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ABSTRACT

Recent progress in robotic imitation learning has been enabled by policy archi-
tectures that scale to complex visuomotor tasks, multimodal distributions, and
large datasets. However, these methods rely on supervised learning of actions
from expert demonstrations, which can be challenging to scale. We propose
Latent Diffusion Planning, which forecasts future states as well as actions via dif-
fusion. This objective can scalably leverage heterogeneous data sources and pro-
vides a denser supervision signal for learning. To plan over images, we learn a
compact latent space through a variational autoencoder. We then train a planner to
forecast future latent states, and an inverse dynamics model to extract actions from
the plans. As planning is separated from action prediction, LDP can leverage sub-
optimal or action-free data to improve performance in low demonstration regimes.
On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art
imitation learning approaches as they cannot leverage such additional data.1

1 INTRODUCTION

Combining large-scale expert datasets and powerful imitation learning policies has been a promising
direction for robot learning. Recent methods using transformer backbones or diffusion heads (Octo
Model Team et al., 2024; Kim et al., 2024; Zhao et al., 2024; Chi et al., 2023) have capitalized
on new robotics datasets pooled together from many institutions (Khazatsky et al., 2024; Open X-
Embodiment Collaboration et al., 2023), showing potential for learning generalizable robot policies.
However, this recipe is fundamentally limited by data, as robotics demonstration data is limited and
expensive to collect. While it is often easier to collect in-domain data that is suboptimal or action-
free, these methods are not designed to use such data, as they rely on directly modeling optimal
actions.

Prior work in reinforcement learning has explored using heterogeneous data sources. Approaches
that can be scaled to the imitation learning setting include conditioning the policy on optimality
(Chen et al., 2021), and relabeling action-free trajectories using an inverse model (Baker et al.,
2022). However, many of these approaches have not been shown to be competitive with state-of-
the-art robotic imitation learning (Mirchandani et al., 2024). Recent work in robotics has leveraged
heterogeneous data for pretraining via representation learning (Radosavovic et al., 2023; Wu et al.,
2023b; Cui et al., 2024). However, only using the data for representation learning is limited, as
it does not necessarily improve the planning capabilities of the method. In this work, we investi-
gate how a simple planning-based method can leverage heterogeneous data in a principled way be
decoupling forecasting future states from extracting actions.

We propose Latent Diffusion Planning (LDP), which learns a planner that can be trained on data
does not require actions; and an inverse dynamics model that can be trained on data that may be sub-
optimal. While prior planning-based works (Du et al., 2023a; Black et al., 2023) improve high-level
decision making by producing subgoals, we focus on forecasting a dense trajectory of latent states
as an alternative method for imitation learning. As diffusion objectives proved to be effective for
imitation learning (Chi et al., 2023), we use diffusion for both forecasting state and actions, which
enables competitive performance. LDP plans across latent image embeddings, scaling up gracefully

1We include visualizations of plans and rollouts in https://sites.google.com/view/
latent-diffusion-planning/home
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Figure 1: Latent Diffusion Planning. Left: LDP separates the control problem into forecasting future
states with a diffusion-based planner, and extracting actions with a diffusion-based inverse dynamics
model (IDM). This design enables training on heterogeneous sources of data, including suboptimal
data and action-free data. Right: Unlike action imitation methods such as diffusion policy, LDP is
based on forecasting a dense temporal sequence of latent states as well as actions. Using powerful
diffusion models for both of these objectives enables LDP to have competitive performance to state-
of-the-art imitation learning. Further, unlike prior work on forecasting subgoals, LDP predicts a
dense temporal sequence of latent states, which enables scalable closed-loop planning.

to vision-based domains without the computational complexities of video generation. First, it trains
a variational autoencoder with an image reconstruction loss, producing compressed latent embed-
dings. Then, it learns an imitation learning policy through two components: (1) a planner, which
consumes demonstration state sequences, which may be action-free, and (2) an inverse dynamics
model, trained on in-domain, possibly suboptimal, environment interactions. To maximally capture
expressivity, both the planner and inverse dynamics models are implemented as diffusion models.
Furthermore, our method is closed-loop and reactive, as planning over latent space is much faster
than generating visually and physically consistent video frames.

In summary, our main contributions are threefold:

• We propose a novel imitation learning algorithm, Latent Diffusion Planning, a simple, dif-
fusion planning-based method comprised of a learned visual encoder, latent planner, and
an inverse dynamics model.

• We show that Latent Diffusion Planning can be trained on suboptimal or action-free data,
and improves from learning on such data in the regime where demonstration data is limited.
LDP can leverage such data better than prior work based on optimality conditioning or
representation learning.

• We experimentally show that our method outperforms prior planning-based work by lever-
aging temporally dense predictions in a latent space, which enables closed-loop planning.

2 RELATED WORK

Imitation Learning in Robotics. One popular approach to learning robot control policies is imita-
tion learning, where policies are learned from expert-collected demonstration datasets. This is most
commonly done via behavior cloning, which reduces policy learning to a supervised learning objec-
tive of mapping states to actions. Recently, Diffusion Policy (Chi et al., 2023) and Action Chunking
with Transformers (Zhao et al., 2023) have shown successful results in complex manipulation tasks
using action chunking and more expressive architectures. Similarly, Behavior Transformer (Shafi-
ullah et al., 2022) and VQ-BeT (Lee et al., 2024) have focused on improving the ability of policies
to capture multimodal behaviors. In this work, we focus on forecasting a sequence of future states
instead of actions, and use diffusion to capture multimodal trajectories.
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Learning from Unlabelled Suboptimal and Action-Free Data. Learning from suboptimal data
has long been a goal of many robot learning methods, including reinforcement learning. A typical
approach is offline reinforcement learning, which considers solving a Markov decision process from
an offline dataset of states, actions, and reward (Levine et al., 2020; Kumar et al., 2020; Kostrikov
et al., 2021; Hansen-Estruch et al., 2023; Yu et al., 2022). Particularly relevant are the approaches
that use supervised learning conditioned on rewards (Schmidhuber, 2019; Kumar et al., 2019a; Chen
et al., 2021). In this work, we want to leverage suboptimal, reward-free data, such as play data or
failed trajectories. In addition, we would like to avoid the additional complexity of annotating the
data with rewards or training a value function which the offline RL methods rely on.

Autonomous imitation learning methods seek to self-bootstrap from a pretrained imitative policy.
Typically, these methods assume learning from online, autonomous rollouts and reward labels from
trained classifiers or vision-language models (Konstantinos Bousmalis* & Heess, 2023; Zhou et al.,
2024b; Mirchandani et al., 2024). Unlike these works, we assume access to a static, offline dataset,
and we do not label the dataset with pseudo-rewards.

Several works have also addressed learning from action-free data, such as using inverse models
(Torabi et al., 2018; Baker et al., 2022), latent action models (Edwards et al., 2019; Schmeckpeper
et al., 2020; Bruce et al., 2024), or representation learning (Radosavovic et al., 2023; Wu et al.,
2023b; Cui et al., 2024). In this work we focus on a simple recipe for robotic imitation learning that
is naturally able to leverage action free data through state forecasting.

Diffusion and Image Prediction in Robot Learning. Diffusion models, due to their expressivity
and training and sampling stability, have been applied to robot learning tasks. Diffusion has been
used in offline reinforcement learning (Hansen-Estruch et al., 2023) and imitation learning (Chi
et al., 2023). Diffuser (Janner et al., 2022) learns a denoising diffusion model on trajectories, includ-
ing both states and actions, in a model-based reinforcement learning setting. Decision Diffuser (Ajay
et al., 2023) extends Diffuser by showing compositionality over skills, rewards, and constraints, and
instead diffuses over states and uses an inverse dynamics model to extract actions from the plan.
Due to the complexity of modeling image trajectories, Diffuser and Decision Diffuser restrict their
applications to low-dimensional states.

To scale up to diffusing over higher-dimensional plans, UniPi (Du et al., 2023a; Ko et al., 2023)
adapts video models for planning. Unlike works that rely on foundation models and video models
for planning (Du et al., 2023b; Yang et al., 2024; Zhou et al., 2024a), our method avoids computa-
tional and modeling complexities of generative video modeling by planning over latent embeddings
instead.

Previous works have used world models to plan over images in a compact latent space (Hansen et al.,
2024; Hafner et al., 2019; 2020). In contrast with these works, we focus on single task imitation
instead of reinforcement learning.

Many prior works argued that state forecasting objectives are uniquely suitable for robotics to im-
prove planning quality with trajectory optimization or reinforcement learning Finn & Levine (2017);
Yang et al. (2023), by using the model directly to plan future states Du et al. (2023b;a), as well as
representation learning (Wu et al., 2023a; Radosavovic et al., 2023). We follow this line of work
by proposing a planning-based method competitive to state-of-the-art robotic imitation learning that
can leverage heterogeneous data sources.

3 BACKGROUND

Diffusion Models Diffusion models are likelihood-based generative models that learn an iterative
denoising process from a Gaussian prior to a data distribution (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020). Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
2020) optimizes a variational lower bound on data likelihood, derived in a similar way to variational
autoencoders (Kingma & Welling, 2014; Rezende et al., 2014). DDPMs are trained to reverse a
single noising step, formally:

LDDPM(ϕ, z) = Et,ϵ[||ϵϕ(αt z+σtϵ)− ϵ||2] (1)

3
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Figure 2: The architecture for Latent Diffusion Planning. I. We train a variational autoencoder on
in-domain data to compress images into latents z. This allows for scalable closed-loop planning in
the latent space. II. We train a inverse dynamics model (IDM) with a diffusion objective to directly
extract the actions that will be used for control from pairs of latent states. III. We train a powerful
latent diffusion model to forecast a chunk of future latent states. The planner and the IDM are used
together to produce an action chunk, similar to Chi et al. (2023). By leveraging multi-step prediction
and powerful diffusion models based on Chi et al. (2023), we can construct a method competitive to
state-of-the-art imitation learning methods.

where z is a data sample, αt, σt are noise schedule values indexed by timestep t ∈ 1, 2, ..., T , ϵ is
randomly sampled Gaussian noise, and ϕ are learned parameters.

To reverse the diffusion process, the model iteratively denoises a sample drawn from the known
prior zT ∼ N(0, I). For example, DDPM samples the chain zT , ..., z0 according to:

pϕ(zt−1 | zt) = N(zt−1 |ϵϕ(zt, t), σ2
t I) (2)

Diffusion models may also be conditioned on additional context c. For example, text-to-image
generative models are conditioned on text, Diffusion Policy is conditioned on visual observations,
and Decision Diffuser can be conditioned on reward, skills, and constraints.

Recent generative models have used Latent Diffusion Models, which trains a diffusion model in
a learned, compressed latent space (Rombach et al., 2022; Peebles & Xie, 2023; Blattmann et al.,
2023) to improve computational and memory efficiency. The latent space is typically learned via an
autoencoder, with encoder E and decoder D trained to reconstruct x ≈ x̂ = D(E(x)). Instead of
diffusing over x, the diffusion model is trained on diffusing over z = E(x).
Imitation Learning In the imitation learning framework, we assume access to a dataset of expert
demonstrations, D ≜ {(s0, x0, a0), .., (sT , xT , aT )}, generated by πE , an expert policy. si, xi, ai
correspond to the state, image, and action at timestep i respectively. The imitation learning ob-
jective is to extract a policy π̂(a|s, x) that most closely imitates πE . In robotics, this is typically
approached through behavior cloning, which learns the mapping between states and actions directly
via supervised learning. We consider single-task imitation, where the dataset corresponds to a single
task.

Datasets of expert demonstrations often do not provide sufficient state distribution coverage to ef-
fectively solve a given task with imitation learning. However, there often exists additional data in
the form of action-free or suboptimal data, which may consist of failed policy rollouts, play data,
or miscellaneous environment interactions. Unfortunately, behavior cloning assumes access to data
annotated with optimal actions, so such additional data cannot be easily incorporated into training.

4
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4 LATENT DIFFUSION PLANNING

Latent Diffusion Planning consists of three stages, as shown in fig. 2: (1) Training an image encoder
via an image reconstruction loss, (2) learning an inverse dynamics model to extract actions at from
pairs of latent states zt, zt+1, and (3) learning a planner to forecast future latents zt.

Algorithm 1 Inference with Latent Diffusion Planning
1: Input: Encoder E , Planner ϵψ , IDM ϵξ, Planner Diffusion Timesteps Tp, IDM Diffusion

Timesteps TIDM, Planning Horizon Hp, Action Horizon Ha

2: Observe initial state s0 and image x0; k = 0
3: while not done do
4: zk ← (E(xk), sk)

// Diffuse over latent embedding plan
5: ẑk+1, ..., ẑk+Hp ∼ N (0, I)
6: for t = Tp . . . 1 do
7: ϵ̂← ϵψ(ẑk+1, ..., ẑk+Hp ; zk, t)
8: Update ẑk+1, ..., ẑk+Hp using DDPM update with ϵ̂
9: end for

// Diffuse over actions between latent embeddings
10: for i = 0 . . . Ha − 1 do
11: âk+i ∼ N (0, I) // Predict action for each timestep in action horizon
12: for t = TIDM . . . 1 do
13: ϵ̂← ϵξ(âk+i; ẑk+i, ẑk+i+1, t)
14: Update âk+i using DDPM update with ϵ̂
15: end for
16: end for

// Execute actions
17: for i = 0 . . . Ha − 1 do
18: sk+i+1 ← env.step(sk+i, âk+i)
19: end for
20: k ← k +Ha

21: end while

4.1 LEARNING THE LATENT SPACE

We circumvent planning over high-dimensional image observations by planning over a learned latent
space. Similar to prior work in planning with world models (Watter et al., 2015; Ha & Schmidhuber,
2018; Hafner et al., 2020), we learn this latent space using an image reconstruction objective. Our
planner thus becomes similar to video models that forecast image frames in a learned latent space
(Yan et al., 2021; Hong et al., 2022; Blattmann et al., 2023).

In practical scenarios, we may have a limited demonstration dataset, but much larger and diverse
suboptimal or action-free datasets. In this phase of learning, we can make use of the visual informa-
tion in such datasets for training a more robust latent encoder.

In this work, we train a variational autoencoder (Kingma & Welling, 2014; Rezende et al., 2014) to
obtain a latent encoder E and decoderD. Specifically, we optimize the β-VAE (Higgins et al., 2017)
objective:

LVAE(θ, ϕ; x, z, β) = Eqϕ(z | x)[log pθ(x | z)]− βDKL(qϕ(z | x)||p(z)) (3)

where x is our original image, z is our learned latent representation of the image, θ are the parameters
for our decoder, ϕ are the parameters for our encoder, and β is the weight for the KL regularization
term.

5
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4.2 PLANNER AND INVERSE DYNAMICS MODEL

Our policy consists of two separate modules: (1) a planner over latent embeddings, and (2) an inverse
dynamics model. The planner and IDM both optimize the DDPM objective.

The planner is conditioned on the current latent embedding, which consists of the concatenated
latent image embedding and robot proprioception, and diffuses over a horizon of future embeddings.
We use Diffusion Policy’s Conditional U-Net architecture. Concretely, we optimize the following
objective:

Lplanner(ψ, z) = Et,ϵ[||ϵψ(ẑk+1, ..., ẑk+H ; zk, t)− ϵ||2] (4)

where zk is the latent embedding at timestep k of the trajectory; ẑk+1, ..., ẑk+H is the noised latent
embedding sequence, with corresponding noise ϵ;H is the maximum horizon of the forecasted latent
plan; t is the diffusion noise timestep; and ψ are the parameters of the planner diffusion model.

Our inverse dynamics model is trained to reconstruct the action between a pair of states, conditioned
on their associated latent embeddings.

LIDM(ξ, z) = Et,ϵ[||ϵξ(âk; zk, zk+1, t)− ϵ||2] (5)

where zk is the latent embedding at timestep k of the trajectory; âk is the noised action, with corre-
sponding noise ϵ; t is the diffusion noise timestep; and ξ are the parameters of the inverse dynamics
diffusion model.

During inference, the planner forecasts a future horizon of states. Like Diffusion Policy, we employ
receding-horizon control (Mayne & Michalska, 1988), and execute for a shorter horizon than the full
forecasted horizon. We use the inverse dynamics model to extract actions from latent embedding
pairs produced by the planner. We use DDPM sampling for both the planner and inverse dynamics
models.

5 EXPERIMENTS

We seek to answer the following questions:

• Is Latent Diffusion Planning an simple and effective imitation learning algorithm, com-
pared to state-of-the-art imitation learning algorithms or methods that may leverage subop-
timal data?

• Does our method leverage action-free data for improved planning?
• Does Latent Diffusion Planning enable us to effectively utilize and scale favorably with

suboptimal data?

5.1 EXPERIMENTAL SETUP

Tasks We focus our experiments on 4 image-based imitation learn-
ing tasks: (1) PushT, (2) Robomimic Lift, (3) Robomimic Can,
and (4) Robomimic Square. PushT, adapted from IBC and Dif-
fusion Policy (Florence et al., 2021; Chi et al., 2023), involves
pushing a block to a target position with 2D end-effector control.
Robomimic (Mandlekar et al., 2021) is a robotic manipulation and
imitation benchmark.

Dataset To demonstrate the effectiveness of
Latent Diffusion Planning, we assume a low-demonstration
data regime. For PushT, Can, and Square, we filter 100 demon-
strations out of the 200 total, and for Lift, we filter 3 demonstrations out of the 200 total. To
further emphasize the importance of suboptimal data, these demonstrations cover a limited state
space of the entire environment. For PushT, we filter demonstrations such that the agent never
reaches the right third of the 2D state space. For Robomimic tasks, we filter demonstrations based
on the initialization of the object of interest, such that the initialization does not cover the entire
distribution of object initializations during evaluations.

6
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Table 1: Leveraging Suboptimal Data. Latent Diffusion Planning, outperforms prior imitation
learning works as it better utilizes suboptimal data via VAE representation learning and training the
inverse dynamics model.

Method PushT Lift Can Square
DP 0.29 ± 0.002 0.36 ± 0.000 0.43 ± 0.010 0.37 ± 0.010

RC-DP 0.58 ± 0.000 0.38 ± 0.08 0.43 ± 0.030 0.50 ± 0.060

DP+Repr 0.19 ± 0.005 0.52 ± 0.020 0.56 ± 0.020 0.42 ± 0.040

UniPi-OL 0.18 ± 0.006 0.47 ± 0.050 0.10 ± 0.020 0.15 ± 0.070

UniPi-CL 0.51 ± 0.032 0.14 ± 0.020 0.34 ± 0.020 0.11 ± 0.010

LDP + Subopt (ours) 0.20 ± 0.013 0.83 ± 0.030 0.58 ± 0.020 0.47 ± 0.010

Our suboptimal data consists of failed trajectories from an under-trained behavior cloning agent. For
simplicity, we assume an observation horizon of 1 and a single-view image input for all tasks. We
use the third-person camera for Robomimic.

Baselines

• Diffusion Policy (DP) is a state-of-the-art imitation learning algorithm.

• Reward-Conditioned Diffusion Policy (RC-DP) utilizes suboptimal actions by condition-
ing the policy on a binary value indicating whether the action chunk comes from optimal
demonstrations or not. This method is inspired by reward-conditioned approaches (Kumar
et al., 2019b; Chen et al., 2021)

• Diffusion Policy with Representation Learning (DP+Repr) uses a VAE pretrained on
demonstration and suboptimal data as the observation encoder. This is representative of the
methods that leverage suboptimal data through representation learning.

• Open-Loop UniPi (UniPi-OL) is based off of UniPi (Du et al., 2023a), a video planner
for robot manipulation. UniPi-OL generates a single video trajectory, extracts actions, and
executes the actions in an open-loop fashion. We use a goal-conditioned behavior cloning
agent to reach generated subgoals (Wen et al., 2024).

• Closed-Loop UniPi (UniPi-CL) is a modification that allows UniPi to perform closed-
loop replanning over image chunks. Like LDP, UniPi-CL generates dense plans instead of
waypoints, though in image space. We learn an inverse dynamics model to extract actions.

Table 2: Leveraging Action-Free Data. LDP outperforms prior imitation learning works as it better
utilizes action free data via a state forecasting objective.

Method Lift Can Square
DP 0.36 ± 0.000 0.43 ± 0.010 0.37 ± 0.010

UniPi-OL + Action-Free 0.48 ± 0.060 0.15 ± 0.010 0.21 ± 0.03

LDP + Action-Free (ours) 0.55 ± 0.030 0.99 ± 0.010 0.40 ± 0.020

5.2 IMITATION LEARNING WITH SUBOPTIMAL DATA

In table 1, we present imitation learning results. First, LDP outperforms DP, which can only utilize
data with optimal actions. LDP, which uses suboptimal data for the VAE and IDM, can leverage
diverse data sources outside of the demonstration dataset.

RC-DP, a conditional variant of DP that utilizes suboptimal data, achieves competitive results for
PushT Square, while struggling to improve for Lift or Can. We hypothesize that for the Square
task, the primitive motions of reaching or grasping the object, which are partially covered by the
suboptimal dataset, provides a useful visuomotor prior for the policy. In addition, the suboptimal
data from PushT may provide a useful prior in how to interact with the object. LDP outperforms
RC-DP as it is able to leverage additional data directly for better action extraction, whereas RC-DP
and DP+Repr only use it to learn better representations.

7
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Figure 3: Visualizations of Generated Plans. UniPi-OL generates an entire trajectory for a GCBC
agent to follow. UniPi-CL generates single-step image sequences. LDP generates latent plans (vi-
sualized via the VAE decoder), using an IDM to execute the plan.

In addition, we consider using a pretrained encoder to extract image features for DP (DP-Repr).
We find that learning strong representations through pretraining leads to consistent improved perfor-
mance for all Robomimic tasks.

Next, we compare against UniPi, which plans over image subgoals (OL) or image chunks (CL). Due
to the low demonstration data regime, learning effective and accurate video policies is difficult, and
LDP strongly outperforms UniPi-OL. LDP also outperforms UniPi-CL in all Robomimic environ-
ments. We hypothesize that this is due to the difficulties learning to forecast dense image chunks.
For that reason, the high performance of UniPi-CL on PushT may be attributed to the simpler envi-
ronment dynamics and observations.

5.3 IMITATION LEARNING WITH ACTION-FREE DATA

Imitation learning policies that model actions, such as DP, are unable to use action-free data, while
planning-based approaches can benefit from this additional data. We train the UniPi video with addi-
tional action-free demonstrations. We find that this leads to a slight boost in performance, compared
to results from table 1, but it still does not outperform LDP. We also train the LDP planner with
additional action-free demonstrations. We use a VAE pretrained with demonstration and suboptimal
images, and only add the action-free data for the planner, to isolate the effect of action-free data for
the planner. We find that action-free demonstrations leads to a large increase in performance in Can,
although surprisingly, it does not improve performance for Lift or Square. The improvement in Can
may be due to the visual complexity of the scene, where action-free data may provide additional
reasoning. Both the third-person Lift and Square views have minimal table or background textures,
whereas the Can task observations are comparatively zoomed out, with two unique table textures
and a noticeable floor texture.

5.4 ABLATIONS: SUBOPTIMAL DATA

Suboptimal data can be used for (1) training the VAE (any image data, whether action-labeled or
action-free, suffices), and (2) training the IDM. table 3 shows the effects of using each type of data
across different suboptimal dataset sizes: no suboptimal data, 1,000 suboptimal trajectories, and
2,000 suboptimal trajectories.

8
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Table 3: Scaling the Amount of Suboptimal Data. We investigate the effects of using suboptimal
data for pretraining the VAE encoder and for training the IDM. The size of the suboptimal dataset
minimally affects performance, but using the data for both encoder and the IDM leads to stronger
performance.

Method Lift Can Square
No Subopt 0.50 ± 0.030 0.40 ± 0.020 0.25 ± 0.030

Subopt 1k (Encoder) 0.74 ± 0.060 0.63 ± 0.010 0.39 ± 0.010

Subopt 1k (Encoder & IDM) 0.83 ± 0.030 0.54 ± 0.000 0.47 ± 0.030

Subopt 2k (Encoder) 0.77 ± 0.090 0.58 ± 0.020 0.37 ± 0.010

Subopt 2k (Encoder & IDM) 0.83 ± 0.030 0.58 ± 0.020 0.47 ± 0.010

First, we find that not using suboptimal data drastically hurts performance. Only using suboptimal
data for the VAE training dramatically improves performance, as it improves the quality of latent
embeddings used for both planning and action extraction. Qualitatively and quantitatively, we find
that image reconstruction on evaluation images from each environment improves with the use of
suboptimal data. Visualized plans naturally look more cohesive, because the underlying latent em-
beddings used for planning are better structured.

Next, we find that using suboptimal data for inverse dynamics typically improves performance fur-
ther. This suggests that additional environment interactions helps learn a more generalizable IDM,
which can more faithfully extract actions from the diffused plan.

Scaling the amount of suboptimal data from 1,000 to 2,000 trajectories does not lead to notice-
able improvements in performance. We hypothesize that the environments may be simple enough
that further data does not bring extraordinary benefits. In addition, the difference between the two
datasets may be minimal, and using even larger suboptimal datasets or different types of suboptimal
data may lead to further improvements.

6 DISCUSSION

We presented Latent Diffusion Planning, a simple planning-based method for imitation learning. We
show that our design using powerful diffusion models for latent state forecasting enables competitive
performance with state-of-the-art imitation learning. We further show this latent state forecasting
objective enables us to easily leverage heterogeneous data sources. In low-demonstration data imi-
tation learning regime, LDP outperforms prior imitation learning work that does not leverage such
additional data as effectively.

Limitations. One limitation of the current approach is that the latent space for planning is sim-
ply learned with a variational autoencoder and might not learn the most useful features for control.
Future work will explore different representation learning objectives. Furher, our method requires
diffusing over states, which incurs additional computational overhead as compared to diffusing ac-
tions. However, we expect continued improvements in hardware and inference speed will mitigate
this drawback. Finally, we did not explore applying recent improvements in diffusion models (Pee-
bles & Xie, 2023; Lipman et al., 2022), which will be important to scale to real-world applications.

Future work. We have validated in simulation the hypothesis that latent state forecasting can lever-
age heterogeneous data sources. Future work will evaluate whether this can be used to improve
practical real-world applications. One direction is to use a diverse dataset of human collected data,
such as with handheld data collection tools (Young et al., 2021). Another approach would be to use
autonomously collected robotic data (Konstantinos Bousmalis* & Heess, 2023). As these alternative
data sources are easier to collect than demonstrations, they represent a different scaling paradigm
that can outperform pure behavior cloning approaches. By presenting a method that can leverage
such data, we believe this work makes a step toward more performant and general robot policies.
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we will open-source the implementations for our method. Our work primarily
builds upon existing work Chi et al. (2023); Du et al. (2023a); Hansen-Estruch et al. (2023); Peebles
& Xie (2023), which are also publicly available. In the Appendix, we include implementation details
and hyperparameters.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Diffusion Policy We use a Jax reimplementation of the convolutional Diffusion Policy, which we
verify can reproduce reported Robomimic benchmark results. For improved performance, we pro-
cess the 512-dimensional ResNet feature with an MLP [512, 256, 32] with ReLU activations and a
final tanh activation.

UniPi We use the open-source implementation of UniPi (Ko et al., 2023). For UniPi-OL and UniPi-
CL, we predict 7 future frames. During training time, for UniPi-OL, the 7 future frames are evenly
sampled from a training demonstration. For UniPi-CL, the 7 future frames are the next consecutive
frames.

The goal-conditioned behavior cloning agent is implemented as a goal-conditioned Diffusion Pol-
icy (Chi et al., 2023) agent, and it is trained on chunks of 16. The inverse dynamics model is based
off of Hansen-Estruch et al. (2023), and shares the same architecture as the IDM used in LDP.

We train the video prediction models for 100k gradient steps with batch size 16.

LDP The LDP VAE is adapted from Diffusion Transformer (Peebles & Xie, 2023). The plan-
ner is based directly off of the convolutional U-Net from Diffusion Policy (Chi et al., 2023), with
modifications to plan across latent embeddings instead of action chunks. The IDM is based off of
Hansen-Estruch et al. (2023).

Table 4: Diffusion Policy Architecture Hyperparameters

UniPi-OL GCBC DP and LDP LDP - Square
down dims [256, 512, 1024] [256, 512, 1024] [256, 512, 1024, 2048]
n diffusion steps 100 100 100
batch size 512 256 256
lr 1e-4 1e-4 1e-4
n grad steps 200k 500k 500k

Table 5: IDM Architecture Hyperparameters

UniPi-CL IDM LDP IDM
n blocks 3 5
n diffusion steps 100 100
batch size 512 256
lr 1e-4 1e-4
n grad steps 200k 500k

Table 6: VAE Architecture Hyperparameters

VAE
block out channels [128, 256, 256, 256, 256, 256]
down block types [DownEncoderBlock2D] x5
up block types [UpDecoderBlock2D] x5
latent channels 4
PushT Latent Dim (3, 3, 4)
Robomimic Latent Dim (2, 2, 4)
PushT KL Beta 1e-5
Lift KL Beta 1e-5
Can KL Beta 5e-6
Square KL Beta 5e-6
n grad steps 300k
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Figure 4: Visualizations of UniPi-OL plans. In PushT, there are small visual mistakes, such as a
deformed T or a missing agent. Can, a more visually complex environment, also suffers from this
challenge.

A.2 SIMULATION EXPERIMENTS

In our experiments, we report results on 2 seeds, across the best performing checkpoint from last
5 saved checkpoints. PushT results are based on environment reward, and Robomimic results are
reported as success rates. For UniPi, we train two goal-conditioned or inverse dynamics models and
report success from the 200k checkpoint.

For UniPi-OL evaluations, we predetermine the number of steps for the GCBC to reach each image
subgoal based on the demonstration lengths. For PushT, evaluation episode lengths are 200 steps;
Lift is 60 steps; Can is 140 steps; and Square is 160 steps. This maximum horizon is also enforced
for UniPi-CL evaluations, for consistency.

A.3 UNIPI PLAN VISUALIZATIONS

We include visualizations of closed-loop replanning from UniPi-CL and LDP on our website:
https://sites.google.com/view/latent-diffusion-planning/home

We include examples of non-cherrypicked UniPi-OL plans (trained w/o action-free data) in fig. 4.
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