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ABSTRACT

This study assesses the effectiveness of various transfer learning strategies for
wind speed forecasting across meteorological stations in Corsica using deep neu-
ral networks. Leveraging inductive parameter-based transfer, models are trans-
ferred based on geographic proximity, topographic classification, dominant wind
direction, and random assignment. Several architectures are evaluated, includ-
ing recurrent, convolutional, attention-based, and dense networks. Results indi-
cate that structured transfer strategies do not consistently outperform non-transfer
baselines. This lack of improvement can be largely attributed to significant dis-
tributional differences in wind speed across stations, which hinder model trans-
ferability. These findings highlight the challenges posed by domain shift in a
geographically heterogeneous insular context and emphasize the need for more
refined similarity criteria, hybrid transfer strategies, and spatially-aware model-
ing, notably through graph neural networks. The results also call for a critical
reassessment of commonly held assumptions about the benefits of transfer learn-
ing in complex meteorological environments.

1 INTRODUCTION

Accurate wind speed forecasting is a critical challenge for various industrial and environmental ap-
plications, particularly in the management of renewable energy and the mitigation of climate-related
risks Jiang et al. (2021); Khodayar et al. (2017). However, the comprehensive collection of high-
resolution meteorological data remains complex, especially in regions such as Corsica. Transfer
learning, by reusing models previously trained on similar source domains, offers a promising ap-
proach to overcome these constraints while reducing computational costs Wellens et al. (2021). It
provides a methodological response to the limitations of conventional supervised learning, partic-
ularly in contexts with limited labeled data, feature space divergences, or distribution mismatches
between training and testing sets Gholizade et al. (2025). By leveraging a model pre-trained on a
source domain, transfer learning enables improved performance on a target domain while reducing
data requirements and computational costs Sankari & Kumar (2023).

Several taxonomies have been proposed to structure the literature on transfer learning. From the
perspective of the label space, three paradigms are typically distinguished: inductive transfer, in-
volving labeled data in both domains; transductive transfer, where only the source data are labeled;
and unsupervised transfer, where no labels are available Gholizade et al. (2025). The relationship
between these paradigms and the similarity between source and target domains has been emphasized
in previous studies Sankari & Kumar (2023). In terms of the feature space, a distinction is made
between homogeneous settings, where the features are identical but may differ in distribution, and
heterogeneous settings, where the feature spaces differ Gholizade et al. (2025); Sankari & Kumar
(2023).

Transfer mechanisms can also be categorized by the nature of the transferred knowledge. The main
approaches include: (i) instance-based transfer, which involves selecting or reweighting relevant
source examples; (ii) feature-based transfer, aiming to project data into a common representative
space; (iii) parameter-based transfer, which reuses weights from a source model; and (iv) relation-
based transfer, which exploits structural similarities between domains Gholizade et al. (2025); Al-
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Hajj et al. (2023). In all cases, the chosen strategy depends on data availability, task similarity, and
the application domain. A poor alignment between source and target can lead to negative transfer,
resulting in degraded performance Zhang et al. (2021).

In the field of wind speed forecasting, transfer learning has been used to address dataset heterogene-
ity across sites or tasks. For instance, Qureshi & Khan (2018) introduced an inter-site framework
based on sparse autoencoders guided by a deep belief network. This adaptive system (ATL-DNN)
dynamically adjusts the transferred representations according to local characteristics. Oh et al.
(2022) proposed an approach involving partial layer sharing in a C-LSTM model, demonstrating
accuracy improvements for data-scarce sites. In an instance-based transfer context, Cai et al. (2019)
proposed a source selection mechanism to mitigate negative transfer effects and improve quantile
forecasting via GBDT. Task transfer has also been explored: Qureshi & Khan (2018) studied the
transition from power to wind speed prediction, while Chen (2022) employed knowledge distillation
to transfer representations from a complex teacher model to a lightweight student model.

Regarding neural architectures, several families have been adopted in these approaches. Recurrent
networks such as LSTM and BiLSTM are employed for their ability to model temporal depen-
dencies Oh et al. (2022); Chen (2022), while autoencoders are used to produce compressed and
transferable latent representations Qureshi & Khan (2018); Oh et al. (2022). Additionally, some
contributions combine transfer learning with ensemble models such as GBDT Cai et al. (2019) or
optimized Adaboost Chen (2022), highlighting the complementarity between statistical robustness
and generalization capacity.

Overall, these works converge on a common goal: maximizing predictive performance in low-data
scenarios while reducing the computational resources required for model training. It is within this
perspective that our contribution is situated, leveraging transfer learning to reduce the size of training
datasets needed in meteorological contexts, and thereby decreasing the computational costs associ-
ated with predictive model training.

This study presents an analysis of structured transfer learning strategies applied to wind speed pre-
diction across a network of meteorological stations in Corsica. We specifically compare strategies
based on distance, topographic classification, directional wind speed dominance, and random trans-
fer against the same neural architecture without transfer learning. Several neural architectures are
evaluated, encompassing multiple paradigms: recurrent networks, convolutional-recurrent networks,
multi-layer perceptrons (dense), and attention mechanisms.

2 DATA

This section presents the dataset used in our study, comprising time series of wind speed mea-
surements collected from multiple meteorological stations, as well as the preprocessing proce-
dures applied to ensure the quality and consistency of the data before their integration into the
predictive models. All station data originate from official Météo France records available at : me-
teo.data.gouv.fr

2.1 STATION DISTRIBUTION

Our study is based on the analysis of meteorological stations located throughout the island of Cor-
sica. These stations are represented as red dots in Figure 1 left part.

Out of the 98 existing stations, we selected 22 based on two main criteria: the availability of wind
speed measurements and the length of their historical time series. Specifically, we retained stations
with more than 80,000 hours of data (approximately 9 years), ensuring significant temporal continu-
ity and minimizing the need for interpolation. This threshold was determined through a comparative
analysis of all available stations: a distinct group stood out with dense and regular temporal cover-
age, whereas others exhibited frequent and substantial gaps in their records.

The right part of figure 1 illustrates Corsica’s topography using a color-coded altitude map. This
visualization highlights the island’s geographical diversity, notably the alternation between coastal
areas and mountainous regions, which are major factors influencing wind dynamics Grante et al.
(2025). The location of the meteorological stations was analyzed in relation to this topography to
ensure good representativeness across different geographical contexts.
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Figure 1: Weather Stations Distribution and Topography of Corsica

2.2 FEATURES
The meteorological variables used in our study are listed in Table 1. These constitute the main

input features for our predictive models and were selected in line with prior work such as Ryu et al.
(2022); Yang et al. (2023); Tang et al. (2020); Geng et al. (2020).

Table 1: Features of the meteorological station dataset

Name Units Description

FF m.s~ ! Wind speed

DD, none Cosine of wind direction (FF)
DDyg;n none Sine of wind direction (FF)
FXI m.s 1 Maximum wind speed

U % Relative humidity

T °C Temperature at 2 meters

We additionally included four features to decompose the day and hour of measurement, enabling
non-temporally-optimized models to better capture temporal dynamics Baile & Muzy (2022). Fur-
thermore, two features were added to better represent wind direction. Since the wind direction angle
DD ranges from 0 to 360°, values like 1° and 359° are close in physical meaning but numerically
distant. We chose to encode this circular characteristic directly in the input features.

For S, the vector representing temporal features, we define:

S =[S, S2,53,54] = [cos (2mL) , sin (2m L), cos (2m552sz) , sin (2m 5552 ) | )
where h is the hour of the day and d is the day of the year.

For the wind direction DD, we compute:

DD
— g 2
"180 @
then
DDgos = cos(), DDy, = sin(f) 3)
The final input dataset is composed as follows:
X = [FF? DDCOS7 DDSina FXL U7 T7 Sl) 527 533 54} (4)

Each station has its own dataset, denoted X s;44i0n- For each Xg;44i0n, missing values were linearly
interpolated. Subsequently, we standardized FF, FXI, U, and T to align their scales and to improve
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training efficiency and stability by reducing overfitting. Variables from the vector S as well as D Dy,
and D D, are already bounded in the range [—1, 1] and thus were not normalized or standardized.

3 METHODOLOGY

This section presents the deep learning models used for wind speed forecasting, as well as the various
transfer learning strategies employed.

3.1 METRICS

The root mean square error (RMSE) was selected as the evaluation metric for this study. It is
generally defined as:

(&)

It represents the average Euclidean distance between the true value y and the model prediction g.
This metric penalizes larger errors more heavily, making it sensitive to outliers. A low RMSE indi-
cates that the model predictions are close to the true values, while a high RMSE reflects significant
discrepancies between predictions and observations.

In order to evaluate the effectiveness of the transfer learning strategies, we compare them to an
identical architecture trained without transfer over the same historical period. The gain is defined as
the relative reduction in the RMSE, expressed as a percentage:

. RMSEreference - RMSEtransfer
G = 100 6
am (%) RMSEreference 8 ( )

3.2 MODELS

This subsection introduces the neural architectures selected for comparative analysis. Figure 2
provides a visual representation of the models implemented in this study. Our selection spans a
broad range of neural network paradigms, including a Convolutional-LSTM model combining con-
volutional and recurrent networks, a Convolutional-Dense model integrating convolutional layers
with fully connected layers, encoder architectures using the attention mechanism from the Trans-
former encoder Vaswani et al. (2017), standard LSTM architectures representing recurrent networks
Hochreiter & Schmidhuber (1997), and feed-forward neural networks (FFN).

In our approach, all convolutional neural network architectures process the meteorological time
series through one-dimensional (1D) convolutions, a choice dictated by the inherently sequential
nature of the data. This technical decision aligns with the temporal structure of the variables, where
local correlations manifest along the time axis. To ensure a fair comparison while preserving the
structural integrity of each model, architectural characteristics (network depth, neuron density, di-
mensionality of hidden layers) were individually calibrated. This differentiated approach avoids
enforcing parametric uniformity across models.

3.3 TRANSFER LEARNING

For this comparative study, we focused on inductive transfer learning strategies using parameter
transfer by reusing and adjusting the weights of models previously trained (fine-tuning). Since each
station has its own forecasting model, we transferred knowledge from one station to another. We
compared four geographically informed transfer strategies:

1. Random transfer

2. Topographic classification-based transfer

3. Distance-based transfer

4. Dominant wind direction-based transfer
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Figure 2: Architecture of the models used
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Random transfer is used as a second baseline for evaluating the effectiveness of the transfer strate-
gies. If a transfer strategy fails to outperform random transfer in terms of RMSE, its relevance and
ability to leverage structural similarities between stations is questionable. Conversely, a significantly
lower RMSE compared to random transfer supports the quality of the considered strategy.

For the topographic classification-based transfer, we initially distinguished three terrain types:
mountain, plain, and coastal. However, a joint analysis of the map and the island’s topography
led us to merge the plain and coastal categories due to their strong topographic correlation. This re-
sulted in a binary classification between mountain and plain-coast zones, using an altitude threshold
of 300 meters. The central panel of Figure 3 illustrates this classification, where stations below the
threshold are shown in blue (plain-coast), and those above in red (mountain).

For the distance-based transfer, knowledge is transferred to minimize the distance between source
and target stations, as shown on the left panel of Figure 3. For each target station, we select the three
nearest source stations using the Haversine distance between two geographical points (¢1, A1) and
(P2, A2), defined as:

d = 2R - arcsin | /sin? (@;(Zbl) + cos(¢1) - cos(¢2) - sin® (/\2;)\1) (7)

where:

* @1, P2 are the latitudes in radians,
* A1, Ao are the longitudes in radians,
¢ R is the Earth’s radius,
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® Station Source ® Mountain ® North Wind

® Station Target ¢ Plain ® South Wind
Other Station ® East Wind
West Wind

Figure 3: Map of meteorological stations. Left: visualization of transfers between stations. Target
stations are shown in green, source stations in red, and other stations in blue. Blue arrows represent
transfers from source to target stations. Center: topographic classification of stations. Mountain
stations are shown in red; plain/coastal stations in blue. Right: station classification according to
dominant wind directions in the study area. Stations are color-coded according to their dominant
wind direction: red for north, blue for south, green for east, and yellow for west. Bi-colored stations
correspond to cases where the prevailing wind lies between two cardinal directions (e.g., northeast),
and are therefore classified into both associated directions.

* d is the distance between the two points.

For the dominant wind direction-based classification, stations were grouped according to the most
frequent wind direction over the full observation period. When a station exhibited two dominant
directions of comparable intensity, it was assigned to both groups. The right panel of figure 3 illus-
trates the spatial distribution of stations according to this classification. Bicolored points represent
stations associated with two dominant directions. A station with a wind rose showing a shared max-
imum between north and northeast is considered as exposed to a northerly wind only. The same
applies to other intercardinal directions.

Let E denote the set of all stations. Each strategy defines a subset £’ C F on which the transfer is
applied. The transfer occurs in a random order among stations in E’: a source station A can transfer
its knowledge to a target station B if and only if A, B € E’. The source model is a neural network
with the same architecture, trained on the full training dataset of station A.

3.4 EXPERIMENTATION

The models are trained using the Adam optimizer with an initial learning rate of 10~3. During
fine-tuning — the adaptation phase of a model pre-trained on another station — the learning rate is
reduced to 10~* to promote more stable convergence. In practice, fine-tuning was conducted year
by year, progressively extending the historical window: starting from 2020-2020, then 2019-2020,
2018-2020, and so forth, up to 2015-2020. For clarity, we report only the two extreme cases
(2020-2020 and 2015-2020). When computing the gain of transfer learning defined in equation 6
with respect to the reference model, the baseline is always trained on the same historical window
as the fine-tuned model. Training runs for up to 50 epochs, with early stopping based on validation
loss and a patience of 5 epochs.

Performance is evaluated on an independent test set covering the period from 01/01/2023 to
31/12/2023. The validation set spans the year 2022. The training set varies depending on the tar-
get year and may extend from 01/01/2015 to 31/12/2021, for a maximum of seven years. Models
operate with a sliding input window based on a history of three time steps.
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Table 2: Summary of average performance per architecture / strategy pair from (h+1 to h+24): mean
of RMSE and gain in % with fine-tuning performed using either 2015 (data from 2015-2020) or
2020 (data from 2020-2020) as historical year.

Model Strategy RMSE 2015 RMSE 2020  Gain 2015 (%)  Gain 2020 (%)
attention distance 0.8423 0.8561 -0.33 -0.63
attention east 0.8702 0.8835 -3.65 -3.85
attention mountain 0.8353 0.8532 0.50 -0.30
attention north 0.8207 0.8343 2.25 1.92
attention west 0.8447 0.8566 -0.62 -0.69
attention plain 0.8371 0.8516 0.29 -0.11
attention random 0.8373 0.8558 0.27 -0.60
attention south 0.8604 0.8688 -2.49 -2.13
conv_dense distance 0.8448 0.8579 -0.47 -0.47
conv_dense east 0.8731 0.8859 -3.83 -3.74
conv_dense mountain 0.8427 0.8559 -0.22 -0.23
conv_dense north 0.8243 0.8417 1.96 1.42
conv_dense  west 0.8482 0.8608 -0.87 -0.81
conv_dense  plain 0.8414 0.8563 -0.07 -0.28
conv_dense random 0.8404 0.8575 0.05 -0.42
conv_dense south 0.8642 0.8740 -2.78 -2.36
dense distance 0.8489 0.8654 -1.03 -1.61
dense east 0.8688 0.8804 -3.39 -3.38
dense mountain 0.8396 0.8552 0.08 -0.42
dense north 0.8239 0.8441 1.95 0.89
dense west 0.8480 0.8569 -0.91 -0.62
dense plain 0.8393 0.8587 0.12 -0.84
dense random 0.8404 0.8637 -0.01 -1.42
dense south 0.8609 0.8753 -245 -2.78
conv_lstm distance 0.8466 0.8620 -0.90 -0.99
conv_lstm east 0.8737 0.8864 -4.12 -3.86
conv_lstm mountain 0.8405 0.8550 -0.17 -0.17
conv_lstm north 0.8232 0.8403 1.90 1.55
conv_Istm west 0.8474 0.8596 -0.99 -0.72
conv_Istm plain 0.8417 0.8558 -0.31 -0.27
conv_lstm random 0.8404 0.8610 -0.16 -0.87
conv_lstm south 0.8635 0.8705 -2.91 -2.00
Istm distance 0.8474 0.8625 -1.05 -1.24
Istm east 0.8693 0.8852 -3.66 -3.89
Istm mountain 0.8410 0.8601 -0.28 -0.95
Istm north 0.8226 0.8446 1.92 0.86
Istm west 0.8463 0.8628 -0.91 -1.27
Istm plain 0.8394 0.8553 -0.09 -0.39
Istm random 0.8385 0.8627 0.02 -1.26
Istm south 0.8616 0.8742 -2.74 -2.60

The models are designed to perform multi-step forecasting of wind speed (FF) over a 24-hour hori-
zon. Specifically, each model produces a sequence of 24 predictions corresponding to hourly lead
times from h + 1 to h+ 24. This direct forecasting strategy enables the models to generate the entire
prediction horizon in a single forward pass. Performance metrics are computed globally over the 24
forecast steps.

4 RESULTS

Table 2 summarizes the performance obtained for each architecture—strategy pair. For each combi-
nation, the table reports the mean RMSE and the mean gain defined in equation 6 with respect to
the non-transfer baseline, averaged over horizons from h + 1 to h + 24 and computed under two
historical windows (2015-2020 vs 2020 only).

Several clear tendencies emerge. First, the majority of strategies lead to either negligible or neg-
ative gains, with some configurations showing systematic performance degradation. This effect is
particularly visible for directional dominant wind speed groupings such as East and South, which
consistently result in average losses exceeding -2.00% across all architectures. Random selection,
distance-based grouping and west also perform poorly, with mean relative gains close to zero or
negative, reflecting unstable behavior.

In contrast, the North strategy stands out as the only configuration that provides positive average
gains across all tested architectures. While these improvements remain modest (generally between
+0.86% and +2.25%). This suggests that under specific transfer conditions, it is possible to mitigate
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the negative effects observed elsewhere. Strategies based on topographic classification (mountain
and plain) show intermediate results: they do not yield clear benefits, but their performance degra-
dation remains less severe than for other directional groupings.

Overall, the table highlights the absence of a universally effective transfer strategy. Gains remain
limited in magnitude and often offset by frequent negative transfers. Increasing the dataset size leads
to better performance, although the improvements remain negligible in most cases. These findings
confirm that, in the present setting, transfer learning cannot be considered a reliable approach for
systematically improving model performance.

5 DISCUSSION

Our study investigates several transfer learning strategies aimed at improving wind speed predic-
tion performance between different meteorological stations in Corsica. In contrast to a substantial
body of literature reporting significant improvements through transfer learning Oh et al. (2022); Zhu
et al. (2025); Zhang et al. (2024), our results show that structured transfer based on topographic or
wind-directional criteria does not systematically offer a significant advantage over the non-transfer
baseline strategy.

More fundamentally, our findings suggest that the tested transfer strategies do not significantly out-
perform models trained without any transfer, using only station-specific data. This observation
calls into question the actual utility of transfer learning in the specific context of our study. While
numerous previous works emphasize the effectiveness of transfer learning for boosting predictive
performance, our results do not support such conclusions.

A key explanation for this discrepancy lies in the complex topography of Corsica and its strong
influence on wind regimes. Meteorological stations are embedded in highly heterogeneous envi-
ronments, which translates into markedly different data distributions. To better characterize these
differences, we analyzed inter-station distributional distances of wind speed across the entire net-
work. This divergence is clearly illustrated by the heatmap in figure 4, which highlights strong
station-to-station variability. A Kolmogorov—Smirnov test was applied to all station pairs and fur-
ther confirms substantial distributional wind speed shifts between groups of stations. According to
Zhang et al. (2021), transfer learning is only expected to be effective when source and target domains
share sufficiently similar distributions. In our case, this fundamental assumption is not respected,
which can explains the recurrent negative transfer observed.

This result raises a broader methodological concern. Much of the existing literature on transfer
learning reports striking performance gains, but often in contexts where distributional mismatches
are less pronounced or not assessed. Our findings show that even a distributional shift—let alone the
substantial ones induced by mountainous terrain—can undermine transfer effectiveness. In practice,
this means that in highly variable regions such as Corsica, where local topographic effects dominate
wind patterns, transfer learning may simply fail to deliver improvements. Transferred models may
get stuck in local minima due to the mismatch between source and target distributions, limiting their
ability to adapt effectively to the target station’s specific characteristics.

Beyond this observation, the aggregation of stations into broad categories (e.g., “plain” and
“coastal”’) may have further diluted local characteristics, masking more nuanced interactions and
exacerbating negative transfer effects. A finer-grained, station-specific analysis would be necessary
to determine whether any transfer configurations can yield consistent benefits. While forecasting up
to h = 24 provides a comprehensive view of daily wind speed evolution, predictive accuracy gen-
erally tends to degrade with increasing lead times, which may limit the reliability of long-horizon
forecasts in operational settings.

Future work could incorporate temporal cross-validation and multi-year testing to enhance the gen-
eralization and robustness of predictions up to h+6. This recommendation echoes concerns about
the existence of a performance floor for predictive models applied to meteorological data, due in
part to the inherent complexity of local wind dynamics Baile & Muzy (2022). Another promising
direction would be to explore hybrid transfer methods, such as the combined use of instance-based
and parameter-based transfer, to better tailor transfer relevance to each specific context. Finally,
extending models to explicitly integrate spatial information—such as through the use of graph neu-
ral networks—may further improve performance by leveraging spatial correlations between stations
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Figure 4: Heatmap of Kolmogorov—Smirnov test statistics highlighting inter-station distributional
shifts in wind speed.

Khodayar & Wang (2019). In addition, meta-learning represents a promising avenue for enabling
models to rapidly adapt to new stations with limited historical data, and will be explored in future
work as a potential extension of the current transfer learning framework.

6 CONCLUSION

This study evaluated multiple transfer learning strategies for wind speed forecasting in Corsica.
Contrary to much of the literature, our results show that transfer learning does not systematically
improve performance and often induces negative transfer. The main reason lies in the strong distri-
butional wind speed heterogeneity between stations, driven by complex topography, as confirmed by
KS tests. This not respect the assumption of source—target similarity Zhang et al. (2021), explaining
the recurrent failures of transfer.

These findings call for caution: transfer learning cannot be assumed universally beneficial, espe-
cially in geographically heterogeneous contexts. Additionally, transferred models may converge
toward suboptimal solutions that do not align well with the specific dynamics of the target station.
Future work should prioritize distribution-aware strategies, hybrid approaches, h+6 forecasting, and
spatially explicit models such as graph neural networks, while also reporting negative results to
avoid overly optimistic conclusions. Meta-learning techniques should also be explored to improve
model adaptability.
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