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ABSTRACT

This study assesses the effectiveness of various transfer learning strategies for
wind speed forecasting across meteorological stations in Corsica using deep neu-
ral networks. Leveraging inductive parameter-based transfer, models are trans-
ferred based on geographic proximity, topographic classification, dominant wind
direction, and random assignment. Several architectures are evaluated, includ-
ing recurrent, convolutional, attention-based, and dense networks. Results indi-
cate that structured transfer strategies do not consistently outperform non-transfer
baselines. This lack of improvement can be largely attributed to significant dis-
tributional differences in wind speed across stations, which hinder model trans-
ferability. These findings highlight the challenges posed by domain shift in a
geographically heterogeneous insular context and emphasize the need for more
refined similarity criteria, hybrid transfer strategies, and spatially-aware model-
ing, notably through graph neural networks. The results also call for a critical
reassessment of commonly held assumptions about the benefits of transfer learn-
ing in complex meteorological environments.

1 INTRODUCTION

Accurate wind speed forecasting is a critical challenge for various industrial and environmental ap-
plications, particularly in the management of renewable energy and the mitigation of climate-related
risks Jiang et al. (2021); Khodayar et al. (2017). However, the comprehensive collection of high-
resolution meteorological data remains complex, especially in regions such as Corsica. Transfer
learning, by reusing models previously trained on similar source domains, offers a promising ap-
proach to overcome these constraints while reducing computational costs Wellens et al. (2021). It
provides a methodological response to the limitations of conventional supervised learning, partic-
ularly in contexts with limited labeled data, feature space divergences, or distribution mismatches
between training and testing sets Gholizade et al. (2025). By leveraging a model pre-trained on a
source domain, transfer learning enables improved performance on a target domain while reducing
data requirements and computational costs Sankari & Kumar (2023).

Several taxonomies have been proposed to structure the literature on transfer learning. From the
perspective of the label space, three paradigms are typically distinguished: inductive transfer, in-
volving labeled data in both domains; transductive transfer, where only the source data are labeled;
and unsupervised transfer, where no labels are available Gholizade et al. (2025). The relationship
between these paradigms and the similarity between source and target domains has been emphasized
in previous studies Sankari & Kumar (2023). In terms of the feature space, a distinction is made
between homogeneous settings, where the features are identical but may differ in distribution, and
heterogeneous settings, where the feature spaces differ Gholizade et al. (2025); Sankari & Kumar
(2023).

Transfer mechanisms can also be categorized by the nature of the transferred knowledge. The main
approaches include: (i) instance-based transfer, which involves selecting or reweighting relevant
source examples; (ii) feature-based transfer, aiming to project data into a common representative
space; (iii) parameter-based transfer, which reuses weights from a source model; and (iv) relation-
based transfer, which exploits structural similarities between domains Gholizade et al. (2025); Al-
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Hajj et al. (2023). In all cases, the chosen strategy depends on data availability, task similarity, and
the application domain. A poor alignment between source and target can lead to negative transfer,
resulting in degraded performance Zhang et al. (2021).

In the field of wind speed forecasting, transfer learning has been used to address dataset heterogene-
ity across sites or tasks. For instance, Qureshi & Khan (2018) introduced an inter-site framework
based on sparse autoencoders guided by a deep belief network. This adaptive system (ATL-DNN)
dynamically adjusts the transferred representations according to local characteristics. Oh et al.
(2022) proposed an approach involving partial layer sharing in a C-LSTM model, demonstrating
accuracy improvements for data-scarce sites. In an instance-based transfer context, Cai et al. (2019)
proposed a source selection mechanism to mitigate negative transfer effects and improve quantile
forecasting via GBDT. Task transfer has also been explored: Qureshi & Khan (2018) studied the
transition from power to wind speed prediction, while Chen (2022) employed knowledge distillation
to transfer representations from a complex teacher model to a lightweight student model.

Regarding neural architectures, several families have been adopted in these approaches. Recurrent
networks such as LSTM and BiLSTM are employed for their ability to model temporal depen-
dencies Oh et al. (2022); Chen (2022), while autoencoders are used to produce compressed and
transferable latent representations Qureshi & Khan (2018); Oh et al. (2022). Additionally, some
contributions combine transfer learning with ensemble models such as GBDT Cai et al. (2019) or
optimized Adaboost Chen (2022), highlighting the complementarity between statistical robustness
and generalization capacity.

Overall, these works converge on a common goal: maximizing predictive performance in low-data
scenarios while reducing the computational resources required for model training. It is within this
perspective that our contribution is situated, leveraging transfer learning to reduce the size of training
datasets needed in meteorological contexts, and thereby decreasing the computational costs associ-
ated with predictive model training.

This study presents an analysis of structured transfer learning strategies applied to wind speed pre-
diction across a network of meteorological stations in Corsica. We specifically compare strategies
based on distance, topographic classification, directional wind speed dominance, and random trans-
fer against the same neural architecture without transfer learning. Several neural architectures are
evaluated, encompassing multiple paradigms: recurrent networks, convolutional-recurrent networks,
multi-layer perceptrons (dense), and attention mechanisms.

2 DATA

This section presents the dataset used in our study, comprising time series of wind speed mea-
surements collected from multiple meteorological stations, as well as the preprocessing proce-
dures applied to ensure the quality and consistency of the data before their integration into the
predictive models. All station data originate from official Météo France records available at : me-
teo.data.gouv.fr

2.1 STATION DISTRIBUTION

Our study is based on the analysis of meteorological stations located throughout the island of Cor-
sica. These stations are represented as red dots in Figure 1 left part.

Out of the 98 existing stations, we selected 22 based on two main criteria: the availability of wind
speed measurements and the length of their historical time series. Specifically, we retained stations
with more than 80,000 hours of data (approximately 9 years), ensuring significant temporal continu-
ity and minimizing the need for interpolation. This threshold was determined through a comparative
analysis of all available stations: a distinct group stood out with dense and regular temporal cover-
age, whereas others exhibited frequent and substantial gaps in their records.

The right part of figure 1 illustrates Corsica’s topography using a color-coded altitude map. This
visualization highlights the island’s geographical diversity, notably the alternation between coastal
areas and mountainous regions, which are major factors influencing wind dynamics Grante et al.
(2025). The location of the meteorological stations was analyzed in relation to this topography to
ensure good representativeness across different geographical contexts.
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Figure 1: Weather Stations Distribution and Topography of Corsica

2.2 FEATURES

The meteorological variables used in our study are listed in Table 1. These constitute the main
input features for our predictive models and were selected in line with prior work such as Ryu et al.
(2022); Yang et al. (2023); Tang et al. (2020); Geng et al. (2020).

Table 1: Features of the meteorological station dataset

Name Units Description
FF m.s−1 Wind speed
DDcos none Cosine of wind direction (FF)
DDsin none Sine of wind direction (FF)
FXI m.s−1 Maximum wind speed
U % Relative humidity
T °C Temperature at 2 meters

We additionally included four features to decompose the day and hour of measurement, enabling
non-temporally-optimized models to better capture temporal dynamics Baile & Muzy (2022). Fur-
thermore, two features were added to better represent wind direction. Since the wind direction angle
DD ranges from 0 to 360°, values like 1° and 359° are close in physical meaning but numerically
distant. We chose to encode this circular characteristic directly in the input features.

For S, the vector representing temporal features, we define:

S = [S1, S2, S3, S4] =
[
cos

(
2π h

24

)
, sin

(
2π h

24

)
, cos

(
2π d

365.25

)
, sin

(
2π d

365.25

)]
(1)

where h is the hour of the day and d is the day of the year.

For the wind direction DD, we compute:

θ = π
DD
180

(2)

then
DDcos = cos(θ), DDsin = sin(θ) (3)

The final input dataset is composed as follows:

X = [FF, DDcos, DDsin, FXI, U, T, S1, S2, S3, S4] (4)

Each station has its own dataset, denoted Xstation. For each Xstation, missing values were linearly
interpolated. Subsequently, we standardized FF, FXI, U, and T to align their scales and to improve
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training efficiency and stability by reducing overfitting. Variables from the vector S as well as DDsin

and DDcos are already bounded in the range [−1, 1] and thus were not normalized or standardized.

3 METHODOLOGY

This section presents the deep learning models used for wind speed forecasting, as well as the various
transfer learning strategies employed.

3.1 METRICS

The root mean square error (RMSE) was selected as the evaluation metric for this study. It is
generally defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

It represents the average Euclidean distance between the true value y and the model prediction ŷ.
This metric penalizes larger errors more heavily, making it sensitive to outliers. A low RMSE indi-
cates that the model predictions are close to the true values, while a high RMSE reflects significant
discrepancies between predictions and observations.

In order to evaluate the effectiveness of the transfer learning strategies, we compare them to an
identical architecture trained without transfer over the same historical period. The gain is defined as
the relative reduction in the RMSE, expressed as a percentage:

Gain (%) =
RMSEreference − RMSEtransfer

RMSEreference
× 100 (6)

3.2 MODELS

This subsection introduces the neural architectures selected for comparative analysis. Figure 2
provides a visual representation of the models implemented in this study. Our selection spans a
broad range of neural network paradigms, including a Convolutional-LSTM model combining con-
volutional and recurrent networks, a Convolutional-Dense model integrating convolutional layers
with fully connected layers, encoder architectures using the attention mechanism from the Trans-
former encoder Vaswani et al. (2017), standard LSTM architectures representing recurrent networks
Hochreiter & Schmidhuber (1997), and feed-forward neural networks (FFN).

In our approach, all convolutional neural network architectures process the meteorological time
series through one-dimensional (1D) convolutions, a choice dictated by the inherently sequential
nature of the data. This technical decision aligns with the temporal structure of the variables, where
local correlations manifest along the time axis. To ensure a fair comparison while preserving the
structural integrity of each model, architectural characteristics (network depth, neuron density, di-
mensionality of hidden layers) were individually calibrated. This differentiated approach avoids
enforcing parametric uniformity across models.

3.3 TRANSFER LEARNING

For this comparative study, we focused on inductive transfer learning strategies using parameter
transfer by reusing and adjusting the weights of models previously trained (fine-tuning). Since each
station has its own forecasting model, we transferred knowledge from one station to another. We
compared four geographically informed transfer strategies:

1. Random transfer

2. Topographic classification-based transfer

3. Distance-based transfer

4. Dominant wind direction-based transfer
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Figure 2: Architecture of the models used

Random transfer is used as a second baseline for evaluating the effectiveness of the transfer strate-
gies. If a transfer strategy fails to outperform random transfer in terms of RMSE, its relevance and
ability to leverage structural similarities between stations is questionable. Conversely, a significantly
lower RMSE compared to random transfer supports the quality of the considered strategy.

For the topographic classification-based transfer, we initially distinguished three terrain types:
mountain, plain, and coastal. However, a joint analysis of the map and the island’s topography
led us to merge the plain and coastal categories due to their strong topographic correlation. This re-
sulted in a binary classification between mountain and plain-coast zones, using an altitude threshold
of 300 meters. The central panel of Figure 3 illustrates this classification, where stations below the
threshold are shown in blue (plain-coast), and those above in red (mountain).

For the distance-based transfer, knowledge is transferred to minimize the distance between source
and target stations, as shown on the left panel of Figure 3. For each target station, we select the three
nearest source stations using the Haversine distance between two geographical points (ϕ1, λ1) and
(ϕ2, λ2), defined as:

d = 2R · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
λ2 − λ1

2

))
(7)

where:

• ϕ1, ϕ2 are the latitudes in radians,
• λ1, λ2 are the longitudes in radians,
• R is the Earth’s radius,
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Figure 3: Map of meteorological stations. Left: visualization of transfers between stations. Target
stations are shown in green, source stations in red, and other stations in blue. Blue arrows represent
transfers from source to target stations. Center: topographic classification of stations. Mountain
stations are shown in red; plain/coastal stations in blue. Right: station classification according to
dominant wind directions in the study area. Stations are color-coded according to their dominant
wind direction: red for north, blue for south, green for east, and yellow for west. Bi-colored stations
correspond to cases where the prevailing wind lies between two cardinal directions (e.g., northeast),
and are therefore classified into both associated directions.

• d is the distance between the two points.

For the dominant wind direction-based classification, stations were grouped according to the most
frequent wind direction over the full observation period. When a station exhibited two dominant
directions of comparable intensity, it was assigned to both groups. The right panel of figure 3 illus-
trates the spatial distribution of stations according to this classification. Bicolored points represent
stations associated with two dominant directions. A station with a wind rose showing a shared max-
imum between north and northeast is considered as exposed to a northerly wind only. The same
applies to other intercardinal directions.

Let E denote the set of all stations. Each strategy defines a subset E′ ⊆ E on which the transfer is
applied. The transfer occurs in a random order among stations in E′: a source station A can transfer
its knowledge to a target station B if and only if A,B ∈ E′. The source model is a neural network
with the same architecture, trained on the full training dataset of station A.

3.4 EXPERIMENTATION

The models are trained using the Adam optimizer with an initial learning rate of 10−3. During
fine-tuning — the adaptation phase of a model pre-trained on another station — the learning rate is
reduced to 10−4 to promote more stable convergence. In practice, fine-tuning was conducted year
by year, progressively extending the historical window: starting from 2020–2020, then 2019–2020,
2018–2020, and so forth, up to 2015–2020. For clarity, we report only the two extreme cases
(2020–2020 and 2015–2020). When computing the gain of transfer learning defined in equation 6
with respect to the reference model, the baseline is always trained on the same historical window
as the fine-tuned model. Training runs for up to 50 epochs, with early stopping based on validation
loss and a patience of 5 epochs.

Performance is evaluated on an independent test set covering the period from 01/01/2023 to
31/12/2023. The validation set spans the year 2022. The training set varies depending on the tar-
get year and may extend from 01/01/2015 to 31/12/2021, for a maximum of seven years. Models
operate with a sliding input window based on a history of three time steps.
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Table 2: Summary of average performance per architecture / strategy pair from (h+1 to h+24): mean
of RMSE and gain in % with fine-tuning performed using either 2015 (data from 2015–2020) or
2020 (data from 2020–2020) as historical year.

Model Strategy RMSE 2015 RMSE 2020 Gain 2015 (%) Gain 2020 (%)

attention distance 0.8423 0.8561 -0.33 -0.63
attention east 0.8702 0.8835 -3.65 -3.85
attention mountain 0.8353 0.8532 0.50 -0.30
attention north 0.8207 0.8343 2.25 1.92
attention west 0.8447 0.8566 -0.62 -0.69
attention plain 0.8371 0.8516 0.29 -0.11
attention random 0.8373 0.8558 0.27 -0.60
attention south 0.8604 0.8688 -2.49 -2.13
conv dense distance 0.8448 0.8579 -0.47 -0.47
conv dense east 0.8731 0.8859 -3.83 -3.74
conv dense mountain 0.8427 0.8559 -0.22 -0.23
conv dense north 0.8243 0.8417 1.96 1.42
conv dense west 0.8482 0.8608 -0.87 -0.81
conv dense plain 0.8414 0.8563 -0.07 -0.28
conv dense random 0.8404 0.8575 0.05 -0.42
conv dense south 0.8642 0.8740 -2.78 -2.36
dense distance 0.8489 0.8654 -1.03 -1.61
dense east 0.8688 0.8804 -3.39 -3.38
dense mountain 0.8396 0.8552 0.08 -0.42
dense north 0.8239 0.8441 1.95 0.89
dense west 0.8480 0.8569 -0.91 -0.62
dense plain 0.8393 0.8587 0.12 -0.84
dense random 0.8404 0.8637 -0.01 -1.42
dense south 0.8609 0.8753 -2.45 -2.78
conv lstm distance 0.8466 0.8620 -0.90 -0.99
conv lstm east 0.8737 0.8864 -4.12 -3.86
conv lstm mountain 0.8405 0.8550 -0.17 -0.17
conv lstm north 0.8232 0.8403 1.90 1.55
conv lstm west 0.8474 0.8596 -0.99 -0.72
conv lstm plain 0.8417 0.8558 -0.31 -0.27
conv lstm random 0.8404 0.8610 -0.16 -0.87
conv lstm south 0.8635 0.8705 -2.91 -2.00
lstm distance 0.8474 0.8625 -1.05 -1.24
lstm east 0.8693 0.8852 -3.66 -3.89
lstm mountain 0.8410 0.8601 -0.28 -0.95
lstm north 0.8226 0.8446 1.92 0.86
lstm west 0.8463 0.8628 -0.91 -1.27
lstm plain 0.8394 0.8553 -0.09 -0.39
lstm random 0.8385 0.8627 0.02 -1.26
lstm south 0.8616 0.8742 -2.74 -2.60

The models are designed to perform multi-step forecasting of wind speed (FF) over a 24-hour hori-
zon. Specifically, each model produces a sequence of 24 predictions corresponding to hourly lead
times from h+1 to h+24. This direct forecasting strategy enables the models to generate the entire
prediction horizon in a single forward pass. Performance metrics are computed globally over the 24
forecast steps.

4 RESULTS

Table 2 summarizes the performance obtained for each architecture–strategy pair. For each combi-
nation, the table reports the mean RMSE and the mean gain defined in equation 6 with respect to
the non-transfer baseline, averaged over horizons from h + 1 to h + 24 and computed under two
historical windows (2015–2020 vs 2020 only).

Several clear tendencies emerge. First, the majority of strategies lead to either negligible or neg-
ative gains, with some configurations showing systematic performance degradation. This effect is
particularly visible for directional dominant wind speed groupings such as East and South, which
consistently result in average losses exceeding -2.00% across all architectures. Random selection,
distance-based grouping and west also perform poorly, with mean relative gains close to zero or
negative, reflecting unstable behavior.

In contrast, the North strategy stands out as the only configuration that provides positive average
gains across all tested architectures. While these improvements remain modest (generally between
+0.86% and +2.25%). This suggests that under specific transfer conditions, it is possible to mitigate
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the negative effects observed elsewhere. Strategies based on topographic classification (mountain
and plain) show intermediate results: they do not yield clear benefits, but their performance degra-
dation remains less severe than for other directional groupings.

Overall, the table highlights the absence of a universally effective transfer strategy. Gains remain
limited in magnitude and often offset by frequent negative transfers. Increasing the dataset size leads
to better performance, although the improvements remain negligible in most cases. These findings
confirm that, in the present setting, transfer learning cannot be considered a reliable approach for
systematically improving model performance.

5 DISCUSSION

Our results demonstrate that, in the context of wind speed forecasting in Corsica, inductive
parameter-based transfer learning rarely improves performance and frequently induces negative
transfer. Contrary to a substantial body of literature reporting strong gains from transfer learning
Oh et al. (2022); Zhu et al. (2025); Zhang et al. (2024), none of the geographically informed strate-
gies evaluated here provide systematic improvements over training a model directly on the target
station. Only the North-based grouping yields modest but consistent gains, suggesting that benefi-
cial transfer may occur only under highly specific alignments between local atmospheric regimes.

A primary factor behind these outcomes is the pronounced distributional heterogeneity between
stations. The KS-based heatmap in Figure 4 highlights substantial discrepancies in wind speed dis-
tributions across the network. However, the KS statistic captures only one-dimensional discrepancy.
To obtain a more informative characterization of inter-station divergence, we extended this analysis
by computing the Wasserstein distance between source and target distributions using Sinkhorn regu-
larization. We then assessed the relationship between this multidimensional divergence and transfer
performance through partial correlation, controlling for the no-transfer baseline as a covariate. This
analysis yields a partial correlation of approximately 18%, indicating that large distributional differ-
ences contribute to negative transfer but do not fully explain it. Distributional shift therefore appears
to be a necessary but insufficient predictor of transfer success.

Figure 4: Heatmap of Kolmogorov–Smirnov test statistics highlighting inter-station distributional
shifts in wind speed.
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Beyond global distributional differences, several stations exhibit highly idiosyncratic temporal pat-
terns. Models trained on such stations may overfit these localized structures and subsequently strug-
gle to ”unlearn” them during fine-tuning, even when distributional distances are not extreme. This
provides a plausible mechanism for persistent negative transfer. Identifying such harmful patterns
constitutes a promising direction for future research.

We also examined model performance separately across the 24 forecasting horizons. As shown in
Figure 5, the RMSE increases predictably with the forecast horizon, but all architectures display
almost identical profiles regardless of the input window size. This overlap indicates that extending
the historical context (from 3h to 48h) does not yield systematic performance gains. More impor-
tantly, the horizon-wise evolution is nearly unchanged across models, suggesting that the effects of
negative transfer are not concentrated at specific lead times but instead affect the entire prediction
range uniformly.

The persistence baseline remains clearly inferior across all horizons, confirming that the deep mod-
els do extract meaningful short-term temporal structure, but this advantage does not translate into
improved transferability between stations. A more granular, hour-specific analysis will help identify
which forecasting horizons are most sensitive to transfer.

Figure 5: Horizon-wise RMSE across model architectures and input window sizes. The figure com-
pares RMSE evolution over 24 forecasting horizons for five architectures and multiple input window
sizes. Model performances largely overlap, indicating no systematic benefit from extending the his-
torical context. Errors increase with horizon, while the persistence baseline remains consistently
inferior.

Taken together, these findings call for cautious deployment of transfer learning in highly heteroge-
neous meteorological environments. They also highlight the need for distribution-aware, context-
specific transfer criteria and for models capable of adapting to localized temporal and spatial struc-
tures.

6 CONCLUSION

This study evaluated multiple transfer learning strategies for wind speed forecasting in Corsica.
Contrary to much of the literature, our results show that transfer learning does not systematically
improve performance and often induces negative transfer. The main reason lies in the strong distri-
butional wind speed heterogeneity between stations, driven by complex topography, as confirmed by
KS tests. This not respect the assumption of source–target similarity Zhang et al. (2021), explaining
the recurrent failures of transfer.
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These findings call for caution: transfer learning cannot be assumed universally beneficial, espe-
cially in geographically heterogeneous contexts. Additionally, transferred models may converge
toward suboptimal solutions that do not align well with the specific dynamics of the target station.
Future work should prioritize distribution-aware strategies, hybrid approaches, h+6 forecasting, and
spatially explicit models such as graph neural networks, while also reporting negative results to
avoid overly optimistic conclusions. Meta-learning techniques should also be explored to improve
model adaptability.
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