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Abstract001

Large Language Models (LLMs) face deploy-002
ment challenges due to high computational003
costs, and while Post-Training Quantization004
(PTQ) offers a solution, existing rotation-based005
methods struggle at very low bit-widths like006
2-bit. We introduce a novel, training-free ap-007
proach to construct an improved rotation ma-008
trix, addressing the limitations of current meth-009
ods. The key contributions include leverag-010
ing the Walsh-Hadamard transform with se-011
quency ordering, which clusters similar fre-012
quency components to reduce quantization er-013
ror compared to standard Hadamard matri-014
ces, significantly improving performance. Fur-015
thermore, we propose a Grouped Sequency-016
arranged Rotation (GSR) using block-diagonal017
matrices with smaller Walsh blocks, effectively018
isolating outlier impacts and achieving per-019
formance comparable to optimization-based020
methods without requiring any training. Our021
method demonstrates robust performance on022
reasoning tasks and Perplexity (PPL) score on023
WikiText-2. Our method also enhances results024
even when applied over existing learned rota-025
tion techniques.026

1 Introduction027

Large Language Models (LLMs), despite their028

widespread success, face deployment challenges029

due to high computational costs, particularly in030

resource-constrained settings. Quantization, which031

reduces the numerical precision of model parame-032

ters, offers a viable solution by decreasing model033

size and accelerating computation with minimal034

accuracy loss. Post-Training Quantization (PTQ) is035

especially attractive as it avoids costly retraining.036

Within PTQ for LLMs, rotation-based meth-037

ods like QuaRot (Ashkboos et al., 2024) are com-038

mon but suffer severe performance degradation at039

low bit-widths, such as 2-bit weight quantization040

(W2), exhibiting high Perplexity (PPL) of 20.29041

on WikiText-2 (Merity et al., 2016). Subsequent042

methods like SpinQuant (Liu et al., 2024) (PPL of 043

16.45) and OSTQuant (Hu et al., 2025) (PPL of 044

10.97) improve accuracy using learnable rotation 045

or scaling matrices, but require additional optimiza- 046

tion phases, diminishing the core benefit of PTQ. 047

To address this, we propose a novel, training- 048

free approach to construct an improved rotation 049

matrix for LLM quantization. Our method lever- 050

ages the Walsh matrix by rearranging the rows 051

of the Hadamard matrix so that the sequency is 052

sorted in ascending order. This clusters similar fre- 053

quency components, reducing intra-group variance 054

and quantization error compared to the standard 055

Hadamard matrix used in QuaRot, improving PPL 056

to 15.38. 057

Furthermore, inspired by local rotation tech- 058

niques (Lin et al., 2024; Xiang et al., 2025), we 059

introduce Grouped Sequency-arranged Rotation 060

(GSR). The GSR employs a block-diagonal ma- 061

trix with smaller Walsh matrices, effectively isolat- 062

ing outlier impacts within each quantization group. 063

This significantly enhances performance, achieving 064

a PPL of 11.59 and an average zero-shot tasks accu- 065

racy of 42.44% – comparable to optimization-based 066

methods without requiring training. Our approach 067

also improves when applied to existing learning- 068

based methods like SpinQuant and OSTQuant. 069

2 Preliminaries 070

2.1 Walsh-Hadamard Transform and 071

Sequency 072

A Hadamard matrix with a size of a non-negative 073

power of two is usually constructed by Sylvester’s 074

method as follows: 075

H2 =
1√
2

[
1 1
1 −1

]
and H2n = H2 ⊗ H2n−1 .

(1) 076

A Walsh matrix is derived by applying the bit- 077

reversal and the Gray-code permutation to the 078

Hadamard matrix (Tam and Goulet, 1972). 079
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Figure 1: Overall diagram of rotation scheme. We ap-
plied Grouped Sequency-arranged Rotation (GSR) on
R1.

Sequency is the number of sign flips in a row080

of such matrices. The Walsh matrix follows se-081

quency ordering where the sign flips of each row082

are arranged in ascending order. In contrast, the083

Hadamard matrix is in natural ordering, where the084

sequency value of the i-th row is defined as follows:085

S(i) = bit_count(i ⊕ (i >> 1)). (2)086

For instance, the rows of a Hadamard matrix of size087

8 have 0, 7, 3, 4, 1, 6, 2, and 5 sequency values.088

Such matrices serve as a transform by them-089

selves, and we call each row (or column) a se-090

quency filter.091

2.2 Rotation for LLM Quantization092

Since a Hadamard matrix can be used as a rotation093

matrix when scaled and has an efficient algorithm,094

recent state-of-the-art methods make extensive use095

of the Hadamard transform (Ashkboos et al., 2024;096

Xiang et al., 2025; Lin et al., 2024; Liu et al., 2024;097

Hu et al., 2025). Following SpinQuant’s termi-098

nology, R1 rotates all hidden activations between099

transformer blocks, R2 rotates the value activa-100

tion, R3 rotates the query and key activations af-101

ter RoPE, and R4 rotates the input activation of102

the down projection. Specifically for R1, a Ran-103

domized Hadamard Transform (RHT) is employed104

following the proposition in Quip# (Tseng et al.,105

2024) for better incoherence processing. This way,106

the outliers in the activation distribution are largely107

suppressed, achieving deployable W4A4KV41 per-108

formance on famous LLM models.109

1We notate x-bit weight, y-bit activation, z-bit KV-cache
into WxAyKVz like W4A4KV4.

3 Methodology 110

3.1 Grouped Sequency-arranged Rotation 111

We propose Grouped Sequency-arranged Rotation 112

(GSR), a training-free rotation technique to im- 113

prove post-training quantization of LLMs under ex- 114

treme quantization settings such as W2 and W2A42. 115

We denote the input and output channels of a 116

weight W ∈ RC×H with C and H . G and N 117

denote the group size and the number of groups, 118

respectively, so that C = NG. 119

As exhibited in Fig. 1, we design a signal 120

processing-inspired rotation matrix that can inde- 121

pendently be plugged into existing rotation-based 122

PTQ algorithms, as follows: 123

RGSR =



Hwal 0 · · · · · · 0

0 Hwal 0 · · ·
...

... 0 . . . 0
...

...
... 0 . . . 0

0 · · · · · · 0 Hwal


(3) 124

, where Hwal ∈ {−1, 1}G×G is a G×G Walsh 125

matrix, with G being the quantization group size, 126

and 0 is the G×G zero matrix. 127

The proposed RGSR has several advantages over 128

the RHT and the SpinQuant matrices: First, it 129

can replace any rotation matrix in existing PTQ 130

methods without training like QuaRot (Ashkboos 131

et al., 2024) for virtually free, as the only additional 132

operation required is to pre-process a Sylvester- 133

constructed Hadamard matrix to a Walsh matrix 134

and apply the Kronecker product with an identity 135

matrix before running quantization. Second, it can 136

systematically reduce weight quantization error by 137

strategically arranging sequency filters with similar 138

yet diverse sequency values (Section 3.2). Third, 139

it can also serve as an enhanced initialization for 140

training-based methods such as SpinQuant (Liu 141

et al., 2024) and OSTQuant (Hu et al., 2025) (Sec- 142

tion 4). 143

3.2 The Effect of Sequency Arrangement on 144

Group Quantization 145

To justify our design, we investigate how the se- 146

quency ordering in our GSR can improve group 147

quantization on weights. As shown in Fig. 1, the 148

weights are rotated twice as follows: 149

W ′ = R−1
f WRr, (4) 150

2Since 2-bit per-channel quantization can easily fail to
converge, we assume group quantization in all cases.
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where Rf and Rr are rotation matrices applied to151

the front and rear side of a weight W , respectively.152

For query weight Wq as an example, Rf = R1 and153

Rr = I hold. We do not consider local rotation for154

brevity.155

An (i, j) element of the rotated weight (W ′[i, j])156

can be derived as follows:157

W ′[i, j] = ⟨(R−1
f W )[i, :], Rr[:, j]⟩

=
〈[

⟨R−1
f [i, :],W [:, 1]⟩, ⟨R−1

f [i, :],W [:, 2]⟩,

. . . , ⟨R−1
f [i, :],W [:, H]⟩

]
, Rr[:, j]

〉
.

(5)158

An n-th group in W ′ can be expressed as W ′[nG :159

(n+ 1)G, :], which leads to our observation #1 by160

simply substituting i to nG : (n+ 1)G in Eqn. 5.161

Observation #1

Under group quantization, each column
group in the front rotation matrix Rf gener-
ates distinct rotated weight groups, and the
rear rotation matrix Rr always applies on
the whole weight.
In other words, a group in the rotated weight
W ′ is the original weight transformed by
the corresponding group of filters in the
front rotation matrix and then by all filters
in the rear rotation matrix.

162

Comparing Hadamard and Walsh Now, we163

relate the sequency arrangement to group quan-164

tization performance. For Rr, the arrangement165

has no impact as long as the set of sequency val-166

ues is equal, which is the case with comparing the167

Hadamard and Walsh matrices. Therefore, we fo-168

cus on Rf . The Walsh matrix (with the sequency or-169

dering) has smaller sequency variance within each170

column group than the Hadamard matrix. Since171

sequency is analogous to frequency in the conven-172

tional frequency-domain filtering, the Walsh matrix173

will produce rotated weight groups with fewer mas-174

sive outliers. Since R1 works as Rf on transformer175

weights such as Wq,Wk,Wv,Wup, and Wgate,176

changing R1 from Hadamard to Walsh helps re-177

duce the quantization error for these weights.178

Comparing RHT and Walsh The randomiza-179

tion method in Quip# (Tseng et al., 2024) and180

QuaRot (Ashkboos et al., 2024) only flips the signs181

of diagonal elements in a Hadamard matrix. This182

process keeps the overall sequency arrangement183

with no significant changes. Therefore, we can184

compare the RHT against the Walsh using the same 185

logic as in the previous section. 186

3.3 Global vs. Local Rotation 187

𝑅!"#$%"&

𝐻# Sign flip ↑

𝑅!"#$%"& 𝑊

𝐶

𝑊

Sequency Arranged

Quantization
Group

(a) Global rotation applies a full-matrix transformation across
all dimensions and spreads outlier effects widely.

𝑅!"#$!% 𝑊

𝐶

𝐶

𝑅!"#$!% 𝑊
𝐺 = 128

Quantization
Group

𝐻 Sequency Arranged

# Sign flip ↑

(b) Local rotation applies block-diagonal transformations
within groups and confines outlier effects within each block.
For illustration purposes, three blocks are depicted, while the
actual number of blocks is given by N = C/G.

Figure 2: Overview of global and local rotation strate-
gies. Global rotation transforms the entire space and
amplifies outlier effects and local rotation advances con-
trol over outliers within blocks to improve quantization
robustness.

Local rotation (using block-diagonal matrices) is 188

generally more effective than global rotation (using 189

a single large matrix) (Lin et al., 2024; Xiang et al., 190

2025; Xiang and Zhang, 2024). Global rotation can 191

struggle to handle outliers effectively, whether in 192

activations or weights, as it tends to spread their 193

impact widely. Local rotation, however, confines 194

the effects of such outliers within their specific 195

block or group as in Fig. 2 (b). When used with the 196

Walsh matrix, this containment helps better reduce 197

errors, which is also beneficial for low bit weight 198

quantization. 199

4 Experimental Results 200

Baseline We conducted experiments to assess 201

whether the proposed GSR offers improved per- 202

formance over previously used rotation matrices. 203

Comparisons were made across QuaRot, Spin- 204

Quant, and OSTQuant. To ensure a fair evaluation, 205

all methods were assessed by applying group quan- 206

tization to their originally reported quantization 207

configurations, under W2A16 and W2A4 settings. 208

Changes in rotation, such as switching to the Walsh 209

matrix or applying local rotation, were applied only 210
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Method Bits R1 PPL↓ 0-shot↑ Method Bits R1 PPL↓ 0-shot↑ Method Bits R1 PPL↓ 0-shot↑

W16A16 5.47 69.81 W16A16 5.47 69.81 W16A16 5.47 65.21

QuaRot W2A16 GH 20.29 32.06 SpinQuant W2A16 GH 16.45 31.04 OSTQuant W2A16 GH 10.97 45.52

GW 15.38 39.30 GW 16.44 34.52 GW 9.51 46.83
LH 12.11 41.01 LH 13.17 39.84 LH 9.16 49.84

GSR 11.59 42.44 GSR 12.04 42.11 GSR 9.03 50.51

QuaRot W2A4 GH 31.33 27.87 SpinQuant W2A4 GH 22.94 31.77 OSTQuant W2A4 GH 16.16 38.18

GW 20.34 33.75 GW 18.86 32.05 GW 14.68 40.67
LH 17.74 36.88 LH 15.79 34.57 LH 12.44 43.69

GSR 15.23 37.89 GSR 15.47 34.75 GSR 11.77 44.56

Table 1: Comparison of the perplexity score on WikiText-2 and the averaged accuracy on zero-shot common-
sense reasoning tasks. This experiment presents a comparative analysis across different methods to elucidate the
performance differences arising from the types of rotation matrices employed. In the R1 column, the notations "G",
"L", and "H" correspond to global, local, and Hadamard, respectively. For example, ’GH’ indicates that a global
Hadamard rotation is applied to R1.

to R1, as further analyzed in the Appendix A.2. De-211

tails of the quantization configurations are provided212

in the Appendix A.1.213

Model and Datasets The proposed method was214

evaluated on Llama-2-7B (Touvron et al., 2023).215

To assess general language modeling capability, we216

measured PPL on WikiText-2 (Merity et al., 2016)217

with a context length of 2048 tokens. To evaluate218

reasoning ability, we conducted common zero-shot219

evaluations on a set of reasoning tasks, following220

the same datasets used in baseline methods. Specif-221

ically, QuaRot and SpinQuant were evaluated on222

Arc (Easy and Challenge) (Clark et al., 2018), Hel-223

laSwag (Zellers et al., 2019), LAMBADA (Paperno224

et al., 2016), PIQA (Bisk et al., 2020), and Wino-225

Grande (Sakaguchi et al., 2021), while OSTQuant226

was additionally evaluated on BoolQ (Clark et al.,227

2019), OpenBookQA (Mihaylov et al., 2018), and228

SIQA (Sap et al., 2019).229

Implementation Details and Overall Results230

We denote the global Hadamard matrix as GH, the231

global Walsh matrix as GW, local Hadamard matrix232

as LH. All Hadamard matrices are randomized, fol-233

lowing common practice in previous rotation-based234

algorithms. When constructing Walsh matrices, the235

original Hadamard matrix is used. The other details236

not mentioned here are listed in the Appendix A.1.237

The overall results are summarized in Table 1.238

Across all methods, our proposed approach consis-239

tently outperforms the GH, achieving lower PPL240

and higher accuracy on reasoning tasks. In particu-241

lar, applying the GW to QuaRot (i.e., re-ordering242

rows of the Hadamard matrix with natural order-243

ing) yields approximately 1 point lower PPL com-244

pared to SpinQuant, validating the benefit of the 245

sequency arrangement. Given that SpinQuant typi- 246

cally consumes much greater computational costs 247

than QuaRot, this result suggests that adopting 248

GSR enables QuaRot to achieve superior perfor- 249

mance and efficiency. 250

The advantage of the sequency arrangement 251

is enhanced when paired with the local rotation. 252

When comparing the LH and GSR on QuaRot, 253

GSR consistently also delivers better performance 254

across all cases, similar to the improvements ob- 255

served in global rotation (GH vs GW). Moreover, 256

in zero-shot task evaluations, the Walsh matirx con- 257

sistently outperforms the Hadamard. Notably, in 258

the QuaRot W2 setting, the GW achieves approx- 259

imately 7 points higher accuracy compared to the 260

GH, again surpassing SpinQuant. Complete in- 261

dividual scores for each task are provided in Ap- 262

pendix A.3. 263

5 Conclusion 264

In this paper, we proposed a novel training-free 265

rotation technique, Grouped Sequency-arranged 266

Rotation (GSR), inspired by signal processing the- 267

ory on Walsh-Hadamard transform and sequency. 268

The GSR makes use of the Walsh matrix to place 269

transformed weights filtered by similar sequency 270

values closer, and combines the local rotation idea 271

for constraining possible remaining outliers within 272

a single quantization group per row. A theoreti- 273

cal justification is also provided for each compo- 274

nent. Experimental results verify the effectiveness 275

of our proposed method on common benchmarks 276

for LLM quantization, including WikiText-2 and 277

popular zero-shot common-sense reasoning tasks. 278
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Limitations279

Our proposed method has proven effective only280

under extremely low bit weight quantization. On281

larger bit settings, the quantization error becomes282

much less significant, so that the sequency align-283

ment cannot show visible improvement.284
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GPTQ During weight quantization with383

GPTQ (Frantar et al., 2022), the calibration384

was performed by sampling 128 contexts, each385

consisting of 2048 tokens, from the WikiText2386

dataset.387

QuaRot For QuaRot (Ashkboos et al., 2024),388

GPTQ-based quantization was applied with asym-389

metric weight quantization, MSE-based clipping,390

and group quantization using a group size of 128.391

Activation quantization was performed using sym-392

metric round-to-nearest (RTN) quantization with a393

clipping ratio of 0.9 and a group size of 128.394

SpinQuant For SpinQuant (Liu et al., 2024),395

since GPTQ was used during PTQ, weight quanti-396

zation was not applied during the rotation matrix397

training phase. However, when activation quanti-398

zation was included, activation quantization-aware399

training was performed using an RTN quantizer,400

with symmetric quantization and a group size of401

128 applied to activations.402

OSTQuant For OSTQuant (Hu et al., 2025),403

both the rotation matrix and the smoothing fac-404

tor were learned. During weight-only quantization,405

weight-quantization-aware training was conducted406

using asymmetric quantization, MSE-based clip-407

ping, and a group size of 128. When quantizing408

both weights and activations, the weights were kept409

frozen, and only the effect of activation RTN quan-410

tization was considered, with a group size of 128411

applied.412

A.2 Ablation Study413

Method R1 R4 PPL PPL†

QuaRot

LH GH 12.11 17.74
LH LH 12.65 14.64

GSR GH 11.59 15.23
GSR LH 11.22 13.83

Table 2: Ablation results on the effect of local rotation
for R4 in Llama-2-7B. PPL represents the results for
W2, and PPL† represents the results for W2A4.

Global and Local Rotation on R4 As part of414

the ablation study, we applied local rotation to R4,415

originally using global rotation. Table 2 shows416

that local rotation consistently improves perfor-417

mance under activation quantization (W2A4), but418

has negligible impact under weight-only quantiza-419

tion (W2).420

Given the role and placement of R4, it primarily421

rotates activation outliers through an online rota-422

tion mechanism before input activations enter the423

down-projection of the FFN layer. From the weight 424

perspective, since R1 and R4 are fused into the 425

weights during inference, the benefit of local rota- 426

tion is realized only once. Thus, the performance 427

gains observed from modifications to R4 can be 428

attributed mainly to the activation quantization pro- 429

cess. 430

Nonetheless, applying local rotation to the on- 431

line rotation introduces practical challenges. In 432

particular, it disables the use of the fast-hadamard- 433

transform, requiring the entire FP32 matrix tensor 434

to be stored in memory during inference, which is 435

impractical. We left addressing this limitation for 436

future work. 437

A.3 Complete Reasoning Tasks Results 438
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#Bits
Configuration

ARC-c ARC-e Hella. lambada lambada-o lambada-s PIQA Wino. Avg.
Method LR LS R1

16-16 46.25 74.58 75.99 71.12 73.92 68.33 79.11 69.14 69.81

2-16 QuaRot

GH 23.04 43.27 35.51 13.33 14.48 12.19 59.14 55.49 32.06
GW 25.94 44.49 42.07 27.88 30.53 25.23 61.26 56.99 39.30
LH 27.22 48.91 46.12 27.56 30.18 24.94 66.38 56.75 41.01

GSR 26.79 49.71 47.86 30.90 35.46 26.35 64.85 57.62 42.44

2-4 QuaRot

GH 21.67 35.31 33.00 8.64 9.72 7.55 57.13 49.96 27.87
GW 22.78 38.34 36.56 19.75 22.49 17.00 58.81 54.30 33.75
LH 25.77 43.94 41.20 22.52 23.95 21.09 62.62 53.91 36.88

GSR 27.22 45.20 43.46 23.83 26.92 20.75 61.64 54.14 37.89

2-16 SpinQuant

✓ GH 22.70 41.29 34.37 12.65 14.26 11.04 57.83 54.14 31.04
✓ GW 22.70 40.82 36.57 20.98 21.41 20.55 59.19 53.91 34.52
✓ LH 25.43 45.58 42.43 28.58 31.34 25.81 63.17 56.35 39.84
✓ GSR 25.34 46.46 44.90 32.73 34.95 30.51 64.31 57.70 42.11

2-4 SpinQuant

✓ GH 24.23 38.97 34.68 14.36 15.74 12.98 57.13 56.04 31.77
✓ GW 22.78 37.04 33.75 17.70 20.32 15.08 57.13 52.57 32.05
✓ LH 23.89 40.28 39.80 19.25 21.08 17.43 60.61 54.22 34.57
✓ GSR 25.17 41.58 36.54 20.68 23.21 18.14 59.74 52.96 34.75

Table 3: Complete comparison of accuracy on zero-shot common-sense reasoning tasks for Llama-2-7B with QuaRot
and SpinQuant. lambada-o and lambada-s represent lambada-openai and lambada-standard, respectively. LR
and LS represent learning rotation and learning smooth factors, respectively.

#Bits
Configuration

ARC-c ARC-e boolq Hella. lambada-o openbook-qa PIQA Social-IQA Wino. Avg.
Method LR LS R1

16-16 46.42 74.33 77.71 75.94 73.69 44.20 79.16 45.91 69.53 65.21

2-16 OSTQuant

✓ ✓ GH 23.63 50.38 62.87 34.75 40.19 19.60 63.44 36.85 59.04 45.52
✓ ✓ GW 25.00 53.79 63.15 36.16 39.14 19.80 65.61 38.33 59.43 46.83
✓ ✓ LH 27.56 57.53 63.30 39.47 50.96 20.00 66.76 39.36 59.98 49.84
✓ ✓ GSR 26.62 60.56 65.29 38.69 56.20 22.40 66.54 38.08 61.09 50.51

2-4 OSTQuant

✓ ✓ GH 19.37 39.14 50.98 31.48 18.38 15.20 60.39 36.08 53.28 38.18
✓ ✓ GW 19.88 45.08 61.83 32.00 22.61 15.00 60.23 36.34 52.09 40.67
✓ ✓ LH 24.66 50.25 63.21 34.82 26.61 18.60 63.93 36.80 55.33 43.69
✓ ✓ GSR 23.21 51.89 62.81 35.05 33.75 18.40 63.28 37.72 56.59 44.56

Table 4: Complete comparison of accuracy on zero-shot common-sense reasoning tasks for Llama-2-7B with
OSTQuant. lambada-o represent lambada-openai. LR and LS represent learning rotation and learning smooth
factors, respectively.
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