

Multi-Agent Task Allocation and Scheduling (MATAS) seeks to determine the optimal assignment of
tasks to agents, e.g., drones delivering supplies across disaster zones [1], and establish a corresponding
schedule for each agent, accounting for both temporal and spatial constraints. Generation of optimal
plans is essential in multi-agent systems, with applications ranging from search and rescue [2–5],
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Figure 1: Simultaneous Task Allocation and Scheduling for Mobile Multi-Agent Teams with Hetero-
geneous Travel Time and Task Execution Time under Temporal Constraints. TARGETNET takes in
observation and outputs task assignment and schedule. The environment executes and evaluates the
optimality and feasibility.

warehouse automation [6, 7], transportation systems [8–11] and satellite coordination in space [12–
14]. The simplest MATAS problem is the Multiple Travelling Salesman Problem (mTSP), optimizing
the travel cost of multiple agents, making it an NP-hard problem that can become more complex
with the addition of complex dependencies and constraints such as task coupling, time windows
and heterogeneity in tasks and agents based on physical capabilities [15–24]. We aim to develop a
generalized approach that integrates these two subproblems within a unified model, considering task
and agent heterogeneity.

While constraint satisfaction methods can provide exact solutions to MATAS by handling temporal
and spatial constraints [25, 26], search-based optimizers scale poorly with increases in the number
of tasks, agents, and constraints, and require handcrafted encodings and hand-tuned parameters,
making them brittle for new domains. Metaheuristics, like Genetic Algorithms (GA) [27–30], and
market-based approaches [31, 32] offer alternatives but rely on domain-specific knowledge and can
provide suboptimal results.

Recent Graph Neural Network (GNN)-based solvers [23, 24, 33–38] show that learning based
approaches can provide near-optimal results while remaining scalable by learning from data instead of
relying on hand-crafted solvers. However, GNNs face limitations in capturing dynamic, heterogeneous
relations essential in MATAS for heterogeneous agents due to the method of aggregation messages
from multiple sources. Attention-based methods have been proposed to address these limitations [39],
which are further expanded in Heterogeneous Graph Transformers (HGT) [40, 41] leverage attention
mechanisms that allow effective modeling of heterogeneous and pairwise dynamics, making them
suitable for MATAS tasks with complex relations.

We tackle the challenge of Heterogeneous and Mobile MATAS (HM-MATAS) problems using
scalable learning-based models. We introduce Task-Agent Relational Graph Encoding for Team-
based Navigation and Execution of Tasks (TARGETNET), an approach that leverages a relational
modeling framework that represents the Optimization Problem as a graph. TARGETNET assigns
an agent to each task and schedules the tasks in the presence of order and time-window constraints.
By leveraging relational representations, our method learns to generate closer-to-optimal policies
than the baselines while allowing for deployment to larger-scale problems. TARGETNET generates
schedules in a fraction of the time it takes for the optimizer to find optimal solutions larger scales.
Our results show that leveraging the expressiveness of Graph Transformers with edge attention and
residual networks can allow for the creation of a fast and scalable policy, delivering robust and fast
scheduling solutions for real-world multi-agent systems.

In summary, these are the main contributions:

1. We present TARGETNET for modelling and solving HM-MATAS problems, enabling fast
and scalable multi-agent task planning, allowing training on small instances and deployment
on larger problems.

2. We propose a novel Node and Edge Attention-Aware Heterogeneous Graph Transformer
with Residuals for improved performance in modeling heterogeneous and dynamic rela-
tions present in edge features. By leveraging the attention mechanism our method learns
generalized policies that scale to larger problems without retraining.

2



3. We compare our model against state-of-the-art models, showing that our model is able to
generate schedules that are 13.26% better than the best performing metaheuristics in 0.73%
of the time, and 36.34% better performance than state-of-the-art GNN-based schedules in
4.75% the time in 10 agent-20 task problems, while generating 231.73% better than partial
schedules generated by exact solvers after 12 hours in less than 12 seconds, in 40 agent-200
task problems.

2 Related Works

2.1 Multi-Agent Task Allocation

Gerkey and Mataric [15] proposed a taxonomy of the MRTA based on agent types (single-task vs.
multi-task agents), task types (single-agent vs. multi-agent tasks), and assignment type (instantaneous
assignment vs. time-extended assignment). In this work, we focus on single-task agents, single-agent
tasks, and time-extend assignment (SR-ST-TA) problems which is a combinatorial optimization
problem known to be strongly NP-hard. Unlike prior work [33, 24], we further account for Hetero-
geneous Travel Time of agents along with interrelated constraints. The location of the other agents
and the tasks that they are able to complete influence the performance of other agents, leading to
Complex-Schedule Dependencies (CD) [16].

2.1.1 Non-learning-based Approaches

Researchers have developed different types of approaches to address the MATAS problem. Market-
based approaches [31, 42, 43] and game-theoretical approaches [44, 45] are decentralized methods
that enable distributed decision-making, but they typically yield worse performance compared to
centralized approaches. Metaheuristics methods, including Ant Colony Optimization (ACO) [46,
47, 36] and Genetic Algorithm (GA) [30] rely on search-based heuristics without any optimality
guarantees. Since the MATAS problem is an optimization problem, it can be represented as a Mixed
Integer Linear Programming (MILP) problem [26], allowing for exact solvers [48, 49] to generate
solutions. Chakraa et al. [50] provides a detailed survey of existing optimization-based methods.
However, most of these optimization-based approaches are computationally expensive and scale
poorly with problem size.

To handle complex time constraints in task allocation and scheduling, various search-based methods
have been proposed. Nunes and Gini [26] developed an auction-based method considering time-
window constraints. Whereas Kartal et al. [51] used Monte Carlo Tree Search (MCTS) to address
MATAS with time-window constraints as well. Choudhury et al. [52] applied conflict-based search to
find solutions under complex temporal constraints. However, these methods require expert domain
knowledge to adapt to different problems, while our method of graph representation can encode the
problem features and learn based on a given objective function through trial and error, making it more
versatile for different objective functions.

2.1.2 Learning-based Approaches

Learning-based MATAS methods model are function approximators [53] that trade-off training time
to learn heuristic policies allow fast deployment without the need for experts [25]. Multi-Agent
Reinforcement Learning (MARL) is used to train different models, such as Decision Trees [54],
Neural Networks [55–57, 38, 58] and Recurrent Neural Networks (RNN) [55, 59]. The models
were trained using different reinforcement learning algorithms, such as value-based [60, 61], policy-
based [24, 33, 62], and actor-critic based [63, 64] learning. However, these approaches are limited in
their modeling capabilities, only addressing a subset of MATAS problems, such as Vehicle Routing
Problems [65, 66], multiple Travelling Salesman Problems [67, 68], homogeneous agents, no travel
time [33, 24], and struggling to scale effectively to larger, more complex environments.

2.2 Graph Neural Networks

GNNs provide a scalable approach to solving problems in multi-agent coordination [35, 69–71],
adversarial agent modelling [72], and human-agent teaming [73]. Wang and Gombolay [33] proposed
a new type of Heterogeneous Graph Attention Networks (HetGAT) [74] with Edge Features [75]

3



representing heterogeneous relational information for multi-agent task scheduling problems by se-
quentially assigning agents to tasks. Transformer Attention mechanism has been used to solve limited
scale constraint satisfaction problems such as Sudoku, however these methods do not scale up to larger
problem sizes, and require a dense attention matrix to represent the constraints [76]. Heterogeneous
Graph Transformers (HGTs) have been shown to outperform other attention based graph models
in optimization problems while allowing for scalable and sparse relational representation [40], and
they have been used for the Task Allocation for mTSP problems, followed by using an optimizer
for solving the scheduling per agent without temporal constraints [62, 68]. However, existing HGT
architectures lacks the ability to process relational information encoded within edge features. Our
work leverages the capabilities of Heterogeneous Graph Transformers (HGTs) to address MATAS
problems, effectively accounting for heterogeneous travel times and task completion durations.

3 Methodology

In Section 3.1 we present the HM-MATAS problem as an Optimization Problem, and in Section 3.2
present a Markov Decision Process (MDP) to simulate the movement of agents as they complete the
tasks, allowing for a framework that can be used to train learning-based models using Reinforcement
Learning [77]. In Section 3.3 we present a method of encoding the CSP problem in a graph framework
that can be adapted for single-step Task Allocation and Scheduling. In Section 3.4 we present a new
method of integrating Edge Features into GNNs, which we combine with the graph representation
and train to solve HM-MATAS problems.

3.1 Problem Setup

Task Allocation and Scheduling under Temporal Constraints: We consider HM-MATAS prob-
lem for mobile team of agents A = {1, 2, . . . |A|} and a set of tasks T = {1, 2, . . . , |T |}. Agents
start in random locations and must travel to the location of the task to start the execution of the task.
The heterogeneous execution time is the time it takes for agent to start a task j, tSij and finish it,
tFij , presented as tEij = tFij − tSij . We also account for order constraints, where Wjk is the minimum
required wait-time between the completion of task j and start of task k and every task has a time
window, [sk, ek], where sk is the earliest start time, and end before the deadline constraint, ek. The
objective function is to minimize the maximum time it takes to complete all tasks, denoted as the
makespan, while satisfying the temporal constraints. The MILP representation of the Optimization
Problem can be found in the Appendix A.

Heterogeneous Trave Times using Precomputed Motion Plan: Physical heterogeneity of agents
include heterogeneous velocities which impact the travel time from one task to another [22]. We
use Rapidly-exploring Random Graph Algorithm [78] to compute the travel distances between agent
start locations to task locations and the locations of pairs of tasks in the presence of obstacles. The
heterogeneous velocities of each agent i, lead to having distinct travel times along the same path,
represented as tTi0j , for travel time from initial location to task j, and tTijk for travel time of agent
i, from the location of task j, to task k. Abstracting the motion-planning enables integration with
diverse planners [79–81], while preserving downstream optimization tractability [82].

3.2 Markov Decision Process

We present the HM-MATAS problem in the form of a five-tuple Markov Decision Process <
S,A, P,R, γ > that simulates the movement of agents through the map to complete the assigned
tasks in a given ordered schedule. The state space, S, captures the state of the environment based
on the current location of agents and tasks, when the agents will be available, a list of assigned and
unassigned tasks, along with temporal constraints. The action space, A, consists of all possible
agent-task pair selections, where each single action at time step t ∈ [1, |T |], at = ⟨αi, τj⟩, represents
assigning agent, αi, to task, τj . Each task is only assigned to an agent once, limiting the time horizon
to number of tasks, |T |. The Transition Function, P , updates the state of the model, moving agents
to new assigned task locations and generates a new graph representation after assignment. The
reward function, R, maximizes the number of feasible decisions, represented by a boolean function
1feasible(st, at), at every time-step, t, while minimizing the maximum makespan, tms, normalized
to maximum deadline time, tddl. The constraint feasibility and optimality are combined using
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Figure 2: Graph-based Task Allocation and Scheduling using GNNs with node and edge features.

hyperparameters α and β, for a total reward as shown in Eq. 1. To balance the short-term feasibility
with long-term plan quality and clarify credit assignment, we combine dense feasibility reward, +1
if feasible, −1 otherwise, with sparse reward at final timestep, t = |T |, that combines number and
optimality of feasible assignments as shown in Eq. 1. γ ≤ 1 is the discount factor.

R(st, at) =


α(1− tms

tddl
) + β

∑T
i=1 1feasible(si, ai)) , if t = |T |

+1 , if 1feasible(st, at)

−1 , otherwise
(1)

3.3 Graph Modelling of Heterogeneous Task Allocation and Scheduling with Travel Times

We represent the HM-MATAS problem as a heterogeneous graph model G = (V,E) with vertices
V to describe Agent, Task, Assignment of an agent to task, global State and Task Order nodes.
Heterogeneous edges E that encode the relations between different heterogeneous elements of the
graph. Each heterogeneous node encodes information unique to the node type, such as velocity and
earliest available time for agents and time window constraints for tasks. Edges encode relational
information between the two node types, representing travel time from agent’s current location to
tasks, and travel time and distance between tasks. We further augment our graph representation
with the Assignment node to simulate the assignment of an agent to a task and to explicitly model
heterogeneous task execution time [83]. The Assignment nodes representing a specific agent have
edges between each other to encode the heterogeneous travel time from one task to another for the
specific agent. Consequently, there are O(|A||T |) Assignment nodes in the graph for |A| agents and
|T | tasks, with O(|A||T |2) edges between the assignment nodes in total. Full details of the node and
edge features can be found in Appendix B.1.

3.4 Graph Transformer Network with Edge Attention

GNNs were used to some MATAS problems represented as graphs [33, 61, 62, 68] with Attention
mechanisms [39, 40] showing higher performance by accounting for the relational importance of
each edge. HGTs outperform other attention-based graph networks by leveraging the Transformer
Attention mechanism [40, 84] in standard benchmarks. However, HGTs support node-type-specific
attention, but does not innately support edge features, which are crucial for MATAS [76].

We augment each message-passing step in HGTs, as described in Appendix B, with edge-based
attention and messaging leveraging the distributive property of attention [85]. The node and edge
features combine to update of target node feature, hl[t], and edge features, hl[e], for the next layer, l,
for an edge, e, connecting source node, s, to target node, t, as shown in Eq. 2 and 3 respectively.
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hl[t]← Aggregate
∀s∈N(t)∀e∈E(s,t)

(
AttN (s, t) ·MsgN (s) + AttE(e, t) ·MsgE(e)

)
(2)

hl[e]← AttE(e, t) ·MsgE(e) (3)

We pass information from edge features to target nodes using message passing. For multi-head
attention, we use M i

E(e) = W i
ME

hl−1
e , to calculate message vectors for head i. W i

ME
and WMSG

ϕ(e) ,
along with the standard HGT weights [40] described in Appendix B, are trainable.

MsgE(e, t) =

∥∥∥∥∥
h

i=1

M i
E(e)W

MSG
ϕ(e) (4)

The edge attention, Eq. 5, determines how important each edge message is to the target node, using
edge features, hl−1

e , and target features, hl−1
t . The key values of the edge, Ki

E(s) = W i
KE

hl−1
e , and

query values for target node, Qi
E(t) = W i

QE
hl−1
t , are used to compute the attention, normalized

using the vector dimension of d, and the learned prior tensor µN
⟨ϕ(e),τ(t)⟩. The multi-head attention

allows for the learning of multiple weights for the same features that are combined to increase the
descriptive power of attention [84]. While the standard attention mechanism applies a softmax across
multi-head attention, this formulation enforces that the policy always accounts for both edge and node
features, even when some policies may not require them. By omitting the softmax, we allow attention
weights to reach zero, enabling the model to learn policies that selectively ignore certain components
of the graph. This flexibility improves the representational capacity of the model [86]. Key, query and
attention weights, W i

KE
, W i

QE
and WATT

ϕ(e) respectively, are learned and used to compute the attention
used to update both edge and target features.

AttE(e, t) =
∥∥∥∥h
i=1

Ki
E(s)W

ATT
ϕ(e)Q

i
E(t)

T )
µN
⟨ϕ(e),τ(t)⟩√

d
(5)

By accounting for both node and edge features, we present a GNN algorithm that can be used for
problems where relational information is vital for decision making, such as MATAS problems.

Residual Graph Neural Networks: We adopt a specific type of residual network based upon the
graph-raw residual [41] concept, where the initial input of the graph node and edge features are
appended to each layer, to mitigate vanishing gradients in deep GNNs [87].

3.5 Simultaneous Decision Making Policy Training

We process the input features, represented as a graph model in Section 3.3, using the edge-feature
augmented HGT, as described in Section 3.4, to generate output predictions for Task Allocation and
Scheduling policies. Our model takes in the initial state, s0, and generates a Task Allocation, TA,
and Task Scheduling, Sch, without iteratively interacting with the environment, allowing a significant
boost to computation speed.

Task Allocation: We leverage the output features of the Assignment nodes, which represent the
pairwise assignment of |A| agents to |T | tasks with a total of |A||T | nodes. The Assignment node
features of the output is reshaped into a |A| × |T | matrix, and a single agent is sampled for each task
to achieve Task Assignment for single-agent tasks.

Scheduling: We sort the Tasks using the output of the Task Order nodes connected to each task.
During training, scheduling is performed by sampling tasks sequentially from a Probability Mass
Function over Task Order node outputs. Sampling proceeds without recomputing weights, requiring
only a single GNN forward pass.

Training: Our policy computes the Task Allocation and Scheduling in a single forward pass.
However, we leverage the sequential nature of scheduling to train our models using REINFORCE [77]
with log probabilities based on prior work for numerical stability [24]. We use the discounted reward,
combining sparse final performance for optimization and dense feedback on individual task constraint
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satisfaction. At any given time-step t, the Task Assignment policy, πTA assigns agent αt to task
τt, and Scheduling policy, πSch determines the task that will be ordered to be tth in the plan. We
compute the gradient of the model using Eq. 6:

∇θJ(θ) = Eπ

∑
t∈1:|T |

 ∑
i∈t:|T |

γ|T |−iRi(⟨αt, τt⟩, s0)∇θ (log πTA(αt|τt, s0) + log πSch(τt|s0)))


(6)

4 Experiments

4.1 Experiment Setup

We generate our problems using the constraints described in Section 3.1, validated to have an optimal
solution using exact solvers based on the MILP described in Appendix A. All learning-based policies
are trained on 200 small-scale problems (10 agents-20 tasks), with the configuration outlined in
Table 1 of Appendix E. Three instances are initialized per model with different random seeds and
trained in parallel. For testing, 200 problems are generated for small and medium scales (10 agents-50
tasks), 30 for large scale (20 agents-100 tasks), and 10 for extra-large scale (40 agents-200 tasks).
Due to the complexity of large and extra-large-scale problems, we generate 2 and 4 medium-scale
problems, respectively, and combine them into a single map with shared obstacles. For each learning-
based model, we train three instances with different random seeds and, for each test problem, report
the performance of the best-performing instance. We then compute the mean and standard deviation
of these best-case results across the problem set. Time performance is calculated by solving 10
problems of the given scale using the models. Exact details of problem generation and reproducibility
of our experiments can be found in Appendix E.

The following metrics are used to evaluate the performance of the policy. These capture quality
(optimality), feasibility, and practical utility (training and inference speed):

• Optimality Rate: The Optimality Rate of the Final Reward is acquired using the reward for
the total schedule at time |T |, as described in Eq. 1, normalized to the reward of the MILP
Solver, Oπ = Rπ

|T |/R
MILP
|T | .

• Feasibility Percentage: The Percentage of Feasible Task Assignments is acquired by
normalizing the number of feasible assignments to the total number of tasks for each
problem, |Tfeasible|/|T |.

• Training Speed: The mean training time per episode using a training dataset using small
scale problems, relevant for learning-based models.

• Inference Speed: Mean wall-clock time it takes to generate the schedule in seconds.

4.1.1 Models and Baselines

We compare TARGETNET using Edge Enhanced HGT with Residuals against Heuristic and
Metaheuristic schedulers, and compare the model performance against existing Graph-based Learning
Models, that leverage the Task Allocation Graph Representation Model presented in Fig. 7.

MILP Solver: Exact solver using the MILP formulation described in Appendix A to solve the
problem [48].

Heuristics: We compare our model against greedy heuristic solvers, Earliest Deadline First
(EDF) that prioritizes tasks with earlier deadlines and assigns them to agents with earlier completion
times [88] and Constraint-Aware EDF (CA-EDF) that accounts for precedence in task order
dependencies [26, 51].

Metaheuristics: A metaheuristic that improves a population of schedules over several generations
by applying mutations and selecting the best schedules based on an initial seed [30, 29]. We utilize
Genetic Algorithm to improve the performance of a starting scheduling generated randomly, Gen-
Random, and generated using EDF heuristic, Gen-EDF. Given the high time complexity of the
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Figure 3: Mean optimality rate of the final reward on different scales, with standard deviation as error
bars. Higher is better.
Genetic Algorithm, we limit the evaluation to the best-performing schedules after 1 and 3 generations
of mutations based on computation time to be comparable to the optimal solver, with a population
size of 100 and survival rate of 10% for the next generation.

GNN-Baselines: We evaluate GNN-based models that take in the Graph Model described in
Section 3.3 as input to generate sequential agent-task assignment policies as described in prior
work [24]. Our baselines include HetGAT [61], which employs graph-attention mechanism with
edge-level attention for sequential decision making, and its residual-enhanced variant, Res-HetGAT,
based on the graph-raw-residuals [87]. Additionally, we benchmark our Simultaneous Decision
Making model against a Sequential Decision Making variant, referred to as Seq-TARGETNET. We
also consider two simplified versions: Seq-TARGETNET\R, which excludes residual connections,
Seq-TARGETNET\E, which excludes edge features and Seq-TARGETNET\ER, which omits
both edge features and residuals.

Ablation: To isolate the contributions of residual connections and edge features, we conduct an abla-
tion study on our simultaneous decision-making model. Specifically, we evaluate TARGETNET\R,
which removes residuals, TARGETNET\E which omits edge features and TARGETNET\ER,
which removes both residuals and edge features, allowing us to assess their individual and combined
impacts on performance.

5 Results & Experiment Analysis

We evaluate the performance of our proposed TARGETNET model across a range of problem sizes,
comparing it with rule-based heuristics, metaheuristics, GNN-based sequential policies, and an
MILP-based optimal solver. Our primary focus is on the trade-off between computational efficiency
and solution quality, specifically feasibility and optimality of task assignments.

TARGETNET consistently delivers near-optimal performance while significantly reducing computa-
tion time. In small-scale problems, it achieves a 13.27% improvement in feasible task assignments
over the rule-based CA-EDF policy and 36.35% improvement over HetGAT [61], generating sched-
ules in under 0.20 seconds, the only model besides heuristics capable of sub-second scheduling at
small scale.

As problem size increases, the computational benefits of TARGETNET become more pronounced. In
extra-large scale settings, where the MILP solver fails to return fully-feasible solutions within 12 hours
(producing partial schedules in all 10 cases), TARGETNET generates schedules with 70.80% more
feasible tasks than the MILP solver and 47.05% more than HetGAT in 0.37% the computation time as
while sequential models benefit from per-decision re-optimization but suffer cubic complexity, taking
538.56× more time to generate schedules. While TARGETNET\E achieves similar performance to
TARGETNET for the best performing seed, on average across 3 seeds, TARGETNET performs from
16.91% to 34.75% across different problem scales.

The inductive generalization ability of our graph-based encoding combined with simultaneous Task
Allocation and Scheduling of TARGETNET allows our model to be trained on small-scale instances,
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Figure 4: Mean percentage of feasible task Assignments on different scales, with standard deviation
as error bars. In extra-large scales, graph-based models are shown to be able to outperform the
optimizer. Higher is better.

Figure 5: Mean optimality rate of the final reward for 3 seeds of the learning-based models on
different scales, with standard deviation as error bars. Higher is better.

and deployed directly to significantly larger problem sizes without retraining, still maintaining com-
petitive performance. As shown in Fig. 5, TARGETNET consistently outperforms both baseline
methods and ablation variants across all three random seeds. Although the TARGETNET\E variant
achieves performance comparable to the full model in one seed (seed 10), the overall results demon-
strate that TARGETNET maintains superior robustness by effectively representing policies both
with and without explicit edge feature conditioning through the attention mechanism. Our empirical
results suggest that incorporating edge-level information contributes to more stable generalization
and reduced brittleness across varied problem configurations.

From a computational complexity perspective, TARGETNET operates with a time and space com-
plexity of O(|A||T |2), for number of agents, |A|, and number of tasks, |T |. This contrasts with the
O(|A||T |3) complexity of sequential models such as HetGAT and Seq-TARGETNET leveraging
the same graph structure, which require repeated environment updates and forward passes for each
decision step. Our single-step schedule generation framework allows for a significant reduction in
computational load, making TARGETNET suitable for real-time deployment scenarios where optimal
solvers and sequential GNNs become impractical.

The training time for the Simultaneous model yields up to 20x improvement over sequential methods
per episode as shown in Fig. 6b. Furthermore, while the model is trained only on the small scale,
empirical results show that training in small scale is sufficient enough to learn policies that can
generalize to larger problem sizes.

Empirical timing results shown in Fig.6b confirm the advantages highlighted in computational
complexity. TARGETNET is consistently faster than all non-heuristic baseline methods across
scales and remains the only graph-based model capable of combining low-latency inference with
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Figure 6: (a) Mean Training Time per episode and (b) Mean Computation Time during Testing, with
standard deviation as error bars. Lower is better.

near-optimal task assignment performance. In medium to extra-large scales, TARGETNET is 3.90 to
26.18 times faster than heuristics.

TARGETNET achieves comparable or better performance while maintaining orders-of-magnitude
faster runtime, offering a 20×–250× speedup over state-of-the-art sequential GNN-based models.
These results underscore its capacity to produce high-quality schedules under tight runtime constraints.

We further conduct a sensitivity analysis on a subset of constraints and agent heterogeneity that our
policies are trained on, and analyze the training stability across models initialized with three random
seeds three in Appendix G.

6 Limitations and Future Work

One of the key limitations of solving mobile task allocation and scheduling problems with pre-
computed motion plans is that represented model of the problem does not account for a dynamic
environment and agent-to-agent collision avoidance. The forecasting travel time in our experiments
assumes static path planning, which may lead to inaccuracies in scheduling when faced with unex-
pected changes in the environment. Future work should account for agent-to-agent collision during
multi-agent path finding to allow for higher fidelity solutions in real world applications [38, 82].

Our experiments show that simultaneous methods consistently outperform non-exact solvers and
run faster across scales, while sequential models yield superior results at larger scales but are
significantly slower. We propose a hybrid sequential–simultaneous architecture that merges the speed
of simultaneous models with the scalability of sequential approaches. By integrating both through a
metaheuristic that selects the best output based on performance and computation time, we deliver a
robust, scalable solution for optimization and constraint satisfaction. Furthermore, TARGETNET
provides schedules that can be used to warm-start the optimizer, reducing the time that the optimizer
takes to return an exact solution by providing a better solution [89].

While TARGETNET learns a scalable policy, the graph-based models are not inherently interpretable,
and the learned policy is hard to validate by humans [90]. While existing graph-based explainability
methods, such as saliency maps or counterfactuals [90], provide insight into learned policies, a graph
model that has full-transparency in its structure [91] is essential for safety-critical MATAS.

7 Conclusion

In this paper, we present TARGETNET, a scalable, generalizable, and one-shot framework for
Multi-Agent Task Allocation and Scheduling (MATAS) that integrates relational graph reasoning
through Heterogeneous Graph Transformers with edge-specific attention. By capturing dynamic
agent-task relationships and modeling the combinatorial nature of scheduling problems via a novel
graph representation, TARGETNET enables scalable simultaneous decision-making, learning policies
that enable inference an order of magnitude faster than graph-based sequential solvers. Our approach
outperforms both heuristic baselines and genetic metaheuristics across problem scales—from small
to extra-large—while remaining computationally efficient and achieving near-optimal performance in
scenarios where exact solvers fail. We show that TARGETNET learns high-performing generalizable
policies that break the trade-off between speed, accuracy, and scalability.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not contain data or models that have a high risk of misuse.
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets are introduced with documentation in the supplementary work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not contain Crowdsourcing or human subject experiments.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not contain human subject research or crowdsourcing. The
paper does not require IRB approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not present the usage of LLMs as part of the core methods of
the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix A Mixed Integer Linear Program Solver for Task Allocation and
Scheduling

The Heterogeneous Mobile Multi-Agent Task Allocation and Scheduling Problem can be formulated
as a Mixed Integer Linear Program (MILP). This formulation enables the joint optimization of task
assignments and their execution schedule.

We adopt the MILP formulation presented in Eq. 7, where the objective is to optimize the schedule
according to a predefined cost function. We build on prior work [16, 25], with the key extension of
incorporating heterogeneous travel times. These travel times are derived from varying agent velocities
and precomputed distances between the agents’ initial positions and task locations.

min f(A,S1, . . . ,SNA)

s.t.
∑
i∈A

Aij = 1 ∀j ∈ T (C1)

Si
jk + Si

kj ≤M(2−Aij −Aik) + 1 ∀j, k ∈ T , i ∈ A (C2)

Si
jk + Si

kj ≥ −M(2−Aij −Aik) + 1 ∀j, k ∈ T , i ∈ A (C3)

tAk ≥ −M
(
3−

(
Aij +Aik + Si

jk

))
+ tFj + tTijk ∀j, k ∈ T , i ∈ A (C4)

tAk ≥ −M(1−Aik) + tTik ∀k ∈ T , i ∈ A (C5)

tSk ≥ tAk ∀k ∈ T (C6)

tSk ≥M(Ojk − 1) + tFj +Wjk ∀j, k ∈ T (C7)

tSk ≥ sk ∀k ∈ T (C8)

tFk ≥ tSk +Aikt
E
ik ∀k ∈ T , i ∈ A (C9)

tFk ≤ ek ∀k ∈ T (C10)

(7)

In this formulation, M denotes a large constant used to model conditional constraints. The constraints
are interpreted as follows:

• (C1) ensures that each task is assigned to exactly one agent.

• (C2) and (C3) enforce mutual exclusivity and sequencing when two tasks j and k are
assigned to the same agent i.

• (C4) sets the arrival time, tAk , of an agent, i, to task, k, ensuring it occurs only after
completing the preceding task, j, and arriving in the location of task, k, after travel time,
tTijk.

• (C5) ensures that the agent’s arrival at its first assigned task considers its initial location.

• (C6)–(C8) ensure that task start times respect agent arrival times, required wait times
between dependent tasks, and task time windows.

• (C9) accounts for heterogeneous task durations depending on the assigned agent.

• (C10) enforces task completion within the designated time window.

The objective function is defined as:

f(A,S1, ..., SNA) = max
j∈T

(
tFj

)
(8)

which minimizes the makespan, i.e., the maximum task finish time across all tasks.
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Appendix B Graph Neural Networks

B.1 Node Attention and Message Passing in Heterogeneous Graph Networks

Hu et al. [40] describes the attention and message passing mechanisms for the nodes based on their
relations. For each node, we compute key and query projections specific to attention head i as follows:

Ki
N (s) = W i

KN
hl−1
s , Qi

N (t) = W i
QN

hl−1
t

where hl−1
s and hl−1

t denote the input features of source node s and target node t from the previous
layer, respectively. The matrices W i

KN
and W i

QN
are learned projections for the i-th attention head.

The multi-head attention from source node s to target node t is computed as:

AttN (s, t) =

∥∥∥∥h
i=1

Ki
N (s)WATT

τ(s)Q
i
N (t)T ·

µN
⟨τ(s),τ(t)⟩√

d
(9)

where τ(s) and τ(t) denote the node types of s and t, WATT
τ(s) is a type-specific transformation matrix,

and µN
⟨τ(s),τ(t)⟩ is a learned scaling factor modulating attention between node types.

The corresponding message passed from node s to t is computed as:

MsgN (s, t) =

∥∥∥∥h
i=1

M i
N (s)WMSG

τ(s) (10)

where M i
N (s) is the value vector for node s in head i, and WMSG

τ(s) is the type-specific transformation
for message projection.

Graph Features

Node Features: In the graph representation, the Agent node includes features such as Earliest Time
Available, indicating the soonest the agent can begin a task, and Number of Tasks Assigned, reflecting
current workload. The Task nodes contains temporal constraints and scheduling information, including
Start Time Constraint, End Time Constraint, Expected Completion Time if assigned previously, and a
binary feature indicating whether the Agent is Assigned. The State node captures high-level planning
metrics such as the Number of Tasks Assigned, Maximum Makespan, the current Assignment state,
and total Duration of scheduled activities.

Edge Features: The relationships and transitions between nodes are encoded in the Edge fea-
ture. Each edge connection a source node to target node is represented as ⟨Source,Edge,Target⟩
and annotated with task-relevant attributes. The edge ⟨Agent,Duration,Task⟩ captures task ex-
ecution time, while ⟨Agent,Travel Time,Task⟩ represents the movement cost. Inter-task de-
pendencies are modeled with ⟨Task,Distance,Task⟩ and ⟨Task,Wait Time,Task⟩, encoding spa-
tial separation and required wait periods, respectively. Assignment-specific relations are de-
fined by ⟨Agent,Travel Time,Assignment⟩ and ⟨Agent,Task Duration,Assignment⟩, which record
travel and execution times per assignment. Finally, inter-assignment transitions are denoted by
⟨Assignment,Travel Time,Assignment⟩, representing temporal costs between consecutive assign-
ments.

Appendix C Sequential Decision Making Models

In the sequential task allocation setting, decision-making unfolds over a series of timesteps, each
corresponding to the assignment of a single agent to a task. We employ a two-step actor mechanism
with dedicated output nodes for Agent Selection and Task Selection, as seen in Fig. 8. The state of
the environment is encoded as a graph and processed through a Graph Neural Network (GNN). The
outputs are passed through softmax functions to produce probability mass functions (PMFs).

The agent selection policy, π(αt|st), first selects an agent, αt, from the state, st, at time step, t.
Subsequently, a task, τt, is assigned to agent, αt, using the conditional policy π(τt|αt, st). Each task
is assigned exactly once and removed from the pool of unassigned tasks upon completion. The joint
action at = ⟨αt, τt⟩ updates the environment to yield the next state st+1.
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Figure 7: The training and policy pipeline for a multi-agent task allocation environment with obstacles
and sequential decision-making using the Seq-TARGETNET baseline. The architecture comprises
agent and task selection modules followed by a graph-based critic that evaluates each assignment.
This pipeline allows for ordered assignment of agents to tasks and simulates their movement on a
pre-computed motion planning map. Seq-TARGETNET uses a 4-layer Graph Neural Network with
residual connections to enable robust sequential reasoning.

Unlike simultaneous assignment methods (e.g., TARGETNET), where assignments are computed
from a single initial observation, the sequential formulation requires updating the environment
iteratively after each decision. This enables more granular evaluation and dynamic response to partial
assignments at the cost of added computational complexity [40, 24].

C.1 Graph-based Critic for Sequential Training

Sequential Multi-Agent Task Allocation and Scheduling (MATAS) problems are characterized by
sparse and delayed rewards, creating significant challenges for effective policy learning due to the
well-known credit assignment problem [92]. In sequential settings, the decisions made by agents
unfold over time, with each decision potentially influencing future states and the overall outcome
of the schedule. The temporal dependency in sequential policies makes it nontrivial to attribute the
eventual success or failure of the complete schedule to individual agent-task decisions. While the
combined reward function defined in Eq. 1 incorporates both dense penalties for constraint violations
and a sparse terminal reward for overall performance, the feedback remains insufficient for learning
optimal intermediate actions in a long-horizon task.

In our framework, we adopt REINFORCE [93] for Simultaneous Task Allocation and Soft Actor-
Critic (SAC) [94] for Sequential Task Allocation. Simultaneous task allocation presents a single-shot,
static decision process where the complete task-agent assignment and ordering are generated in one
step and evaluated holistically. REINFORCE is particularly effective in single-shot decision making,
as it directly optimizes the expected return from full allocation decisions, using Monte Carlo estimates
without requiring a value function or temporal credit propagation. Conversely, sequential allocation
involves temporally extended decision-making with interdependent assignments and sparse, delayed
rewards, making credit assignment a critical challenge [92]. To address this, we employ SAC, an
off-policy actor-critic method that leverages value estimation and entropy-regularized learning to
balance exploration and exploitation across long-horizon trajectories. This division enables each
component to exploit the inductive biases of its underlying problem structure, leading to improved
sample efficiency, learning stability, and policy performance [93, 94, 77].

The critic is trained to approximate the state-action value function, Qθ(st, at), which estimates the
expected cumulative return when executing action, at, in state st and following the current policy
thereafter. Its parameters θ are optimized by minimizing the squared error between the predicted
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Q-value and the empirical return observed over the remainder of the episode. Formally, the critic loss
is defined as:

min
θ

JQ(θ) = E(st,at)∼D

1

2

Qθ(st, at)−
|T |∑
i=t

γ|T |−iRi(si, ai)

2
 (11)

where D is the replay buffer containing sampled trajectories, and Ri(si, ai) denotes the reward
obtained at time step, i. The target return

∑|T |
i=t Ri(si, ai) captures the total discounted return from

timestep tt onward. This training encourages the critic to align its estimates with the actual trajectory
returns, weighted appropriately for temporal proximity, thereby providing a reliable learning signal
for the actor.

The actor represents a stochastic policy, πϕ(at|st), parameterized by ϕ, which outputs a distribution
over actions conditioned on the current state. It is optimized to select actions that maximize expected
returns, as evaluated by the critic, using a policy gradient objective. Specifically, the actor is trained
by minimizing the following surrogate loss:

Jπ(θ) = Est∼D [log πϕ(at|st)−Qθ(st, at)] (12)

Eq. 12promotes higher log-probability for actions that lead to lower critic-assigned Q-values, effec-
tively improving the policy by increasing the expected advantage. The coupling between the actor
and critic enables efficient policy learning, where the critic guides the actor toward actions with
greater long-term utility in the sequential task allocation setting.

Complexity Considerations Due to the step-wise nature of the sequential assignment process, each
environment rollout requires O(|T |) evaluations, where |T | is the number of tasks. However, this
also enables finer control over constraint adherence and policy refinement at each step. We illustrate
this for a simple 2-agent, 2-task environment in Fig. 8, which generalizes to larger instances through
scalable GNN representations.

Sequential Decision Making Model
for 2 Agent-2 Task

State

Value

Figure 8: Sequential Decision Making for 2 Agent, 2 Task Problem, utilizing the relational environ-
ment representation to (1) select a agent, αt given state, st at step t, (2) select a task, τt given state,
st, and agent, αt at step t (3) evaluate the assignment of task, τt, to agent, αt, for training using the
Critic output, Qt, at step t

.
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Appendix D Training and Testing Algorithms

D.1 Simultaneous Model Training

We jointly train a composite task allocation and scheduling policy πϕ, consisting of a task allocation
policy πTA and a scheduling policy πSch, using the REINFORCE algorithm [93] with log proba-
bilities. The inputs are the problem set, P , total training steps, N , batch size, K (Line 1), aiming
to learn the simultaneous policy, πϕ (Line 2). The parameters of the policy are initialized (Line 3),
and for each training iteration, i ∈ [1, N ], a problem, p, is sampled from problem set, P , and used
to initialize the environment (Line 4). Empty sets are initialized for the schedule, S, and reward
trajectory, R, (Line 5), and the number of tasks, |Tp|, is determined from the problem instance (Line
6). The initial environment state, si0 is observed (Line 7), and both task allocation logits, oTA, and
scheduling logits, oSch, are generated using the respective policies conditioned on initial state, si0,
(Lines 8-9). For each task timestep, t ∈ [0, |Tp|), a task, τt, is sampled from the softmax distribution
over scheduling logits, oSch, (Line 11), and an agent, αt, is sampled from the softmax distribution of
the task allocation logits, oTA(τt), for the specific task (Line 12). The action, at = ⟨αt, τt⟩, is taken,
and the reward, Ri

t, is observed (Line 13). The scheduled task is removed from set of scheduling
logits, oSch, (Line 14), and the action and reward are appended to the schedule and reward lists
(Line 15). After completing the rollout for all tasks, the policy parameters, ϕ, are updated using the
REINFORCE policy gradient, scaled by a learning rate, λπ, (Line 16). The training loop continues
for a global step, N , iterations to optimize both task allocation and scheduling simultaneously.

Algorithm 1 Simultaneous Policy training with REINFORCE

1: Input: problem-set P , global steps N , batch-size K
2: Output: Scheduler policy πϕ, consisting of task allocation, πTA, and scheduling policy, πSch

3: Initialize parameters for scheduler policy πϕ

4: for i = 1 to N do
5: Initialize the environment with the problem p ∈ P
6: Initialize episode schedule, S = {}, rewards, R = {}
7: Get number of tasks to determine schedule size |Tp| ← p
8: Observe state si0
9: Get Task Allocation output from oTA = πTA(·|s0)

10: Get Scheduling output from oSch = πSch(·|s0)
11: for t ∈ [0, |Tp|) do
12: Sample task, τt ∼ softmax(oSch)
13: Sample agent, αt ∼ softmax(oTA(τt) for task, τt.
14: Set action, at = ⟨αt, τt⟩, observing reward , Ri

t.
15: Remove assigned task from schedule oSch = oSch \ τt
16: Update schedule, S = S ∪ at, and reward, R = R ∪Rt

17: end for
18: Update actor parameters ϕ = ϕ− λπ∇̂ϕJπ(ϕ)
19: end for

D.2 Sequential Model Training

We train the Sequential Model using the Soft Actor-Critic Algorithm presented in Algorithm 2, on
a given set of scheduling problems, P . The inputs are the problem set, P , total training steps, N ,
batch size, K, and actor start training time, NA (Line 1), aiming to learn the sequential policy, πϕ

(Line 2). For each problem instance, p ∈ P , the environment is initialized accordingly (Line 4),
and the episode-level schedule record, S, is initialized as an empty set (Line 5). The initial state,
si0, is observed from the environment based on problem, p, (Line 6). The inner loop iterates over
decision steps, t ∈ [0, |Tp|), where at each step an action apt = ⟨αt, τt⟩, is the agent, αt and task,
τt, pairing, selected by taking the argmax over the stochastic policy distribution, πϕ(s

p
t ), (Line 8).

This action is executed in the environment, yielding the next state, spt+1, immediate reward, Rp
t . The

tuple {spt , a
p
t , r

p
t , f

p
t , s

p
t+1} is appended to the schedule, S, (Line 9). After all decisions have been

made, the final episode reward, Rp
|Tp| is aggregated into the overall reward set R (Line 11). The
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training loop continues for a global step, N , iterations to optimize the sequential task allocation and
scheduling algorithm.

Algorithm 2 Sequential Policy training with Soft Actor-Critic (SAC)

1: Input: problem-set P , global steps N , batch-size K, actor start training time NA

2: Output: Scheduler policy πϕ, consisting of agent-select and task-select policy
3: Initialize parameters for scheduler policy πϕ, critic Qθ1 , Qθ2 , target-critics Qθ′

1
, Qθ′

2
and replay-

buffer D
4: for i = 1 to N do
5: Initialize the environment with the problem p ∈ P
6: Initialize episode schedule S = {}
7: Get number of tasks to determine schedule size |Tp| ← p
8: Observe state si0
9: for t ∈ [0, |Tp|) do

10: Sample and execute ait ∼ πϕ(s
i
t), observing state, sit+1 reward , rit, feasibility, f i

t .
11: S ← S ∪ {sit, ait, rit, sij+1}
12: end for
13: D = D ∪ {sit, ait, riTp

, sit+1} ∀t ∈ 1, ..., Tp

14: if gradient update step then
15: Update critic parameters θi = θi − λθi∇̂θiJQ(θi) where i ∈ {1, 2}
16: if i > NA then
17: Update actor parameters ϕ = ϕ− λπ∇̂ϕJπ(ϕ)
18: end if
19: end if
20: end for

D.3 Testing and Evaluation

We evaluate our scheduling policies, which include heuristic, metaheuristic, and learned schedulers,
based on Algorithm 3. The algorithm receives as input the learned policy, πϕ, and the scheduling
problem set, P , (Line 1), and produces the final reward and feasibility metrics across all instances
(Line 2). Initialize the reward, R, and feasibility, F , records as empty sets (Line 3) For each problem,
p ∈ P , the scheduling environment is initialized (Line 5), the initial state, si0, is derived from the
problem instance, p, (Line 6). If the policy is simultaneous (Line 7), the complete task allocation
and schedule, S, is generated using the policy, πϕ(s

p
0) based on initial observation, sp0 (Line 8).

If the policy is sequential (Line 9), an empty schedule trajectory, S, is created to store per-step
information (Line 10). Over a sequence of scheduling decisions, |Tp|, (Line 11), the policy, πϕ,
selects an action, apt = ⟨αt, τt⟩, via a greedy selection, i.e., the argmax over all possible agent-task
pairs based on the policy output for the current state, spt . Upon executing the action, the next state,
spt+1, and corresponding reward, rpt , are observed (Line 12). The action is appended to the schedule,
S (Line 13). After completing all decision steps, the final reward, R|Tp|, and the number of feasible
allocations, F p, within S is counted (Line 16), and added to the record. This loop repeats for all
problems in P , allowing statistical evaluation of the scheduling policy’s effectiveness and constraint
adherence.

Appendix E Datasets and Experiments

This section outlines the synthetic data generation process (Appendix E.1), the training and evalu-
ation details (Appendix E.2) used to benchmark our proposed methods. Detailed hyperparameter
configurations, environment settings, and platform specifications are provided to support replicability
and comparative analysis.

E.1 Data Generation

We define the simulation environment using configurable parameters: map dimensions (w, h), number
of agents |A|, and number of tasks |T |. Agents and tasks are placed uniformly at random within the
map area.
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Algorithm 3 Scheduling Policy Evaluation Algorithm

1: Input: Scheduling Policy πϕ, problem set P
2: Output: Reward R, Number of Feasible Task Assignments F
3: Initialize reward, R = {}, feasibility cound, F = {}.
4: for p ∈ P do
5: Initialize the environment with the problem p ∈ P
6: Observe state sp0 ← p
7: if πϕ is Simultaneous then
8: Get complete schedule S ∼ πϕ(s

p
0)

9: else
10: Initialize episode schedule S = {}
11: for t ∈ [0, |Tp|) do
12: Get action and execute apt ∼ argmax(αt∈A,τt∈T )πϕ(s

p
t ), observing state, spt+1.

13: S ← S ∪ {apt }
14: end for
15: end if
16: Add reward, R = R ∪ {R|Tp|}, and number of feasible assignments, F = F ∪ {F p}
17: end for

Number
of
Agents

Number
of
Tasks

Minimum
Time
Window (%)

Maximum
Time
Window (%)

Tasks
with
Wait Time (%)

Small 10 20 0 10 25
Medium 10 50 0 10 25
Large 20 100 0 10 25
Extra Large 40 200 0 10 25

Table 1: Dataset Generation representing the scales based on number of agents and number of tasks
along with range of constraints being used.

The total deadline tddl is computed based on the maximum travel time and maximum task execution
time, is calculated based on the maximum travel time, tTij , from agent, i, start position to task, j,
location, travel time between two tasks, tTijk, from task j to task k, by agent, i, and maximum
execution time, tEij , of task, j, by agent, i, as described in Eq. 13 for |T | tasks.

tddl = |T |
(
max

(
max

i∈A,j∈T
(tTij), max

i∈A,j,k∈T
(tTijk)

)
+ max

i∈A,j∈T
(tEij)

)
(13)

The time-windows are generated by randomly generating a time-percentage tw between twmin and
twmax . The task start window is uniformly sampled from tSj ∼ [0, tddl − tw ∗ tddl], and task end
window is set to tEj = tSj + twtddl.

Task durations are sampled from ∼ U(10, 100) for each agent-task pair. The wait-time percentage of
tasks that have wait-time constraints and the duration for the wait-time constraints are sampled from
∼ U(10, 100).

We generate four scales based on the number of agents and number of tasks, as shown in Table 1,
using the MILP Formulation described in Appendix A to validate the existence of fully feasible
solutions. Due to the complexity of the Large and Extra-Large scale problems, we generate 2 and 4
medium-scale problems in the same map, overlaying them to create the Large and Extra-Large scale
problems, respectively. The time window range, twmin

, twmax
, and the percentage of tasks with wait

time constraints are also shown in Table 1.

E.2 Training and Evaluation Details

We train all models exclusively using data from the small-scale setting and evaluate their performance
across four distinct scales: small, medium, large, and x-large. Experiments for small to large scales
were conducted on a Mac Studio equipped with an Apple M1 chip and 32 GB of RAM. Due to
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increased memory demands during optimization, the extra-large scale evaluations were performed on
a high-performance server featuring an AMD EPYC 7452 processor running Ubuntu 20.04.6.

All models employ a four-layer architecture, as informed by prior empirical analysis and established
methods in the literature [61]. For attention mechanisms, we adopt a multi-head configuration with
eight heads for sequential models [24, 61], while simultaneous models are configured with a single
head to reduce computational overhead. Model training uses a learning rate of 0.001 and an entropy
coefficient of 0.01. The Critic network is pre-trained for 5,000 steps, after which Actor-Critic training
proceeds for 25,000 steps, where each step represents a single task-agent assignment decision.

Appendix F Baselines

We compare TARGETNET using Edge Enhanced HGT with Residuals against Heuristic and Meta-
heuristic schedulers, and compare the model performance against existing Graph-based Learning
Models, that leverage the Task Allocation Graph Representation Model presented in Fig. 7.

Exact Solvers

• Mixed-Integer Linear Program (MILP): Exact solver which was also utilized for problem
validation described in Eq. 7. The full implementation details can be found in Appendix A.
If the MILP Solver is not able to find an optimal solution within a given time limit (12
hours), the system returns the best partial schedule. We utilize Gurobi Solver [48] to solve
the Constraint Satisfaction Problem defined in Eq. 7.

Heuristic Solvers

• Earliest Deadline First (EDF): A heuristic method for greedy agent-task assignment that
prioritizes the earliest deadline, without checking wait-time constraints on tasks [88]. The
heuristic dynamically picks the agents as they become available.

• Constraint-Aware EDF (CA-EDF): A variant of EDF that accounts for task dependencies,
only selecting tasks with all prerequisites completed [26, 51]. The optimizer returns the
most optimal schedule if time-limit is reached.

Metaheuristics

• Genetic Algorithm: A metaheuristic that improves a population of schedules over several
generations by applying mutations and selecting the best schedules based on an initial
seed [30, 29]. We evaluate the performance of Gen-Random (starting from a random sched-
ule) and Gen-EDF (starting from an EDF-based schedule). Given the high time complexity
of the Genetic Algorithm, we limit the evaluation to the best-performing schedules after 1
and 3 generations of mutations based on computation time to be comparable to the optimal
solver, with a population size of 100 and survival rate of 10% for the next generation.

Learning methods - Sequential Decision Making We compare our model against sequential
decision models as described in prior works [61], comparing our method to Heterogenous Graph
Attention Networks and Heterogenous Graph Transformer-based models. The implementation and
training details can be found in Appendix C.

• Heterogeneous Graph Attention Network (HetGAT): A method for sequential agent-task
assignment from Wang et al. [61]. The Graph Model used is modified to account for the
travel time and task assignment as per Fig. 8.

• HetGAT with Residual Connections (Res-HetGAT): The HetGAT model enhanced with
residual connections from the input layer to each subsequent layer as presented in Zhang
and Meng [87].

• Sequential Heterogenous Graph Transformer (SeqTARGETNET\ER): Heterogeneous
Graph Transformer (HGT) model presented in Hu et al. [40] without Residuals, applied to
sequential agent-task allocation based on Wang et al. [61].
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• Sequential HGT with Edge Attention (Seq-TARGETNET\R): A modified version of
HGT that incorporates edge attention described in Section 3.4.

• Sequential TARGETNET (Seq-TARGETNET): An HGT model with edge attention and
residual connections to the input layer as described in Section 3.4.

Learning methods: Simultaneous Decision Making

• Simultaneous Heterogenous Graph Transformer (TARGETNET\RE): Heterogeneous
Graph Transformer model presented in Hu et al. [40] without Residuals, applied to simulta-
neous agent-task allocation and scheduling as per Fig. 2a.

• Simultaneous HGT with Edge Attention (TARGETNET\R): A modified version of HGT
that incorporates edge attention as described in Section 3.4.

• HGT-Edge with Residual Connections (TARGETNET) (Ours): The Simultaneous Task
Allocation and Scheduling model described in Section 3.5 using the Res-HGT-Edge model
with edge attention and residuals as described in Section 3.4.

Appendix G Additional Experiments and Results

This appendix provides further insights into the performance and robustness of the proposed models
across a range of scenarios and experimental conditions. The complete performance metrics across
model variants, as presented in Figures 3, 4, and 6, are summarized in Table 2. We present detailed
tabular results complementing the figures shown in the main paper, and expand on two key aspects of
evaluation: sensitivity to constraint variations (Section G.1) and training stability (Section G.2).

G.1 Sensitivity Analysis

Fig. 9 and 10 evaluate the sensitivity of model performance under varying task scheduling constraints.
Each dataset in this analysis varies a single constraint type. We vary the time window (tight vs.
relaxed), wait-time between tasks (low vs. high), or agent speed (slow vs. fast).

We observe that both sequential and simultaneous graph-based approaches, particularly those using
TARGETNET architectures, maintain strong performance in terms of optimality rate and solution
feasibility. Notably, these models adapt effectively to different constraint regimes without requiring
fine-tuning. This indicates that the models learn meaningful representations of the constraint space,
enabling generalization to a wide range of practical scheduling tasks within the bounds of the training
distribution.

Fig. 9 and 10 evaluate the sensitivity of model performance under varying task scheduling constraints.
Each dataset in this analysis varies a single constraint type. We vary the time window (tight vs.
relaxed), wait-time between tasks (low vs. high), or agent speed (slow vs. fast).

We observe that both sequential and simultaneous graph-based approaches, particularly those using
TARGETNET architectures, maintain strong performance in terms of optimality rate and solution
feasibility. Notably, these models adapt effectively to different constraint regimes without requiring
fine-tuning. This indicates that the models learn meaningful representations of the constraint space,
enabling generalization to a wide range of practical scheduling tasks within the bounds of the training
distribution.
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Figure 9: Mean optimality rate of the final reward across various constraint settings. The evaluation
reflects both Makespan and the number of feasible task assignments. Results indicate that both se-
quential and simultaneous graph-based models maintain high performance across different constraint
regimes. Higher values indicate better performance.

Figure 10: Percentage of feasible solutions achieved under varying constraint settings. The graph-
based models generalize well to different constraint ranges, achieving high feasibility across a range
of scenarios. Higher is better.

G.2 Training Stability

While we report the best-performing model from an ensemble of three random seeds (seeds 10, 11,
and 12) in Section 5, Table 4 presents a breakdown of how learning-based models perform when
initialized with different seeds. This analysis is crucial for understanding the sensitivity of our models
to random initialization.

In the small and medium scales, seed 10 for TARGETNET consistently achieves strong performance.
However, in the medium to extra-large scales, seed 11 produces the most effective policy, indicating
that no single seed consistently dominates across all problem sizes.

The sensitivity analysis was conducted across three random seeds to evaluate the robustness of the
learning-based models, as presented in the box plot of Fig. 11. The results show that TARGETNET
consistently achieves higher median performance, and lower variance compared to its ablated variants,
indicating more stable learning behavior across different training initializations. On average, TAR-
GETNET learns policies that outperform those of the ablation models, demonstrating the effectiveness
of jointly leveraging both node and edge features through its graph-based attention mechanism. This
stability across constraint ranges and under varying seeds further supports the model’s capacity for
robust policy generalization.

Using an ensemble of seeds allows us to capture a broader set of learned policies, each potentially
discovering different solution strategies. Due to the exploratory nature of policy learning and the
randomness in optimization trajectories, models initialized with different seeds may settle on varying
performance plateaus. Some seeds may result in policies that get stuck in suboptimal behaviors,
while others may discover more efficient task allocation strategies. By evaluating multiple seeds and
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0%S - 5%F
Reward ↑ 20.07
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13.42
(2.33)

15.50
(1.96)
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(1.82)
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(1.83)

14.17
(1.76)
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(1.51)

12.46
(1.93)
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Feasible (%) ↑ 100.00
(0.00)

66.70
(11.79)
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(9.92)

57.23
(9.38)

75.38
(9.25)
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(9.00)

84.12
(7.72)

61.72
(9.78)
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(5.47)
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(4.45)

99.40
(2.03)

Optimality
Rate (%) ↑

100.00
(0.00)
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(11.61)

77.24
(9.78)

57.97
(9.08)
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(9.15)

70.63
(8.78)
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(7.55)

62.06
(9.59)

59.51
(10.63)

9.69
(4.43)

35.12
(5.98)
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(4.43)
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(4.85)
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(4.43)

99.45
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5%S - 10%F
Reward ↑) 20.11
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(2.14)
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(2.00)
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(1.60)
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(1.63)
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16.23
(1.43)

15.43
(1.63)
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(1.07)
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(0.96)
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(1.15)
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(0.00)

72.17
(10.67)
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(10.04)

70.85
(8.13)

81.42
(8.21)
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(6.89)

89.70
(5.87)
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(7.15)
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(8.37)
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Reward ↑) 20.08
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(1.79)
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(1.64)
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(1.40)
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17.26
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(1.06)
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(1.06)
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(0.04)

Feasible (%) ↑) 100.00
(0.00)

82.45
(8.96)

82.45
(8.96)

73.32
(8.47)

88.15
(7.04)

84.82
(6.72)

94.08
(4.82)

85.82
(9.07)

65.88
(9.31)

8.32
(5.30)

49.92
(4.08)

8.32
(5.30)

16.65
(6.37)

8.32
(5.30)

100.00
(0.00)

8.32
(5.30)

100.00
(0.00)

Optimality
Rate (%) ↑

100.00
(0.00)

82.54
(8.91)

82.54
(8.91)

73.81
(8.20)

88.24
(6.97)

85.10
(6.59)

94.15
(4.76)

85.95
(8.97)

66.51
(8.96)

13.27
(5.28)

53.83
(3.23)

13.27
(5.28)

19.44
(5.51)

13.27
(5.28)

100.00
(0.00)

13.27
(5.28)

100.00
(0.01)

W 50%
Reward ↑) 20.09

(0.05)
12.19
(2.51)

16.04
(2.24)
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(1.99)

14.35
(1.89)
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4.53
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(6.26)

4.53
(4.40)

10.95
(6.17)

5.00
(4.53)

97.30
(3.74)

4.53
(4.40)

96.95
(5.07)

Optimality
Rate (%) ↑

100.00
(0.00)

60.69
(12.47)

79.84
(11.12)

58.47
(9.89)

71.45
(9.39)

71.19
(9.02)

80.74
(7.61)

61.95
(8.86)

69.00
(11.91)

9.48
(4.38)

28.76
(5.99)

9.48
(4.38)

13.75
(5.61)

9.95
(4.50)
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(3.72)
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(4.38)
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(5.04)
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Reward ↑) 20.09

(0.05)
13.56
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(1.74)
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17.15
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(1.89)
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(0.87)
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(1.18)
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(0.87)
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(0.80)
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19.67
(0.87)

2.19
(0.87)

19.67
(0.77)

Feasible (%) ↑) 100.00
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67.30
(11.84)

78.03
(11.48)

63.18
(8.85)

76.20
(9.09)

76.70
(8.40)

85.25
(7.48)

69.83
(9.48)

70.28
(10.53)

5.95
(4.37)

33.25
(6.14)

5.95
(4.37)

6.77
(4.00)

5.95
(4.37)

97.92
(4.37)

5.95
(4.37)

97.-90
(3.88)

Optimality
Rate (%) ↑

100.00
(0.00)

67.48
(11.73)

78.21
(11.29)

63.69
(8.67)

76.38
(8.99)

77.09
(8.24)

85.38
(7.38)

70.05
(9.38)

70.76
(10.15)

10.90
(4.35)

37.51
(5.84)

10.90
(4.35)

11.72
(3.98)

10.90
(4.35)

97.94
(4.34)

10.90
(4.35)

97.91
(3.87)

Fast
Reward ↑) 20.08

(0.05)
13.63
(2.31)

15.59
(2.13)

11.62
(2.07)

15.36
(1.91)

13.84
(1.77)

17.09
(1.44)

12.76
(1.99)

11.65
(1.99)

2.07
(0.92)

7.09
(1.25)

2.07
(0.92)

5.62
(2.21)

2.07
(0.92)

19.93
(0.40)

2.07
(0.92)

19.46
(1.13)

Feasible (%) ↑) 100.00
(0.00)

67.67
(11.62)

77.42
(10.89)

57.10
(10.70)

76.30
(9.62)

68.40
(9.00)

84.97
(7.25)

63.28
(10.03)

56.88
(10.41)

5.35
(4.60)

30.73
(6.39)

5.35
(4.60)

26.52
(12.00)

5.35
(4.60)

99.22
(2.01)

5.35
(4.60)

96.88
(5.62)

Optimality
Rate (%) ↑

100.00
(0.00)

67.84
(11.51)

77.63
(10.61)

57.85
(10.30)

76.46
(9.52)

68.92
(8.82)

85.11
(7.16)

63.53
(9.92)

58.00
(9.92)

10.31
(4.58)

35.28
(6.20)

10.31
(4.58)

27.98
(11.03)

10.31
(4.58)

99.23
(1.99)

10.31
(4.58)

96.-90
(5.58)

Table 3: Sensitivity Analysis of models trained on Small scale, tested with different constraint ranges
and travel time, with Mean Scores (Standard Deviations in Parenthesis below). Our sequential model
outperform against heuristics and get comparable performance to metaheuristics. We show the
performance in small scale with 0 to 5% time window vs 5 to 10% time window, 0% wait-time vs
50% wait-time, and fast vs slow agents (10 to 20% vs 90 to 100% maximum speed. ↑ and ↓ indicates
higher is better and lower is better respectively.

Figure 11: Optimality rate of solutions achieved under varying constraint settings across 3 seeds for
the learning based models. The graph-based models generalize well to different constraint ranges,
achieving higher performance across a range of scenarios. TARGETNET consistently maintains high
optimality rates across all seeds and constraint settings, demonstrating both robustness and reliable
generalization compared to ablated models. Higher is better.

selecting the best among them, we reduce the risk of reporting outcomes based on an unrepresentative
or poorly initialized run. This ensemble-based approach ensures that the final reported performance
more accurately reflects the model’s potential and robustness across runs.
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Appendix H Demonstration

We deploy our TARGETNET algorithm in the Robotarium environment [95, 96] to validate its effec-
tiveness in real-world robotic task execution scenarios. In this setup, a fleet of robots autonomously
navigates toward assigned task locations, efficiently executing each task before transitioning to sub-
sequent assignments. The Robotarium platform enables safe, scalable, and repeatable experiments,
allowing us to visually demonstrate TARGETNET’s ability to coordinate multi-robot systems in
completing a sequence of spatially distributed tasks with minimal conflict and optimal coverage.

While TARGETNET efficiently assigns and sequences tasks, it is important to note that the underlying
scheduler does not explicitly account for multi-agent collisions during path planning. As a result,
robots may experience temporary delays when navigating through congested areas or when encoun-
tering other agents along their paths. These interactions can lead to deviations from the expected
travel times computed by the scheduler, particularly in high-density task scenarios. Despite this,
TARGETNET maintains robust task completion and overall system efficiency, as dynamic collision
handling by the Robotarium platform mitigates potential conflicts in real time. This highlights a
potential avenue for future improvements by integrating collision-aware path planning directly into
the task scheduler as presented in Section 6

Appendix I Code Access

Our code can be found in https://github.com/CORE-Robotics-Lab/NeurIPS2025_
TARGETNET
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