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Abstract
Do current large language models (LLMs) bet-001
ter solve graph reasoning and generation tasks002
with parameter updates? In this paper, we pro-003
pose InstructGraph, a framework that empow-004
ers LLMs with the abilities of graph reasoning005
and generation by instruction tuning and prefer-006
ence alignment. Specifically, we first propose a007
structured format verbalizer to unify all graph008
data into a universal code-like format, which009
can simply represent the graph without any ex-010
ternal graph-specific encoders. Furthermore,011
a graph instruction tuning stage is introduced012
to guide LLMs in solving graph reasoning and013
generation tasks. Finally, we identify potential014
hallucination problems in graph tasks and sam-015
ple negative instances for preference alignment,016
the target of which is to enhance the output’s017
reliability of the model. Extensive experiments018
across multiple graph-centric tasks exhibit that019
InstructGraph can achieve the best performance020
and outperform GPT-4 and LLaMA2 by more021
than 13% and 38%, respectively.022

1 Introduction023

Currently, large language models (LLMs) have024

succeeded in reasoning on textual data (Brown025

et al., 2020; Zhao et al., 2023c). However, there026

also exists rich information in graph data, that is027

difficult to represent using plain text (Jin et al.,028

2023), such as knowledge graphs (Schneider et al.,029

2022), symbolic graphs (Saba, 2023), and social030

networks (Wang et al., 2023d), etc.031

To endow LLMs with the ability to solve graph032

tasks, a series of works focus on designing the inter-033

face (e.g., prompt engineering) of LLMs on graph034

data to make them understand the semantics with-035

out parameter optimization (Ye et al., 2023; Han036

et al., 2023; Zhang et al., 2023b; Zhang, 2023; Kim037

et al., 2023; Jiang et al., 2023; Wang et al., 2023b;038

Luo et al., 2023), or injecting the graph embed-039

dings into the partial parameters of LLMs through040

graph neural networks (GNNs) (Zhang et al., 2022;041

Chai et al., 2023; Tang et al., 2023; Perozzi et al., 042

2024). Despite significant progress, we explore 043

these two challenges: 1) There still exists a seman- 044

tic gap between graph and text, which may impede 045

the LLM in graph reasoning and generation. 2) 046

LLMs tend to generate hallucinations which may 047

be caused by fabricated erroneous inputs or lack of 048

pertinent knowledge. It can be viewed as the graph 049

hallucination problem. 050

To overcome these challenges, we present a 051

framework named InstructGraph that boosts 052

LLMs by instruction tuning and preference align- 053

ment. A straightforward approach to solve the first 054

challenge is to use a graph description (Ye et al., 055

2023) or graph embeddings (Chai et al., 2023), 056

However, these methods require a large number 057

of manual templates to describe the graph. Repre- 058

senting a large or complex graph via embeddings 059

may cause information loss. In addition, the re- 060

sponses generated by the LLM with these methods 061

are difficult to parse into actual graphs (Jin et al., 062

2023; Zhao et al., 2023c). Current investigations 063

have demonstrated that LLMs have a great ability 064

for code understanding and generation (Gao et al., 065

2023; Ma et al., 2023; Wong et al., 2023; Yang 066

et al., 2024). Inspired by them, we can unify graph 067

data into a code-like universal format to enhance 068

the LLM’s understanding and generation perfor- 069

mance on graph tasks. As shown in Figure 1, each 070

graph can be converted into a code with basic vari- 071

ables, such as node_list (or entity_list), 072

edge_list (or triple_list) and optional 073

properties. To this end, a graph instruction tun- 074

ing stage is introduced to train the LLM on these 075

formulated data. 076

In addition, previous works have found that 077

LLMs generate responses with hallucination when 078

following the instructions, typically referring to fab- 079

ricated erroneous inputs or lack of intrinsic knowl- 080

edge (Zhang et al., 2023a; Ji et al., 2023). For 081

example, the LLM may derive a wrong answer 082
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Connectivity Detection
Q: Given a graph G1,
deter-mine if there is a
path between node 2 and
3.
A: The answer is yes.

Cycle Detection
Q: Given a graph G1,
deter-mine if there is a
graph cycle.

A: No cycle in the graph.

Graph Structure Modeling 
(Graph Reasoning) 

Graph Language Modeling 
(Graph Reasoning) 

Graph Generation Modeling 
(Graph Generation) 

Graph Thought Modeling 
(Graph Reasoning and Generation) 

Instruct 

Shortest Path
Q: Given a graph G1,
find the shortest path
between node 2 and 3.
A: The path is 2,0,4,3.

Bipartite Matching
Q: Given a graph G2,
whether node 1 is
connective to node 4.
A: Yes.

Hamilton Path
Q: Given a graph G2, is
there a path visits every
node exactly once.
A: No.

Degree Computing
Q: Given a graph G1,
compute the degree of
node 4.
A: The degree is 3.

Caption Generation
Q: Given a graph G3,
generate a caption to
describe the graph.

A: James Cameron ...

Question Answering

Node Classification

Link Prediction

Relevance Inspection Collaboration Filtering 

Q: Given a graph G3, answer
the question: what's the
birthday of the film TITANIC's
director?
A: 1954.

Q: Given a graph G3,
classify the node
"Canada".

A: country_name.

Q: Given a graph G3, predict
the relation between "James
Cameron" and "Canada".
A: place_of_birth.

Q: Given a graph G3, whether
the following passage is
relevant to the graph. "James
...".
A: Yes, it's relevant.

Q: Given a graph G4,
what's the user3's review
preference towards
item1? 
A: It's 👍 .

Knowledge Graph Generation Structure Graph Generation
Q: Given the following passage, generate a
knowledge graph to express the semantics: 
"James Cameron is a Canadian filmmaker born in
Ontario in 1954. He directed popular movies such as
Titanic and Avatar." 
A: The graph is shown in the follow:

Q: Given the follow description, generate a graph to
release the structure. "In an undirected graph, the
nodes are from 0 to 6, (i, w, j) means an edge with a
weight w. All edges are: (3, 5, 5), (0, 2, 1), (0, 1, 6),
(2, 3, 4), (5, 1, 6), (2, 3, 3), (1, 1, 6) and (1, 4, 6)." 
A: The graph is shown in the follow:

Commonsense & Factual Reasoning
Q: What's the birth country of Avatar's director? 
A: To answer this question, we first find the topic
entity is "Avatar". Then, we construct a knowledge
subgraph of the topic entity, the graph is:

Arithmetical & Logical Reasoning
Q: Roger had 16 dollars. For his birthday he got 28
more dollars but spent 25 on a new game. How much
money does he have now? 
A: To answer this question, we first find the topic
entity is "Roger". Then, we construct a graph:

Based on the graph, we can find a reasoning path
that (Rogar, first has,16 dollars, add, 28 dollars,
minus, 25 dollars). So the answer is 19 dollars.

Based on the graph, we can find a reasoning path
that (Avatar, director, James Cameron, born in,
Ontario, country, Canada). So the answer is Canada.

Definition: Given a graph, understand the
structure and answer the question about
connectivity, cycle, hamilton path, bipartite
matching, shortest path and degree.

3
0

1

2

3

4

5

G1
1

1
5

2

2

G2

0

1

2

3

4

5

Definition: Given a graph, understand the
graph semantic and answer the question
about caption, QA, node classification, link
prediction, relevance and collaboration.

Definition: Given a passage, understand
the instruction and question, and then
generate a graph to satisfy the semantics
or structures.
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Definition: Given a reasoning question, think
step by step: 1) find a topic entity, 2) then
generate a graph that express the thinking
process, 3) finally output the answer.
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Figure 1: Four groups of graph-centric reasoning and generation tasks.

when being questioned on a graph that lacks key083

information, or the LLM may generate a graph084

with incorrect facts, conflicting, or missing infor-085

mation. However, how to reduce this effect in graph086

reasoning and generation is still under-explored.087

Hence, we introduce the graph preference align-088

ment to alleviate the hallucination problem in the089

LLM’s reasoning and generation. Specifically, we090

follow the direct preference optimization (DPO)091

algorithm (Rafailov et al., 2023) to optimize the092

LLM to make better preferences. To automatically093

sample the negative instances in DPO, we explore094

various scenarios, such as unfactual graph, conflict095

graph and missing graph. , to simulate the graph096

hallucination problem.097

To evaluate the effectiveness of our framework,098

we perform extensive experiments on multiple099

graph reasoning and generation tasks. Results re-100

veal that the proposed InstructGraph achieves the101

best performance on both graph-centric instruc-102

tion and preference tasks and outperforms the GPT-103

4 (OpenAI, 2023) and LLaMA2 (Touvron et al.,104

2023b) by more than 13% and 38%, respectively.105

2 Methodology106

The skeleton is shown in Figure 2, which can be107

decomposed into three modules, i.e., graph input108

engineering, graph instruction tuning, and graph 109

preference aligning. 110

2.1 Notation 111

Suppose that there are M graph tasks D = 112

{D1, · · · DM}, and the corresponding dataset 113

of each task can be denoted as Dj = 114

{(Ii,Gi,Pi,Ai)}
Nj

i=1, where Nj denotes the num- 115

ber of examples of Dj , Ii is the corresponding in- 116

struction 1, Gi = (Ei,Ri, Ti,Si) is the graph with 117

one node (entity) set Ei, one optional relation set 118

Ri, one edge (triple) set Ti, and one optional tex- 119

tual property set Si, Pi is the optional passage , and 120

Ai is the final answer 2. 121

2.2 Graph Input Engineering 122

The first challenge is how to align the graph to the 123

text to meet the sequence interface of LLMs, previ- 124

ous works solved this issue by using graph descrip- 125

tion (Ye et al., 2023) or embedding fusion (Chai 126

et al., 2023), which may make the generated re- 127

sponses difficult to parse into actual graphs. 128

Inspired by current LLMs that can simultane- 129

ously understand and generate code, we intro- 130

duce a structured format verbalizing strategy to 131

1We manually design the instruction for each dataset.
2Especially, the answer Ai can be not only an independent

text but also one of Gi and Pi, depending on the task paradigm.
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Ontario Canada

James
Cameron

located in

born in

1954
Film  

director

job

TitanicAvatar

born in

works
works

James Francis
Cameron CC
(born August
16, 1954) is a
Canadian film-
maker ...

Graph Passage

Structured Format
Verbalizer

Graph Input Engineering

Graph Preference Aligning

Graph Instruction Tuning

✅

1954

You are a good graph reasoner, you need to understand the
graph and the task definition, and answer the question. 
Graph[name="wiki-knowledge-graph"]{ ... }

Q: What
is the
birthday
of the film
TITANIC's
director?

1988 1988

❌

1988 1954 1988

✅

❌

1988 1988❌ ❌ ❌ ❌

❓

You are a good graph generator, you need to understand the task
definition, and generate a graph to answer the question. 
.

❌

James Cameron was
born in August
16, 1988  ...

🤖 🤖 🤖 🤖

❌

1988

🤖

✅

James Cameron was
born in August
16, 1954  ...

❌

1988

🤖

✅

James Cameron was
born in August
16, 1954  ...

❌
1954

✅

Basketball
Player

✅

James Cameron was
born in August
16, 1954  ...

🤖

❓

❓

LLM Output LLM Output LLM Output LLM Output

LLM Output LLM Output LLM Output LLM Output

Q: Given a text, please generate a knowledge graph.

Input graph from multiple tasks

You are a good graph reasoner / generator, ...

Instruction & Definition

Reasoning

Generation

Instruction Tuning

LLaMA2
WizardLM
Vicuna
......LoRA🔥 ❄

</>

     = You are a great reasoner, ...
\nGraph[name="..."] {...} \nQ: ... Preference

Aligning

LLaMA2
WizardLM
Vicuna
......LoRA🔥 ❄

The graph ... 1988
❌>❌

🏆

......
      = You are a great generator, ...
\nGraph[name="..."] {...} \nQ: ...

......

James ...

>
✅

🏆 James ...

❌

............

Maximum 
Likelihood

Optimization Algorithm (DPO)

InstructionUIE

CoRA

Graph-centric Corpus (about 1.6M)

Correct graph but 
wrong answer

Unfactual graph but
wrong answer

Conflict graph but
wrong answer

Missing graph but
wrong answer

Wrong input but
wrong graph

Correct input but
unfaithful graph

Correct input but
unfactual graph

🤖

Correct input but missing
or redundant info. in graph

You are a good graph reasoner, you need to
unders-tand the graph and the task definition,
and answer the question. 
Graph[name="wiki-knowledge-graph"]{ ... }

Q: Generate a caption to
describe the graph information.

Q: What's the birthday of the
film TITANIC's director?

Q: What's the relation between
'James' and 'Canada'?

➕

➕

➕

......

You are a good graph generator, you
need to understand the task definition,
and generate a graph to answer the
question.

A: James
Francis ...

A: 1954.

A: Birth
place.

Q: Generate a
knowledge graph. ➕

......

James Cameron was born
in August 16, 1954  ...

Q: What's the degree of the
target node "James Cameron"? A: 5.➕

Maximum 
Likelihood

Q: First generate
a graph express
the rethink
process, then
output the anwser.

A: The graph is

A: The graph is

So, the answer
is ...

...... ......

➕

Instruct
Graph

Reasoning Generation

Figure 2: The InstructGraph framework. 1) We first collect multiple graph tasks, and unify them into a code-like
format, along with task-specific textual data to form a graph instruction corpus. 2) Then, we perform graph
instruction tuning to improve the ability of an LLM to solve graph reasoning and generation tasks. 3) Finally, we
investigate multiple graph hallucination scenarios and optimize the LLM by preference alignment.

transform the graph into a simple code-like for-132

mat. Formally, given one task graph Gi ∈ Dj ,133

we denote M(·) as the structured format verbal-134

izer, and the original graph can be mapped into a135

sequence as Ci = M(Gi). For the fundamental for-136

mat, all nodes (or entities) are listed as a sequence137

with variable node_list (or entity_list),138

while all edges (or triples) are listed as a sequence139

with variable edge_list (or triple_list).140

For graphs that contain side information, we can141

simulate the object-oriented language to express142

the node (or entity). Take the graph in Fig-143

ure 1 as an example, the review text “The film144

is nice.” of the node “User1” can be expressed by145

“User1.review=The film is nice.”, where “.review”146

can be replaced as the property name in the graph.147

Therefore, we can unify all graphs into a unified148

format to align with textual data.149

2.3 Graph Instruction Tuning150

As shown in Figure 1, we first define four different151

groups of graph-centric instruction tasks to bol-152

ster the ability of LLMs on the graph, including153

graph structure modeling, graph language model-154

ing, graph generation modeling, and graph thought155

modeling. The first two groups are focused on 156

graph reasoning, the third group is typical graph 157

generation, and the last group aims at both graph 158

reasoning and generation 3. After graph input engi- 159

neering, we can directly reuse the standard causal 160

language modeling (CLM) objective to continually 161

tune the LLM on such groups. Formally, given one 162

task dataset Dj = {(Ii,Gi,Pi,Ai)}
Nj

i=1, the LLM 163

can be optimized by maximum likelihood with: 164

L(Dj) = −
Nj∑
i=1

log πθ(Yi = Ai|Xi), (1) 165

where πθ denotes the LLM with trainable param- 166

eters θ, Yi is the model output, Xi and Ai respec- 167

tively represent the input sequence and reference 168

label, which depends on the specific task definition. 169

Table 1 lists all groups of tasks and corresponding 170

clusters to show the task definition, model input, 171

and output. Therefore, we can obtain an instruction- 172

based graph LLM and named InstructGraph-INS. 173

3We only choose the first three groups of tasks for instruc-
tion tuning. The tasks from graph thought modeling are only
used for the evaluation.
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Task Groups Task Clusters Task Definition Task Input Task Output

Graph
Structure
Modeling

Connection Detection,
Cycle Detection,
Hamilton Path,

Bipartite Matching,
Shortest Path,

Degree Computing

The tasks in this group aim to make LLMs better
understand some basic graph structures. The
input only contains nodes, directed or un-directed
edges, and optional weights.

Xi = [Ii, Ci] Yi = Ai

Graph
Language
Modeling

Graph Caption
Generation

The task aims to generate a caption passage Pi

to describe the graph Gi.
Xi = [Ii, Ci] Yi = Pi

Graph Question
Answering

The task aims to reason on the whole graph Gi

and find an entity as the final answer Ai ∈ Ei.
Xi = [Ii, Ci,Pi] Yi = Ai

Graph Node
Classification

The task aims to classify the target node into pre-
defined classes based on Gi.

Xi = [Ii, Ci,Pi] Yi = Ai

Graph Link
Prediction

The task aims to predict the relation between two
given nodes based on Gi.

Xi = [Ii, Ci,Pi] Yi = Ai

Graph Relevance
Inspection

The task aims to detect whether the graph Gi is
relevant to the passage Pi, we have
Ai ∈ {relevant, irrelevant}.

Xi = [Ii, Ci,Pi] Yi = Ai

Graph Collaboration
Filtering

The task aims to predict whether the target user
prefers the target item based on the whole graph
Gi, the answer Ai can be set as a score.

Xi = [Ii, Ci,Pi] Yi = Ai

Graph
Generation
Modeling

Knowledge Graph
Generation

The task aims to given a passage Pi that describes
a piece of factual or commonsense information,
the task aims to extract entities and relations from
Pi to generate a graph Gi.

Xi = [Ii,Pi] Yi = Ci

Structure Graph
Generation

The task aims to generate a graph to meet the
structure information described in the passage Pi.

Xi = [Ii,Pi] Yi = Ci

Graph
Thought

Modeling

Arithmetic
Symbolic
Robotic
Logic

The task aims to solve the general reasoning task
in three think steps: 1) first find the question
subject, 2) then generate a thought graph Gi to
express the rationale and 3) finally output the result
Ai based on the graph.

Xi = Ii Yi = [Ci;Ai]

Table 1: The overview of all groups of tasks.

2.4 Graph Preference Alignment174

Recently, the NLP community has witnessed a175

significant decrease in hallucination through pref-176

erence optimization (Ouyang et al., 2022; Zhao177

et al., 2023e; Rafailov et al., 2023; MacGlashan178

et al., 2017). Following this, we propose graph179

preference alignment to alleviate the hallucination180

of LLMs on the graph. As depicted in Figure 2,181

we intuitively design four typical hallucination cir-182

cumstances for graph reasoning and generation and183

perform negative sampling for each graph task.184

Hallucinations in Graph Reasoning Typically,185

the instruction-version LLM may be a strong in-186

struction follower, yet, sometimes fall into hallu-187

cinations because of the erroneous input or lack188

of knowledge: 1) correct graph but wrong answer189

means the LLM makes a wrong prediction even190

though the input is legal, 2) unfactual graph but191

wrong answer means the wrong answer caused by a192

graph with unfaithful semantics to external knowl-193

edge, 3) conflict graph but wrong answer means194

there exists conflict information in the input graph, 195

and 4) missing graph but wrong answer means that 196

the input graph is missing some crucial information 197

related to the answer. 198

To simulate the first circumstance, we can ran- 199

domly choose a result from other examples to form 200

a negative output Y−
i . For the rest, we can ran- 201

domly replace, add, or remove some nodes (enti- 202

ties) or edges (triples) in the graph and construct a 203

new input with the original instruction and passage. 204

Therefore, the original answer can be viewed as the 205

negative Y−
i and the positive Y+

i defined as “Sorry, 206

the input graph contains wrong information, so the 207

question is unanswerable directly.”. 208

Hallucination in Graph Generation Graph gen- 209

eration is harder than reasoning because the LLM 210

needs to output a complete and accurate code-like 211

format sequence. The following are three kinds of 212

wrong-generated graphs: unfactual graph, conflict 213

graph and missing graph. We can directly construct 214

a wrong graph as the final output Y−
i by perform- 215

ing replace, add, and remove operators, which are 216

4



Clusters Tasks Metrics GPT-3.5 GPT-4 LLaMA2 Vicuna InstructGraph-INS

Structure

Conn. Dect. ACC 81.45 80.47 54.01 54.85 83.54
Cycle Dect. ACC 59.02 61.44 50.79 52.88 91.10
Hami. Path ACC 21.03 29.10 1.23 1.23 34.80
Bipt. Match ACC 50.23 66.11 0.00 0.00 76.36
Shrt. Path ACC 38.99 49.03 0.00 0.00 66.29

Degree Comp. ACC 41.18 70.59 18.13 19.57 65.65

Caption

Wikipedia BLEU 91.99 93.85 77.15 82.94 95.81
WebNLG BLEU 99.51 99.29 88.67 89.33 97.35
GenWiki BLEU 98.60 98.65 79.72 87.67 97.71
EventNA BLEU 62.66 61.75 53.39 75.52 81.64

Xalign BLEU 86.77 88.59 84.05 86.05 93.08

Graph QA

PathQSP EM 52.54 68.64 42.70 31.90 86.40
GrailQA EM 43.92 60.17 15.83 17.95 81.30
WebQSP EM 53.73 61.57 40.07 26.42 73.30
WikiTQ EM 49.02 60.78 29.94 35.76 47.82

Node CLS

Cora EM 74.51 64.17 83.04 84.08 89.33
Citeseer EM 70.39 74.94 68.24 67.94 71.65
Pubmed EM 74.63 77.16 79.78 80.18 81.09
Arxiv EM 70.59 74.51 45.50 57.75 81.50

Products EM 68.82 84.16 29.34 79.50 95.20

Link Pred.
Wikidata Hits@1 43.73 62.94 10.75 10.38 96.52

FB15K-237 Hits@1 60.34 66.88 0.00 0.00 98.91
ConceptNet Hits@1 31.33 38.30 8.30 8.19 59.86

Relevance Wikipedia ACC 94.40 100 69.27 68.12 100

RecSys Amazon Hits@1 27.09 59.77 44.40 16.40 78.80

IE
Wikipedia F1 50.97 46.89 40.76 38.84 83.56

UIE F1 24.41 26.22 20.21 26.11 76.82
InstructKGC F1 21.44 21.86 19.26 16.6 38.98

Graph Gen. NLGraph F1 80.86 88.17 3.64 42.21 91.05

Avg. 59.45 66.76 41.65 46.06 79.84

Table 2: Main results (%) over multiple graph instruction tuning tasks under zero-shot settings. The number
highlighted in bold denotes the best performance.

similar to the graph reasoning. The original graph217

is denoted as positive Y+
i . Additionally, in cases218

where an incorrect answer is due to a faulty input,219

we may substitute the original input with an unre-220

lated one from the dataset that doesn’t affect the221

answer graph. The original answer graph is then222

considered as the negative output Y−
i .223

We next use the DPO algorithm to reduce halluci-224

nation. Specifically, given one instruction example225

(Xi,Y+
i ) and a corresponding negative (Xi,Y−

i ),226

we can define the preference model under the227

Bradley-Terry (Bradley and Terry, 1952) as:228

pθ(Y+
i > Y−

i |Xi) =
1

1 + exp{r(Y+
i ,Y−

i ,Xi)}
,

r(Y+
i ,Y−

i ,Xi) =− β log
πθ(Y+

i |Xi)

πref (Y+
i |Xi)

+ β log
πθ(Y−

i |Xi)

πref (Y−
i |Xi)

,

(2)229

where β is the balance factor, pθ denotes the pref-230

erence model, πθ and πref respectively denotes the231

policy and reference model, which can be initial- 232

ized from instruction-version LLM. Thus, we can 233

optimize the LLM by maximum likelihood with: 234

J (πθ, πref ) = −E
(Xi,Y

+
i ,Y−

i )∼D[
log σ

(
β log

πθ(Y+
i |Xi)

πref (Y+
i |Xi)

− β log
πθ(Y−

i |Xi)

πref (Y−
i |Xi)

)]
.

(3) 235

We denote the policy πθ as InstructGraph-PRE. 236

3 Experiments 237

In this section, we perform extensive experiments 238

to evaluate the effectiveness of InstructGraph over 239

graph tasks and general NLP tasks 4. 240

3.1 Implementation Settings 241

We construct about 1.6M examples for graph in- 242

struction tuning and 100K examples for graph pref- 243

erence alignment. In default, we choose LLaMA2- 244

4We also evaluate InstructGraph on the general NLP tasks,
and perform further analysis. Due to space limitations, we
move these results to Appendx B.
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Figure 3: Performance (%) comparison with LLaMA2, Vicuna, GPT-3.5, and GPT-4 towards the overall graph,
named entity recognition (NER), and relation extraction (RE) on graph generation tasks.

7B-HF (Touvron et al., 2023b) from HuggingFace5245

as the backbone. The maximum length is set as246

2048. The optimizer is AdamW. The learning rate247

is set to 5e − 5 with a decay rate of 0.1 in the248

graph instruction tuning stage and will be changed249

to 5e− 7 in the graph preference alignment stage.250

To accelerate the training6, we utilize FSDP (Zhao251

et al., 2023d) with CPU Offloading (Tsog et al.,252

2021), FlashAttention (Dao et al., 2022), and253

BFloat16 techniques, and utilize LoRA (Hu et al.,254

2022) to perform parameter-efficient learning with255

rank = 32 and lora_α = 128.256

3.2 Main Results on Graph Instruction Tasks257

In this section, we exhaustively evaluate the258

InstructGraph-INS on multiple graph reasoning259

and generation tasks in zero-shot settings. We use260

a code-like format to unify all graphs and construct261

an instruction tuning test set. Data statistics are262

shown in Table 6, and the details are shown in Ap-263

pendix A.1. To make a comparison with a similar264

scale LLM, we choose the widely-used LLaMA2-265

7B and Vicuna-7B as the open-source baseline. In266

pursuit of investigating the performance level of267

InstructGraph in the era of AGI, we also choose268

5https://huggingface.co/meta-llama.
6The implementation is referred to https://github.

com/facebookresearch/llama-recipes.

GPT-3.5 (turbo) (Ouyang et al., 2022) and GPT- 269

4 (OpenAI, 2023) as strong baselines 7. 270

Table 2 showcases the main results of graph rea- 271

soning and generation, we thus draw the following 272

conclusions: 1) InstructGraph-INS achieves the 273

best overall results 79.84% and outperforms GPT- 274

4 by 13.08%. 2) Compared with the same scale 275

LLMs, our framework performs the best on all 276

graph tasks, which shows that further instruction 277

tuning over well-designed graph tasks can better 278

improve the reasoning and generation ability. 3) 279

For the tasks Degree Computing, WebNLG, Gen- 280

Wiki, WikiTQ, and Citseer, InstructGraph-INS un- 281

derperforms GPT-3.5 and GPT-4. Since the LLMs 282

with large-scale parameters have stored more simi- 283

lar knowledge. Despite this, InstructGraph-INS 284

still exhibits approximately 10% better perfor- 285

mance on other reasoning tasks. 286

3.3 Effectiveness of Graph Generation 287

Additionally, we also expect to delve into whether 288

InstructGraph-INS achieves the improvement on 289

graph generation tasks, We choose two external 290

manners to evaluate the results: 1) NER denotes 291

named entity recognition, and 2) RE denotes rela- 292

tion extraction. As shown in Figure 3, we visualize 293

7https://platform.openai.com/.
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Methods (7B) Is Align Structure Caption Graph QA Nodel CLS IE Avg.

LLaMA2 % 38.64 57.96 70.70 74.68 37.40 55.88
Vicuna % 39.12 62.37 64.38 77.63 40.8 56.86
InstructGraph-INS % 50.32 81.15 77.85 83.16 69.14 72.32
InstructGraph-PRE ! 57.80 87.44 84.44 88.98 91.44 82.02

Table 3: Main results (%) over multiple graph preference tasks under zero-shot settings.

Methods (7B)
Arithmetic Symbolic Robotic Logic

GSM8K SVAMP AQuA Letter Coin Termes Floortile ProofWriter FOLIO
(4-shot) (4-shot) (4-shot) (4-shot) (4-shot) (4-shot) (4-shot) (4-shot) (4-shot)

LLaMA2 w/. CoT 11.89 23.30 18.60 0.00 0.00 0.00 0.00 30.64 32.40
Vicuna w/. CoT 14.33 24.19 17.80 1.50 0.00 0.00 0.00 28.77 33.15
InstructGraph-INS w/. CoT 17.52 28.80 22.33 8.70 6.20 30.00 50.00 55.80 41.68

LLaMA2 w/. GTM 14.38 23.10 20.13 2.00 0.00 0.00 0.00 33.19 34.80
Vicuna w/. GTM 15.10 24.84 19.60 1.50 0.00 0.00 0.00 31.50 36.19
InstructGraph-INS w/. GTM 19.46 27.10 23.80 7.40 9.40 30.00 50.00 52.77 43.06

Table 4: Results (%) on thought planning tasks in few-shot scenarios.

the comparison performances on three graph gen-294

eration tasks, where Wikidata and UIE belong to295

knowledge graph construction and NLGraph focus296

on structure graph generation. We observe that: 1)297

InstructGraph-INS can bring significant improve-298

ment for LLaMA2 and Vicuna, indicating the graph299

generation ability encompasses NER and RE. 2)300

We also integrate all baselines with the 2-shot ex-301

emplars, the results illustrate that the performance302

of InstructGraph-INS is consistently the highest.303

3) RE is more challenging to NER because it in-304

volves understanding the semantics of generated305

nodes (entities) and making decisions on their re-306

lation or weight. Despite this, the improvement of307

RE is larger than NER, which signifies that graph-308

specific optimization can better empower the LLM309

in constructing triples.310

3.4 Main Results on Graph Preference Tasks311

We next explore whether InstructGraph can reduce312

the graph hallucination problem. We sample a few313

tasks from the corresponding cluster to build a hal-314

lucination testing set, including structure, caption,315

graph question answering, and node classification.316

The data statistics are shown in Table 6, and the317

details are shown in Appendix A.2. Specifically,318

each example consists of a correct answer and a319

wrong answer, we calculate the LLM’s perplex-320

ity (PPL) on these answers and choose the option321

with the lowest PPL score as the preference results.322

Therefore, the accuracy metric can reflect the per-323

formance of hallucination mitigation.324

As shown in Table 3, we choose LLaMA2, Vi-325

cuna, and two variants of InstructGraph to make 326

a comparison. InstructGraph-INS outperforms 327

LLaMA2 and Vicuna by 16.44% and 15.46%, re- 328

spectively, demonstrating that our framework with 329

only graph instruction tuning can solve the pref- 330

erence tasks better. This indicates that injecting 331

task-related knowledge into the LLM’s intrinsic pa- 332

rameter can be one of the significant factors for hal- 333

lucination reduction. Furthermore, InstructGraph- 334

PRE significantly enhances the instruction version 335

model by about 10%, demonstrating that well- 336

designed preference optimization can hit the upper 337

boundary and endow the LLM with the ability to 338

alleviate the pitfalls of hallucination. 339

3.5 Effectiveness of Thought Planning 340

Recall the graph instruction tuning, we are eager 341

for the LLM to solve the thought planning tasks, 342

including arithmetic, symbolic, robotic, and logic. 343

We design two few-shot scenarios: 1) Chain-of- 344

Thought (CoT) directly sampling few-shot exem- 345

plars with manually annotated sequence rationales 346

to form a prompt. 2) Graph Thought Modeling 347

(GTM) decomposes the sequence rationale into 348

three stages, i.e., finding topic entities or keywords, 349

building a graph to express the thought, and out- 350

putting the final answer. The comparison results 351

are depicted in Table 4, and we can observe that 352

InstructGraph-INS achieves the best performance 353

when elicited by CoT and GTM prompts. In addi- 354

tion, GTM sometimes performs below expectations 355

in the tasks of SVAMP, Letter, and ProofWriter. We 356

believe that these tasks are difficult to express using 357
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Baselines Graph QA Node CLS IE

Graph Instruction Testing

InstructGraph-INS 72.21 83.75 66.45
w/. only GSM 71.89 83.04 63.77
w/. only GLM 69.32 78.40 66.13
w/. only GGM 72.09 83.66 39.10
w/. only GTM 69.30 81.90 66.33

Graph Preference Testing

InstructGraph-PRE 84.44 88.98 91.44
w/o. only unfactual 82.10 84.52 84.33
w/o. only conflict 83.70 85.17 81.11
w/o. only missing 79.35 83.55 78.40
w/o. ALL 77.85 83.16 69.14

Table 5: Average performance (%) of all tasks in each
cluster when comparing different ablation versions.
GSM, GLM, GGM, and GTM denote graph structure
modeling, graph language modeling, graph generation
modeling, and graph thought modeling, respectively.
w/o. ALL equals to InstructGraph-INS.

an explicit graph to convey the thinking process.358

3.6 Ablation Study359

In this section, we focus on the ablation study to360

show how much each component contributes to361

performance. We choose three clusters for the test,362

i.e., Graph QA, Node CLS, and IE. As shown in363

Table 5, the results illustrate that the performance364

drops when removing one of these components.365

For the instruction tuning testing, we can observe366

that graph language modeling plays a significant367

role in Graph QA and Node CLS clusters, while368

graph generation modeling is beneficial to the per-369

formance of IE. For the preference testing, we can370

see that the performance of w/o. missing graph371

drops significantly, indicating that the major factor372

of hallucination is the lack of key information in373

the input graph or generated graph.374

4 Related Work375

4.1 LLMs for Graph Learning376

A series of works have studied how to leverage377

LLMs to solve graph-centric tasks (Jin et al., 2023),378

which can be decomposed into the following cate-379

gories: 1) Prompt engineering. A series of works380

aims to design the interface to elicit the LLM to381

better understand and reason on the graph (Ye et al.,382

2023; Han et al., 2023; Zhang et al., 2023b; Zhang,383

2023; Kim et al., 2023; Wang et al., 2023b; Luo384

et al., 2023; Wang et al., 2023a; Guo et al., 2023;385

Zhao et al., 2023b). 2) Boosting LLMs with train-386

able GNNs. This kind of method focuses on en-387

hancing the LLMs with trainable GNNs which can388

capture the arbitrary scale of the graph (Zhang et al., 389

2022; Chai et al., 2023; Tang et al., 2023; Zhao 390

et al., 2023a; Tian et al., 2023; Qin et al., 2023). 3) 391

Instruction tuning over graph data. Similar to ours, 392

Xu et al. (2023); Jiang et al. (2023); Fang et al. 393

(2023); Zeng et al. (2023) directly collect some 394

graph or symbol data to form an instruction corpus, 395

and then continually pre-train the LLM. Different 396

from them, our InstructGraph further empowers the 397

LLM by graph instruction tuning with the code-like 398

universal format and well-designed hallucination 399

alleviation strategy by preference alignment. 400

4.2 Hallucination in LLMs 401

LLMs usually generate seemingly plausible an- 402

swers, which is called hallucination (Ji et al., 2023; 403

Zhang et al., 2023a). The phenomenon of hallucina- 404

tion encompasses fabricating erroneous user input, 405

unfaithful for previously generated context, and un- 406

factual for external knowledge and commonsense. 407

To estimate hallucination, Kryscinski et al. (2020); 408

Li et al. (2023a); Tam et al. (2023); Min et al. 409

(2023) leverage external tools or neural networks 410

(e.g., BERT-NLI, GPT-4) to score the faithful- 411

ness and factuality of the model output. Recently, 412

many works focus on suppressing this problem 413

by retrieval-augmented generation (RAG) (Lewis 414

et al., 2020), contrastive learning (Sun et al., 2023), 415

contradictory evaluation (Mündler et al., 2023), and 416

decoding strategies (Lee et al., 2022; Shi et al., 417

2023; Li et al., 2023b). Different from them, we 418

aim to solve the hallucination problem on graph 419

tasks with preference alignment. 420

5 Conclusion 421

This paper proposes a novel InstructGraph frame- 422

work that empowers the LLM with the capacity 423

to solve graph reasoning and generation tasks. To 424

bridge the gap between graph data and textual lan- 425

guage models, we introduce a structured format 426

verbalizer to transform each graph into a code-like 427

format and continually tune the LLM based on 428

the instruction dataset, which is collected from 29 429

graph tasks. In addition, we also introduce a graph 430

preference alignment stage to further mitigate the 431

hallucination problem when reasoning on or gen- 432

erating a graph. Extensive experiments illustrate 433

that InstructGraph substantially achieves the best 434

performance. In our future work, we will further 435

improve the performance on graph-centric and gen- 436

eral NLP tasks and scale it to other LLMs. 437
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Limitations438

Our work is based on continual optimization for439

large language models and achieves outstanding440

performance across several benchmarks. However,441

it still carries the following limitations: (1) Due442

to resource limitations, we only conduct full ex-443

periments and analysis on a 7B scale. For 13B444

scales, we use 10% of the original training set for445

the model training. We plan to perform full param-446

eter optimization on other backbones beyond 13B447

in the future. (2) The proposed structured format448

verbalizer aims to create a code sequence that de-449

scribes a graph, but the input length may be limited450

when dealing with complex graphs or in a few-shot451

in-context learning setting.452

Social Impact and Ethics453

In terms of social impact, the graph data we uti-454

lize are all from publicly available data sources.455

Infusing this graph information into the model’s456

reasoning process will not introduce additional bias.457

However, the open-source backbones we used may458

have some negative impacts, such as gender and459

social bias. Our work would unavoidably suffer460

from these issues. We suggest that users should461

carefully address potential risks when the proposed462

method is deployed online.463
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A Details of the InstructGraph Corpus 981

In this section, we provide some details of the 982

corpus construction including both instruction and 983

preference perspective. 984

A.1 Instruction Tuning Dataset 985

To merge all graph-oriented reasoning and gener- 986

ation tasks, we collect and construct 29 tasks to 987

form instruction data. We do not construct training 988

sets for graph thought modeling. 989

Graph Structure Modeling Graph structure 990

modeling aims to urge the LLM to understand the 991

structure of a graph along with the correspond- 992

ing task-specific instruction. To reach this aim, 993

we collect structure dataset NLGraph (Wang et al., 994

2023a). The original dataset consists of 8 different 995
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Clusters Tasks Source Sampling Instruction Dataset Preference Dataset
#Train #Test #Train #Test

Structure

Conn. Dect. (Wang et al., 2023a) Up 3,737 237 2,227 463
Cycle Dect. (Wang et al., 2023a) Up 2,877 191 863 191
Hami. Path (Wang et al., 2023a) Up 1,315 55 - -
Bipt. Match (Wang et al., 2023a) Up 1,755 71 - -
Shrt. Path (Wang et al., 2023a) Up 1,580 64 948 128

Degree Comp. (Wang et al., 2023a) Up 2,435 230 1,429 445

Caption

Wikipedia (Wang et al., 2022) Down 516,585 1,979 15,208 4,785
WebNLG (Gardent et al., 2017) 100% 12,237 2,000 6,040 2,616
GenWiki (Jin et al., 2020) 100% 99,997 1,000 - -
EventNA (Colas et al., 2021) 100% 58,733 1,952 - -

Xalign (Abhishek et al., 2022) 100% 30,000 470 - -

Graph QA

PathQSP (Zhou et al., 2018) Down 30,530 1,000 27477 3,000
GrailQA (Gu et al., 2021) Down 13,797 1,421 - -
WebQSP (Berant et al., 2013) Down 13,152 1,465 - -
WikiTQ (Pasupat and Liang, 2015) Down 2,780 688 - -

Node CLS

Cora (McCallum et al., 2000) Down 548 961 166 965
Citeseer (Giles et al., 1998) Down 943 995 284 990
Pubmed (Sen et al., 2008) Down 9,736 1,756 2,988 1,789
Arxiv (Hu et al., 2020) Down 9,710 400 2,705 325

Products (Hu et al., 2020) Down 19,975 1,688 5,995 1,719

Link Pred.
Wikidata (Wang et al., 2022) Down 49,320 3,190 - -

FB15K-237 (Bollacker et al., 2008) Down 2,988 92 - -
ConceptNet (Speer et al., 2017) Down 21,240 598 - -

Relevance Wikipedia (Wang et al., 2022) Down 39,672 1,991 - -
RecSys Amazon (He and McAuley, 2016) Down 2,424 250 - -

IE
Wikipedia (Wang et al., 2022) Down 73,101 1,814 19,490 1,589

UIE (Wang et al., 2023c) 100% 285,877 3,000 - -
InstructKGC (Gui et al., 2023) Down 31,605 994 - -

Graph Gen. NLGraph (Wang et al., 2023a) Down 3,056 407 - -
The total number of the corpus 1,341,885 30,959 85,820 19,005

Table 6: The data statistics of each graph task for graph instruction tuning and preference alignment.

tasks, such as Connectivity Detection, Cycle Detec-996

tion, Topological Sorting, Shortest Path Comput-997

ing, Maximum Flow Computing, Bipartite Graph998

Matching, Hamilton Path Detection and GNN Em-999

bedding. Yet, the authors Wang et al. (2023a) men-1000

tioned that the current LLMs are hard to perform1001

on more complex graph reasoning, such as Topo-1002

logical Sorting, Maximum Flow Computing, and1003

GNN Embedding, so we remove them. In addition,1004

we also random sample some graphs of NLGraph,1005

and construct a Degree Computing task.1006

• Connectivity Detection: detect whether there1007

exists a path between two nodes in the graph.1008

This task is a binary classification and the1009

answer should be ’The answer is yes’ or ’The1010

answer is no’.1011

• Cycle Detection: determine if there is a cycle1012

in this graph. This task is a binary classifica-1013

tion and the answer should be ’Yes’ or ’No’.1014

• Topological Sorting: determine if there is a 1015

path that visits every node exactly once in this 1016

graph. This task is a binary classification and 1017

the answer should be ’Yes’ or ’No’. 1018

• Bipartite Graph Matching: detect whether 1019

there exists an edge between two given nodes 1020

in a bipartite graph. This task is a binary clas- 1021

sification and the answer should be ’Yes’ or 1022

’No’. 1023

• Shortest Path Computing: find the shortest 1024

path between two nodes in the graph, and cal- 1025

culate the sum of the weights in the shortest 1026

path. The answer is a sequence of the path 1027

with a value. 1028

• Graph Degree Computing: calculate the de- 1029

gree of the target node in the graph. The an- 1030

swer is an integer value. 1031
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Task Name Hallucination Type Positive Answer Negative Answer

Conn. Dect.
Cycle Detect.
Shrt. Path
Degree Comp.

Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>

Unfactual graph but wrong answer
Sorry, the graph contains some wrong knowledge in the follow:
<list all unfactual triples>. So the question is unanswerable,
you had better provide a correct graph.

<The original answer>

Conflict graph but wrong answer
Sorry, the graph contains some conflict edges in the follow:
<list all conflict triples>. So the question is unanswerable,
you had better provide a correct graph.

<The original answer>

Missing graph but wrong answer
Sorry, the graph does not exist node node name.
So the question is unanswerable, you had better provide a
correct graph.

<The original answer>

Caption

Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>

Unfactual graph but wrong answer
Sorry, the graph contains some wrong knowledge in the follow:
<list all unfactual triples>. based on the corrected graph,
the answer can be <The original answer>.

<The original answer>

Conflict graph but wrong answer
Sorry, the graph contains some conflict edges in the follow:
<list all conflict triples>. So the question is unanswerable,
you had better provide a correct graph.

<The original answer>

Graph QA

Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>

Unfactual graph but wrong answer
Sorry, the graph contains some wrong knowledge in the follow:
<list all unfactual triples>. based on the corrected graph,
the answer can be <The original answer>.

<The original answer>

Conflict graph but wrong answer
Sorry, the graph contains some conflict edges in the follow:
<list all conflict triples>. So the question is unanswerable,
you had better provide a correct graph.

<The original answer>

Missing graph but wrong answer
Based on the world knowledge, the correct answer to the
question is <The original answer>, but the answer does not
exist in the graph.

<The original answer>

Node CLS Correct graph but wrong answer <The original answer> <Randomly sampled from other examples>

IE

Wrong input but wrong graph <The original graph> <Randomly sampled from other examples>
Correct input but unfaithful graph <The original graph> <Randomly edit entities in the original graph>
Correct input but unfactual graph <Randomly edit edges in the original graph> <The original graph>
Correct input but missing or
redundant information in graph

<Randomly remove or add edges in the original graph> <The original graph>

Table 7: The positive and negative answer of each example for preference alignment.

Graph Language Modeling Graph language1032

modeling aims to teach the LLM to understand1033

both the structure and semantics knowledge of the1034

graph and answer the question. We decompose this1035

group into 6 kinds of tasks, including graph cap-1036

tion generation, graph question answering, graph1037

node classification, graph link prediction, graph1038

relevance inspection, and graph collaboration fil-1039

tering.1040

• Graph caption generation: generate an ency-1041

clopedia passage when given a knowledge1042

graph with all entities and structure triples1043

representing factual and commonsense knowl-1044

edge. We directly choose the datasets from1045

WebNLG (Gardent et al., 2017), GenWiki (Jin1046

et al., 2020), EventNarrative (Colas et al.,1047

2021), XAlign (Abhishek et al., 2022). In ad-1048

dition, we also follow (Wang et al., 2022) to1049

collect the Wikipedia corpus and correspond-1050

ing wikidata knowledge graph to build the1051

caption task. Specifically, we use the AC au-1052

tomatic machine algorithm to recognize all1053

entities in the passage and construct a 2-hop1054

sub-graph based on the topic entity.1055

• Graph question answering: find an entity1056

and a reasoning path in the graph to answer1057

the question. We directly collect the cor- 1058

pus from PathQuestions (Zhou et al., 2018), 1059

GrailQA (Gu et al., 2021), WebQuestions (Be- 1060

rant et al., 2013), WikiTableQuestions (Pasu- 1061

pat and Liang, 2015). Especially, the Wik- 1062

iTableQuestions is a table understanding task 1063

that answers a question based on the table. 1064

To make our framework support this kind 1065

of task, we perform preprocessing that trans- 1066

forms each row line of the table into a single 1067

graph, where the table head is the relation 1068

name and each cell is the entity. 1069

• Graph node classification: classify the tar- 1070

get node based on the corresponding graph. 1071

We directly choose from Cora (McCallum 1072

et al., 2000), Citeseer (Giles et al., 1998), 1073

Pubmed (Sen et al., 2008), OGBN-ArXiv, and 1074

OGBN-Products (Hu et al., 2020). Because 1075

the graph in these tasks is too big, we only 1076

sample a 2-hop sub-graph of centering each 1077

target node. We also perform down-sampling 1078

for each task. 1079

• Graph link prediction: classify the edge (rela- 1080

tion) between two given nodes (entities) based 1081

on the graph. We choose three main knowl- 1082
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Methods Is Align HaluEval Anthropic-HH TruthfulQA Avg.Dialogue General QA Abstract Harmless Helpful

GPT-3.5 ! 72.40 79.44 62.59 58.53 - - 47.50 -
GPT-4 ! - - - - - - 59.80 -

LLaMA2-7B % 43.99 20.46 49.60 49.55 54.28 60.49 33.29 44.52
Vicuna-7B % 46.35 19.48 60.34 45.62 55.70 58.71 30.10 45.19
InstructGraph-INS % 44.88 21.35 52.90 51.10 56.33 59.10 35.35 45.86
InstructGraph-PRE ! 47.03 21.61 52.88 51.39 58.40 60.12 35.77 46.74

Table 8: Main results (%) over multiple general NLP preference tasks under zero-shot settings.

edge graph, such as Wikidata (Wang et al.,1083

2021), Freebase (Bollacker et al., 2008), Con-1084

ceptNet (Speer et al., 2017). Specifically, we1085

random sample a subset of triples, and then1086

extract and merge two 2-hop sub-graphs that1087

center with two entities, respectively.1088

• Graph relevance inspection: inspect whether1089

the caption is relevant to the graph. The task1090

is a binary classification with two categories,1091

i.e., "relevant" and "irrelevant". We directly1092

use the same corpus from wikipedia (Wang1093

et al., 2022) in graph caption generation task.1094

For the negative sampling of each graph, we1095

directly choose other captions.1096

• Graph Collaboration Filtering: predict the1097

score that the user node prefers to the target1098

item node based on the collaboration graph.1099

We choose the widely used Amazon (He and1100

McAuley, 2016) as the corpus. Because the1101

Amazon dataset does not provide any graph1102

data, we thus perform a preprocessing stage1103

to construct a collaboration graph. Specifi-1104

cally, we calculate the Jaccard similarity be-1105

tween each pair of users based on their prefer-1106

ence items and then recall the top-10 similarity1107

users for each user to form a graph. Hence,1108

we can inject this graph into the LLM to let1109

it know how to recommend some items based1110

on all potential users.1111

Graph Generation Modeling This group aims1112

to guide the LLM to generate a graph in a code-1113

like format. We consider two challenging graph1114

generation domains, including, knowledge graph1115

generation and structure graph generation.1116

• Knowledge graph generation: similar to in-1117

formation extraction which aims to extract1118

entities and relations when given one passage.1119

We directly choose the corpus from unified1120

information extraction (UIE) (Wang et al., 1121

2023c; Gui et al., 2023), which consists of 21 1122

used named entity recognition (NER) tasks, 1123

10 used relation extraction (RE), and 4 used 1124

event extraction (EE). 1125

• Structure graph generation: generate a 1126

structure graph based on the description. 1127

For example, when given a graph descrip- 1128

tion is “Please generate a full-connection 1129

un-directed graph with four nodes rang- 1130

ing from 0 to 3.”, the expected code- 1131

like format graph is “Graph[name=’structure- 1132

graph’]node_list=[0, 1, 2, 3]; edge_list=[(0 1133

<-> 1), (0 <-> 2), (0 <-> 3), (1 <-> 2), (1 <-> 1134

3), (2 <-> 3)];”. We can directly reuse the 1135

corpus from NLGraph (Wang et al., 2023a) 1136

and sample a subset to build this task. 1137

A.2 Preference Alignment Dataset 1138

We have selected a partial dataset from the graph 1139

instruction tuning dataset for preference alignment. 1140

This dataset includes Connection Detection, Cy- 1141

cle Detection, Shortest Path Computing, Degree 1142

Computing, Graph Caption with Wikipedia and 1143

WebNLG, Graph QA with PathQSP, Node CLS 1144

with Cora, Citeseer, Pubmed, Arxiv, and Products, 1145

and IE with Wikipedia. 1146

For each task, we design positive and negative 1147

answers to support preference alignment. Details 1148

are shown in Table 7. 1149

B Further Analysis 1150

B.1 Effectiveness on General Preference Tasks 1151

We also delve into whether the preference optimiza- 1152

tion on the graph data hinders the effectiveness in 1153

the general domains. To reach this goal, we choose 1154

three external preference and hallucination tasks. 1) 1155

HaluEval (Li et al., 2023a) 8 focuses on hallucina- 1156

8https://github.com/RUCAIBox/HaluEval.
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Methods BBH MMLU
(3-shot) (5-shot)

GPT-3.5 - 70.00
GPT-4 - 86.40

MPT-7B 31.00 26.80
Falcon-7B 28.00 26.20
LLaMA-7B 30.30 35.10
LLaMA2-7B 32.58 45.65
Vicuna-7B 31.54 50.34
InstructGraph-INS 33.06 51.62

Table 9: Results (%) over multiple general NLP tasks
under few-shot in-context learning settings.

tion evaluation in dialogue, general understanding,1157

question answering, and text summarization (ab-1158

stract). 2) TruthfulQA (Lin et al., 2022) 9 aims to1159

test the factuality of LLMs on knowledge-intensive1160

tasks. We choose MC1 as the test. 3) Anthropic-1161

HH (Bai et al., 2022) 10 has released the evalua-1162

tion set for both harmless and helpful perspective.1163

For these tasks, we do not perform task-specific1164

fine-tuning to show the zero-shot performance. Re-1165

sults in Table 8 showcase that our framework occa-1166

sionally outperforms the sample scale baselines on1167

some tasks, which meets our desiderata.1168

B.2 Performance on General NLP Tasks1169

We next evaluate the performance of Instruct-1170

Graph on the general NLP tasks. We choose1171

Big-Bench-Hard (BBH) (Suzgun et al., 2023)1172

and Massive Multitask Language Understanding1173

(MMLU) (Hendrycks et al., 2021) benchmarks1174

with few-shot exemplars to perform reasoning. As1175

shown in Table 9, even though these tasks do not1176

belong to graph domains, we can still obtain com-1177

petitive results compared with other same-scale1178

open-source LLMs.1179

B.3 Parameter-Efficient Learning Study1180

To accelerate the training speed and reduce mem-1181

ory usage under the limitation of sources, we lever-1182

age parameter-efficient learning (PEL) techniques1183

to equip the original LLM with only a few train-1184

able parameters. To study the choice of differ-1185

ent PEL methods, we compare LoRA with other1186

PEL methods, such as Prefix-tuning (Li and Liang,1187

2021) 11, and Adapter (Houlsby et al., 2019). For1188

each method, we choose six different scales and1189

9https://github.com/sylinrl/TruthfulQA.
10https://github.com/anthropics/hh-rlhf.
11Prefix-Embedd: only tune the input embeddings layer;

Prefix-Layer: tune each transformer layer.
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Figure 4: Results (%) of balance between trainable
parameters and performances over graph tasks.

Methods PathQSP WebNLG CoRA UIE

GPT-4

Template 58.20 96.13 58.58 0.00
Code Format 68.64 99.29 64.17 26.22

LLaMA2

Template 20.36 59.15 27.44 0.00
Code Format 42.70 88.67 83.04 20.21

Table 10: Results (%) comparison with different prompt
engineering during the inference.

perform graph instruction tuning over 10% training 1190

data. The balance between trainable parameters 1191

and averaged results is visualized in Figure 4. We 1192

can see that LoRA can achieve the best perfor- 1193

mance and is similar to full fine-tuning regardless 1194

of the scale of trainable parameters. 1195

B.4 Effectiveness of Code Format Graph 1196

In this part, we evaluate the use of the structured 1197

format verbalizer when aligning the graph struc- 1198

ture to the textual LLM. We choose four classic 1199

graph reasoning and generation tasks, i.e., PathQSP, 1200

WebNLG, CoRA, and UIE. To compare with the 1201

structured format verbalizer, we directly choose the 1202

heuristic template introduced by InstructGLM (Ye 1203

et al., 2023) to describe each path in the graph. For 1204

example, the path “(e1, r1, e2), (e2, r2, e3)” can 1205

be formulated as “e1 is connected with e3 within 1206

tow hops through e2, and featured relations r1 and 1207

r2”. We use this template to prompt GPT-4 and 1208

LLaMA2 to show the performance. The results 1209

in Table 10 demonstrate that our structured format 1210

verbalizer outperforms traditional templates in all 1211

tasks. Especially, the LLM with traditional tem- 1212

plates cannot support graph generation, while the 1213

structured format verbalizer can reach this goal. 1214
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Figure 5: Effectiveness (%) of InstructGraph towards different scales and backbones.

Instruction (Graph Caption) LLaMA2 Output InstructGraph Output Reference

You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information. You need
to understand the graph and the task definition and answer the
question. \n“‘\nGraph[name=’wikipedia-knowledge-graph’]
\n entity_list = [’clown beetle’, ’euspilotus cribrum’, ’america’,
’the family’, ’species’, ’histeridae’];\n triple_list = [(’euspilotus
cribrum’ -> ’species’)[relation=’taxon rank’], (’the family’ ->
’america’)[relation=’country’]];\n\n“‘\n Task definition: given
a knowledge graph with all entities and structure triples repre-
senting factual and commonsense knowledge. Please leverage
this graph to generate an encyclopedia passage. Note that do not
list all knowledge in a running account.\n Q: Please generate an
encyclopedia passage for the knowledge graph.\n A:

The relation between Euspi-
lotus cribrum and species
is ’taxon rank’, and the
family country is America.
[Human Evaluation]: This
answer directly states each
fact triple from the given
graph separately. It is ac-
curate but not natural and
satisfied as a whole.

Euspilotus cribrum is a
species of clown beetle in
the family Histeridae which
is found in North Amer-
ica. [Human Evaluation]:
This answer naturally de-
scribes the factual knowl-
edge. Overall, it is very simi-
lar to an encyclopedia docu-
ment and makes the reading
experience better.

Euspilotus cribrum is a
species of clown beetle in
the family Histeridae. It is
found in North America.

Instruction (Graph Generation) LLaMA2 Output InstructGraph Output Reference

You are a good graph generator. You need to understand the
task definition and generate a graph language to answer the
question. \n Task definition: given a passage, extract some cor-
responding structure factual triples from the passage to form a
knowledge graph, and generate a graph language to describe
the graph. Note that: 1) the graph is a directed graph and the
name is ’knowledge-graph’. 2) The entities must be mentioned
in the passage. 3) The candidate relation type must be one of
’publication date’, ’country of origin’, ’publisher’, ’performer’.
4) The generated graph language should be a code-like structure,
and the skeleton format can be expressed as the following:\n
“‘\n Graph[name=’knowledge-graph’] {\n entity_list = [’xxx’,
· · · ];\n triple_list = [(’xxx’ -> ’xxx’)[relation=’xxx’], · · · ];\n
}\n“‘\n Passage: "’Bluesman’ is the 12th original album of Tak
Matsumoto, the guitarist of the Japanese music group B’z. It
was released by VERMILLION RECORDS on September 2,
2020.".\n Q: Given you a passage, please generate a correspond-
ing knowledge graph.\n A:

Graph[name=’knowledge-
graph’] {\n entity_list
= [’Bluesman’, ’Tak
Matsumoto’, ’B’z’];\n
triple_list = [(’Bluesman’
-> ’Tak Matsumoto) [re-
lation=’performer’], \n
(’Bluesman’ -> ’B’z’)
[relation=’performer’], \n
(Tak Matsumoto’ -> ’B’z)́
[relation=’performer’],\n
(’Tak Matsumoto’ -> ’VER-
MILLION RECORDS’)
[relation=’publisher’]];}
[Human Evaluation]: This
answer sometimes contains
wrong triples or missing
some entities.

Graph[name=ḱnowledge-
graph]́ {\n entity_list =
[B́luesman,́ T́ak Matsumoto,́
B́’z,́ V́ERMILLION
RECORDS,́ Śeptember
2, 2020]́;\n triple_list =
[(B́luesman-́> Śeptember 2,
2020)́ [relation=ṕublication
date]́, (B́luesman-́>
T́ak Matsumoto)́ [re-
lation=ṕerformer]́,
(B́luesman-́>
V́ERMILLION
RECORDS)́ [re-
lation=ṕublisher]́,
(B́luesman-́> J́apan)́ [rela-
tion=ćountry of origin]́];\n}
[Human Evaluation]: This
answer looks satisfying.

Graph[name=ḱnowledge-
graph]́ {\n entity_list
= [ćountry of origin,́
ṕerformer,́ ṕublication date,́
B́luesman,́ ṕublisher]́;\n
triple_list = [(B́luesman-́>
J́apan)́ [relation=ćountry of
origin]́, (B́luesman-́>
V́ERMILLION
RECORDS)́ [re-
lation=ṕublisher]́,
(B́luesman-́> Śeptember 2,
2020)́ [relation=ṕublication
date]́, (B́luesman-́>
T́ak Matsumoto)́ [rela-
tion=ṕerformer]́];\n}

Table 11: Human evaluation for the generation of LLaMA2 and InstructGraph.

B.5 Effectiveness of Different Backbones1215

To investigate whether the proposed InstructGraph1216

can consistently improve the graph reasoning and1217

generation ability with different LLMs, we se-1218

lect LLaMA2-7B, LLaMA2-13B, Vicuna-7B, and1219

Vicuna-13B as the start checkpoints. To make1220

the experiment efficient, we randomly choose 10%1221

training data to perform graph instruction tuning1222

and make a comparison with the corresponding1223

vanilla LLMs. Results in Figure 5 show that In-1224

structGraph can consistently achieve substantial1225

improvement for arbitrary backbones and scales.1226

Additionally, we observe that Vicuna has better1227

performance than LLaMA2 initially. However,1228

after graph instruction tuning, this trend is re-1229

versed. Upon further analysis, we find that both 1230

LLaMA2 and Vicuna were re-optimized based on 1231

LLaMA (Touvron et al., 2023a). Vicuna’s optimiza- 1232

tion involves using supervised fine-tuning (SFT) 1233

to inject domain knowledge with massive conver- 1234

sation data into LLaMA. Meanwhile, LLaMA2 1235

focuses on refactoring the model architecture and 1236

pre-training strategy to improve the model’s ver- 1237

satility. Thus, Vicuna may have a better ability 1238

to understand instructions than LLaMA2. Despite 1239

this, LLaMA2 can be the better starting checkpoint 1240

for boosting LLMs on graph reasoning and genera- 1241

tion tasks with parameter updates. 1242
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B.6 Human Evaluation1243

We end this section with a case study to demon-1244

strate the performance of LLMs when solving1245

graph reasoning and generation tasks. We choose1246

LLaMA2 (7B) to make a comparison and respec-1247

tively choose one example from graph caption gen-1248

eration and knowledge graph generation. For the1249

answer, we perform a human evaluation to esti-1250

mate the effectiveness of InstructGraph. As shown1251

in Table 11, InstructGraph can outperform all the1252

baselines. Specifically, compared with LLaMA2,1253

InstructGraph can generate more natural and read-1254

able captions to describe factual information. For1255

the graph generation, InstructGraph can provide1256

accurate entities and triples.1257
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