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Beyond Single Tabs: A Transformative Few-Shot Approach to
Multi-Tab Website Fingerprinting Attacks

Anonymous Author(s)∗

Abstract
Website Fingerprinting (WF) attacks allow passive eavesdroppers
to deduce the websites a user visits by analyzing encrypted traffic,
threatening user privacy. While current WF attacks achieve high ac-
curacy, they typically assume single-tab browsing, which is unrealis-
tic as users often open multiple tabs, creating mixed traffic. Existing
multi-tab WF approaches require large datasets and frequent re-
training due to evolving website content, limiting their practicality.
In this paper, we introduce Few-shot Multi-tab Website Fingerprint-
ing (FMWF), a novel approach designed to address the limitations
of existing multi-tab WF attacks. FMWF directly tackles the chal-
lenges of mixed, overlapping traffic traces generated from multi-tab
browsing, leveraging two key innovations: (1) an advanced data
augmentation technique that synthesizes realistic multi-tab traffic
sequences from easily collected single-tab traces, thereby dramati-
cally reducing the need for large-scale real-world traffic data; and
(2) a powerful fine-tuning algorithm based on transfer learning that
adapts pre-trained models to new, multi-tab environments with
minimal additional data. This two-stage framework enables FMWF
to capture the complex effectively, overlapping traffic patterns in-
herent in multi-tab browsing while maintaining a high level of
flexibility and significantly lowering computational and data collec-
tion burdens. Our experiments, conducted using real traffic traces
collected from three widely-used browsers—Microsoft Edge, Google
Chrome, and Tor Browser—highlight the superior performance of
FMWF in both closed-world and open-world scenarios. Notably,
FMWF achieves a minimum 12.3% improvement in accuracy com-
pared to ARES (SP’23) [7], TMWF (CCS’23) [13], and BAPM (AC-
SAC’21) [10] in the open-world scenario. The code with related
datasets is available at https://anonymous.4open.science/r/FMWF-
D164.

CCS Concepts
• Security and privacy→ Privacy-preserving protocols; • Net-
works→ Network privacy and anonymity.

Keywords
Multi-tab Website fingerprinting, Few-shot learning, Deep learning,
Tor
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1 INTRODUCTION
As the internet continues to evolve and permeate daily activities
such as online shopping, emailing, and social networking, browsers
have become essential tools [12]. With this increased reliance, user
concerns about privacy have also intensified.When a client accesses
a website, routers along the communication path can observe or
collect browsing data, potentially leading to privacy breaches for
commercial exploitation or surveillance [17, 28, 33]. To safeguard
privacy, users often obscure their online activity, with Tor [6] be-
ing the most popular anonymous network. Tor enhances privacy
by rerouting data through multiple nodes, frequently changing
IP addresses, and applying layered encryption to traffic, thereby
thwarting traffic tracking efforts. Despite the privacy protections
offered by networks like Tor, traffic analysis techniques, such as
Website Fingerprinting (WF) attacks [3, 6, 23], can still deduce the
websites that Tor users visit by scrutinizing traffic patterns, includ-
ing packet size, transmission direction, and timing intervals.

WF attacks leverage Machine Learning (ML) and Deep Learning
(DL) models to extract distinct traffic patterns from websites’ traces,
with state-of-the-art DL-based methods [1, 11, 18, 20, 21, 27] achiev-
ing outstanding accuracy, often exceeding 95%, in identifying the
websites users visit. However, these attacks frequently operate un-
der the single-page assumption, which presumes that users browse
only one webpage per session. In reality, browsing habits often
involve opening multiple tabs in rapid succession [8, 25], creating
mixed and overlapping traffic patterns that are more difficult to
distinguish. Research has shown that traditional WF attacks suffer
from significant performance degradation in such multi-tab scenar-
ios [14], which has spurred the development of new multi-tab WF
techniques aimed at addressing this challenge.

Most existing multi-tab WF attacks [5, 29, 31, 32] adhere to a
common architecture that segments browsing sessions into iso-
lated traffic chunks associated with individual websites. However,
this approach faces several critical drawbacks. First, these methods
presuppose knowledge of the number of opened tabs, as exem-
plified by [31], which is designed for a fixed 2-tab setting. This
assumption leads to significant performance degradation when the
number of tabs is unknown or fluctuates dynamically—conditions
that better reflect real-world browsing behaviors. Second, even un-
der controlled conditions, these models are highly susceptible to
WF defense mechanisms such as traffic padding and packet delays,
both of which substantially reduce their accuracy [32]. Lastly, their
performance worsens as the number of open tabs increases, making
it more challenging to extract clean and distinct traffic chunks from
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the increasingly mixed traffic streams. The noise introduced by
overlapping traffic becomes more pronounced, ultimately resulting
in a notable decline in identification accuracy.

In response to these challenges, more recent multi-tab WF attack
methods [7, 10, 13] have been designed to address the limitations
introduced by overlapping traffic traces specifically. These cutting-
edge approaches, often employing Transformer-based architectures,
achieve high website identification accuracy but at a high cost—they
require vast amounts of multi-tab traffic data for training. The dy-
namic nature of websites further complicates this, as traffic patterns
frequently change with content updates, making it difficult to keep
these models up-to-date. Research [13, 20] has shown that models
trained on traffic data collected just two weeks prior can experience
a sharp drop in accuracy due to outdated patterns. This necessi-
tates the constant collection of fresh, large-scale multi-tab traffic
data, which is both costly and increases the risk of exposure. These
limitations prompt an essential research question: Can we devise
a simplified, yet effective approach to conduct multi-tab web-
site fingerprinting attacks that eliminates the need for prior
knowledge of tab counts and large-scale training data?

Therefore, in this paper, we introduce a novel approach to multi-
tab website fingerprinting attacks that leverages transfer learning
to overcome the limitations of existing methods. Unlike previous
approaches, our method eliminates the need for complex traffic
segmentation and extensive multi-tab traffic data collection, sig-
nificantly reducing the bootstrapping time for WF attacks and en-
hancing feasibility in real-world scenarios. Our approach consists
of two key stages:

(1) Pre-training with Augmented Traffic Sequences:We
employ a carefully designed data augmentation method to
synthesize a multi-tab dataset from single-tab traffic traces,
enabling the model to build effective feature extractors and
classifiers. By artificially combining traffic from individual
websites into multi-tab traffic sequences, this stage reduces
the dependency on large-scale real-world multi-tab datasets
while still capturing essential traffic patterns for multi-tab
environments.

(2) Few-shot fine-tuning: We adapt the pre-trained model
from the previous stage to real-world conditions by fine-
tuning it using a small amount of real-worldmulti-tab traffic
data. This allows the model to further adjust to the overlap-
ping and mixed nature of multi-tab traffic traces without
requiring vast amounts of fresh data collection. Through
transfer learning, this few-shot approach enables the model
to achieve high accuracy and generalization in multi-tab
WF attacks, even in dynamic or changing traffic environ-
ments.

This two-stage framework not only enables our model to effectively
handle mixed and overlapping traffic from multiple tabs but also
eliminates the need for prior knowledge of the number of open
tabs, a common assumption in previous studies.

The main contributions of this paper are as follows:
• To the best of our knowledge, we propose the first few-shot

multi-tab WF attack method named FMWF. By utilizing a
novel data augmentation method specifically designed for
multi-tab website fingerprinting attacks, FMWF removes

the need for a large number of real-world multi-tab traffic
traces.

• In the few-shot scenario, we move away from using large
models, such as Transformers, which are typically resource-
intensive and data-hungry. Instead, we implement light-
weight neural networks as feature extractors and classifiers,
which, through a well-crafted fine-tuning transfer learn-
ing algorithm, are capable of achieving competitive per-
formance. This approach significantly reduces the model
complexity while maintaining accuracy, making it more
efficient and practical for real-world applications where
data and computational resources are limited.

• To demonstrate the robust performance of our model, we
conduct comprehensive tests on Tor, Microsoft Edge, and
Google Chrome datasets. On the Tor dataset, it achieves
a top-k accuracy of 0.910 in the 5-tab setting using just
25-shot learning samples per label. On the Microsoft Edge
and Google Chrome datasets, which include rich features
such as packet sizes, FMWF reaches a top-k accuracy of
0.885 in the 5-tab setting with only 3-shot learning samples
per label.

• In the more challenging open-world scenario, we observe
a remarkable minimum improvement of 12.3% compared
to ARES (SP’23) [7], TMWF (CCS’23) [13], and BAPM (AC-
SAC’21) [10] when testing on non-monitored websites.

User

Attacker

Tor network

Multi-tab site visits

Figure 1: Threat model of FMWF. Users can simultaneously
openmultiple tabs to visit different websites, and an attacker
can eavesdrop on the encrypted traffic within the Tor net-
work.

2 BACKGROUND
2.1 Threat Model
Our threat model involves a passive adversary capable of observ-
ing encrypted network traffic, similar to previous WF attack stud-
ies [7, 10, 12, 13, 21, 30]. As shown in Figure 1, users access websites
through anonymous systems like Tor, which safeguard privacy via
multi-layer encryption and relay nodes. The attacker, potentially
an ISP or a device between the ISP and the first Tor node, passively
monitors traffic without altering it, unlike active attackers who can
delay or drop packets. Though unable to modify the traffic, the ad-
versary observes encrypted packet metadata (size, direction, timing)
to infer the websites visited by the user. Using machine learning
models trained on traffic patterns, the attacker can associate ob-
served traffic with specific websites, even in multi-tab browsing

2
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scenarios where traffic from multiple websites may intermingle
within a session.

2.2 Single-tab WF Attacks
Deep-learning-basedWF: Deep learning was first applied to web-
site fingerprinting attacks on Tor by Abe et al. [1], who utilized
stacked auto-encoders, achieving results comparable to traditional
feature extraction methods on simple direction sequences. This
marked a shift from manually crafted features to automated feature
extraction, with the performance of deep learning models improv-
ing as more complex network structures were introduced.

Rimmer et al. [20] demonstrated that deep learningmodels are ro-
bust against changes in website content, showcasing the feasibility
of automated feature learning in WF attacks. Building on this, Siri-
nam et al. [21] proposed the convolutional neural network (CNN)
model Deep Fingerprinting (DF), specifically designed for WF at-
tacks. DF improved the model’s ability to capture subtle patterns in
encrypted traffic by incorporating multiple advanced convolutional
blocks, achieving an accuracy of 98.3% in a closed-world scenario
and establishing CNNs as powerful tools for WF attacks. Following
this, Bhat et al. [2] introduced Var-CNN, a framework that combines
semi-automated feature extraction and demonstrated better perfor-
mance with smaller datasets, addressing the common bottleneck
of deep learning models that typically require large amounts of
labeled data.

Transfer-learning-basedWF: Supervised learning methods [4,
34] often require extensive labeled data, which is time-consuming
and costly. Transfer learning [24, 35] provides a solution by lever-
aging previously learned knowledge for new tasks. In recent WF
attacks [22, 26, 30], transfer learning has been applied in few-shot
learning scenarios. This typically involves pre-training on a dataset
with abundant labeled data, fine-tuning with limited samples, and
testing.

Recent works, such as Triplet Fingerprinting (TF) [22], Adaptive
Fingerprinting (AF) [26], and Contrastive Fingerprinting (CF) [30],
aim to refine feature extraction for few-shot scenarios. CF integrates
contrastive learning and data augmentation for a more efficient WF
attack, improving representation quality and training efficiency. TF
enhances feature distinction through a triplet network, while AF
employs adversarial domain adaptation to learn domain-invariant
features. However, the effectiveness of these WF attacks relies on
the strong assumption that only a single website is visited during
a browsing session, a scenario that does not always hold as users
often open multiple websites simultaneously or within a short
period [9, 14, 29, 31].

2.3 Multi-tab WF Attacks
Recent studies have begun to address the challenges associated with
multi-tab website fingerprinting (WF) attacks, aiming to improve
website identification accuracy in complex mixed-traffic scenar-
ios. Notably, models such as Transformer-based Multi-tab Website
Fingerprinting [7, 10, 13] have introduced innovative strategies to
effectively handle overlapping and mixed traffic segments. These
approaches frame multi-tab browsing as either a multi-label classi-
fication task or a sequence prediction problem, utilizing advanced
neural network architectures like transformers. By doing so, these

models can extract both local and global traffic patterns from the
data, thereby enhancing the accuracy of website identification in
scenarios where multiple tabs are open simultaneously.

These advancements represent a significant step forward in the
field of WF, yet they also reveal inherent challenges. The reliance
on large amounts of labeled data and the assumption of static tab
counts in existing models limit their practical application, partic-
ularly in dynamic real-world environments. As user behavior be-
comes increasingly complex, the need for robust and adaptable
models that can generalize across varying traffic conditions and tab
configurations becomes paramount.

We propose the Few-shot Multi-tab Website Fingerprinting at-
tack (FMWF), which leverages transfer learning and data augmenta-
tion to achieve high identification accuracy with minimal training
data. This eliminates the need for extensive data collection and
constant retraining. FMWF handles complex, overlapping traffic
traces without relying on prior knowledge of tab counts, making
it highly flexible and practical in real-world settings, while also
reducing computational demands and data requirements typically
seen in multi-tab WF models.

3 METHOD
In this section, we present the detailed structure and the workflow
of FMWF. Before delving into the various components of FMWF,
we first provide an overview of the framework.

3.1 Overview
Previous Transformer-based multi-tab WF attacks have achieved
high website identification accuracy by utilizing extensive multi-
tab traffic traces. However, the characteristics of website traffic can
fluctuate due to variations in website content and user network
conditions. Maintaining high attack accuracy often necessitates the
frequent collection of substantial amounts of new traffic traces to
retrain the attackmodel. This process can be both costly and imprac-
tical, posing significant challenges to the real-world applicability
of website fingerprinting attacks.

To address the limitations of existing multi-tab WF attacks, we
propose FMWF, a novel multi-tab website fingerprinting attack
method based on transfer learning that is effective in few-shot
scenarios. As illustrated in Figure 2, the FMWF attack consists of
two main stages with a testing phase:

(1) Pre-training with Augmented Traffic Sequences: In the
pre-training stage, we introduce a novel data augmentation
method to simulate the behavior of users accessing multi-
ple websites simultaneously. This method generates syn-
thetic multi-tab browsing sessions by combining individual
traffic patterns from various websites, allowing FMWF to
learn critical features related to multi-tab traffic traces. The
pre-training stage leverages the knowledge obtained from
synthetic data to enhance the model’s ability to recognize
and classify real-world multi-tab traffic efficiently.

(2) Few-shot Fine-tuning for Real-world Adaptation: Af-
ter pre-training, the model enters the fine-tuning stage,
adapting to real-world multi-tab traffic using few-shot la-
beled data. This fine-tuning process refines the learned

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 2,2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Real-word 

traffic sequence

[                          ]

…

Conv 1d

Batch norm

Activation

Conv 1d

Batch norm

Activation

MaxPool

Dropout

Traffic

Feature

Pre-trained Feature Extractor 

4

Pre-trained

Classifier

Manually synthesized 

traffic sequence
Input

MLP

Train dataset

… …

Phase Ⅰ: Pre-train attack model 

× 4

Classifier 

Conv

Block  

Feature extractor Real-word 

traffic sequence

…

[                        ] [                         ]

Validation dataset

(Query Set)

Phase Ⅲ: Validate fine-tuned attack model Phase Ⅱ: Fine-tuning Pre-trained attack model 

k-way 1-shot
Fine-tuned 

Feature 

Extractor

Fine-tuned 

Classifier

Conv

Block 1  

Conv

Block 4  

[                        ] 
[                        ] 
[                        ] 

2tab
3tab
4tab
5tab

[                         ]
[                         ]
[                         ]

Few-shot dataset

(Support Set)

k-way n-shot

Source Domain Target DomainTransfer

Figure 2: Our lightweight WF attack, FMWF, consists of two key components: a feature extractor and a classifier, both built
using lightweight neural networks. These components work in tandem with a fine-tuning algorithm derived from transfer
learning, enabling efficient and accurate multi-tab website fingerprinting with minimal training data.

features, adjusting the model to handle real-world com-
plex, mixed traffic patterns typical of multi-tab browsing
sessions. By focusing on a few-shot learning method, this
stage enables the model to generalize to real-world multi-
tab quickly and dynamically changing traffic environments,
without requiring continuous large-scale retraining.

(3) Testing on Dynamic Traffic: Once fine-tuned, FMWF is
evaluated on diverse datasets to assess its performance in
close and open-world scenarios.

3.2 Pre-training with Augmented Traffic
Sequences

In the pre-training stage of the attack model, three main compo-
nents are involved: the pre-training dataset, the feature extractor,
and the classifier.

Pre-training dataset. For the pre-training dataset, we propose
a data augmentation method. Instead of collecting multi-tab traffic
traces directly from the real world, we manually synthesize a multi-
tab dataset by combining single-tab traffic sequences. This method
achieves data augmentation and mitigates the challenges associated
with collecting multi-tab datasets.

Collecting multi-tab datasets is more challenging than single-tab
datasets due to the exponential increase in the size of the label set.
For example, monitoring one hundred websites generates over four
thousand labels for two-tab traffic, making it difficult for an attacker
to gather and frequently update a large-scale dataset. However, one
can easily generate large-scale datasets by manually synthesizing
multi-tab traffic sequences. This data augmentation strategy enables
the pre-training of attack models on multi-tab traffic without the
need to collect real-world multi-tab datasets.

In [29], multi-tab traffic traces are categorized into three funda-
mental types based on their time interval relationships: positive,
zero, and negative. Figure 3 illustrates these scenarios for 2-tab
traffic traces. As shown in Figure 4, to ensure a complete character-
ization of each website’s traffic, we manually synthesize multi-tab
traffic traces specifically using the zero time interval type. This
strategy allows the feature extractor to more effectively learn the

traffic characteristics of each website, leading to a more robust
pre-trained attack model.

Website A Website B 

time interval

positive-time 

separated traces 

zero-time 

separated traces

negative-time

separated traces

Overlapping area

Figure 3: Three basic situations of 2-tab traffic traces. Depend-
ing on whether a user accesses Site B via a new tab before Site
A finishes loading, 2-tab traffic patterns can be categorized
into these three types.

Specifically, let (𝑡, 𝑦) represent a traffic instance generated by a
user browsing websites, where 𝑡 is the traffic sequence consisting
of 𝑛 packets, and 𝑦 is the label indicator vector for that instance.
We use multi-hot encoding to represent the label vector, denoted
as 𝑦 = [𝑦0, 𝑦1, . . . , 𝑦99]. If the user visits the 𝑖-th and 𝑗-th websites
among the 100 monitored websites, 𝑦𝑖 and 𝑦 𝑗 are set to 1, while all
other label positions are set to 0. In the pre-training dataset, we
concatenate the single-tab traffic sequences generated by a user vis-
iting websites 𝑖 and 𝑗 separately to form a multi-tab traffic sequence,
𝑡 = 𝐴𝑢𝑔(𝑡𝑖 , 𝑡 𝑗 ). This allows us to obtain a manually synthesized
instance (𝑡, 𝑦), where the augmented instance shares the same label
as a real-world instance, i.e., 𝑦 = 𝑦.

Feature extractor and Classifier. The FMWF attack model em-
ploys a specialized feature extractor and classifier to tackle critical
challenges in multi-tab website fingerprinting. The feature extrac-
tor is built upon a convolutional neural network (CNN) architecture
that effectively addresses noise reduction from overlapping traf-
fic segments [21], [19], adapts to dynamic website traffic patterns,

4
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Figure 4: Manually Synthesized Multi-Label Traffic Traces
from sing-table sessions for the Pre-Training Stage.

and maintains flexibility in processing variable-length input se-
quences. Key techniques such as batch normalization and dropout
are utilized to enhance the robustness of feature representations
and prevent overfitting, ensuring that the model can accurately
capture the relevant characteristics of user browsing behavior even
when the number of open tabs varies.

The classifier, a multi-layer perceptron (MLP), operates on the
feature embeddings generated by the extractor to predict the labels
of visited websites. It incorporates a weighted loss function to
mitigate data imbalance in few-shot learning scenarios, ensuring
that underrepresented classes are adequately represented in the
model’s predictions. Designed for real-time processing efficiency,
the classifier utilizes fully connected layers combined with batch
normalization and ReLU activations, concluding with a softmax
layer for probability distribution over potential labels. Together,
these components of the FMWF model enhance its accuracy and
robustness and can be quickly adapted to real-world datasets during
the fine-tuning phase of the few-shot classification task.

3.3 Few-shot Fine-tuning for Real-world
Adaptation

During the fine-tuning stage of the FMWF model, we leverage a
support set derived from real-world multi-tab traffic to enhance the
feature extractor and classifier. The primary aim of this process is to
improve the model’s accuracy in identifying labels corresponding to
actual user traffic patterns. As highlighted in previous research [16],
fine-tuning algorithms have demonstrated significant efficacy in
transfer learning, allowing models to adapt quickly to new data.

One of the key challenges in feature extraction for multi-tab traf-
fic is the blending of traffic from various websites, which introduces
substantial noise that can obscure the unique characteristics of in-
dividual sites. To address this, we initiate fine-tuning by feeding a
limited number of real-world multi-tab traffic sequences into the
pre-trained feature extractor. This generates robust feature embed-
dings that encapsulate the traffic patterns of each website. These
embeddings serve as input for the multi-layer perceptron (MLP)
classifier, which is then fine-tuned to enhance its predictive perfor-
mance before being tested with the query set. This two-step process
ensures that the FMWFmodel remains adaptable and effective, even
in the dynamic environment of real-world web traffic.

3.4 Testing on Dynamic Traffic
In the testing phase of the Few-shot Multi-tab Website Fingerprint-
ing (FMWF) model, we utilize a query set designed for a k-way
1-shot scenario, meaning it consists of k distinct labels, each rep-
resented by only a single sample. The testing process involves
analyzing unlabeled multi-tab traffic traces captured from anony-
mous networks, such as Tor, as well as from mainstream browsers
like Microsoft Edge and Google Chrome.

3.5 Algorithm Summary
FMWF presents a groundbreaking approach tomulti-tab website fin-
gerprinting by utilizing transfer learning and few-shot fine-tuning.
This method effectively overcomes the limitations of traditional
WF techniques that either assume single-tab browsing or require
extensive collections of real-world multi-tab traffic traces. Instead
of relying on large-scale datasets and frequent retraining, FMWF
synthesizes multi-tab traffic sequences through data augmentation
during the pre-training phase, enabling the model to capture essen-
tial traffic features from artificially combined single-tab traces.

The architecture of FMWF incorporates a streamlined design,
utilizing a CNN as the feature extractor and an MLP for classifica-
tion. This innovative integration of synthetic data generation and
few-shot fine-tuning enhances the model’s efficiency and adaptabil-
ity in dynamic real-world scenarios. By establishing a robust and
practical solution for multi-tab WF attacks, FMWF demonstrates
significant advancements in accuracy and operational feasibility,
making it a valuable contribution to website fingerprinting.

4 EXPERIMENTAL EVALUATIONS
In this section, we conduct comprehensive experiments on real-
world multi-tab datasets to address the following research questions
regarding FMWF:

• RQ I: How does the number of fine-tuning traces 𝑁 influ-
ence top-K accuracy (A@K), Precision, Recall, and F1-Score
across different tab settings in few-shot multi-tab scenarios
compared to state-of-the-art models?

• RQ II: How effective is FMWF in real-world scenarios with-
out prior knowledge of the number of opened tabs?

• RQ III: How does the number of labels (𝑀) during the
few-shot fine-tuning stage influence the generalization per-
formance of FMWF in multi-tab classification tasks?

• RQ IV: How does FMWF perform on diverse browser
datasets (Google Chrome and Microsoft Edge), especially
with limited fine-tuning samples per label?

• RQ V: How effective is FMWF in the open-world scenario?

4.1 Experiment Setup
4.1.1 Dataset. In this study, we collected three datasets by using
three major browsers to access target websites and capture traffic
data: the Tor browser, Microsoft Edge, and Google Chrome.

Tor Dataset. Using the method outlined in [7], we collected
Tor traffic data over two months, leveraging 15 Alibaba Cloud
servers with varying hardware configurations, located across the
US and Singapore. This setup allowed us to simulate different user
scenarios, incorporating variations in device performance, network
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Figure 5: Comparison of FMWF with state-of-the-art multi-tab WF attacks, where A@K represents the top-k Accuracy.

conditions, and periods. Based on the website traffic rankings1, we
selected the top 100 most popular URLs. For each site, we collected
100 single-tab traffic samples by repeatedly accessing these websites
via the Tor Browser. To collect multi-tab datasets, we randomly
combined these 100 websites to generate 2-tab, 3-tab, 4-tab, and
5-tab scenarios, also using the Tor Browser. In the open-world
scenario, we used the Tor open-world dataset provided by [7].

Microsoft Edge & Google Chrome Dataset. We adopted a
dataset collection method similar to previous research [12]. Traffic
data was captured using Tshark, while Python and PyAutoGUI
were employed for automation. Using these two major browsers,
we collected traffic data by repeatedly accessing 100 monitored
websites 2, capturing 50 traffic samples per website. We randomly
combined the 100 target websites to collect 2-tab, 3-tab, 4-tab, and
5-tab datasets.

4.1.2 Metrics. To evaluate the performance of our multi-tab WF at-
tack, we adopt the metrics commonly used in related studies [7, 15].
In the closed-world scenario, multi-tab WF attacks are framed as
a multi-tab multi-class classification problem. For this, we employ
the multi-tab-specific metric, Top-k Accuracy (A@K), and tradi-
tional multi-class metrics such as Precision, Recall, and F1-score.
These metrics comprehensively evaluate the model’s performance
by assessing the prediction outcomes for each website across all
instances.

In the open-world scenario, we assess the proposed method
by following established practices from previous studies [20, 21].
In this context, all non-monitored websites are aggregated into a
single category, enabling us to evaluate the model’s performance in
accurately identifying the websites a user visits, even amidst a vast
array of potentially unseen sites. This approach not only tests the
adaptability and robustness of FMWF but also reflects more realistic
browsing conditions, where users interact with a mix of known
and unknown websites. We present the details of the metrics in
Appendix A.

4.2 Closed-world Evaluation
In the closed-world scenario, we selected the current state-of-the-art
end-to-end multi-tab website fingerprinting attack methods, ARES
(SP’23) [7], TMWF (CCS’23) [13], and BAPM (ACSAC’21) [10], as
comparative methods for evaluating the FMWF attack model in the
1https://majestic.com/reports/majestic-million
2https://top.chinaz.com/all/

following experiments. To assess the robustness of FMWF, we tested
it using datasets collected from three mainstream browsers—Google
Chrome, Microsoft Edge, and Tor Browser. We used 5 different
validation sets for each experiment and calculated the average as
the final result. Except for Experiment AQ IV, all other experiments
were conducted using the Tor dataset.

AQ I: Evaluating the Influence of 𝑁 on Top-K Accuracy
(A@K) Performance. In this experiment, we investigate the im-
pact of varying the number of fine-tuning traces (𝑁 ) per label on
the performance of our multi-tab WF attack model across differ-
ent tab settings during the few-shot fine-tuning stage. We conduct
experiments using a 100-way 𝑁 -shot fine-tuning dataset, where
𝑁=10,15,20,25,30,35,40. The primary evaluation metric is A@K,
which is widely used in similar studies [7, 15], to assess the model’s
generalization capability in multi-tab browsing scenarios. A@K
measures the model’s ability to correctly identify the actual visited
websites within the top K predictions.

Benefits from the fine-tuning algorithm, our lightweight
WFattackmodel demonstrates strong competitiveness against
current state-of-the-art Transformer-based large WF attack
models. As illustrated in Figure 5, FMWF consistently surpasses
the advanced models (TMWF and BAPM) across all tab settings.
For instance, in the 2-tab scenario, when 𝑁=20, the A@2 score of
FMWF exceeds 0.8, significantly outperforming TMWF and BAPM,
whose A@2 scores remain below 0.70. This trend continues in the
3-tab and 4-tab settings, where FMWF sustains a clear advantage
in top-k accuracy. While ARES, a state-of-the-art multi-tab WF
attack model based on a sophisticated transformer architecture,
performs closely to FMWF due to its ability to capture traffic fea-
tures from pre-trained datasets, FMWF remains competitive with
its lightweight model structure. As 𝑘 increases, A@K scores remain
consistently high, showcasing FMWF’s robustness in handling com-
plex multi-tab scenarios, all while leveraging few-shot learning to
maintain strong identification accuracy even in the most challeng-
ing multi-tab environments.

AQ I: Impact of 𝑁 , the Number of Fine-Tuning Traces on
Precision, Recall, and F1-Score Across Varying Numbers of
Tabs in the Few-Shot Fine-Tuning Stage. As shown in Table 1,
FMWF consistently surpasses other state-of-the-art multi-tab WF
attacks across most configurations in terms of Precision, Recall, and
F1-Score. For instance, in the 100-way 40-shot setting, FMWF attains
an impressive F1-Score of 0.904 in the 2-tab scenario, substantially
outperforming BAPM and TMWF, which achieve F1-Scores of 0.744
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Table 1: Comparison of FMWF with prior arts in Precision, Recall, and F1-Score across different tabs and sample numbers (N).

Method N
2-tab 3-tab 4-tab 5-tab

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

BAPM (ACSAC’21)

10 0.605 0.730 0.634 0.571 0.647 0.587 0.538 0.668 0.582 0.431 0.560 0.476
20 0.691 0.805 0.727 0.688 0.760 0.711 0.648 0.770 0.692 0.634 0.686 0.645
30 0.734 0.800 0.746 0.749 0.790 0.746 0.695 0.808 0.737 0.679 0.760 0.710
40 0.738 0.825 0.761 0.749 0.820 0.774 0.736 0.793 0.746 0.797 0.848 0.813

TMWF (CCS’23)

10 0.676 0.725 0.684 0.528 0.493 0.573 0.471 0.493 0.469 0.605 0.656 0.623
20 0.783 0.775 0.770 0.647 0.717 0.665 0.612 0.623 0.597 0.702 0.768 0.726
30 0.820 0.835 0.818 0.708 0.780 0.729 0.687 0.760 0.710 0.806 0.862 0.826
40 0.838 0.860 0.844 0.706 0.763 0.714 0.702 0.818 0.747 0.830 0.880 0.849

AERS (SP’23)

10 0.857 0.805 0.812 0.776 0.720 0.727 0.855 0.793 0.811 0.837 0.778 0.790

20 0.865 0.855 0.847 0.873 0.827 0.832 0.909 0.883 0.890 0.926 0.890 0.902

30 0.887 0.885 0.880 0.898 0.877 0.877 0.928 0.903 0.911 0.928 0.904 0.908
40 0.903 0.880 0.884 0.935 0.897 0.905 0.934 0.908 0.912 0.921 0.918 0.918

10 0.885 0.800 0.794 0.779 0.725 0.724 0.890 0.770 0.775 0.849 0.740 0.757
20 0.883 0.865 0.849 0.867 0.840 0.835 0.930 0.893 0.889 0.929 0.892 0.894
30 0.894 0.896 0.879 0.893 0.881 0.875 0.935 0.918 0.909 0.927 0.908 0.912

FMWF (Ours)

40 0.916 0.920 0.904 0.902 0.926 0.909 0.928 0.920 0.914 0.925 0.920 0.915

and 0.751, respectively. This trend continues in the 3-tab and 4-tab
settings, where FMWF maintains superior and stable results.

Additionally, FMWF demonstrates exceptional stability as the
number of shots increases, ensuring consistent performance across
various scenarios. For example, even with just 30 fine-tuning traces
per label in the 5-tab scenario, FMWF achieves an F1-Score of 0.912,
outperforming ARES (0.908), BAPM (0.710), and TMWF (0.826). This
consistency is observed across all tab settings and shot numbers,
underscoring FMWF’s robustness in navigating complex multi-tab
environments with limited fine-tuning data.

Table 2: Performance of FMWF without prior knowledge of
the number of tabs, across sample numbers (N).

The value of N Precision Recall F1-score
10 0.820 0.660 0.675
15 0.849 0.758 0.764
20 0.872 0.818 0.811
25 0.877 0.849 0.835
30 0.882 0.866 0.855
35 0.890 0.882 0.870
40 0.905 0.907 0.890

AQ II: Evaluating the Performance of FMWFWithout Prior
Knowledge of the Number of Tabs.We further evaluate the per-
formance of FMWF in a scenario where the number of opened tabs
is unknown to the adversary. We tested using a dataset with an
equal proportion mixture of 2-tab, 3-tab, 4-tab, and 5-tab traffic
traces. This dynamic setting is more practical and challenging as
it simulates real-world browsing behavior where users may open
multiple tabs simultaneously without revealing the exact number
of tabs. To assess the performance of our model under these con-
ditions, we use Precision, Recall, and F1-score metrics, as shown
in Table 2. FMWF demonstrates strong performance across all val-
ues of 𝑁 . For instance, with 𝑁=25, it achieves a Precision of 0.877,
Recall of 0.849, and F1-score of 0.835. Notably, the model exhibits

consistent and robust performance as 𝑁 increases, indicating that
FMWF can effectively handle multi-tab traffic even without prior
knowledge of the number of tabs. This showcases the adaptability
and effectiveness of FMWF in real-world browsing environments.

AQ III: Impact of 𝑀 , the Number of Labels in the Few-
Shot Fine-Tuning Stage. For this experiment, we collected 2-tab
traffic traces corresponding to 400 labels using Tor browser versions
V12.5.6 and V13.5. We then evaluated the impact of𝑀 (the number
of labels) during the few-shot fine-tuning stage, alongside assessing
the robustness of FMWF across different browser versions. The
model is tested across different settings, with𝑀=200,300,400 and
N=10,20,30,40 (representing the number of samples per label). As
shown in Table 3, increasing the number of labels (𝑀) consistently
results in strong performance. For example, in the 400-way task,
the model achieves a top-2 accuracy of 0.883 and an F1-score of
0.887. This demonstrates that increasing the number of labels (𝑀)
during fine-tuning allows FMWF tomaintain its ability to generalize
effectively in complex, multi-tab classification tasks.

AQ IV: Performance of FMWF on Google Chrome and
Microsoft Edge Datasets. In this experiment, we evaluate the
effectiveness of FMWF on two widely used but less explored non-
anonymous browsers, Google Chrome and Microsoft Edge, which
capture a richer set of network features such as packet sizes and di-
rections. In contrast to the anonymous Tor browser, FMWF requires
significantly fewer samples to achieve high accuracy. We compare
FMWF against three state-of-the-art models (ARES, TMWF, and
BAPM) across 2-tab, 3-tab, 4-tab, and 5-tab scenarios, utilizing vary-
ing numbers of samples per label (𝑁 ).

As shown in Table 4, FMWF consistently outperforms the other
models in terms of top-k accuracy across most tab settings. For
example, in the 2-tab scenario, with just 3 samples per label, FMWF
achieves a remarkable top-2 accuracy score of 0.964 on Google
Chrome and 0.972 on Microsoft Edge when 𝑁=3, surpassing ARES
(0.960 on Chrome and 0.958 on Edge), TMWF (0.637 on Chrome
and 0.794 on Edge), and BAPM (0.783 on Chrome and 0.822 on
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Table 3: Performance Evaluation Across Different Label Quantities (M) in Few-Shot Fine-Tuning.

The value of N
200-way 300-way 400-way

A@2 Precision Recall F1-score A@2 Precision Recall F1-score A@2 Precision Recall F1-score
10 0.732 0.805 0.826 0.818 0.711 0.770 0.800 0.767 0.645 0.779 0.753 0.744
20 0.838 0.874 0.905 0.878 0.822 0.859 0.882 0.855 0.804 0.836 0.849 0.828
30 0.890 0.911 0.937 0.918 0.873 0.889 0.922 0.896 0.815 0.861 0.893 0.863
40 0.914 0.929 0.955 0.934 0.901 0.906 0.940 0.916 0.883 0.887 0.909 0.887

Table 4: Comparison of FMWF with prior arts in A@K across different tabs and sample numbers (N).

Method The value of N
2-tab (A@2) 3-tab (A@3) 4-tab (A@4) 5-tab (A@5)

Google Microsoft Google Microsoft Google Microsoft Google Microsoft

BAPM (ACSAC’21)
1 0.586 0.638 0.491 0.573 0.457 0.442 0.338 0.352
2 0.744 0.783 0.654 0.726 0.635 0.617 0.525 0.518
3 0.783 0.822 0.712 0.779 0.695 0.663 0.603 0.635

TMWF (CCS’23)
1 0.356 0.491 0.221 0.352 0.184 0.247 0.124 0.208
2 0.542 0.706 0.484 0.606 0.408 0.534 0.318 0.410
3 0.637 0.794 0.613 0.674 0.583 0.639 0.467 0.563

AERS (SP’23)
1 0.816 0.818 0.871 0.690 0.706 0.658 0.607 0.601
2 0.924 0.944 0.900 0.892 0.821 0.870 0.830 0.822
3 0.960 0.958 0.922 0.910 0.903 0.901 0.852 0.890
1 0.782 0.826 0.732 0.694 0.715 0.672 0.588 0.614

FMWF (Ours) 2 0.933 0.940 0.904 0.857 0.840 0.868 0.824 0.841
3 0.964 0.972 0.915 0.913 0.895 0.904 0.867 0.885

Edge). This strong performance persists in more complex multi-
tab scenarios, where FMWF continues to deliver high A@K scores,
highlighting its robustness and adaptability across different browser
environments.

Table 5: Performance Evaluation of FMWF in theOpen-World
Scenario with Different Numbers of Traces (N) for Few-Shot
Fine-Tuning.

Method
Number of Traces (N)

N=1 N=3 N=5 N=7 N=10

BAPM (ACSAC’21) 0.568 0.685 0.703 0.725 0.738
TMWF (CCS’23) 0.355 0.579 0.657 0.708 0.855
ARES (SP’23) 0.364 0.485 0.533 0.578 0.655
FMWF(Ours) 0.925 0.943 0.949 0.954 0.960

4.3 AQ V: Open-world Evaluation
In the open-world scenario, FMWF is assessed on its ability to dif-
ferentiate between monitored and non-monitored websites. As in
previous studies [7, 10, 13], all non-monitored websites are treated
as a single broad category, while each monitored website is consid-
ered a distinct class. To mitigate data imbalance, we adopt the same
strategy as earlier works [7, 30] by combining closed-world and
open-world instances under the same tab settings. For instance, the
2-tab closed and open-world instances are merged to conduct the
2-tab open-world experiment.

We use 𝑁 = 1, 3, 5, 7, 10 to represent the number of traces per
monitored website in the support set for few-shot fine-tuning. In the

query set, we test the model with 100 monitored and 1000 unmoni-
tored traces. As shown in Table 5, FMWF consistently achieves over
90% top-2 accuracy across all settings. FMWF exhibits competi-
tive performances against transformer-based large models,
further highlighting its efficiency and robustness in more
complex open-world scenarios.

5 Conclusion and Future Work
In this work, we have introduced FMWF, a novel few-shot multi-tab
website fingerprinting (WF) attack method that leverages trans-
fer learning to address the limitations of existing WF approaches.
Unlike traditional methods that depend on extensive datasets and
prior knowledge of the number of open tabs, FMWF employs a two-
stage framework that integrates data augmentation and few-shot
fine-tuning. This design enables the efficient handling of multi-tab
traffic traces while requiring minimal real-world data, making it
more adaptable to realistic browsing behaviors.

Looking ahead, we plan to investigate potential defense mecha-
nisms against multi-tab WF attacks and explore how our method
can be enhanced to counteract these defenses. Common strategies in
website fingerprinting include traffic obfuscation techniques, such
as packet padding, traffic morphing, and random delays, which
aim to obscure traffic traces and make them less distinguishable.
Given that multi-tab traffic is already challenging to analyze due to
inherent overlaps, incorporating defenses will introduce an addi-
tional layer of complexity, presenting a valuable avenue for future
research in enhancing both attack and defense methodologies in
this domain.
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A Detailed Settings for Experiment
A.1 Parameter Settings
We conducted an extensive search of the hyperparameter space to
evaluate and select the optimal hyperparameters for TMWF. Table
6 lists the key hyperparameters we tuned, the range of candidate
values, and the final selected values.

Table 6: Hyperparameter selection for the FMWF

Parameters Search Space Selected Value

Feature Extractor GoogleNet, ResNet, DFDF
Classifier MLP, Linear MLP
Optimizer SGD, Adam Adam
Batch Size [32,64,128] 32
Embedded Vector’s Size [64,128,256,512] 512

A.2 Metrics
We evaluate the performance of our multi-tab WF attack using
standard metrics from related studies [7, 15]. In the closed-world
scenario, we treat multi-tab WF as a multi-class classification prob-
lem, using Top-k Accuracy (A@K), Precision, Recall, and F1-score
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to comprehensively assess the model’s performance across all web-
sites. Let 𝑦 denote the true label vector for an instance 𝑥 , where
𝑦𝑖 = 1 indicates that 𝑥 visited the 𝑖-th website, and 𝑦𝑖 = 0 other-
wise. Similarly, 𝑦 represents the predicted label vector, where each
element corresponds to the predicted probability that 𝑥 visited a
specific website. A@K is used to measure howmany of them visited
websites appear in the top-k predicted websites based on 𝑦. The
formulation of A@K is as follows:

A@k =
1
𝑘

∑︁
𝑙∈𝑟𝑘 (�̂�)

𝑦𝑙 , (1)

where 𝑟𝑘 (𝑦) denotes the set of websites with the top-k highest
probabilities in the predicted label vector 𝑦. This metric evaluates
the effectiveness of the model in ranking the true websites among

the top predictions. Additionally, we compute Precision, Recall, and
F1-score to assess the performance of our model further. These
metrics are calculated based on the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN) for
each website. The formulas for these metrics are given as: Precision
= 𝑇𝑃

𝑇𝑃+𝐹𝑃 , Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁 , and F1-Score = 2×Precision×Recall
Precision+Recall . The

average values of these metrics are computed across all websites to
provide an overall performance measure.

In the open-world scenario, we evaluate the proposed method
following established practices [20, 21]. Non-monitored websites
are grouped into a single category, allowing us to test FMWF’s
ability to identify visited sites among numerous unseen ones. This
approach assesses the model’s adaptability and robustness in more
realistic browsing conditions.
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