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ABSTRACT

As a challenging problem, continual learning aims to avoid forgetting old knowl-
edge as much as possible when the old model learns new tasks. Most current al-
gorithms perform the same processing on each pixel of an input image. However,
they ignore the phenomenon that the neural networks have asynchronous forget-
ting for pixels of different frequencies when learning a series of tasks. Just as peo-
ple have different memory abilities for the details and the whole of the image, neu-
ral networks also have different memory abilities for high and low-frequency parts
when learning images, resulting in asynchronous forgetting. This paper exploits
this phenomenon for better network architecture design and employs a knowledge
consolidation strategy for features learned by different modules. In terms of net-
work architecture, we design a dual-stream network with high and low frequencies
separated, using characteristics of convolutional neural network and transformer
based network to process the high-frequency and low-frequency information of
the image, respectively. In the aspect of knowledge consolidation, we design a
dynamic distillation loss function, which dynamically adjusts the consolidation
weight of high-frequency and low-frequency information according to the train-
ing process of the network. We verify the effectiveness of our method through a
series of experiments.

1 INTRODUCTION

When using a trained model to learn a new task, the accuracy of previous tasks will decrease sig-
nificantly. This is a phenomenon called catastrophic forgetting. Continual learning (CL) enables
humans to acquire novel experience continually while maintaining existing knowledge. In a dy-
namic and open environment, it is critical for modern artificial intelligence to have the ability of CL
because data distribution in real-world applications usually changes. Motivated by this, plenty of
works Abdelsalam et al. (2021); Wu et al. (2021); Parisi et al. (2019) have emerged recently to allevi-
ate the catastrophic forgetting problem. However, most of the current algorithms process each pixel
of the image equally through the same network architecture. Just as humans have different abilities
of remembering the details of an image and overall contours of an image, for example, you may
forget the details of a painting you saw yesterday, but you still remember its overall composition.
Neural networks have a similar mechanism. From the signal processing point of view, the local de-
tails correspond to the high-frequency information of the image, and the overall contour corresponds
to the low-frequency information of the image. Thus, neural networks have different memory abili-
ties of retaining the knowledge of different frequency parts of an image. When learning a new task,
the neural network has asynchronous forgetting for different frequency information of the learned
image. This asynchrony is reflected in two aspects. One is the final result, that is, after learning
the new task, the network shows different memory ability for high and low frequency information.
The other is the learning process, that is, in the process of learning new tasks, the speed of for-
getting high and low frequency information is also different. This frequency-related asynchronous
forgetting phenomenon has also been mentioned in recent literature Zhao et al. (2022) .

So, how to take advantage of this out-of-sync phenomenon to alleviate the catastrophic forgetting
problem? We make improvements in terms of network architecture design and knowledge consol-
idation. For the network architecture design, we adopt two different architectures to process the
high frequency and low frequency of images respectively. The current mature network architectures
include convolutional-neural-network-based (CNN-based) architectures and transformer-based ar-
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chitectures. According to the existing literature, CNN and transformer have different effects on
different frequencies of images Bai et al. (2022)Park & Kim (2022). CNN is easier to capture the
high frequency features due to its local receptive fields, and transformer is easier to capture the low
frequency features due to its long-term correlation. Therefore, we design a dual-stream network,
using CNN and transformer to process high-frequency information and low-frequency information
of input images respectively. For the knowledge consolidation, distillation Li & Hoiem (2017) is
commonly adopted to keep the knowledge of the old tasks. It regards the trained model as teacher
and distills previous knowledge to maintain unchanged responses of the network on the old tasks.
We re-frame the traditional distillation operation and apply different weights to the high-frequency
and low-frequency parts at different stages of training. The above analysis is based on intuition.

(a) (b) (c)

Figure 1: (a) Test the change of model accuracy of different architectures after high and low fre-
quency filtering on CIFAR10 dataset. (b) L2 distance of the two photos in the new and old tasks
after high and low frequency filtering, based on the unfiltered distance. (c) With the increase of
epoch, the accuracy of high-frequency information and low-frequency information changes.

Next, we will verify our hypothesis through experiments. In this paper, we consider a challeng-
ing scenario called class-incremental learning, in which each task in the sequence contains a set of
classes disjoint from other tasks. The model needs to learn a single classifier built for all classes
seen so far and can classify all classes seen at different stages without task-id provided.Rebuffi et al.
(2017)

Figure 1 (a) shows the accuracy curves of CNN-based model and transformer-based model tested
on CIFAR10 dataset processing with different frequency filtering. From this, we can learn that the
forgetting ability of the high-frequency and low-frequency parts of the image is related to the archi-
tecture. In the left panel of Figure 1 (a), the ability of CNN-based model to preserve high-frequency
information is better than that of low-frequency information, while the conclusion in the right panel
is opposite, the transformer-based model preserves low-frequency information better as when the
number of tasks increases. The accuracy gap between the two frequency parts is growing with the
progress of the task, which motivates us to adopt different architectures for different frequency parts
of the image for CL. At the same time, the difference between high and low frequencies of images
will also bring trouble to CL. we select two samples from the new task and the old task respectively
and calculate their L2 distance as a baseline. Then we test the L2 distance between the two images
after high-frequency and low-frequency filtering. Figure 1 (b) shows the difference. Compared with
the baseline distance, the difference between the low-frequency information of the image is larger,
while the difference between the high-frequency information is smaller. When the model is trained,
low-frequency components and high-frequency components are learned together. The impact of
these differences can be eliminated to a certain extent through the training of balanced datasets.
But for the CL setting, the number of old and new categories is often unbalanced. So the factor of
inconsistent frequency difference have an impact on the model. Therefore, CL tasks exacerbate the
effects of this frequency inconsistency.

In Figure 1 (c), we test the accuracy of high-frequency information and low-frequency information
changes with the increase of epochs. It can be found that during the learning process, the forgetting
speed of different frequency of the image is not synchronized. In the initial stage of model training,
the low-frequency part of the image is forgotten more. As the training progresses, the forgetting of
the high-frequency part begins to increase. This inspires us to improve the traditional distillation
regularization method. In the initial stage, a larger constraint weight can be taken for the low-
frequency paarts, and then the constraint weight on the low-frequency features can be gradually
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reduced in the subsequent training epochs. The constraint weight for the high-frequency part is the
opposite.

After the above analysis, we first explain the existence of asynchronous forgetting in different parts
of the image. According to this feature, we deal with it from the perspective of network architecture
design and knowledge consolidation respectively. We demonstrate the effectiveness of our method
through the conventional CL experimental setup.

The main contributions are as follows :

• We analyze the phenomenon of asynchronous forgetting in continual learning.

• From the perspective of model architecture design, we propose a dual-stream network ar-
chitecture to process high and low frequency information respectively.

• From the perspective of knowledge consolidation of old tasks, we propose a dynamic dis-
tillation loss function, which can dynamically adjust the consolidation weight of different
frequency parts along with the model learning process.

2 RELATED WORK

Class incremental learning addresses the setting where training data is arriving sequentially, and data
from previous classes is discarded when data for new classes becomes available. Recent literature
proposed various approaches to tackle this issue. The following section will give a brief introduction.

2.1 CONTINUAL LEARNING METHODS

The current continual learning (CL) methods are mainly divided into three categories: regularization
methods; experience replay methods; dynamic network methods. Regularization techniques force
constraints on the update of network parameters to mitigate catastrophic forgetting. This is done
by incorporating additional penalty terms into the loss function. Knowledge distillation is also
used in CL, which can be regarded as a regularization method. Distillation can be used to hinder
catastrophic forgetting by appointing a previous snapshot of the model as teacher and distilling
from it while new tasks are learned. Dynamic network methods dynamically expand the network in
learning each new task Yan et al. (2021). Experience replay methods aim to find ways to use previous
task datasets, which can be further divided into two approaches: directly using past task data and
using pseudo-data generation techniques Boschini et al. (2022). Experience replay methods often
have good performance but they tend to store a large amount of past data and face the problem of
sample imbalance, which makes the model tend to predict the category of new tasks. So the current
research methods often use the past samples to replay and combine the regularization method to
maintain the old knowledge. For example, the Incremental Classifier and Representation Learning
(iCaRL) algorithm Rebuffi et al. (2017) selects samples based on their corresponding feature space
representation and extracts the representation of all samples and calculates the average for each
category. This method iteratively selects samples for each category. At each step, a sample is
selected when it is added to its category, the sample mean obtained is closest to the true class mean.
In this article, we combine experience replay and distillation to keep the model’s memory of old
tasks. We separate the high and low frequency parts of the image and use different weights to distill
knowledge to alleviate the asynchronous forgetting. Zhao et al. Zhao et al. (2022) also points out
that the forgetting of the network is related to frequency. Furthermore, we point out that in the
training process of the network, the forgetting of high and low frequencies is also asynchronous.

2.2 VISION TRANSFORMERS

Self-attention based transformer architecture has revolutionized from natural language processing
(NLP). Vision transformer (ViT) has caused a lot of discussion in the field of computer vision re-
cently. Owing to long range association of different patches can be established, ViTs have shown
promising results in image classification, object detection, and segmentation to name a few Dosovit-
skiy et al. (2021). Recently, there are many excellent network architectures, including data-efficient
image transformer (DeiT) Touvron et al. (2021) which uses knowledge distillation from a CNN
through a distillation token, cross-covariance image transformer (XCiT) El-Nouby et al. (2021)

3



Under review as a conference paper at ICLR 2023

which performs self-attention across feature channels to counter the quadratic complexity associ-
ated with self-attention between tokens. Recently, the network structure that comprehensively uses
the advantages of CNN and transformer has also emerged. Swin transformer Liu et al. (2021) and
nested hierarchical transformer (NesT) Zhang et al. (2022) are among the popular hybrid ViTs. In
this article, we use the advantages of CNN and transformer to build our dual stream network, in-
spired by the current studies, such as Conformer Peng et al. (2021), CMT Guo et al. (2022),ViTAE
Dai et al. (2021),CoAtNet Xu et al. (2021).

3 METHOD

In this section, we first introduce the infrastructure of our proposed frequency-aware dual-stream
network, which uses CNN and ViT to process high-frequency and low-frequency information re-
spectively. Then, we introduce our proposed dynamic distillation loss function to reduce catastrophic
forgetting. The overall framework is shown in Figure 2.
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Figure 2: The overall framework of the proposed frequency-aware dual-stream CL network. An im-
age is first processed by Discrete Fourier transform (DFT) and thus decomposed into high-frequency
and low-frequency parts. Then the two parts go through inverse discrete Fourier transform (IDFT)
to generate a mask for the original image. The original photo is processed by masks representing
high and low frequencies, and then enter into the subsequent modules. Among them, the module
after low-frequency processing is processed by a transformer-based structure, and the module after
high-frequency processing is processed by a CNN-based structure. The two modules interact in
the deep layer of the network to fuse features of different frequencies. Finally, the outputs of two
branches are added and pass through the softmax layer to get the final result.

3.1 PROBLEM FORMULATION

In this work, we follow the learning protocol for image classification from Wang et al. (2018). More
specifically, we consider a training set D = (D1, ..., DT ) consisting of T tasks where the dataset
for the t-th task Dt = (xt

i, y
t
i)

nt
i=1 contains nt input-target pairs (xt

i, y
t
i). When the tasks arrive

sequentially and exclusively, we assume the input-target pairs(xt
i, y

t
i) in each task are independent

and identically distributed (i.i.d.). The goal is to learn a supervised model fθ : X → Y parametrized
by θ that outputs a class label y given an unseen image x.

3.2 FREQUENCY-AWARE DUAL-STREAM NETWORK

In this section, we introduce the dual-stream framework of frequency sensing. In a standard CL task,
all pixels share the same filter. However, in dealing with the forgetting problem of neural networks,
pixels should not be treated equally. As shown in Figure 1, network’s ability to maintain knowledge
for high-frequency pixels and low-frequency pixels are not synchronized. Based on this conclusion,
we deal with high-frequency and low-frequency pixels separately. Considering that the network
architecture design has different preferences for high-frequency and low-frequency information, we
use different filters for high-frequency and low-frequency information. During the network training
phase, each pixel is assigned to a branch of the network according to a frequency-aware mask M .
Notating the branch number as N and the function of branch n as fn, the input tensor as X and the
output tensor as Y .
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Figure 3: Network architecture of CNN branch and transformer branch.

Yi =

N∑
n=1

fn ·Mi,n(Xi),

s.t. Mi,n ∈ {0, 1} and
N∑
n

Mi,n = 1.

(1)

where i is the pixel index. The constrains mean that only one branch n where Mi,n = 1 will be
chosen for Xi. It is very important to assign pixels to the right branch. Discrete Fourier transform
(DFT) is used to generate a frequency mask. Specifically, DFT is performed on the image to convert
the image from the spatial domain to the frequency domain. We set a threshold S to divide the
frequency into high frequency and low frequency parts. Then, the two parts are converted back to
the spatial domain through inverse discrete Fourier transform (IDFT) to generate a frequency mask.
As shown in Figure 3, after generating the frequency mask, the high frequency masked branch
passes through the CNN-based network, and the low frequency masked branch passes through the
transformer-based network. For a mask M ∈ {0, 1}, the low-pass filtering MS

l and high-pass
filtering MS

h with the filter size S are formally defined as, H and W means photo hight and wide:

MS
l (X)=F−1(m⊙F(X)), where mi,j=

{
1, if min(|i−H

2 |, |j−
W
2 |)⩽ S

2
0, otherwise , (2)

MS
h(X)=F−1(m⊙F(X)),where mi,j=

{
0, if min(|i−H

2 |, |j−
W
2 |)⩽ min(H,W )−S

2
1, otherwise

, (3)

The construction of specific CNN and transformer modules is shown in Figure 3.

• CNN Branch: As shown in Figure 3, the CNN branch adopts feature pyramid structure.
Following the definition in residual network (ResNet). We split the whole branch into 4
stages. Each stage is composed of multiple convolution blocks. In each block, we borrow
the residual structure, 1×1 convolution kernel and 3×3 depth wise convolution block and
1×1 convolution kernel. Compared with the standard ResNet network, we halve the number
of blocks to reduce the model size.

• Transformer Branch: Following ViT , this branch contains N repeated transformer blocks.
As shown in Figure 3, each transformer block consists of a multi-head self-attention module
and a multilayer perceptron (MLP) block. LayerNorms are applied before each layer and
residual connections in both the self-attention layer and MLP block.

To enable the two modules to interact, we build a mapping bridge called MCU between the two
modules to align the outputs of the two modules, this setting follow Peng et al. (2021). We fuse the
two modules only in the last two stages of the network.

3.3 DYNAMIC DISTILLATION LOSS FUNCTION

In CL tasks, regularization constraints are often used to preserve information about old tasks. Previ-
ous analyses have shown that high-frequency and low-frequency information of images tend to have
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different forgetting abilities. At the same time, the forgetting speed of high-frequency content and
low-frequency content is also out of sync. To overcome this problem, we adopt a dynamic distilla-
tion loss function, which includes two aspects. First, we decouple the high-frequency information
and low-frequency information according to their different memory capabilities, and adopt differ-
ent weight coefficients, rather than treat them as a whole. Secondly, we solve the asynchronous
forgetting problem of high-frequency and low-frequency information. That is, low-frequency in-
formation is forgotten more at the beginning. With the deepening of online learning, the forgetting
speed of high-frequency part gradually accelerates. We use dynamic weighting coefficients for the
high-frequency and low-frequency parts.

L = Lnew + αt · Llow + (1− αt) · Lhigh (4)

where the weight parameter αt is a parameter that changes with the number of training epochs of
the network. Here we take the cosine change rate, and the size is changed from 0.8 to 0.2. Lnew

is the loss function of cross entropy loss function on new tasks, Llow and Lhigh is distillation loss
of the model in the high-frequency part and low-frequency part, respectively, Lhigh conventional
distillation loss function based on resnet, Llow as shown in the Figure 6 .

4 EXPERIMENTS

In this section, involved datasets, evaluation metrics, and the implementation details will be intro-
duced in detail. Then, we will present several state-of-the-art competitors as well as the experimental
results of our method. Finally, the ablation studies will prove the effectiveness of our proposed ap-
proach.

4.1 DATASETS

We validate our results on three datasets, respectively on CIFAR-100 and ImageNet-100.

• The CIFAR-10 dataset: composed of 60k 32 × 32 RGB images of 10 classes, with 6000
images per class. Every class has 5000 images for training and 1000 images for testing.

• The CIFAR-100 dataset: composed of 60k 32 × 32 RGB images of 100 classes, with 600
images per class. Every class has 500 images for training and 100 images for testing.

• The ImageNet-100 dataset: This is a subset of 100 classes from ImageNet. Image size
224 × 224. Each class contains 1300 samples for training and 50 samples for testing. We
split into 10 disjoint tasks, where each task contains 10 classes.

4.2 DETAILS

For each task, we use the AdamW optimizer. Each task trains 200 epochs, the initial learning rate
is set to 0.05, the weight decay factor is 0.001 in a cosine schedule, and the batch size is set to 512.
Each dataset we set memory buffer size 2000. When training transformer based network, we choose
patch size 2 in CIFAR100 and patch size 16 in ImageNet-100. During the training phase, we follow
the data augmentation techniques in DeiT Touvron et al. (2021). These techniques include Mixup,
CutMix, Erasing, RandAugment and Stochastic Depth. Following UCIR, PODNet, and DER, at the
end of each task (except the first) we finetune our model for 20 epochs with a learning rate of 5e−5

on a balanced dataset. We made a comparison with the methods mentioned in baselines respectively.

4.3 EVALUATION METRICS

We evaluate the performance of the method by average accuracy. We construct CL tasks by dividing
the given data set. For example, given the data set CIFAR100, set the number of learning tasks in
the incremental phase S = 10. This means that total of five tasks are learned, and each task learns
ten categories. At the completion of each task learning, the performance on all learning categories in
the past is tested as the final result. Set the test data set as Dtest

0:i , where 0 : i denote all seen classes
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Methods 10Steps 20Steps 50Steps

#Paras Avg #Paras Avg #Paras Avg

Bound 11.22 80.41 11.22 81.49 11.22 81.74

iCaRL 11.22 65.27±1.02 11.22 61.20±0.83 11.22 56.08±0.83

UCIR 11.22 58.66±0.71 11.22 58.17±0.30 11.22 56.86±0.83

BIC 11.22 68.80±1.20 11.22 66.48±0.32 11.22 62.09±0.85

WA 11.22 69.46±0.29 11.22 67.33±0.15 11.22 64.32±0.28

PODNet 11.22 58.03±1.27 11.22 53.97±0.85 11.22 51.19±1.02

DER 112.27 75.36±0.36 224.55 74.09±0.33 561.39 72.41±0.36

DyTox 10.73 74.10±0.10 10.74 71.62±0.11 10.77 68.90±0.05

Ours 12.93 75.42±0.42 12.93 72.68±0.78 12.93 69.36±0.76

Table 1: Results on CIFAR100 (average over 3 runs). #Paras means the average number of param-
eters used during inference over steps, which is counted by million. Avg means the average accuracy
(%) over steps. .

so far. The average accuracy is reported as the final evaluation.

ACC =
1

T

T∑
i=1

RT,i, FGT =
1

T − 1

T−1∑
i=1

Fi (5)

where RT,i denotes the test accuracy on task i after the model has finished task T ,
Fi = max

t∈1,...,T−1
(Rt,i − RT,i) denotes the forgetting on task i, some articles use BWT =

1
T−1

∑T−1
j=1 (RT,i −Ri,i).

4.4 BASELINES

We compare our proposed method against several state-of-the-art continual learning algorithms:

• EWC Chaudhry et al. (2019):techniques force constraints on the update of network param-
eters to mitigate catastrophic forgetting.

• iCaRL Rebuffi et al. (2017): using herding method to get previous data and distillation to
avoid catastrophic forgetting.

• UCIR Shim et al. (2021): uses cosine classifier and euclidean distance between the final
flattened features as a distillation loss.

• RPSNet Rajasegaran et al. (2019):uses random path selection network for incremental
learning.

• WA Yang & Xu (2020): uses a knowledge distillation loss and re-weights at each epoch the
classifier weights associated to new classes so that they have the same average norm as the
classifier weights of the old classes.

• DyTox Douillard et al. (2022): transformers for continual learning with dynamic token
expansion.

• PODnet Douillard et al. (2020): uses a cosine classifier and a specific distillation loss
(POD) applied at multiple intermediary features of the ResNet backbone.

• DER Yan et al. (2021): a novel two-stage learning approach that utilizes a dynamically
expandable representation for more effective incremental concept modeling.

• Fine-tuning: simply trains the model in the order the data is presented without any specific
method for forgetting. avoidance.

• Joint learning: considers training the model online on an i.i.d. data stream and can be
regarded as the upper bound. performance.
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Figure 4: The evolution of performance as a function of the number of tasks CIFAR-100 (10 steps)
and CIFAR-100 (20 steps). In the 0-th phase, θbase is trained from scratch, the remaining classes are
given evenly in the subsequent phases.

4.5 COMPARATIVE PERFORMANCE EVALUATION

Table 1 shows the overall experimental results, and Fig.4 shows the trend of accuracy with the num-
ber of tasks. From the two charts, we can draw the following conclusion: in most cases, the effect
of our model is significantly better than the baseline experiment, and the parameters of the model do
not increase much. This shows that our algorithm has a good effect on retaining past knowledge and
learning new tasks. In addition, our method has achieved good gains in the comparison results in
various scenarios, which shows that our method is not limited to some specific CL scenarios. From
the curve change, we can see that our method performs well in most stage, and our curve is smooth.
In the whole CL process, our method learns good feature expression. Compared with DER, our
method is less effective, but our parameters are greatly reduced.

Figure 5: Results on ImageNet100. The accuracy reports top-5 acc.

4.6 ABLATION STUDY

We further investigate our model performance with an ablation study and summarize it in Table 2.
We conduct experiments on the CIFAR10 and CIFAR100 dataset with 10 steps setting. In this table,
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Table 2: Ablation Study of our method

Method + DA + DD + FA CIFAR10 CIFAR100

ACC

Two CNN % ! ! 73.31 72.92
Two Transformer % ! ! 56.28 48.67

No Frequency Aware ! ! % 74.34 73.26
No Dynamic Distillation ! % ! 75.41 74.12

FGT No Dynamic Distillation ! % ! 21.68 23.41
No Frequency Aware ! ! % 32.54 31.62

DA means Different architectures, DD means Dynamic Distillation, FA means Frequency Aware.
These results shows the effect of the comparative experiment to analyze the function of each module.
Network architecture design In order to verify the necessity of our network structure design, we
design an experiment using CNN based dual network and transformer based dual network. The two
networks also conduct feature fusion in the later stage of the model. Through the experiment, we
can find that the structure of the same network can not be used to learn effective expression. Among
them, the performance of the transformer-based dual network is worse, because of the amount of
data, the transformer based network is difficult to learn.

Necessity of frequency decoupling For the necessity of frequency decoupling, we input two
branches of the dual flow network into the original samples. In this case, because the high and
low frequency information cannot be decoupled, we cannot separate them according to the high and
low frequency conditions in the feature retention stage.

Necessity of dynamic distillation In order to verify the necessity of dynamic loss function, we
designed a static loss function as a contrast experiment. In the training phase of the network, the
distillation weight corresponding to the high-frequency part and low-frequency part does not change.
It can be found that because the change of the solidified weight of knowledge cannot correspond to
the learning process of the model, its effect is lost.

4.7 CONCLUSION

In this article, we explore the asynchronous problem of forgetting in CL. We propose a dual stream
processing architecture to process high-frequency and low-frequency information respectively, and
adopt a dynamic distillation loss function for the asynchronous problem. We verify our effect
through experiments. For the future, it is expected to study the asynchronous problem from more
perspectives.
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Figure 6: Low frequency disllation loss.

11


	Introduction
	Related Work
	Continual Learning Methods
	Vision Transformers

	Method
	Problem Formulation
	Frequency-aware Dual-stream Network
	Dynamic Distillation Loss Function

	Experiments
	Datasets
	Details
	Evaluation Metrics
	Baselines
	Comparative Performance Evaluation
	Ablation Study
	Conclusion

	Appendix

