

EVALUATING INDUCTIVE PARAMETER-BASED TRANSFER LEARNING WITH DEEP NEURAL NETWORKS FOR WIND FORECASTING IN CORSICA

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 This study assesses the effectiveness of various transfer learning strategies for
 014 wind speed forecasting across meteorological stations in Corsica using deep neu-
 015 ral networks. Leveraging inductive parameter-based transfer, models are trans-
 016 ferred based on geographic proximity, topographic classification, dominant wind
 017 direction, and random assignment. Several architectures are evaluated, includ-
 018 ing recurrent, convolutional, attention-based, and dense networks. Results indi-
 019 cate that structured transfer strategies do not consistently outperform non-transfer
 020 baselines. This lack of improvement can be largely attributed to significant dis-
 021 tributional differences in wind speed across stations, which hinder model trans-
 022 ferability. These findings highlight the challenges posed by domain shift in a
 023 geographically heterogeneous insular context and emphasize the need for more
 024 refined similarity criteria, hybrid transfer strategies, and spatially-aware model-
 025 ing, notably through graph neural networks. The results also call for a critical
 026 reassessment of commonly held assumptions about the benefits of transfer learn-
 027 ing in complex meteorological environments.

1 INTRODUCTION

031 Accurate wind speed forecasting is a critical challenge for various industrial and environmental ap-
 032 plications, particularly in the management of renewable energy and the mitigation of climate-related
 033 risks Jiang et al. (2021); Khodayar et al. (2017). However, the comprehensive collection of high-
 034 resolution meteorological data remains complex, especially in regions such as Corsica. Transfer
 035 learning, by reusing models previously trained on similar source domains, offers a promising ap-
 036 proach to overcome these constraints while reducing computational costs Wellens et al. (2021). It
 037 provides a methodological response to the limitations of conventional supervised learning, partic-
 038 ularly in contexts with limited labeled data, feature space divergences, or distribution mismatches
 039 between training and testing sets Gholizade et al. (2025). By leveraging a model pre-trained on a
 040 source domain, transfer learning enables improved performance on a target domain while reducing
 041 data requirements and computational costs Sankari & Kumar (2023).

041 Several taxonomies have been proposed to structure the literature on transfer learning. From the
 042 perspective of the *label space*, three paradigms are typically distinguished: *inductive* transfer, in-
 043 volving labeled data in both domains; *transductive* transfer, where only the source data are labeled;
 044 and *unsupervised* transfer, where no labels are available Gholizade et al. (2025). The relationship
 045 between these paradigms and the similarity between source and target domains has been emphasized
 046 in previous studies Sankari & Kumar (2023). In terms of the feature space, a distinction is made
 047 between *homogeneous* settings, where the features are identical but may differ in distribution, and
 048 *heterogeneous* settings, where the feature spaces differ Gholizade et al. (2025); Sankari & Kumar
 049 (2023).

050 Transfer mechanisms can also be categorized by the nature of the transferred knowledge. The main
 051 approaches include: (i) *instance-based transfer*, which involves selecting or reweighting relevant
 052 source examples; (ii) *feature-based transfer*, aiming to project data into a common representative
 053 space; (iii) *parameter-based transfer*, which reuses weights from a source model; and (iv) *relation-
 054 based transfer*, which exploits structural similarities between domains Gholizade et al. (2025); Al-

054 Hajj et al. (2023). In all cases, the chosen strategy depends on data availability, task similarity, and
 055 the application domain. A poor alignment between source and target can lead to *negative transfer*,
 056 resulting in degraded performance Zhang et al. (2021).

057 In the field of wind speed forecasting, transfer learning has been used to address dataset heterogeneity
 058 across sites or tasks. For instance, Qureshi & Khan (2018) introduced an inter-site framework
 059 based on sparse autoencoders guided by a deep belief network. This adaptive system (ATL-DNN)
 060 dynamically adjusts the transferred representations according to local characteristics. Oh et al.
 061 (2022) proposed an approach involving partial layer sharing in a C-LSTM model, demonstrating
 062 accuracy improvements for data-scarce sites. In an instance-based transfer context, Cai et al. (2019)
 063 proposed a source selection mechanism to mitigate negative transfer effects and improve quantile
 064 forecasting via GBDT. Task transfer has also been explored: Qureshi & Khan (2018) studied the
 065 transition from power to wind speed prediction, while Chen (2022) employed *knowledge distillation*
 066 to transfer representations from a complex teacher model to a lightweight student model.

067 Regarding *neural architectures*, several families have been adopted in these approaches. Recurrent
 068 networks such as LSTM and BiLSTM are employed for their ability to model temporal dependencies
 069 Oh et al. (2022); Chen (2022), while autoencoders are used to produce compressed and
 070 transferable latent representations Qureshi & Khan (2018); Oh et al. (2022). Additionally, some
 071 contributions combine transfer learning with ensemble models such as GBDT Cai et al. (2019) or
 072 optimized Adaboost Chen (2022), highlighting the complementarity between statistical robustness
 073 and generalization capacity.

074 Overall, these works converge on a common goal: maximizing predictive performance in low-data
 075 scenarios while reducing the computational resources required for model training. It is within this
 076 perspective that our contribution is situated, leveraging transfer learning to reduce the size of training
 077 datasets needed in meteorological contexts, and thereby decreasing the computational costs associated
 078 with predictive model training.

079 This study presents an analysis of structured transfer learning strategies applied to wind speed prediction
 080 across a network of meteorological stations in Corsica. We specifically compare strategies
 081 based on distance, topographic classification, directional wind speed dominance, and random transfer
 082 against the same neural architecture without transfer learning. Several neural architectures are
 083 evaluated, encompassing multiple paradigms: recurrent networks, convolutional-recurrent networks,
 084 multi-layer perceptrons (dense), and attention mechanisms.

086 2 DATA

088 This section presents the dataset used in our study, comprising time series of wind speed measurements
 089 collected from multiple meteorological stations, as well as the preprocessing procedures applied to
 090 ensure the quality and consistency of the data before their integration into the predictive models. All station data originate from official Météo France records available at : me-
 091 teo.data.gouv.fr

094 2.1 STATION DISTRIBUTION

096 Our study is based on the analysis of meteorological stations located throughout the island of Cor-
 097 sica. These stations are represented as red dots in Figure 1 left part.

098 Out of the 98 existing stations, we selected 22 based on two main criteria: the availability of wind
 099 speed measurements and the length of their historical time series. Specifically, we retained stations
 100 with more than 80,000 hours of data (approximately 9 years), ensuring significant temporal continu-
 101 ity and minimizing the need for interpolation. This threshold was determined through a comparative
 102 analysis of all available stations: a distinct group stood out with dense and regular temporal cover-
 103 age, whereas others exhibited frequent and substantial gaps in their records.

104 The right part of figure 1 illustrates Corsica’s topography using a color-coded altitude map. This
 105 visualization highlights the island’s geographical diversity, notably the alternation between coastal
 106 areas and mountainous regions, which are major factors influencing wind dynamics Grante et al.
 107 (2025). The location of the meteorological stations was analyzed in relation to this topography to
 ensure good representativeness across different geographical contexts.

Figure 1: Weather Stations Distribution and Topography of Corsica

2.2 FEATURES

The meteorological variables used in our study are listed in Table 1. These constitute the main input features for our predictive models and were selected in line with prior work such as Ryu et al. (2022); Yang et al. (2023); Tang et al. (2020); Geng et al. (2020).

Table 1: Features of the meteorological station dataset

Name	Units	Description
FF	$m.s^{-1}$	Wind speed
DD_{cos}	none	Cosine of wind direction (FF)
DD_{sin}	none	Sine of wind direction (FF)
FXI	$m.s^{-1}$	Maximum wind speed
U	%	Relative humidity
T	$^{\circ}C$	Temperature at 2 meters

We additionally included four features to decompose the day and hour of measurement, enabling non-temporally-optimized models to better capture temporal dynamics Baile & Muzy (2022). Furthermore, two features were added to better represent wind direction. Since the wind direction angle DD ranges from 0 to 360° , values like 1° and 359° are close in physical meaning but numerically distant. We chose to encode this circular characteristic directly in the input features.

For S , the vector representing temporal features, we define:

$$S = [S_1, S_2, S_3, S_4] = [\cos(2\pi \frac{h}{24}), \sin(2\pi \frac{h}{24}), \cos(2\pi \frac{d}{365.25}), \sin(2\pi \frac{d}{365.25})] \quad (1)$$

where h is the hour of the day and d is the day of the year.

For the wind direction DD , we compute:

$$\theta = \pi \frac{DD}{180} \quad (2)$$

then

$$DD_{cos} = \cos(\theta), \quad DD_{sin} = \sin(\theta) \quad (3)$$

The final input dataset is composed as follows:

$$X = [FF, DD_{cos}, DD_{sin}, FXI, U, T, S_1, S_2, S_3, S_4] \quad (4)$$

Each station has its own dataset, denoted $X_{station}$. For each $X_{station}$, missing values were linearly interpolated. Subsequently, we standardized FF , FXI , U , and T to align their scales and to improve

162 training efficiency and stability by reducing overfitting. Variables from the vector S as well as DD_{\sin}
 163 and DD_{\cos} are already bounded in the range $[-1, 1]$ and thus were not normalized or standardized.
 164

165 3 METHODOLOGY

168 This section presents the deep learning models used for wind speed forecasting, as well as the various
 169 transfer learning strategies employed.

171 3.1 METRICS

173 The root mean square error (RMSE) was selected as the evaluation metric for this study. It is
 174 generally defined as:

$$175 \quad 176 \quad 177 \quad \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \quad (5)$$

178 It represents the average Euclidean distance between the true value y and the model prediction \hat{y} .
 179 This metric penalizes larger errors more heavily, making it sensitive to outliers. A low RMSE indicates
 180 that the model predictions are close to the true values, while a high RMSE reflects significant
 181 discrepancies between predictions and observations.

182 In order to evaluate the effectiveness of the transfer learning strategies, we compare them to an
 183 identical architecture trained without transfer over the same historical period. The gain is defined as
 184 the relative reduction in the RMSE, expressed as a percentage:

$$186 \quad 187 \quad \text{Gain (\%)} = \frac{\text{RMSE}_{\text{reference}} - \text{RMSE}_{\text{transfer}}}{\text{RMSE}_{\text{reference}}} \times 100 \quad (6)$$

189 3.2 MODELS

191 This subsection introduces the neural architectures selected for comparative analysis. Figure 2
 192 provides a visual representation of the models implemented in this study. Our selection spans a
 193 broad range of neural network paradigms, including a Convolutional-LSTM model combining
 194 convolutional and recurrent networks, a Convolutional-Dense model integrating convolutional layers
 195 with fully connected layers, encoder architectures using the attention mechanism from the
 196 Transformer encoder Vaswani et al. (2017), standard LSTM architectures representing recurrent networks
 197 Hochreiter & Schmidhuber (1997), and feed-forward neural networks (FFN).

198 In our approach, all convolutional neural network architectures process the meteorological time
 199 series through one-dimensional (1D) convolutions, a choice dictated by the inherently sequential
 200 nature of the data. This technical decision aligns with the temporal structure of the variables, where
 201 local correlations manifest along the time axis. To ensure a fair comparison while preserving the
 202 structural integrity of each model, architectural characteristics (network depth, neuron density, di-
 203 mensionality of hidden layers) were individually calibrated. This differentiated approach avoids
 204 enforcing parametric uniformity across models.

205 3.3 TRANSFER LEARNING

207 For this comparative study, we focused on inductive transfer learning strategies using parameter
 208 transfer by reusing and adjusting the weights of models previously trained (fine-tuning). Since each
 209 station has its own forecasting model, we transferred knowledge from one station to another. We
 210 compared four geographically informed transfer strategies:

- 211 1. Random transfer
- 212 2. Topographic classification-based transfer
- 213 3. Distance-based transfer
- 214 4. Dominant wind direction-based transfer

Figure 2: Architecture of the models used

Random transfer is used as a second baseline for evaluating the effectiveness of the transfer strategies. If a transfer strategy fails to outperform random transfer in terms of RMSE, its relevance and ability to leverage structural similarities between stations is questionable. Conversely, a significantly lower RMSE compared to random transfer supports the quality of the considered strategy.

For the topographic classification-based transfer, we initially distinguished three terrain types: mountain, plain, and coastal. However, a joint analysis of the map and the island's topography led us to merge the plain and coastal categories due to their strong topographic correlation. This resulted in a binary classification between mountain and plain-coast zones, using an altitude threshold of 300 meters. The central panel of Figure 3 illustrates this classification, where stations below the threshold are shown in blue (plain-coast), and those above in red (mountain).

For the distance-based transfer, knowledge is transferred to minimize the distance between source and target stations, as shown on the left panel of Figure 3. For each target station, we select the three nearest source stations using the Haversine distance between two geographical points (ϕ_1, λ_1) and (ϕ_2, λ_2) , defined as:

$$d = 2R \cdot \arcsin \left(\sqrt{\sin^2 \left(\frac{\phi_2 - \phi_1}{2} \right) + \cos(\phi_1) \cdot \cos(\phi_2) \cdot \sin^2 \left(\frac{\lambda_2 - \lambda_1}{2} \right)} \right) \quad (7)$$

where:

- ϕ_1, ϕ_2 are the latitudes in radians,
- λ_1, λ_2 are the longitudes in radians,
- R is the Earth's radius,

Figure 3: Map of meteorological stations. Left: visualization of transfers between stations. Target stations are shown in green, source stations in red, and other stations in blue. Blue arrows represent transfers from source to target stations. Center: topographic classification of stations. Mountain stations are shown in red; plain/coastal stations in blue. Right: station classification according to dominant wind directions in the study area. Stations are color-coded according to their dominant wind direction: red for north, blue for south, green for east, and yellow for west. Bi-colored stations correspond to cases where the prevailing wind lies between two cardinal directions (e.g., northeast), and are therefore classified into both associated directions.

- d is the distance between the two points.

For the dominant wind direction-based classification, stations were grouped according to the most frequent wind direction over the full observation period. When a station exhibited two dominant directions of comparable intensity, it was assigned to both groups. The right panel of figure 3 illustrates the spatial distribution of stations according to this classification. Bicolored points represent stations associated with two dominant directions. A station with a wind rose showing a shared maximum between north and northeast is considered as exposed to a northerly wind only. The same applies to other intercardinal directions.

Let E denote the set of all stations. Each strategy defines a subset $E' \subseteq E$ on which the transfer is applied. The transfer occurs in a random order among stations in E' : a source station A can transfer its knowledge to a target station B if and only if $A, B \in E'$. The source model is a neural network with the same architecture, trained on the full training dataset of station A .

3.4 EXPERIMENTATION

The models are trained using the Adam optimizer with an initial learning rate of 10^{-3} . During fine-tuning — the adaptation phase of a model pre-trained on another station — the learning rate is reduced to 10^{-4} to promote more stable convergence. In practice, fine-tuning was conducted year by year, progressively extending the historical window: starting from 2020–2020, then 2019–2020, 2018–2020, and so forth, up to 2015–2020. For clarity, we report only the two extreme cases (2020–2020 and 2015–2020). When computing the gain of transfer learning defined in equation 6 with respect to the reference model, the baseline is always trained on the same historical window as the fine-tuned model. Training runs for up to 50 epochs, with early stopping based on validation loss and a patience of 5 epochs.

Performance is evaluated on an independent test set covering the period from 01/01/2023 to 31/12/2023. The validation set spans the year 2022. The training set varies depending on the target year and may extend from 01/01/2015 to 31/12/2021, for a maximum of seven years. Models operate with a sliding input window based on a history of three time steps.

324
 325 Table 2: Summary of average performance per architecture / strategy pair from (h+1 to h+24): mean
 326 of RMSE and gain in % with fine-tuning performed using either 2015 (data from 2015–2020) or
 327 2020 (data from 2020–2020) as historical year.

328	Model	Strategy	RMSE 2015	RMSE 2020	Gain 2015 (%)	Gain 2020 (%)
329	attention	distance	0.8423	0.8561	-0.33	-0.63
330	attention	east	0.8702	0.8835	-3.65	-3.85
331	attention	mountain	0.8353	0.8532	0.50	-0.30
332	attention	north	0.8207	0.8343	2.25	1.92
333	attention	west	0.8447	0.8566	-0.62	-0.69
334	attention	plain	0.8371	0.8516	0.29	-0.11
335	attention	random	0.8373	0.8558	0.27	-0.60
336	attention	south	0.8604	0.8688	-2.49	-2.13
337	conv_dense	distance	0.8448	0.8579	-0.47	-0.47
338	conv_dense	east	0.8731	0.8859	-3.83	-3.74
339	conv_dense	mountain	0.8427	0.8559	-0.22	-0.23
340	conv_dense	north	0.8243	0.8417	1.96	1.42
341	conv_dense	west	0.8482	0.8608	-0.87	-0.81
342	conv_dense	plain	0.8414	0.8563	-0.07	-0.28
343	conv_dense	random	0.8404	0.8575	0.05	-0.42
344	conv_dense	south	0.8642	0.8740	-2.78	-2.36
345	dense	distance	0.8489	0.8654	-1.03	-1.61
346	dense	east	0.8688	0.8804	-3.39	-3.38
347	dense	mountain	0.8396	0.8552	0.08	-0.42
348	dense	north	0.8239	0.8441	1.95	0.89
349	dense	west	0.8480	0.8569	-0.91	-0.62
350	dense	plain	0.8393	0.8587	0.12	-0.84
351	dense	random	0.8404	0.8637	-0.01	-1.42
352	dense	south	0.8609	0.8753	-2.45	-2.78
353	conv_lstm	distance	0.8466	0.8620	-0.90	-0.99
354	conv_lstm	east	0.8737	0.8864	-4.12	-3.86
355	conv_lstm	mountain	0.8405	0.8550	-0.17	-0.17
356	conv_lstm	north	0.8232	0.8403	1.90	1.55
357	conv_lstm	west	0.8474	0.8596	-0.99	-0.72
358	conv_lstm	plain	0.8417	0.8558	-0.31	-0.27
359	conv_lstm	random	0.8404	0.8610	-0.16	-0.87
360	conv_lstm	south	0.8635	0.8705	-2.91	-2.00
361	lstm	distance	0.8474	0.8625	-1.05	-1.24
362	lstm	east	0.8693	0.8852	-3.66	-3.89
363	lstm	mountain	0.8410	0.8601	-0.28	-0.95
364	lstm	north	0.8226	0.8446	1.92	0.86
365	lstm	west	0.8463	0.8628	-0.91	-1.27
366	lstm	plain	0.8394	0.8553	-0.09	-0.39
367	lstm	random	0.8385	0.8627	0.02	-1.26
368	lstm	south	0.8616	0.8742	-2.74	-2.60

358 The models are designed to perform multi-step forecasting of wind speed (FF) over a 24-hour horizon.
 359 Specifically, each model produces a sequence of 24 predictions corresponding to hourly lead
 360 times from $h + 1$ to $h + 24$. This direct forecasting strategy enables the models to generate the entire
 361 prediction horizon in a single forward pass. Performance metrics are computed globally over the 24
 362 forecast steps.

363 4 RESULTS

364 Table 2 summarizes the performance obtained for each architecture–strategy pair. For each combination,
 365 the table reports the mean RMSE and the mean gain defined in equation 6 with respect to
 366 the non-transfer baseline, averaged over horizons from $h + 1$ to $h + 24$ and computed under two
 367 historical windows (2015–2020 vs 2020 only).

368 Several clear tendencies emerge. First, the majority of strategies lead to either negligible or negative
 369 gains, with some configurations showing systematic performance degradation. This effect is
 370 particularly visible for directional dominant wind speed groupings such as East and South, which
 371 consistently result in average losses exceeding -2.00% across all architectures. Random selection,
 372 distance-based grouping and west also perform poorly, with mean relative gains close to zero or
 373 negative, reflecting unstable behavior.

374 In contrast, the North strategy stands out as the only configuration that provides positive average
 375 gains across all tested architectures. While these improvements remain modest (generally between
 376 +0.86% and +2.25%). This suggests that under specific transfer conditions, it is possible to mitigate

378 the negative effects observed elsewhere. Strategies based on topographic classification (mountain
379 and plain) show intermediate results: they do not yield clear benefits, but their performance degra-
380 dation remains less severe than for other directional groupings.

381 Overall, the table highlights the absence of a universally effective transfer strategy. Gains remain
382 limited in magnitude and often offset by frequent negative transfers. Increasing the dataset size leads
383 to better performance, although the improvements remain negligible in most cases. These findings
384 confirm that, in the present setting, transfer learning cannot be considered a reliable approach for
385 systematically improving model performance.

388 5 DISCUSSION

391 Our results demonstrate that, in the context of wind speed forecasting in Corsica, inductive
392 parameter-based transfer learning rarely improves performance and frequently induces negative
393 transfer. Contrary to a substantial body of literature reporting strong gains from transfer learning
394 Oh et al. (2022); Zhu et al. (2025); Zhang et al. (2024), none of the geographically informed strate-
395 gies evaluated here provide systematic improvements over training a model directly on the target
396 station. Only the North-based grouping yields modest but consistent gains, suggesting that benefi-
397 cial transfer may occur only under highly specific alignments between local atmospheric regimes.

398 A primary factor behind these outcomes is the pronounced distributional heterogeneity between
399 stations. The KS-based heatmap in Figure 4 highlights substantial discrepancies in wind speed dis-
400 tributions across the network. However, the KS statistic captures only one-dimensional discrepancy.
401 To obtain a more informative characterization of inter-station divergence, we extended this analysis
402 by computing the Wasserstein distance between source and target distributions using Sinkhorn regu-
403 larization. We then assessed the relationship between this multidimensional divergence and transfer
404 performance through partial correlation, controlling for the no-transfer baseline as a covariate. This
405 analysis yields a partial correlation of approximately 18%, indicating that large distributional differ-
406 ences contribute to negative transfer but do not fully explain it. Distributional shift therefore appears
407 to be a necessary but insufficient predictor of transfer success.

431 Figure 4: Heatmap of Kolmogorov–Smirnov test statistics highlighting inter-station distributional
432 shifts in wind speed.

Beyond global distributional differences, several stations exhibit highly idiosyncratic temporal patterns. Models trained on such stations may overfit these localized structures and subsequently struggle to "unlearn" them during fine-tuning, even when distributional distances are not extreme. This provides a plausible mechanism for persistent negative transfer. Identifying such harmful patterns constitutes a promising direction for future research.

We also examined model performance separately across the 24 forecasting horizons. As shown in Figure 5, the RMSE increases predictably with the forecast horizon, but all architectures display almost identical profiles regardless of the input window size. This overlap indicates that extending the historical context (from 3h to 48h) does not yield systematic performance gains. More importantly, the horizon-wise evolution is nearly unchanged across models, suggesting that the effects of negative transfer are not concentrated at specific lead times but instead affect the entire prediction range uniformly.

The persistence baseline remains clearly inferior across all horizons, confirming that the deep models do extract meaningful short-term temporal structure, but this advantage does not translate into improved transferability between stations. A more granular, hour-specific analysis will help identify which forecasting horizons are most sensitive to transfer.

Figure 5: Horizon-wise RMSE across model architectures and input window sizes. The figure compares RMSE evolution over 24 forecasting horizons for five architectures and multiple input window sizes. Model performances largely overlap, indicating no systematic benefit from extending the historical context. Errors increase with horizon, while the persistence baseline remains consistently inferior.

Taken together, these findings call for cautious deployment of transfer learning in highly heterogeneous meteorological environments. They also highlight the need for distribution-aware, context-specific transfer criteria and for models capable of adapting to localized temporal and spatial structures.

6 CONCLUSION

This study evaluated multiple transfer learning strategies for wind speed forecasting in Corsica. Contrary to much of the literature, our results show that transfer learning does not systematically improve performance and often induces negative transfer. The main reason lies in the strong distributional wind speed heterogeneity between stations, driven by complex topography, as confirmed by KS tests. This does not respect the assumption of source-target similarity Zhang et al. (2021), explaining the recurrent failures of transfer.

486 These findings call for caution: transfer learning cannot be assumed universally beneficial, especially
 487 in geographically heterogeneous contexts. Additionally, transferred models may converge
 488 toward suboptimal solutions that do not align well with the specific dynamics of the target station.
 489 Future work should prioritize distribution-aware strategies, hybrid approaches, h+6 forecasting, and
 490 spatially explicit models such as graph neural networks, while also reporting negative results to
 491 avoid overly optimistic conclusions. Meta-learning techniques should also be explored to improve
 492 model adaptability.

494 REFERENCES

496 Rami Al-Hajj, Ali Assi, Bilel Neji, Raymond Ghandour, and Zaher Al Barakeh. Transfer learning
 497 for renewable energy systems: A survey. *Sustainability*, 15(11):9131, 2023.

498 Rachel Baile and J. F. Muzy. Leveraging data from nearby stations to improve short-term wind
 499 speed forecasts. *Elsevier*, 2022.

501 Long Cai, Jie Gu, Jinghuan Ma, and Zhijian Jin. Probabilistic wind power forecasting approach via
 502 instance-based transfer learning embedded gradient boosting decision trees. *Energies*, 12(1):159,
 503 2019.

504 Hao Chen. Knowledge distillation with error-correcting transfer learning for wind power prediction.
 505 *arXiv preprint arXiv:2204.00649*, 2022.

507 D. Geng, H. Zhang, and H. Wu. Short-term wind speed prediction based on principal component
 508 analysis and lstm. *Applied Sciences*, 10(13):4416, 2020.

510 Masoume Gholizade, Hadi Soltanizadeh, Mohammad Rahmani manesh, and Shib Sankar Sana. A
 511 review of recent advances and strategies in transfer learning. *International Journal of System
 512 Assurance Engineering and Management*, pp. 1–40, 2025.

513 Diego Grante, Rachel Baile, and Christophe Paoli. Exploiter le deep learning pour prévoir les
 514 vitesses de vent: Une approche liant topographie et données de réanalyse météorologique. In
 515 *Extraction et Gestion des Connaissances (EGC'2025)*, 2025.

517 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 518 1735–1780, 1997.

519 Ping Jiang, Zhenkun Liu, Xinsong Niu, and Lifang Zhang. A combined forecasting system based
 520 on statistical method, artificial neural networks, and deep learning methods for short-term wind
 521 speed forecasting. *Energy*, 223:119361, 2021. doi: 10.1016/j.energy.2020.119361.

523 Mehdi Khodayar, Mohammad Reza Bidram, Mohammad Ebrahim Hamedani Golshan, and Mohsen
 524 Khodayar. Rough deep neural architecture for short-term wind speed forecasting. *IEEE Transac-
 525 tions on Industrial Electronics*, 64(10):7650–7657, 2017. doi: 10.1109/TIE.2017.2682039.

526 JeongRim Oh, JongJin Park, ChangSoo Ok, ChungHun Ha, and Hong-Bae Jun. A study on the wind
 527 power forecasting model using transfer learning approach. *Electronics*, 11(24):4125, 2022.

529 Aqsa Saeed Qureshi and Asifullah Khan. Adaptive transfer learning in deep neural networks: Wind
 530 power prediction using knowledge transfer from region to region and between different task do-
 531 mains. *arXiv e-prints*, pp. arXiv:1810, 2018.

532 Ju-Yeol Ryu, Bora Lee, Sungho Park, Seonghyeon Hwang, Hyemin Park, Changhyeong Lee, and
 533 Dohyeon Kwon. Evaluation of weather information for short-term wind power forecasting with
 534 various types of models. *Energies*, 15(24):9403, 2022.

536 S. Siva Sankari and P. Senthil Kumar. A review of deep transfer learning strategy for energy fore-
 537 casting. *Nature Environment and Pollution Technology*, 22(4):1781–1793, 2023.

538 Bin Tang, Yan Chen, Qin Chen, and Mengxing Su. Research on short-term wind power forecasting
 539 by data mining on historical wind resource. *Applied Sciences*, 10(4):1295, 2020.

540 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
541 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
542 *mation Processing Systems (NeurIPS)*, volume 30, 2017.

543 Arnoud P. Wellens, Maxi Udenio, and Robert N. Boute. Transfer learning for hierarchical forecast-
544 ing: Reducing computational efforts of m5 winning methods. *International Journal of Forecast-*
545 *ing*, 2021. To appear.

546 Mao Yang, Yunfeng Guo, and Yutong Huang. Wind power ultra-short-term prediction method based
547 on nwp wind speed correction and double clustering division of transitional weather process.
548 *Energy*, 282:128947, 2023.

549 Jun Zhang, Yaoran Chen, Hang Pan, Liyuan Cao, and Chunxiang Li. Constrained deep reinforce-
550 ment transfer learning for short-term forecasting of wind discrepancies at ocean stations. *SSRN*
551 *Electronic Journal*, 2024. URL <https://ssrn.com/abstract=5033497>. Preprint.

552

553 W. Zhang, L. Deng, L. Zhang, and D. Wu. A survey on negative transfer. *IEEE Transactions on*
554 *Neural Networks and Learning Systems*, 2021. doi: 10.1109/TNNLS.2021.3099090.

555 Yingqin Zhu, Yue Liu, Nan Wang, ZhaoZhao Zhang, and YuanQiang Li. Real-time error compen-
556 sation transfer learning with echo state networks for enhanced wind power prediction. *Applied*
557 *Energy*, 379:124893, 2025. doi: 10.1016/j.apenergy.2024.124893.

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593