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ABSTRACT

Activation functions are essential for neural networks to introduce non-linearity. A
great number of empirical experiments have validated various activation functions,
yet theoretical research on activation functions is insufficient. In this work, we
study the impact of activation functions on the variance of gradients and propose
an approach to normalize activation functions to keep the same variance of the
gradient for all layers so that the neural network can achieve better convergence.
First, we complement the previous work on the analysis of the variance of gra-
dients where the impact of activation functions is just considered in an idealized
initial state which almost cannot be preserved during training and obtained a prop-
erty that good activation functions should satisfy as possible. Second, we offer an
approach to normalize activation functions apart from the initialization method
and testify its effectiveness on prevalent activation functions empirically. And by
observing experiments, we discover that the speed of convergence is roughly re-
lated to the property we derived in the former part. We run several experiments
of our normalized activation functions against common activation functions. And
the result shows our approach consistently outperforms their unnormalized coun-
terparts. For example, normalized Swish outperforms vanilla Swish on ResNet50
by 1.4% with Tiny ImageNet and by 1.2% with CIFAR-100 in terms of top-1 ac-
curacy. Our method improves the performance for both fully-connected networks
and residual networks.

1 INTRODUCTION

Deep neural networks (Krizhevsky et al., 2012; He et al., 2016; Vaswani et al., 2017; Devlin et al.,
2019) have attained great empirical success across computer vision, natural language processing,
and speech tasks. It should be partly attributed to the decades of research to understand the difficulty
of training a deep neural network and proposed solutions.

Various initialization (Glorot & Bengio, 2010; Saxe et al., 2014; He et al., 2015; Krähenbühl et al.,
2016) methods are proposed to help with the convergence of deep models. Xavier initialization
(Glorot & Bengio, 2010) was purposed to keep the variance of the gradient for all weight matrices
in order to mitigate the problem of vanishing and exploding gradients. Since Xavier initialization
is designed for symmetric activation function, its derivation only considers the activation function
with unit derivative in an idealized initial state. He et al. (2015) has taken account of ReLU in an
idealized initial state and gives the specified initialization strategy for neural networks using ReLU
and ReLU-like activation functions. However, We would prefer to have a unified method instead
of deriving different initializations for different activation functions. More importantly, these works
solely consider the initial state of a network and, therefore, the effectiveness may shrink rapidly
during training.

Additionally, GPN (Gaussian-Poincaré normalized) function (Lu et al., 2020) is a related work pro-
posed to normalize the norm of the output and the derivative of the activation function with the goal
of preventing vanishing and exploding gradients. The purpose of their approach is different from
ours, to keep the norm of the forward output and the backward pseudo-output same as the norm of
the forward input and backward pseudo-input, which is more similar to Xavier initialization. And
our approach is applicable in residual networks and can work without the constraint on the variance
of the input.
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In this work, we analyze the impact of activation functions on gradients and introduce a theoretically
sound approach for normalizing activation functions. A motivation for our approach comes from
dropout (Srivastava et al., 2014) loosely. During the back-propagation, ReLU performs like dropout.
Nonetheless, in contrast to ReLU, the outputs of dropout are scaled by a factor to recover the mean,
which inspired us. Our contributions can be listed as:

• We introduce a unified method to normalize different activation functions without deriva-
tion for different initialization.

• Our method works well relatively regardless of the change from the initial state due to the
normalization factor which is updated dynamically during training.

• We investigate its compatibility with BN (Batch Normalization) (Ioffe & Szegedy, 2015)
and residual networks (He et al., 2016) and find normalized ReLU and normalized Swish
can improve the performances for kinds of networks.

2 APPROACH

First, We analyze the impact of activation functions on convergence. Then, we demonstrate our
approach to normalize activation functions derived from the former part.

2.1 THE IMPACT OF ACTIVATION FUNCTIONS ON GRADIENTS

Consider a N -layer network with weight matrices Wn, bias vectors bn, activation function δn,
preactivations hn and postactivations xn. Assume x0 is the input of the network and dn is the input
size of layer n. We can say that,

xn = δn(hn) (1)

hn = W T
n xn−1 + bn (2)

where the xn−1 is the input of n-th layer and xn is the output of n-th layer.

According to these definitions, we can obtain the equation below in a linear regime, which is similar
to the formula in Glorot & Bengio (2010):

Var

[
∂Cost

∂Wn

]
=

(
n−1∏
i=1

diVar [Wi]

)(
N∏

i=n+1

di+1Var [Wi]

)
×Var [x0] Var

[
∂Cost

∂xN

]
(3)

Then following Xavier initialization we use to constrain weight matrices, we can derive that:

∀n,Var [Wn] =
2

dn + dn+1
(4)

Now, let us take the activation function into consideration. Define ρi, ρ′i as:

ρn =
Ehn∼N (0,σ2)

[
δn(hn)

2
]

Varhn∼N (0,σ2)[hn]
(5)

ρ′n = Ehn∼N (0,σ2)

[(
dδn(hn)

dhn

)2
]

(6)

Note that we assume all hn are approximately zero-mean Gaussian. By combining them into 3, we
have

Var

[
∂Cost

∂Wn

]
=
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n−1∏
i=1

ρidiVar [Wi]

)
ρ′n

(
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] (7)
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For the reason that we use Xavier initialization that normalizes the weight matrices, we can loosely
simplify 7 into:

Var

[
∂Cost

∂Wn

]
=

n−1∏
i=1

ρi

N∏
i=n

ρ′i ×Var [x0] Var

[
∂Cost

∂xN

]
(8)

In order to make the variance of the gradient on each layer approximately same to achieve better
convergence, we would like the activation function to satisfy an interesting property as feasible:

∀i, ρi ≈ ρ′i ≈ 1 (9)

In fact, this indicates two properties implicitly: (i) ρi ≈ 1, ρ′i ≈ 1 (ii) ρi ≈ ρ′i. Property (ii) is
inherent to an activation function, whereas we can make it more satisfy property (i) by normalizing
ρi and ρ′i.

2.2 APPROACH

In order to normalize ρi and ρ′i, let us apply a normalization factor λi to the post-activation of the
activation function δi. From equation 8, we would have:

Var

[
∂Cost

∂Wn

]
=

n−1∏
i=1

λ2
i ρi

N∏
i=n

λ2
i ρ

′
i ×Var [x0] Var

[
∂Cost

∂xN

]
(10)

From the perspective of forward-propagation, it is expected that:

∀i, λ2
i ρi = 1 (11)

From the perspective of backward-propagation, we would expect to have:

∀i, λ2
i ρ

′
i = 1 (12)

Since ρi and ρ′i given an activation function δi can be calculated based on its input of the current
batch in the period of forward-propagation, we take the reciprocal of their harmonic mean for λ2

i
as a compromise, of which the strategy is similar to yet slightly different from Xavier initialization,
between preceding two constraints:

∀i, λi =

√
ρi + ρ′i
2ρiρ′i

(13)

As we know, the output of each layer can easily keep zero-mean in a linear regime. However, asym-
metric activation functions distort the distribution of output from zero mean and the normalization
factor further deteriorates the distortion. Additionally, the equation 7 which underlies all of our
derivations rests on a fundamental assumption that the weight matrices are zero-mean, that can not
be ensured during training due to internal covariate shift (ICS) (Ioffe & Szegedy, 2015). In order to
inhibit the distortion, we shift xi−1, the post-activation of δi−1, to zero-mean in order to obtain zero-
mean gradient on the weight matrix. And at the same time, the post-activation fixed to zero-mean
further stabilizes the condition of equation 7 for

E
[
∂Cost

∂Wi

]
= E [xx−i]E

[
∂Cost

∂hi

]
(14)

Of course, it requires the assumption that xi−1 is independent of ∂Cost
∂hi

.

At present, we can give the formula of our approach to normalize ρ and ρ′ for given activation
function δ:

δ̂ (x) = (λ+ f (α)) (δ (x)− µ) (15)

where µ is the expectation of δ (x); λ denotes the normalization factor; f is a bounded function
to adjust λ; α is a learnable parameter. We call δ̂ (x) the normalized activation function. In this
paper, we use f (α) = 0.3Tanh (α) and α = 0 as initialization in all experiments.
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(a) Vanilla Activation Function

W
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Normalized Activation Function
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(b) Normalized Activation Function

Figure 1: The upper panel and the lower panel are two different activation function architectures we
compare: (a) Vanilla Activation Function (b) Normalized Activation Function

In order to control the noise, ρ, ρ′ and µ are updated by a momentum parameter m based on history
and current mini-batch. And they are also filtered out abnormal values out of bounds with two
hyperparameters L and U . The updating calculation can be described as the following:

µ(t) =mµM + (1−m)µ(t−1) (16)

ρ(t) =


ρM ,if t = 0

mρM + (1−m)ρ(t−1),if Lρ(t−1) < ρM < Uρ(t−1)

ρt−1,otherwise

(17)

ρ′(t) =


ρ′M ,if t = 0

mρ′M + (1−m)ρ′(t−1),if Lρ′(t−1) < ρ′M < Uρ′(t−1)

ρ′(t−1),otherwise

(18)

where t denotes the number of batches (or iterations).

Note that ρ, ρ′ and µ are obtained without gradient calculation. It means they are treated as three
constants during backward-propagation. Therefore, this setting bypasses the problem of blocking
the first and second derivatives of the loss that batch normalization operation suffers from (Zhou
et al., 2022).
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Figure 2: As shown above, the R score of common activation functions are constantly below 0.
The R score of Tanh and Swish is desirably near 0 when the variance of input is small. However,
they suffer from pseudo-linearity (Philipp et al., 2018) at the same time. The R score of ReLU and
LeakyReLU are fixed at -0.383. Data are calculated with Mathematica.

As a result that x can be roughly guaranteed zero-mean as the assumption, we evaluated several
prevalent activation functions by analytically calculating R score defined below.

Rx∼N (0,σ) (δ, σ) = ln
E
[
δ(x)2

]
− E [δ(x)]

2

Var [x]E
[(

∂δ(x)
∂x

)2] (19)

= ln

∫∞
−∞ δ2(x)ω(x)dx− 1

σ
√
2π

(∫∞
−∞ δ(x)ω(x)dx

)2
σ2
∫∞
−∞

(
∂δ(x)
∂x

)2
ω(x)dx

(20)

ω(x) = exp(− x2

2σ2
) (21)

In a normalized activation function, ρ and ρ′ can be normalized to be approximately around 1.
Namely, property (i) is approached. Nonetheless, prevalent activation functions fail to achieve prop-
erty (ii) as shown in figure 2. You may ask whether we can find a nonlinear activation function of
which R converges to 0 and the post-activation is zero-mean. The answer is no. Lu et al. (2020)
has proven it when the input is standard Gaussian. We further generalize their conclusion to any
zero-mean Gaussian distribution and detailedly prove the following proposition in Appendix.

Proposition: Assume x ∼ N (0, σ) and function δ : R → R , then E [δ (x)] = 0 and
E[δ(x)2]

σ2 =

E
[
δ′ (x)

2
]
= C if and only if δ (x) = ±

√
Cx.

3 EXPERIMENTS

With several experiments, we validate the effectiveness and advantage of our approach and investi-
gate its compatibility with BN and residual networks. We benchmark NReLU (normalized ReLU)
and NSwish (normalized Swish) against common activation functions, especially their unnormalized
counterparts, as baselines. For convenience, we call a convolutional/linear layer plus the following
BN and activation function a super-layer as a whole in this section.

All activation functions we compare are listed in Appendix.

3.1 LENET5

First, we compare NReLU and NSwish against all baseline activation functions on LeNet5 using
MNIST as the dataset. We run experiments in 50 epochs 25 times for each activation function and
use the same learning rate with SGD. Networks using Tanh, NReLU and NSwish are initialized with
Xavier initialization; ReLU, LReLU, ELU (Clevert et al., 2016), SELU (Klambauer et al., 2017) and
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Swish (Hendrycks & Gimpel, 2016; Ramachandran et al., 2018) with He initialization; ReLU-GPN
(Lu et al., 2020) with orthogonal initialization (Saxe et al., 2014). We compare the mean and median
of the accuracy and the number of models that fail to reach 98% validation accuracy until the 5-th,
10-th, 15-th, 30-th and 50-th epoch. Results are shown in Table 1.

Table 1: The table shows the best validation accuracy of different activation functions and the num-
ber of models that fail to reach 98% validation accuracy until different epochs. The best method
among unnormalized/GPN/normalized versions is marked with “*”.

validation accuracy n models under 98% accuracy until i-th epoch
method mean median 5-th 10-th 15-th 30-th 50-th

Tanh 98.83 98.83 25 9 0 0 0
LReLU 98.87 98.87 25 4 0 0 0
ELU 98.90 98.90 23 0 0 0 0
SELU 98.90 98.91 9 0 0 0 0

ReLU 94.42 98.92 19 15 14 11 11
ReLU-GPN 87.50 98.91 14 7 6 5 5
NReLU 98.95* 98.96* 0 0 0 0 0

Swish 98.86 98.85 25 16 0 0 0
NSwish 98.90* 98.90* 1 0 0 0 0
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Figure 3: The left figure shows the increasing validation accuracy.The right figure illustrates the
scores that we defined in Eq 22. Each curve is the median of 25 runs.

Then, we validate how the relation between ρ and ρ′ affects the convergence. Namely, how activation
functions in a network satisfy property (i) influences the speed of convergence to some extent.

We recorded the ρ and ρ′ during training and compare the score defined below among different
methods.

Score =

N∑
i=1

|ln ρi|+ |ln ρ′i|
2

(22)

By comparison, We find that this score is roughly inversely related to the speed of convergence.
We plot the accuracy and scores in Figure 3. It embodies the impact of activation functions on
convergence we mentioned in section 2.1.

We also monitored the mean of weight matrices. The result in Figure 4 shows our approach can
inhibit weight matrices to shift from zero mean.

3.2 VGG

We benchmark our method on VGG19 (Simonyan & Zisserman, 2015) with CIFAR-100 dataset
(Krizhevsky et al., 2009). We replaced ReLU with all activation functions we compare and train for
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Figure 4: We recorded
∑N

i |EWi| during training. The curves are the median of 25 runs.

200 epochs. Super-layers using Tanh, NReLU, NLReLU and NSwish are initialized with Xavier ini-
tialization; ReLU, LReLU, ELU, SELU and Swish with He initialization; ReLU-GPN and LReLU-
GPN with orthogonal initialization. We follow the same learning rate with AdamW (Loshchilov
& Hutter, 2019). For networks using normalized activation functions, we use their unnormalized
version as top three activation functions so that we need not change the model architecture and we
remove affine transformation in BN followed by a normalized activation function.

Top-1 Acc. (%) Top-5 Acc. (%)

Tanh 25.63 55.50
LReLU 65.65 84.69
ELU 59.92 85.13

ReLU 65.65 85.50
NReLU 66.11 87.13

Swish 64.05 85.93
NSwish 65.72 87.40
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Table 2: Comparing activation functions on
CIFAR-100 dataset using VGG19 as backbone
by reporting the median of 3 runs.

Figure 5: Validation accuracy of VGG19 on
CIFAR-100. All curves are the median of 3 runs.

The results in Table 3 show our approach consistently outperforms its unnormalized counterparts,
particularly in terms of top-5 accuracy. NSwish outperforms Swish by a 1.7% in terms of top1-
accuracy.

Our approach makes the gradient on weights less easy to vanish when the network is enough deep
so that it improves the trainability of neural networks. The operation of the normalized activation
function is similar to BN (batch normalization) operation containing a scale and a shift. Intuitively,
we wonder whether these similar operations mutually deteriorate effectiveness. In this experiment,
we empirically testify that BN works well with normalized activation functions.

We find there are two key points when normalized activation functions are used with BN in this
experiment.

• If we use BN right before normalized activation function, BN without affine transformation
will be preferable, whereas removing affine transformation from the super-layer using an
unnormalized activation function slightly degenerates the performance. We consider the
reason is the affine transformation impairs the effort that BN tries to stabilize the zero-
mean assumption and the variance of pre-activation.
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• It is suggested to use a BN layer between the highest layer using normalized activation
function and the top layer as a buffer, typically when normalized activation function is used
with BN in lower layers. The reason we consider is that normalized activation function tries
to keep the variance of output as the input which is not necessarily same as the variance
of the target distribution. This buffer BN can prevent lower layers to raise the variance of
output due to the increasing distance among classes during training and thus the moderate
change of the variance gives rise to the relatively stable normalization factor.

The first point enables us to use fewer parameters, however, to achieve better performance.

Table 3: Validation accuracy of VGG19 without BN on CIFAR-100 across the 3 runs ordered by
top-1 accuracy.

Top-1 Acc. Top-5 Acc.

SELU 64.49 64.16 63.83 87.28 87.31 87.07

ReLU-GPN 64.03 63.78 63.40 86.04 86.29 86.31
NReLU 67.28 66.31 66.02 87.65 88.00 88.15

LReLU-GPN 64.09 63.73 63.28 86.03 85.87 86.06
NLReLU 66.33 66.22 66.06 88.09 88.42 87.89

NSwish 64.66 63.19 63.15 85.49 85.47 86.21

For SELU, ReLU-GPN and LReLU-GPN, we run experiments using a learning rate of 0.01 with
SGD and decay the learning rate by a factor of 0.2 every 60 epochs since the original optimizer did
not converge. Given that SELU, ReLU-GPN and LReLU-GPN are proposed to be used without BN,
we remove all BN layers in VGG and compare them with normalized activation functions working
without BN. We additionally tested the NLReLU (normalized LeakyReLU) for comparing with
LReLU-GPN.

3.3 RESNET

We also compared normalized activation function to other methods on ResNet with CIFAR-100
and Tiny ImageNet - a subset of ImageNet (Russakovsky et al., 2015). Due to the computational
limitation, we choose the ResNet50 as the backbone. We follow the same set up and train for a fixed
number of epochs, which can ensure the sufficient convergence of baselines.

For normalized activation functions, we replaced all activation functions which is not following the
element-wise addition in the bottleneck with their normalized version, since the shift operation will
decrease the ratio of positive elements in output and the variance of output will grow exponentially
as the information flows to the deep block due to the scale operation, which will lead to extremely
unstable normalization factor, if we use normalized activation function right after the element-wise
addition. The unnormalized activation function lowers the variance of the output raised by the
element-wise addition, whereas the normalized activation function keeps the variance and thus raises
it exponentially as residual networks can be unraveled as hierarchical ensembles of relatively shallow
networks (Veit et al., 2016).

We show the block for normalized activation function and unnormalized version in Appendix.

As the result shown in Table 4 and 5, NSwish outperforms Swish by nontrivial 1.4% at least on
Tiny ImageNet and 1.2% on CIFAR-100. And NReLU outperforms ReLU by 1.1% at least on Tiny
ImageNet and 1.0% on CIFAR-100. At the same time, the total number of trainable parameters of
the normalized model is 15K fewer than the unnormalized one.

3.4 NATURAL LANGUAGE PROCESSING

We benchmark our approach on IMDb dataset (Maas et al., 2011) using TextRCNN (Lai et al.,
2015). We train each network 5 times with the same set up from scratch, and the median validation
accuracy is 90.2% for NReLU against 89.3% for ReLU, 90.1% for NSwish against 89.4% for Swish.
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Top-1 Acc. Top-5 Acc.

Tanh 61.47 61.16 61.25 86.41 85.93 86.24
LReLU 71.13 70.33 70.01 91.40 90.63 91.07
ELU 72.10 71.96 71.82 92.03 91.89 91.75
SELU 69.05 68.80 68.37 90.35 90.42 90.42

ReLU 70.23 70.19 69.90 90.98 91.02 90.80
NReLU 71.63 71.38 70.99 91.72 91.51 91.38

Swish 71.71 71.60 71.16 91.54 91.51 91.44
NSwish 73.17 72.83 72.72 92.15 92.18 92.25

Top-1 Acc. Top-5 Acc.

Tanh 40.50 66.88
LReLU 54.90 78.20
ELU 54.06 77.67
SELU 48.66 74.18

ReLU 54.46 77.77
NReLU 56.01 78.99

Swish 54.93 78.39
NSwish 56.55 79.25

Table 4: Validation accuracy of ResNet50 on CIFAR-100
across the 3 runs.

Table 5: Comparing the median of val-
idation accuracy on Tiny ImangeNet
across 3 runs.

We also benchmark our method on the domain of machine translation. We train Transformer
(Vaswani et al., 2017) models initialized with DeepNorm (Wang et al., 2022) on IWSLT 2015 De-
En dataset and evaluate them on test set with standard BLEU metric. Higher layers tend to have
smaller variance of the output signal of the residual funtion in a network with residual connections
(He et al., 2016). Typically, the variance of the residual function output shrinks by the activation
function from a relatively lower layer when the linear layer in FFN is broader, since a single layer
has more poweful representation. At the same time, the normalized activation function recover the
variance of post-activation which is originally supposed to be reduced by the activation function in
a high FFN. Given that, we additionally train models where unnormalized activation functions are
kept in the top k FFN of the encoder and decoder. We show the result in Appendix. Normalized
activation function will prevent the residual function to have smaller magnitude if it is used in higher
layers. However, it more thoroughly exploits the potential representational capacity of lower layers.
Note that, in this experiment, λ and µ are obtained with the instance-wise variance and mean.

4 DISCUSSION

We have three tips for using normalized activation function with BN and in residual networks, which
we have talked about detailedly in section 3.

• If we use BN right before normalized activation function, BN without affine transformation
will be preferable.

• We suggest using a BN layer between the highest layer using normalized activation function
and the top layer as a buffer when normalized activation function is used with BN in lower
layers.

• When normalized activation function is applied in residual networks, we suggest to not
replacing the unnormalized activation functions right after the element-wise addition in
each block.

5 CONCLUSION

We propose a theoretically sound approach to normalize activation function. Then by carrying on
several experiments, we empirically conclude that NReLU and NSwish consistently surpass the
accuracy of their unnormalized version and at least one of them can outperform other activation
functions, even with fewer parameters if BN is applied.
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A APPENDIX

A.1 ACTIVATION FUNCTIONS TO COMPARE

• Tanh:

f(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(23)

• ReLU:

f(x) =

{
x,if x > 0

0,if x ≤ 0
(24)

• ReLU-GPN:

f(x) = β

{
x,if x > 0

0,if x ≤ 0
(25)

where β ≈ 1.4142.

• LeakyReLU:

f(x) =

{
x,if x > 0

αx,if x ≤ 0
(26)

where α = 0.01.

• LeakyReLU-GPN:

f(x) = β

{
x,if x > 0

αx,if x ≤ 0
(27)

where α = 0.01; β ≈ 1.4141.

• ELU:

f(x) =

{
x,if x > 0

α(exp(x)− 1),if x ≤ 0
(28)

where α = 1.0.

• SELU:

f(x) = λ

{
x,if x > 0

α(exp(x)− 1),if x ≤ 0
(29)

where α ≈ 1.6733; β ≈ 1.0507.

• Swish:

f(x) =
x

1 + exp(−x)
(30)

Before we introduce normalized activation functions, let us predefine the following in order to avoid
duplication:

ρ =
Var[y]

Var[x]
(31)

λ =

√
ρ+ ρ′

2ρρ′
(32)

where x denotes the preactivation; y denotes the output of the unnormalized activation function. The
definition of ρ′ is dependent on the unnormalized activation function and we define them differently
in the following parts.
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• NReLU(Normalized ReLU) is defined as
f(xi) = (λ+ βTanh(α)) (yi − ȳ) (33)

yi =

{
xi,if x > 0

0,if x ≤ 0
(34)

ρ′ = P (x > 0) (35)
Note that, the elements of the derivative of ReLU can be thought as a random variable
following Bernoulli(p) where p is the ratio of positive elements in x. We take advantage
of this property when talking about it working with the residual connection.
The gradient of α can be easily derived from the chain rule.

∂Loss

∂α
=
∑
i

β (yi − ȳ)
(
1− Tanh(α)2

)
(36)

where
∑

i runs over all positions of the feature map. We also need to compute the gradient
with respect to the input feature map during training as following

∂Loss

∂xi
=

{
λ+ βTanh(α),if xi > 0

0,if xi ≤ 0
(37)

• NSwish(Normalized Swish) is defined as
f(xi) = (λ+ βTanh(α)) (yi − ȳ) (38)

yi = xiSigmoid(xi) (39)

ρ′ = E
[
(y + xSigmoid(x) (1− y))

2
]

(40)

For reason that Swish is a ReLU-like activation function, we also can roughly deem the
elements of its derivative as a random variable following Bernoulli(p). The gradient w.r.t.
the parameter and the input feature map during training can be derived as:

∂Loss

∂α
=
∑
i

β (yi − ȳ)
(
1− Tanh(α)2

)
(41)

∂Loss

∂xi
= (λ+ βTanh(α)) (y + xSigmoid(x) (1− y)) (42)

A.2 PROOF

Proposition: Assume x ∼ N (0, σ) and function δ : R → R , then E [δ (x)] = 0 and
E[δ(x)2]

σ2 =

E
[
δ′ (x)

2
]
= C if and only if δ (x) = ±

√
Cx.

Proof. Let Hermite polynomials of k degree be:

Hk(x) =
(−1)k√

k!
exp

(
x2

2σ2

)
dk

dxk
exp

(
− x2

2σ2

)
(43)

Then we can derive that∫ ∞

−∞
Hk(x)Hj(x) exp(−

x2

2σ2
) =

{√
2πσ−(2k−1),if k = j

0,if k ̸= j
(44)

∫ ∞

−∞
H ′

k(x)H
′
j(x) exp(−

x2

2σ2
) =

{
k
√
2πσ−(2k+1),if k = j

0,if k ̸= j
(45)

Since Ex∼N (0,σ)

[
δ (x)

2
]
< ∞; Ex∼N (0,σ)

[
δ′ (x)

2
]
< ∞ and δ (x) and δ′ (x) can be expanded in

terms of Hermite polynomials, we have

δ(x) =

∞∑
k=0

akHk(x) (46)

δ′(x) =

∞∑
k=1

akH
′
k(x) (47)

13



Under review as a conference paper at ICLR 2023

Due to Ex∼N (0,σ) [δ (x)] = 0, we have

a0 = 0 (48)

According to Equation 44, 45 and

E
[
δ (x)

2
]

σ2
= E

[
δ′ (x)

2
]
= C (49)

we have

E
[
δ (x)

2
]

σ2
=

1

σ2

∞∑
k=1

σ−2ka2k = E
[
δ′ (x)

2
]
=

∞∑
k=1

kσ−2k−2a2k = C (50)

Thus we can derive that
∞∑
k=1

kσ−2(k+1)a2k −
∞∑
k=1

σ−2(k+1)a2k = 0 (51)

that is
∞∑
k=2

(k − 1)σ−2(k+1)a2k = 0 (52)

For the reason that all terms in
∑∞

k=2(k− 1)σ−2(k+1)a2k is nonnegative, the only solution is ak = 0

for all k ≥ 2. And for E
[
δ′ (x)

2
]
= σ−4a21 = C, we have a1 = ±σ2

√
C. Hence δ(x) = ±

√
Cx.

This proof is largely based on Lu et al. (2020) with minor generalization here.

A.3 BLOCK FOR RESNET50

Figure 6: Left: a block for normalized activation function.Right: a block for unnormalized activa-
tion function.

A.4 RESULTS AND HYPERPARAMTERS
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Table 6: The BLEU points of 12L-12L Transformer on IWSLT 2015 across different hyperparam-
eter settings. NSwish+kSwish denotes that the model uses normalized activation functions as the
unnormalized ones are kept in the top k FFN of the encoder and decoder. BLEU scores in paren-
thesis are calculated with sentences translated with a beam size of 5. The rest experiments are still
training at the time of submission.

the size of the first layer in FNN
512 * 512 512 * 1024 512 * 2048

Swish 28.38(29.50) 29.27(30.31) 29.38(30.52)
NSwish 26.78(27.91) 13.54(14.58) 11.05(12.98)
NSwish+1Swish 29.06(30.44) 29.38(30.17) 11.43(12.91)
NSwish+6Swish - - 29.37(30.61)

Table 7: The BLEU points of 6L-6L Transformer on IWSLT 2015 with different hyperparameter
settings. BLEU scores in parenthesis are calculated with sentences translated with a beam size of 5.
The score with an italic font is the median BLEU of 3 runs. The rest experiments are still training at
the time of submission.

the size of the first layer in FNN
512 * 512 512 * 1024 512 * 2048

ReLU 27.69(28.72) 27.81(28.92) 28.80(29.75)
NReLU+1ReLU 27.93(28.81) 27.91(29.17) -
NReLU+3ReLU 27.64(28.82) - 29.37(30.43)

Table 8: The hyperparameter setting for the experiment on VGG19 and ResNet50. Our method
works well without warmup as well.

Hyperparameters Value

Learning Rate 1e-3
Batch Size 128
Training Epochs 200
Warmup Updates first epoch
Dropout 0.5
Gradient Clipping 3.0

Table 9: The hyperparameter setting for the experiment on machine translation comparing Swish
and Nswish.

Hyperparameters Value

Learning Rate 5e-4
Batch Size 128
Training Epochs 20
Warmup Updates 4000
Dropout 0.5
Gradient Clipping 3.0
Training Max Length 50
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Table 10: The hyperparameter setting for the experiment on machine translation comparing ReLU
and NReLU.

Hyperparameters Value

Learning Rate 5e-4
Batch Size 256
Training Epochs 20
Warmup Updates 4000
Dropout 0.5
Gradient Clipping 3.0
Training Max Length 50
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