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ABSTRACT

Spiking Neural Networks (SNNs) are attracting growing interest for their energy-
efficient computing when implemented on neuromorphic hardware. However,
directly training SNNs, even adopting batch normalization (BN), is highly challeng-
ing due to their non-differentiable activation function and the temporally delayed
accumulation of outputs over time. For SNN training, this temporal accumulation
gives rise to Temporal Covariate Shifts (TCS) along the temporal dimension, a
phenomenon that would become increasingly pronounced with layer-wise compu-
tations across multiple layers and multiple time-steps. In this paper, we introduce
TAB (Temporal Accumulated Batch Normalization), a novel SNN batch normal-
ization method that addresses the temporal covariate shift issue by aligning with
neuron dynamics (specifically the accumulated membrane potential) and utilizing
temporal accumulated statistics for data normalization. Within its framework,
TAB effectively encapsulates the historical temporal dependencies that underlie
the membrane potential accumulation process, thereby establishing a natural con-
nection between neuron dynamics and TAB batch normalization. Experimental
results on CIFAR-10, CIFAR-100, and DVS-CIFAR10 show that our TAB method
outperforms other state-of-the-art methods.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are known to be biologically inspired artificial neural networks
(ANNs) and have recently attracted great research interest (Chowdhury et al., 2022; Ding et al.,
2022). The attraction of SNNs lies in their ability to deliver energy-efficient and fast-inference
computations when implemented on neuromorphic hardware such as Loihi (Davies et al., 2018)
and TrueNorth (Akopyan et al., 2015; DeBole et al., 2019). These advantages arise from the fact
that SNNs utilize spikes to transmit information between layers, whereby the networks circumvent
multiplication during inference (Roy et al., 2019). However, the discrete and non-differentiable
nature of the binary firing functions makes it difficult to directly train deep SNNs. ANN-to-SNN
conversion (Diehl et al., 2015; Bu et al., 2022; Jiang et al., 2023) and directly training with surrogate
gradients back-propagation (Neftci et al., 2019; Deng et al., 2022; 2023) are two typical solutions.

Batch Normalization (BN) has found extensive use in ANNs and has seen tremendous success in
boosting their performance by reducing the internal covariate shift (ICS) and flattening the loss
landscape (Ioffe & Szegedy, 2015; Santurkar et al., 2018). In ANNs, ICS refers to changes in the
distribution of layer inputs caused by updates of preceding layers, while in SNNs, the Temporal
Covariate Shift (TCS) phenomenon (Duan et al., 2022) has been identified due to updates of preceding
layers and prior time-steps, which transpires along the additional temporal dimension. Within
SNNs, synaptic currents are sequentially fed into spiking neurons, with spike-triggered asynchronous
currents accumulating in the membrane potential. Whenever this accumulated membrane potential
exceeds a threshold, a spike is generated. This temporal dependency on membrane accumulation
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has the potential to amplify the internal covariate shift across the temporal domain. The intertwining
of this temporal dependency with the TCS phenomenon, presents a significant challenge in direct
training of SNNs especially for the integration of BN techniques into SNNs.

When it comes to BN techniques for SNNs, only a few methods have been proposed. These
methods either normalize data jointly by aggregating data across the temporal dimension or perform
independent normalization at each discrete time-step. For example, Kim & Panda (2021) conducts
independent batch normalization separately at each time-step. However, this approach uses separate
sets of mean, variance, and scale and shift parameters at each time-step, failing to account for the
temporal dependencies of the input spikes. While Zheng et al. (2021) merges the data along the time
dimension and utilizes shared batch statistics across all time-steps for normalization. Nonetheless,
introducing such overall statistics may limit the flexibility to capture varying temporal characteristics
at different time-steps. On the other hand, Duan et al. (2022) attempts to tackle the TCS issue by
assigning different weights to each time-step, while still utilizing shared batch statistics across all
time-steps for normalization. Although these methods improve upon the performance of the SNN
models, they do not significantly address the alignment with the neuron dynamics, i.e., the membrane
accumulation dependency, or provide a potential to do so.

In this paper, we propose TAB (Temporal Accumulated Batch Normalization) as a solution to
effectively address these challenges by closely aligning with the neuron dynamics, specifically the
accumulated membrane potential, and providing more accurate batch statistics. This alignment
establishes a natural connection between neuronal dynamics and batch normalization in SNNs.
Neuron dynamics refer to the changes in the membrane potential of a neuron over time as it integrates
input signals and generates spikes. Here, “aligning with neuron dynamics” means that TAB is tailored
to mimic or capture neurons’ behavior as closely as possible, normalizing data in line with the
temporal dependencies and information accumulation within neurons. This alignment ensures that
TAB’s normalization process corresponds well with how neurons naturally operate in SNNs, thus
leading to improved performance by addressing the temporal covariate shift problem.

2 BACKGROUND

2.1 RELATED WORK

SNN Learning Methods. Many works have recently emerged and focused on the supervised training
of SNNs (Wu et al., 2021a; Zhou et al., 2021; Meng et al., 2022; Xiao et al., 2021). These SNN
learning methods can be mainly categorized into two classes: ANN-to-SNN conversion (Diehl et al.,
2015; Deng & Gu, 2021; Ding et al., 2021; Han et al., 2020; Li et al., 2021a; Bu et al., 2022; Hao
et al., 2023; Lv et al., 2023) and end-to-end training with back-propagation (Fang et al., 2021a; Zhang
& Li, 2020; Deng et al., 2022; Xiao et al., 2022; Guo et al., 2022; Meng et al., 2023). ANN-to-SNN
conversion takes a pre-trained ANN and converts it into an SNN by preserving the weights and
replacing the ReLU activation function with a spiking activation function. This approach can be
efficient in obtaining an SNN since the ANN has already been trained and the weights can be directly
copied to the SNN. However, the resulting performance of the converted SNN may not be as good as
that of the original source ANN. It usually requires a large number of time-steps for the converted
SNN to achieve performance comparable to the source ANN. Direct end-to-end training usually
employs the surrogate gradients (Wu et al., 2018; 2019; Neftci et al., 2019; Zheng et al., 2021;
Eshraghian et al., 2021) method to overcome the non-differentiable nature of the binary spiking
function to directly train SNNs from scratch. This method can yield comparable performance to that
of traditional ANNs with a few time-steps.

BN Method in ANNs. Batch normalization methods have significantly contributed to the success of
ANNs by boosting their learning and inference performance (Ioffe & Szegedy, 2015; Xiong et al.,
2020; Bjorck et al., 2018). BN is a technique used to stabilize the distribution (over a mini-batch) of
inputs to each network layer during training. This is achieved by introducing additional BN layers
which set the first two moments (mean and variance) of the activation distribution to zero and one.
Then, the batch-normalized inputs are scaled and shifted using learnable/trainable parameters to
preserve model expressiveness. This normalization is performed before the non-linearity is applied.
The BN layer can be formulated as,

BN(xi) = γx̂i + β , x̂i =
xi − µ√
σ2 + ϵ

, i = 1, · · · , b .
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The mini-batch mean µ and variance σ2 are computed by µ = 1
b

∑b
i=1 xi and σ2 = 1

b

∑b
i=1(xi−µ)2.

BN Method in SNNs. Due to the additional temporal dimension, several recent studies have
proposed modifications to batch normalization to fit the training of SNNs. The threshold-dependent
Batch Normalization (tdBN) method (Zheng et al., 2021) is introduced to alleviate the gradient
vanishing or explosion during training SNNs. The tdBN utilizes shared BN statistics and parameters
(as the conventional BN) by merging the data along the temporal dimension. Similar to tdBN, the
TEBN method (Duan et al., 2022) employs shared BN statistics by merging the data along the
temporal dimension, then scales using different weights to capture temporal dynamics. Different
from them, BNTT (Kim & Panda, 2021) uses separate BN statistics and parameters at each time-step
t independently, however, it ignores the temporal dependencies of the input spikes. Differently, our
TAB method leverages the accumulated pre-synaptic inputs in the temporal domain, which is in
alignment with the membrane potential accumulation in the LIF model.

2.2 SPIKING NEURON DYNAMICS AND NEURON MODEL

SNNs use binary spike trains to transmit information between layers. Each neuron maintains its
membrane potential dynamics ui(t) over time, “integrates” the received input with a leakage (much
like an RC circuit), and fires a spike if the accumulated membrane potential value exceeds a threshold.
We adopt the widely used leaky-integrate-and-fire (LIF) model. Neuron dynamics refer to the changes
in the membrane potential of a neuron over time as it integrates input signals and generates spikes,
which can be formulated as a first-order differential equation (ODE),

LIF Neuron Dynamics: τ
dui(t)

dt
= −ui(t) +RIi(t), ui(t) < Vth, (1)

where Ii(t) is the injected input current to the i-th neuron at time t, ui(t) is the membrane potential
of the i-th neuron at time t in the current layer, Vth is the membrane threshold, and τ denotes the
membrane time constant, and R denotes the resistor. For numerical simulations of LIF neurons, we
consider a discrete version of the neuron dynamics. Similar to Wu & He (2018), the membrane
potential ui[t] of the i-th neuron at time-step (discrete) t is represented as:

ui[t] = λui[t− 1] +
∑

j∈pre(i)

Wijoj [t] . (2)

We adopt a simple current model RIi[t] =
∑

j∈pre(i) Wijoj [t], with R absorbed in weights Wij .
Here, oi[t] denotes the binary spike of neuron i at time-step [t], taking a value of 1 when a spike
occurs and 0 otherwise. The index j refers to pre-synaptic neurons. The membrane potential ui[t]
increases with the summation of input spikes from all the pre-synaptic neurons pre(i) connecting the
current i-th neuron through synaptic weight Wij . It also decreases with a leak factor λ (0 < λ ⩽ 1),
where λ and the time constant τ are related by λ = e−

∆t
τ . The discrete LIF model degenerates to

the IF model when λ = 1, therefore in the following, we only use the LIF model with 0 < λ ⩽ 1.
When the neuron’s membrane potential ui[t] exceeds the threshold Vth, the neuron will fire a
spike with oi[t] = 1 and then reset the membrane potential to 0. By combining the sub-threshold
dynamics Eq. (2) and hard reset mechanism, the whole iterative LIF model can be formulated by:

Discrete LIF Neuron Model: ui[t] = λui[t− 1](1− oi[t− 1]) +
∑

j∈pre(i)

Wijoj [t] , (3)

oi[t] = H(ui[t]− Vth) , (4)

where H(x) is the Heaviside step function, i.e., the non-differentiable spiking activation function.
H(x) = 1 if x > 0 and H(x) = 0 otherwise.

3 PROPOSED TAB METHOD

In this section, we will present our TAB method. We begin by introducing the Temporal Dependencies
and Temporal Covariate Shift in SNNs which motivate our method. Following this, we introduce
our TAB method, which addresses these challenges. Finally, we establish a theoretical connection
between the neural dynamics and the TAB method by deriving the closed-form solution of LIF
dynamics ODE.
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3.1 MOTIVATION: TEMPORAL DEPENDENCIES AND TEMPORAL COVARIATE SHIFT

Temporal dependencies in SNNs arise naturally from the sequential nature of spike events, where
synaptic currents (also known as spike trains) are sequentially fed into spiking neurons, playing a
pivotal role in capturing the dynamic evolution of input spikes over time. These networks model the
dynamics of biological neurons through ODEs and utilize spikes to transmit information (Eshraghian
et al., 2021). In SNNs, each neuron maintains a membrane potential, continuously ‘integrating’
and accumulating received spikes over time. It emits a spike only when its accumulated membrane
potential exceeds a threshold, remaining inactive otherwise in the current time-step (Li et al., 2021a).
This process highlights the intrinsic influence of temporal dynamics on the temporally delayed
accumulation of the membrane potential. We refer to this accumulation dependency over the time
dimension as temporal dependencies.

In SNNs, a phenomenon known as Temporal Covariate Shift (TCS) has been identified (Duan et al.,
2022), which represents ICS (Internal Covariate Shift) (Ioffe & Szegedy, 2015) across the additional
temporal dimension, and it refers to changes in the distribution of layer inputs caused by updates
of preceding layers, and prior time-steps. Within the framework of SNNs, synaptic currents are
sequentially fed into spiking neurons, and spike-triggered asynchronous currents are accumulated
into the membrane potential which will trigger a spike when it exceeds the membrane threshold. This
temporal dependency on membrane potential accumulation intensifies the internal covariate shift
along the temporal domain. This temporal dependency, together with the TCS phenomenon, presents
a significant challenge when integrating BN techniques into SNNs.
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··
·
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Figure 1: The temporal dependencies and neuron dy-
namics in SNNs, specifically the temporal dependency
associated with the accumulation of membrane potential
in the discrete LIF model. The black arrows represent
the temporally delayed accumulation over time, while
the red arrows indicate the information flow along the
spatial layers (vertical axis) and the temporal domain
(horizontal axis).

Our motivation comes along these lines,
how to perform batch normalization in
training of SNNs, but keeping in mind the
temporal dependency of the data, as well as
the temporal covariate shift. A simple, yet
elegant, method that aligns closely with
this underlying neuron dynamics comes
with Temporal Accumulated Batch nor-
malization (TAB). Generally speaking, our
TAB method addresses the temporal covari-
ate shift issue by aligning with the inherent
temporal dependencies in SNNs. Fig. 1
illustrates the temporal dependencies and
neuron dynamics and showcases the in-
volvement of our proposed TAB method.

Neuronal dynamics refers to the change
in membrane potential over time as a neu-
ron integrates input signals and generates
spikes. This temporal accumulation of the
membrane potential in SNNs enables neu-
rons to process input data by taking into
account both past and current time-steps
(with no access to future information be-
yond t), and the TAB method aligns closely
with this underlying neuron dynamics and
alleviates the TCS issue.

3.2 TEMPORAL ACCUMULATED BATCH NORMALIZATION (TAB)

To address the temporal covariate shift issue and to model the temporal distributions in SNNs, our TAB
method aligns with the inherent temporal dependencies by utilizing the temporal accumulated batch
statistics (µ1:t, σ

2
1:t) over an expanding window [1, t]. To achieve this, we establish the relationship

between the expectations and variances across accumulated time-steps (µ1:t, σ
2
1:t) and those of the
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single time-step (µ[t], σ2[t]), as follows:

µ1:t =
1

t

t∑
s=1

µ[s] , σ2
1:t =

1

t

t∑
s=1

σ2[s] . (5)

Our proposed TAB method utilizes Temporal Accumulated Statistics (µ1:t, σ
2
1:t) for data normaliza-

tion, and then assigns different learnable weights ω[t] > 0 to each time-step to distinguish their effect
on the final result. The TAB method is given by

x̂i[t] = TAB(xi[t]) = ω[t]

(
γ[t]

xi[t]− µ1:t√
σ2
1:t + ϵ

+ β[t]

)
= γ̂[t]

xi[t]− µ1:t√
σ2
1:t + ϵ

+ β̂[t] , ω[t] > 0 . (6)

Given the pre-synaptic inputs xl[t] to layer l at time-step t, the spiking neuron with TAB is as follows,

xl[t] = W lol−1[t] , (7)

ul[t] = λul[t− 1](1− ol[t− 1]) + x̂l[t] , (8)

where x̂l[t] = TAB(xl[t]) = γ̂[t]
xl[t]− µ1:t√

σ2
1:t + ϵ

+ β̂[t] . (9)

Here ul[t] and ol[t] denote the membrane potential and binary spike outputs of all neurons in l-th
layer at time-step t, and W l denotes the synaptic weights between layer l − 1 and layer l. We assign
different positive weights ωl[t] > 0 to each time-step which is different from Deng et al. (2022)
and γ̂[t] = ω[t]γ[t], β̂[t] = ω[t]β[t]. The weights ω[t] and parameters γl[t],βl[t] are learnable,
which are trained during the training process. For details, refer to Append. A and Append. B. Refer
to Append. C for the learning rules to compute the gradients.

Computation of the temporal accumulated statistics is dynamically performed, in a moving averaging
fashion, without the need to store batch data from all previous time-steps. This not only saves memory,
but is also an important feature of our novel approach. For the algorithm details of the TAB method,
please refer to algorithm 1 in the Appendix.

The rationale behind employing this accumulated spatial-temporal information in TAB comes from
the sequential processing and temporal dependency characteristics intrinsic to spiking neurons.
The TAB method utilizes the accumulated batch statistics (µ1:t, σ

2
1:t) over an expanding window

[1, t]. Fig. 2 illustrates an overview of four typical BN methods used in SNNs: default BN (Ioffe &
Szegedy, 2015), BNTT (Kim & Panda, 2021), tdBN (Zheng et al., 2021), and TEBN (Duan et al.,
2022). A comprehensive overview of statistics and parameters used by these methods is summarized
in Table S1 in the Append. B.

As shown in Table S1, BNTT (Kim & Panda, 2021) considers BN statistics at each time-step
individually and calculates different BN statistics (µ[t], σ2[t]) and BN parameters (γ[t]) at each
time-step, which ignores the temporal dependencies of the input spikes. In contrast, tdBN (Zheng
et al., 2021) computes the same overall BN statistics (µ1:T , σ

2
1:T ) and BN parameters (γ, β) across all

time-steps, but overlooking the temporal differences. Similarly, TEBN (Duan et al., 2022) employs
the same overall BN statistics (µ1:T , σ

2
1:T ) as tdBN, but introduces distinct weight parameters p[t] at

each time-step to capture time-specific variations. However, both tdBN and TEBN, computing BN
statistics over T time-steps, implicitly assume access to data from all T time-steps, that is, even if the
current time-step is t < T , future information up to time-step T can also be obtained, which is not true
for the temporal accumulation of membrane potential nor the neural dynamics. As illustrated in Fig. 2,
the input statistics of tdBN and TEBN consider the statistics of all the time-steps and all effective
batches, while BNTT considers BN statistics at each time-step. Despite these differences, none of the
existing methods have addressed the alignment with the membrane potential accumulation.

3.3 THEORETICAL CONNECTION BETWEEN TAB METHOD AND THE NEURAL DYNAMICS

TAB is tailored to capture the temporal dependencies of neurons as closely as possible by aligning
with the neuron dynamics. To explore the theoretical connection between the TAB method and
the neural dynamics, we need to delve into the LIF dynamics from the perspective of differential
equations. In SNNs, each neuron maintains the dynamics of its membrane potential U(t) over time,
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Figure 2: Comparison of different Batch Normalization methods with one given channel. In conven-
tional BN, there is no time dimension. BNTT independently normalizes data at each time-step. The
tdBN jointly normalizes data across all time-steps. TEBN shares a similar approach with tdBN but
incorporates per-time-step scaling of the normalized data. In contrast, our TAB normalizes data using
temporal accumulated statistics up to time-step t and subsequently applies scaling.

by “integrating” the received input current I(t) with a leakage term until a spike is triggered. This is
described as a first-order linear differential equation (ODE),

Neuron Dynamics as an ODE: τ
dU(t)

dt
= −U(t) +RI(t), U(t) < Vth , (10)

where I(t) represents the input current injected into the neuron at time t, and it is a function of t
(note that I(t) is not a constant value). The closed-form solution of the LIF neuron dynamics (as
an ODE) can be derived with analytical and theoretical methods. Additional details are available
in Append. D.1 and Append. D.2.
Lemma 1. The analytical closed-form solution for the first-order IVP (Initial Value Problem) of the
LIF dynamics ODE is as follows (Gerstner et al., 2014),

U(t) = exp

(
− t

τ

)(∫ t

0

R

τ
I(s)exp

( s
τ

)
ds+ U0

)
. (11)

Remark 1. When the neuron initiates at the value U0 with no further input, i.e., I(t) = 0, the
closed-form solution of the ODE Eq. (11) shows that the membrane potential U(t) will start at
U0 and exponentially decay with a time constant τ , U(t) = U0exp

(
− t

τ

)
. Consequently, we

can determine the membrane potential ratio, often referred to as the leak factor, denoted by λ,

as λ = U(t+∆t)
U(t) =

U0exp(− t+∆t
τ )

U0exp(− t
τ )

= exp
(
−∆t

τ

)
. This relationship enables us to formulate the

discretization scheme as: U [t+ 1] = λU [t].

This remark provides insights into the behavior of the membrane potential in the absence of input
and establishes the discretization principle used for LIF modeling.
Lemma 2. Through applying integration by parts, we derive another equivalent form of the closed-
form solution for the LIF dynamics, denoted as:

U(t) =

exponential decay term︷ ︸︸ ︷
(U0 −RI0)exp

(
− t

τ

)
+

input current model︷ ︸︸ ︷
RI(t)︸ ︷︷ ︸

commonly considered in the discrete LIF model

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

absent in the discrete LIF model

. (12)

With the application of the Riemann–Stieltjes integral, the discretization version of the closed-form
solution is represented as:

U [t] =

(U0−RI0)exp(− t
τ )︷ ︸︸ ︷

λU [t− 1] +

WO[t]=RI[t]︷︸︸︷
X[t] −

n∑
i=0

giX[si]︸ ︷︷ ︸
TAB method

. (13)
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In this formulation Eq. (13), the first exponential decay term, λU [t − 1], captures the temporal
dependency of the membrane potential from the preceding time-step. The second term, a simple
current input model, RI[t] = WO[t], incorporates spikes from the pre-connected neurons at the
current time-step [t]. Significantly, the third term, representing the temporal accumulated input across
all previous time-steps through a weighted sum of the input currents X[si] with associated weights gi,
introduces a novel concept. Here 0 = s0 < · · · < si < · · · < sn = t denotes a partition of the time
interval [0, t] with a finite sequence of numbers. Refer to Append. D.3 for the details. Importantly,
note that this accumulation mechanism of the inputs is a foundational component of the TAB method,
providing a link that connects the TAB method and the neural dynamics.
Remark 2. The commonly used discrete LIF model in Eq. (2), as denoted by U [t] = λU [t−1]+X[t],
is derived from the first two terms of the discretization version of the closed-form solution Eq. (13).
The third term, representing the temporal accumulated input across all previous time-steps, however,
is not incorporated into the discrete LIF models typically used in practice.
Remark 3. Note that the recursive application of the discrete LIF model, as denoted by U [t] =
λU [t − 1] + X[t], yields the temporal evolution of the membrane potential as U [t] = λtU [0] +∑t

s=1 λ
t−sX[s]. This result shows the temporal dependency of the membrane potential accumulation

in LIF neuron dynamics.

Recalling the TAB method introduced in Sect. 3.2, our TAB method normalizes data utilizing
temporal accumulated batch statistics (µ1:t, σ

2
1:t) across an expanding window [1, t], where µ1:t

and σ2
1:t represent the temporal accumulated information up to time-step [t]. The utilization of the

temporal accumulated batch statistics aligns well with the accumulation mechanism of the membrane
potentialthrough Eq. (13). Consequently, it alleviates the temporal covariate shift issue which refers
to the changes in the distribution of layer inputs resulting from updates of preceding layers and prior
time-steps. The entire TAB method procedure and membrane updates can be linked through Eq. (13),
derived by solving the LIF dynamics ODE. This equation naturally connects TAB batch normalization
to neuron dynamics, as evident in Eq. (13).

Upon comparing the commonly used discrete LIF model in Eq. (2) with the discrete closed-form
solution in Eq. (13), it shows that the TAB method reintroduces the accumulation term into the
normalization procedure. This is achieved by using temporal accumulated batch statistics from
time-step 1 to t. While the temporal accumulated batch statistics employed by the TAB method do
not replicate the exact term in Eq. (13), but as an approximation. Thus, there exists no one-to-one
functional mapping between the two. The adjustment within TAB method brings the discrete LIF
model closer to its analytical closed-form counterpart, thus, TAB can work well in addressing the
temporal covariate shift issue. This establishes a natural connection between neuron dynamics and
batch normalization.

4 EXPERIMENTS

In this section, we conduct extensive experiments on large-scale static and neuromorphic datasets,
CIFAR-10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), and DVS-CIFAR10 (Li
et al., 2017), to verify the effectiveness of our proposed TAB method. We utilize the VGG network
architecture and ResNet architecture. Firstly, we perform a comparative analysis of our TAB method
with other BN methods in the context of SNNs. Further, we compare our TAB method with other
state-of-the-art approaches. For implementation details, refer to Append. E.

4.1 COMPARISON WITH OTHER BN METHODS

We conduct our evaluation by comparing the performance of the proposed TAB method and other
batch normalization methods in the context of SNNs. To ensure fairness in our comparisons, we do
not employ advanced data augmentation techniques like cutout (DeVries & Taylor, 2017). Table 1
provides a comprehensive overview of the the test accuracy on both traditional static dataset CIFAR-
10, CIFAR-100 and neuromorphic dataset DVS-CIFAR10. On the CIFAR-10 dataset, our TAB
method demonstrates remarkable performance improvement, achieving a top-1 accuracy of 94.73%
with the ResNet-19 network using only 2 time-steps. Notably, this surpasses the performance of
TEBN using 6 time-steps. Furthermore, when using the same network architecture, TAB consistently
outperforms other BN methods, even with fewer time-steps T . This pattern holds true for other
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Table 1: Comparison between the proposed TAB method and other BN methods in SNNs.

Dataset Model Method Architecture Time-steps Accuracy (%)

CIFAR-10

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 91.55
NeuNorm (Wu et al., 2019) Surrogate Gradient CIFARNet 12 90.53

BNTT (Kim & Panda, 2021) Surrogate Gradient VGG-9 20 90.30
tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 6 / 4 / 2 93.16 / 92.92 / 92.34

TEBN (Duan et al., 2022) Surrogate Gradient VGG-9 4 92.81

ResNet-19 6 / 4 / 2 94.71 / 94.70 / 94.57

TAB (Ours) Surrogate Gradient VGG-9 4 93.41
ResNet-19 6 / 4 / 2 94.81 / 94.76 / 94.73

CIFAR-100

SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN VGG-16 2500 70.90
BNTT (Kim & Panda, 2021) Surrogate Gradient VGG-11 50 66.60

TEBN (Duan et al., 2022) Surrogate Gradient VGG-11 4 74.37
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-19 6 / 4 / 2 76.41 / 76.13 / 75.86

TAB (Ours) Surrogate Gradient VGG-11 4 75.89
ResNet-19 6 / 4 / 2 76.82 / 76.81 / 76.31

DVS-CIFAR10

NeuNorm (Wu et al., 2019) Surrogate Gradient 7-layer CNN 40 60.50
BNTT (Kim & Panda, 2021) Surrogate Gradient 7-layer CNN 20 63.2

tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 10 67.8
TEBN (Duan et al., 2022) Surrogate Gradient 7-layer CNN 10 75.10

TAB (Ours) Surrogate Gradient 7-layer CNN 4 76.7

ImageNet

SlipReLU (Jiang et al., 2023) ANN-to-SNN ResNet-34 32 66.61
tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-34 6 63.72
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-34 4 64.29

TAB (Ours) Surrogate Gradient ResNet-34 4 67.78
ResNet-34 2 65.94

datasets as well. For instance, on the DVS-CIFAR10 dataset, our TAB method achieves 1.6% better
performance (76.7% v.s. 75.10%) while utilizing fewer time-steps (4 v.s. 10) than TEBN. Similarly,
on CIFAR-100, our method exhibits a 0.55% increase in accuracy (76.31% v.s. 75.86%) compared to
TEBN when both use 2 time-steps. All the accuracy values for other methods reported in the table
are drawn from the existing literature.

4.2 COMPARISON ON LARGE-SCALE IMAGENET DATASET

In this section, we investigate the effectiveness of our TAB method on the ImageNet dataset, renowned
for its extensive collection of more than 1.25 million training images and 50, 000 test images (Deng
et al., 2009). The training set of ImageNet offers 1, 280 training samples for each label, and we
apply standard preprocessing and augmentation techniques (He et al., 2016) to the training data. Test
data is centered and cropped to dimensions of 224× 224. The evaluation employs the ResNet-34
architecture, a widely recognized model. The network is trained using the AdamW optimizer with
an initial learning rate of 0.00002 and a weight decay of 0.02. Training occurs on an NVIDIA RTX
A6000 with 4 GPUs, each handling a batch size of 24. To ensure unbiased statistics, we follow Zheng
et al. (2021) and synchronize batch mean and variance across devices.

The results, presented in Tables Table 1 and Table S4, reveal the efficacy of our TAB method.
Notably, even with a modest training duration of 80 epochs for T = 4, the TAB method exhibits
a 3.29% improvement on ResNet-34 over TEBN at T = 4 (TAB with 67.78% vs. TEBN 64.29%).
Impressively, with only 2 time-steps (T = 2), our TAB method achieves an accuracy of 65.94% on
ImageNet, showcasing its promising performance.

4.3 COMPARISON WITH THE STATE-OF-THE-ART APPROACHES

In this section, we present a comprehensive comparison of our TAB method with other state-of-the-art
learning methods for SNNs using CIFAR-10 as the benchmark dataset, as illustrated in Table 2.
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On the VGG-11 architecture, our TAB method achieves an impressive accuracy of 94.73% while
utilizing 4 time-steps, outperforming all the ANN-to-SNN conversion and hybrid training methods
that require more time-steps. Besides, we follow TEBN (Duan et al., 2022) and adopt the cutout
augmentation (DeVries & Taylor, 2017) on static datasets denoted by “*” in the table. Compared
to other surrogate gradient methods, our TAB method consistently performs better. On ResNet-19,
our TAB method achieves an accuracy of 96.09% with 6 time-steps, which is better than Dspike
(94.25%), TET (94.5%), TEBN (95.6%) while using the same number of time-steps. Even when
using only 2 time-steps T = 2, our TAB method on ResNet-19 achieves a higher accuracy than
TEBN (Duan et al., 2022) which utilizes 6 time-steps. We contribute this elevated performance to the
better representation capability of TAB, achieved by its alignment with the neuron dynamics, thereby
bridging the gap between the discrete LIF model and the underlying neuron dynamics and making the
two closer. For clarity, all reported accuracy values for other methods in the tables are sourced from
the literature. Further experimental results on CIFAR-100 and DVS-CIFAR10 datasets are detailed
in Table S3 from Append. E. For a comprehensive comparison with state-of-the-art (SOTA) methods
on ImageNet, please consult Table S4 provided in Append. E.5.

Table 2: Comparison between the proposed TAB and other state-of-the-art approaches on CIFAR-10.

Model Method Architecture Time-steps Accuracy (%)
RMP (Han et al., 2020) ANN-to-SNN ResNet-20 2048 91.36
RTS (Deng & Gu, 2021) ANN-to-SNN ResNet-20 128 93.56
QCFS (Bu et al., 2022) ANN-to-SNN ResNet-20 16 91.62
PTL (Wu et al., 2021b) ANN-to-SNN VGG-11 16 91.24
HC (Rathi et al., 2020) Hybrid Training VGG-11 2500 92.94

TC (Zhou et al., 2021) Time-based Gradient VGG-16 - 92.68
TSSL-BP (Zhang & Li, 2020) Time-based Gradient 7-layer CNN 5 91.41

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18∗ 6 / 4 / 2 94.25 / 93.66 / 93.13
TET (Deng et al., 2022) Surrogate Gradient ResNet-19∗ 6 / 4 / 2 94.50 / 94.44 / 94.16

TEBN (Duan et al., 2022) Surrogate Gradient VGG-11 4 93.96
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-19∗ 6 / 4 / 2 95.60 / 95.58 / 95.45

TAB (Ours) Surrogate Gradient VGG-11 4 94.73
ResNet-19∗ 6 / 4 / 2 96.09 / 95.94 / 95.62

5 CONCLUSION

Directly training SNNs is extremely challenging, even when adopting BN techniques to enable
more stable training. The presence of the Temporal Covariate Shift (TCS) phenomenon, coupled
with the intrinsic temporal dependency of neuron dynamics, further compounds these challenges
for directly training SNNs. To tackle this, we have introduced TAB (Temporal Accumulated Batch
Normalization), a novel SNN batch normalization approach. TAB closely aligns with the neuron
dynamics, normalizing data using temporal accumulated statistics, effectively capturing historical
temporal dependencies similar to that of the accumulation process of the membrane potential in the
LIF neuron model. Neuron dynamics refer to the changes in the membrane potential of a neuron over
time as it integrates input signals and generates spikes. The alignment with the neuron dynamics
means that the TAB method is tailored to mimic or capture the behavior of neurons as closely as
possible. It aims to normalize the data in a manner that is coherent with the temporal dependencies
and accumulation of information that occur within neurons as they process input signals. This
alignment ensures that TAB’s normalization process corresponds well with the way neurons naturally
operate in SNNs, thereby leading to improved training and performance by addressing the temporal
covariate shift problem.
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Appendices
SUPPLEMENTARY MATERIAL FOR “TAB: TEMPORAL ACCUMULATED BATCH
NORMALIZATION IN SPIKING NEURAL NETWORKS”

NOTATIONS

Compared to ANNs, SNNs utilize binary activations, or spikes, in each layer. To compensate for this
limited representation capacity of the binary spiking activation, the time dimension, also known as
latency T , is introduced in SNNs. For the forward pass in SNNs, inputs are presented as streams of
events and the forward pass is repeated for T time-steps to produce the final result.

To make it clear, we refer to Eq. (1) as the LIF neuron dynamics which are described as differential
equations, and refer to Eq. (2) as the discrete LIF neuron model.

Let x[t] be the spike representation of the traditional features x at time-step t, denoted as x[t] =
SpikeRep(x, t). Here, let (x, y) be samples from a traditional dataset D with x representing the
image and y the label. Note that x and x[t] share the same dimensionality, w.l.o.g., let x ∈ RC×H×W

have C as the channel dimension, (H,W ) as the spatial dimension, so x[t] ∈ RC×H×W . Let Dt

represent the set of spiking representations at time-step t, which can be expressed as:

Dt = {(x[t], y), with x[t] = SpikeRep(x, t) and ∀ (x, y) ∈ D} .

Due to the temporal processing nature of SNNs, the training dataset D consists of sets of spiking
representations from all time-steps, which satisfies D = D1 ∪ · · · ∪DT , and any two are disjoint
with others, Dt ∩Ds = ∅ if t ̸= s.

Algorithm 1: The Algorithm of TAB Method
Data: The mini-batch data at current time-step t, {Bt} = {xi[t]}bi=1.
Input: Parameters to be learned: ω[t],γ[t],β[t], where weight ω[t] > 0.
Output: x̂i[t] = TAB(xi[t])

1 for t = 1, · · · , T do
2 Calculate Mean/Variance for mini-batch Bt at current time-step t

µ[t] = 1
b

∑b
i=1 xi[t] , σ2[t] = 1

b

∑b
i=1(xi[t]− µ[t])2

3 Calculate Temporal Accumulated Mean/Variance

µ1:t =
t− 1

t
µ1:(t−1) +

1

t
µ[t] , σ2

1:t =
t− 1

t
σ2
1:(t−1) +

1

t
σ2[t]

4 The TAB Method

zi[t]←− γ[t]
xi[t]− µ1:t√

σ2
1:t + ϵ

+ β[t] , for i = 1, · · · , b

x̂i[t] = ω[t]zi[t] = TAB(xi[t]) , ω[t] > 0 .

5 Outputs: x̂[t] = {x̂1···b[t]}

A BN OF CONVOLUTIONAL LAYERS

For convolutional layers, we additionally want the normalization obey the convolutional property,
that is, different elements of the same feature map (or the same channel), at different locations, are
normalized in the same way. Specifically, let xl[t] denote the input variable to the layer l at time-step
t, where xl[t] is a tensor with four dimensions N × C ×H ×W . Denote xl[t] ∈ RN×C×H×W the
corresponding batch input data to the layer l at time-step t. We let Bt be the set of all values in a
feature map across both the elements of a mini-batch and spatial locations. So for a mini-batch of
size N and feature maps of size H ×W , we use the effective mini-batch of size b =| Bt |= NHW .
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The mini-batch data can be written as xl[t] = (xl
1[t], · · · ,xl

C [t]), where each xl
c[t] ∈ RN×H×W

denotes the input to the layer l at time-step t for c-th channel (or c-th feature map). Since the
normalization is applied independently to each dimension over the samples in a mini-batch xl

c[t], let
us focus on the mini-batch data of a particular dimension xl

c[t] and omit c for clarity. Consider a
spatial-temporal mini-batch Bt = {xl[t]} = x1···b[t] of size b at each time-step t.

B DETAILS OF TAB IN SPIKING NEURAL NETWORKS

Our proposed TAB normalizes data along the channel dimension before passing it through the
activation function, then this normalized data is fed as an input to the activation function. Let xl[t]
denote the input variable to layer l at time-step t. Without loss of generality, we assume that the
layer input xl[t] has d-dimensions, which can be written as xl[t] = (xl(1)[t], · · · ,xl(d)[t]). Here
xl(k)[t] represents the k-th dimensional input to the l-th layer at time-step t. Since the normalization
is performed independently on each dimension xl(k)[t], we can focus on a specific dimension denoted
as x[t] and omit the l(k) notation for clarity.

We investigate Spiking Convolutional Neural Networks (SCNNs), which are Spiking Neural Networks
that incorporate convolutional layers and can process both spatial and temporal information. Our
main focus is primarily on applying Batch Normalization for Spiking Convolutional Neural Networks.
In SNNs, there is an additional temporal dimension, indexed by time-step [t]. Thus, at the current
time-step [t], all the accumulated spatial-temporal mini-batches, denoted as B1:t = {Bs}ts=1, are
available, where the temporal information is accumulated over t time-steps. Here, Bs = {xb,c,h,w[s]}
represents a spatial-temporal mini-batch at time-step s with batch index b, channel index c, height
index h, and width index w. For notation simplification, we can put all the batch dimension N and
all spatial locations H,W into one dimension with b = NHW and indexed by i, and we also omit
the channel index c for a given channel. In particular, let xi[t] represent the i-th sample at time-step t
in the spatial-temporal mini-batch Bt.

Let ol[t] denote the spiking outputs of all neurons in l-th layer at time-step t, and W l denote the
synaptic weights between layer l− 1 and layer l. The pre-synaptic inputs to the LIF neurons, denoted
as xl[t] can be expressed as

xl[t] = W l ∗ ol−1[t] .

In Spiking Convolutional Neural Networks, both the spikes and the pre-synaptic inputs at time-
step t are 3-dimensional tensors. Specifically, we refer to ol−1[t] := ol−1

b,c,h,w[t] ∈ RN×C×H×W

as the spikes tensor and xl[t] := xl
b,c,h,w[t] ∈ RN×C×H×W as the pre-synaptic inputs tensor in

a mini-batch with batch size N . Here, the indices b, c, h, w provide a precise description of the
dimensions, representing the batch axis N , the channel axis C, and the two spatial dimensions H and
W , respectively. In the case of input images to the neural network, the channels correspond to the
RGB channels.

The spatial-temporal mini-batch Bt at time-step t, with batch size N , is defined as the set of all values
in a feature map across both the elements of a mini-batch and spatial locations. For a mini-batch
of size N and feature maps of size H ×W , the effective mini-batch of size is b =| Bt |= NHW .
We learn a pair of parameters, γ(k) and β(k), per feature map, where k = 1, · · · , C, rather than per
activation.

TAB with layer index. The TAB Layer normalizes the pre-synaptic inputs xl[t] in the l-th layer of
the spiking neuron networks at time-step t, and it can be formulated as

xl[t] = W lol−1[t] ,

ul[t] = λul[t− 1](1− ol[t− 1]) + yl[t] ,

where yl[t] = TAB(xl[t]) = ωl[t]x̂l[t] , ωl[t] ⩾ 0

x̂l[t] = γl[t]
xl[t]− µl

1:t√
V l
1:t + ϵ

+ βl[t] .

Here ul[t] and ol[t] represent the membrane potential and binary spike outputs, respectively, of all
neurons in l-th layer at time-step t. The variable xl[t] represents the input variable to layer l, and
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W l denotes the synaptic weights between layer l − 1 and layer l. Each TAB Layer incorporates
time-dependent learnable parameters, namely ωl[t],γl[t],βl[t], for each layer. These parameters
are C-channel tensors defined as ωl[t] = (ωl

1[t], · · · , ωl
C [t]), γ

l[t] = (γl
1[t], · · · , γl

C [t]), β
l[t] =

(βl
1[t], · · · , βl

C [t]). The learnable parameters ωl[t],γl[t],βl[t] (t = 1, · · · , T, l = 1 · · · , L) are
trained during the training process.

Here the accumulated mean µl
1:t and the accumulated variance V l

1:t = (σl
1:t)

2 are computed as
follows,

µl
1:t =

1

t

t∑
s=1

µl[s] , V l
1:t = (σl

1:t)
2 =

1

t

t∑
s=1

(σl[s])2 ,

where

µl[s] =
1

b

b∑
i=1

xl
i[s] , (σl[s])2 =

1

b

b∑
i=1

(xl
i[s]− µl[s])2.

If we expand the channel dimension, we will have the following. Here the accumulated mean
µl

1:t = (µl
1,1:t, · · · ,µl

C,1:t) where each µl
c,1:t has the same definition on each channel, and the

accumulated variance V l
1:t = (V l

1,1:t, · · · ,V l
C,1:t) is defined analogously. Specifically,

µl
1:t =

1

t

t∑
s=1

µl[s] , V l
1:t = (σl

1:t)
2 ≈ 1

t

t∑
s=1

(σl[s])2 ,

where notations µl[s] = (µl
1[s], · · · ,µl

C [s]) and (σl[s])2 = ((σl
1[s])

2, · · · , (σl
C [s])

2), and Spe-
cially,

µl
c[s] =

1

NHW

∑
b,h,w

xl
b,c,h,w[s] , (σl

c[s])
2 =

1

NHW

∑
b,h,w

(xl
b,c,h,w[s]− µl

c[s])
2.

TAB without layer index. As here we normalize all the neurons in l-th layer at time-step t, we
can omit the layer index l. In the batch normalization process, we will independently normalize
each scalar feature along the channel dimension, by making it have zero mean and the variance of 1
over a mini-batch. In our TAB method, the pre-synaptic inputs x[t] will be normalized and both the
input and output of a TAB layer are four-dimensional tensors. Our proposed TAB applies the same
normalization for all activations in a given channel (along the channel dimension),

yb,c,h,w[t]←− ωc[t]

γc[t]
xb,c,h,w[t]− µc,1:t√

σ2
c,1:t + ϵ

+ βc[t]

 . (S.1)

The details of the TAB

yb,c,h,w[t] = TAB(xb,c,h,w[t]) = ωc[t]x̂b,c,h,w[t] , ωc[t] > 0 , (S.2)

where x̂b,c,h,w[t] = γc[t]
xb,c,h,w[t]− µc,1:t√

σ2
c,1:t + ϵ

+ βc[t] , (S.3)

µc,1:t =
1

t

t∑
s=1

µc[s] , µc[s] =
1

NHW

∑
b,h,w

xb,c,h,w[s] , (S.4)

σ2
c,1:t =

1

t

t∑
s=1

(σc[s])
2 , (σc[s])

2 =
1

NHW

∑
b,h,w

(xb,c,h,w[s]− µc,1:t)
2 . (S.5)

Here, TAB subtracts the accumulated mean activation µc,1:t from all input activations in channel c,
where B1:t contains all activations in channel c over the accumulated time-step from 1 to t across
all features b in the entire mini-batch and all spatial h,w locations. Subsequently, TAB divides the
centered activation by the accumulated standard deviation σ2

c,1:t (plus ϵ for numerical stability)
which is calculated analogously. Normalization is followed by a channel-wise affine transformation
and scaling parametrized through γc[t], βc[t], ωc[t](ωc[t] > 0) at different time-step t, which are
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learned during training. During testing, running averages of the accumulated mean and accumulated
variances are used. Refer to algorithm 1 for the algorithm of our TAB method.

The reason for considering all the accumulated spatial-temporal mini-batch over an expanding window
[1, t] is enabled by the nature of the spiking neurons to process both spatial and temporal information.
In SNNs, as the synaptic currents are fed into spiking neurons sequentially, the membrane potential
ui(t) accumulates over time t. The temporal information in SNNs is accumulated over multiple
time-steps, allowing the neurons to consider the input data in context of the past time-steps as well as
the current time-step. Therefore, we expect it to be beneficial for batch normalization to consider the
temporal accumulated information over an expanding window [1, t].

Table S1: Statistics and parameters of pre-synaptic inputs with different BN methods.

t = 1 t · · · t = T

BNTT (Kim & Panda, 2021) µ[1], σ2[1] µ[t], σ2[t] · · · µ[T ], σ2[T ]

γ[1] γ[t] · · · γ[T ]

tdBN (Zheng et al., 2021) µtotal = µ1:T , σ
2
total = σ2

1:T

γ, β

TEBN (Duan et al., 2022) µtotal = µ1:T , σ
2
total = σ2

1:T

γ̂[1], β̂[1] γ̂[t], β̂[t] · · · γ̂[T ], β̂[T ]

TAB (ours) µ[1], σ2[1] µ1:t, σ
2
1:t · · · µ1:t, σ

2
1:t

ω[1]γ[1], ω[1]β[1] ω[t]γ[t], ω[t]β[t] · · · ω[T ]γ[T ], ω[T ]β[T ]

C DETAILED LEARNING RULES OF TAB IN SNNS

When applying TAB in SNNs, we derive the detailed learning rules by computing the gradients of the
loss function L with respect to the weights ∂W l

ij and with respect to the parameter ∂ωl[t]. Following
the previous work (Kim & Panda, 2021; Zheng et al., 2021; Duan et al., 2022), we compute the
gradient by unfolding the network along the time dimension and get,

∂L
∂ul

i[t]
=

∂L
∂ol

i[t]

∂ol
i[t]

∂ul
i[t]

+
∂L

∂ul
i[t+ 1]

∂ul
i[t+ 1]

∂ul
i[t]

∂L
∂W l

ij

=
∂L

∂xl−1
i [t]

ol−1
j [t] =

∂L
∂ul

i[t]

∂x̂l−1
i [t]

∂xl−1
i [t]

ol−1
j [t]

where ul
i[t] and ol

i[t] denote the membrane potential and output spikes of the i-th neuron at time-step
t in layer l, xl

i[t] and x̂l
i[t] are the input and output of the TAB layer. As the derivative of spikes with

respect to the membrane potential ∂o
[
it]

∂u
[
it]

is non-differentiable due to the Heaviside step function, we

use the surrogate gradient methods (Neftci et al., 2019; Wu et al., 2018; Eshraghian et al., 2021) to
address this problem.

The weight parameter ωl[t] allows the TAB layer to emphasize the temporal dynamics along the
temporal dimension. The gradient of the loss function L with respect to the weight parameter ∂ωl[t],

∂L
∂ωl[t]

=
∑
i

∂L
∂ul

i[t]

∂ul
i[t]

∂ωl[t]
=
∑
i

[
∂L

∂ul
i[t]

(
γl
i [t]

xl
i[t]− µl

1:t√
(σl

1:t)i + ϵ
+ βl

i[t]

)]
,

where µl
1:t and (σl

1:t)i denote the mean and variance of the i-th neuron from samples from time-step
1 to t, γl

i [t] and βl
i[t] are the i-th parameters of TAB at time-step t.

D THEORETICAL POOF

In this section, we provide the theoretical proof for Lemma 1 and Lemma 2 in the main paper. We
first give a short introduction to the first-order differential equations and the Initial Value Problem
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(IVP). Then we derive the analytical closed-form solution of the first-order differential equation
underlying the LIF neuron dynamics and give detailed proof for the main lemma.

D.1 FIRST-ORDER DIFFERENTIAL EQUATIONS

We start by considering equations in which only the first derivative of the function appears.
Definition 1 (First-Order Differential Equation). A first-order differential equation is an equation
of the form F (t, y, y′) = 0. A solution of a first-order differential equation is a function f(t) that
makes F (t, f(t), f ′(t)) = 0 for every value of t . □

The term “first-order” means that the first derivative of y appears, but no higher order derivatives do.
Note that the derivative y′ will explicitly appear in the equation.
Definition 2 (First-Order Initial Value Problem). A first-order initial value problem is a system of
equations of the form F (t, y, y′) = 0, y(t0) = y0. Here t0 is a fixed time and y0 is a number. A
solution of an initial value problem is a solution f(t) of the differential equation that also satisfies the
initial condition f(t0) = y0. □

The general first-order equation is rather too general. We focus on specific kinds of first-order
differential equations. For example, equations of the form y′ = ϕ(t, y) where ϕ is a function of the
two variables t and y. Under reasonable conditions on ϕ, such an equation has a solution and the
corresponding initial value problem has a unique solution.
Definition 3 (First-Order Linear Differential Equation). A first-order differential equation is linear
when it can be written as

y′ + P (t)y = Q(t) (S.6)
Where P (t) and Q(t) are functions of t. □

We now need to derive the general solution of a linear first-order differential equation. We start by
revisiting two lemmas of first-order differential equation (MacCluer et al., 2019).
Lemma S.1. (Homogeneous Solution (MacCluer et al., 2019).) If P (t) is continuous on (a, b), then
the general solution of the homogeneous equation

y′ + P (t)y = 0 ,

on (a, b) is
y = ce−

∫
P (s)ds .

□

Proof. Now we show some key steps to derive the solution,

y′ + P (t)y = 0

⇒ dy

dt
+ P (t)y = 0 complementary equation

⇒ dy

y
+ P (t)dt = 0

⇒
∫

dy

y
+

∫
P (t)dt = 0

⇒ ln(y) = −
∫

P (t)dt+ k

⇒ |y| = eke−
∫
P (s)ds

⇒ c = ek, if y > 0 on (a, b)

⇒ c = −ek, if y < 0 on (a, b) .

□

Denote the integrating factor A(t) = y1(t) = exp
(
−
∫
P (s)ds

)
, then the solution to Eq. (S.6) is

y = y1(t)

(∫
Q(s)

y1(s)
ds+ c

)
= A(t)

(∫
Q(s)

A(s)
ds+ c

)
.
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Lemma S.2. (Solution to the Initial Value Problem (MacCluer et al., 2019).) If t0 is an arbitrary
point in (a, b) and y0 is an arbitrary real number, then the initial value problem

y′ + P (t)y = Q(t), y(t0) = y0. (S.7)

has the unique solution

y = y1(t)

(
y0

y1(t0)
+

∫ t

t0

Q(s)

y1(s)
ds

)
.

□

D.2 CLOSED-FORM SOLUTION OF THE LIF DYNAMICS AS A FIRST-ORDER LINEAR
DIFFERENTIAL EQUATION

For the Analytical Closed-form Solution for the IVP of the LIF Dynamics, we have the following
lemma in the main paper.
Lemma 3. The analytical closed-form solution for the first-order IVP (Initial Value Problem) of the
LIF dynamics ODE is as follows (Gerstner et al., 2014),

U(t) = exp

(
− t

τ

)(∫ t

0

R

τ
I(s)exp

( s
τ

)
ds+ U0

)
. (S.8)

Proof. If the injected current input I(t) is a function depending on t, the LIF neuron dynamics
becomes

τ
dU(t)

dt
= −U(t) +RI(t) .

Write it into standard first-order differential equation

y′ + P (t)y = Q(t) .

Consider the LIF neuron dynamics, and follow Lemma S.1

dU(t)

dt
+

1

τ
U(t) =

R

τ
I(t)

⇒ P (t) =
1

τ
, Q(t) =

R

τ
I(t)

⇒ A(t) = exp

(
−
∫

P (t)dt

)
= exp

(
− t

τ

)
(A(0) = 1)

⇒ U(t) = A(t)

(∫
Q(s)

A(s)
ds+ c

)
⇒ U(t) = A(t)

(∫
R

τ
I(s)

1

A(s)
ds+ c

)
⇒ U(t) = exp

(
− t

τ

)(∫
R

τ
I(s)exp

( s
τ

)
ds+ c

)
.

If the initial condition U(0) = U0, then c = U0

A(0) = U0, and by following Lemma S.2, the final
closed-form solution is

U(t) = exp

(
− t

τ

)(∫ t

0

R

τ
I(s)exp

( s
τ

)
ds+ U0

)
.

□

Note: If the neuron starts at some value U0 with no further current input, i.e., I(t) = 0, the solution
of the linear differential equation above is as follows

U(t) = U0exp

(
− t

τ

)
.
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In the absence of input current, the membrane potential will start at U0 and exponentially decay with
a time constant τ . Therefore, we can determine the membrane potential ratio, often referred to as the

leak factor, denoted by λ, as λ = U(t+∆t)
U(t) =

U0exp(− t+∆t
τ )

U0exp(− t
τ )

= exp
(
−∆t

τ

)
.

This relationship enables us to formulate the discretization scheme as U [t+1] = λU [t]. This provides
insights into the behavior of the membrane potential in the absence of input and establishes the
discretization principle used for LIF modeling.

Let’s consider a more practical case for the input current I(t), where I(t) is a function of t, not zero
nor other constant values.
Lemma 4. Through applying integration by parts, we derive another equivalent form of the closed-
form solution for the LIF dynamics, denoted as:

U(t) =

exponential decay term︷ ︸︸ ︷
(U0 −RI0)exp

(
− t

τ

)
+

input current model︷ ︸︸ ︷
RI(t)︸ ︷︷ ︸

commonly considered in the discrete LIF model

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

absent in the discrete LIF model

. (S.9)

With the application of the Riemann–Stieltjes integral, the discretization version of the closed-form
solution is represented as:

U [t] =

(U0−RI0)exp(− t
τ )︷ ︸︸ ︷

λU [t− 1] +

WO[t]=RI[t]︷︸︸︷
X[t] −

n∑
i=0

giX[si]︸ ︷︷ ︸
TAB method

. (S.10)

Proof. For the term
∫ t

0
R
τ I(s)exp

(
s
τ

)
ds, we can make some simplifications using rigorous mathe-

matical derivation, and we have∫ t

0

R

τ
I(s)exp

( s
τ

)
ds

=

∫ t

0

RI(s)dexp
( s
τ

)
= RI(s)exp

( s
τ

)
|t0 −

∫ t

0

Rexp
( s
τ

)
dI(s)

= RI(t)exp

(
t

τ

)
−RI(0)−

∫ t

0

Rexp
( s
τ

)
dI(s) .

Then, we have

U(t) = exp

(
− t

τ

)(∫ t

0

R

τ
I(s)exp

( s
τ

)
ds+ U0

)
⇒ U(t) = exp

(
− t

τ

)(
RI(t)exp

(
t

τ

)
−RI(0)−

∫ t

0

Rexp
( s
τ

)
dI(s) + U0

)
⇒ U(t) = RI(t) + (U0 −RI(0))exp

(
− t

τ

)
− exp

(
− t

τ

)∫ t

0

Rexp
( s
τ

)
dI(s)

⇐⇒ U(t) = (U0 −RI(0))exp

(
− t

τ

)
+RI(t)−

∫ t

0

Rexp

(
s− t

τ

)
dI(s)

⇒ U(t) = (U0 −RI(0))exp

(
− t

τ

)
+RI(t)︸ ︷︷ ︸

considered in the commonly used discrete LIF model

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

not in the discrete LIF model

.

Finally, we have derived the closed-form solution of the LIF model,

U(t) = (U0 −RI(0))exp

(
− t

τ

)
︸ ︷︷ ︸

exponential decay term

+ RI(t)︸ ︷︷ ︸
injected input currents

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

not in the discrete LIF model

(S.11)
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Specifically,

U(t) =

exponential decay term︷ ︸︸ ︷
(U0 −RI0)exp

(
− t

τ

)
+

input current model︷ ︸︸ ︷
RI(t)︸ ︷︷ ︸

commonly considered in the discrete LIF model

−
∫ t

0

Rexp

(
s− t

τ

)
dI(s)︸ ︷︷ ︸

absent in the discrete LIF model

. (S.12)

□

As the third term is a bit complicated with an integral over time, we cannot drop it without any
declaration for just simplification. To understand more about the third term, we consider applying
integration by parts, and derive a discrete version of the closed-form solution as it can be used in a
spiking neural network.

D.3 DISCRETIZING THE CONTINUOUS CLOSED-FORM SOLUTION OF THE LIF MODEL

By the definition of the Riemann–Stieltjes integral, we can discretize the continuous integral by
replacing the integral with Riemann sum.

Denote a partition of an interval [0, t] with a finite sequence of numbers of the form
0 = s0 < s1 < · · · < si < · · · < sn = t.

The Riemann sum of the function with respect to the tagged partition s0, · · · , sn is∫ t

0

Rexp

(
s− t

τ

)
dI(s)

≈
n−1∑
i=0

exp

(
si − t

τ

)
∗ (RI[si+1]−RI[si]) ( denote X[si] = RI[si])

=

n−1∑
i=0

exp

(
si − t

τ

)
∗ (X[si+1]−X[si])

= exp

(
s0 − t

τ

)
(X[s1]−X[s0]) + exp

(
s1 − t

τ

)
(X[s2]−X[s1])

+ · · ·+ exp

(
sn−1 − t

τ

)
(X[sn]−X[sn−1)

= exp

(
s0 − t

τ

)
X[s0] +

{
exp

(
s0 − t

τ

)
− exp

(
s1 − t

τ

)}
X[s1] + exp

(
sn − t

τ

)
X[sn]

=

n∑
i=0

giX[si] where gi = exp

(
si−1 − t

τ

)
− exp

(
si − t

τ

)
for i = 1, · · · , n− 1, and gi < 0.

g0 = exp

(
s0 − t

τ

)
> 0, gn = exp

(
sn − t

τ

)
= 1 .

Note that g0 > 0 and gn = 1, weights gi can be positive or negative for i = 1, · · · , n−1. It makes no
difference for positive or negative weights, as the signs can be absorbed into the learnable parameters
of the TAB method.

Finally, from the continuous version of the closed-form solution of the LIF model,

U(t) = (U0 −RI(0))exp

(
− t

τ

)
+RI(t)−

∫ t

0

Rexp

(
s− t

τ

)
dI(s) ,

we have the discrete version of the closed-form solution of the LIF model,

U [t] = (U0 −RI[0])exp

(
− t

τ

)
+RI[t]−

n∑
i=0

giX[si] .
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In summary, we have

U(t) = (U0 −RI(0))exp

(
− t

τ

)
+RI(t)−

∫ t

0

Rexp

(
s− t

τ

)
dI(s) (S.13)

U [t] = λU [t− 1] +RI[t]−
n∑

i=0

giX[si] (S.14)

U [t] = λU [t− 1] +X[t]−
n∑

i=0

giX[si] . (S.15)

Then we have the discrete version of the closed-form solution of the LIF model,

U [t] =

(U0−RI0)exp(− t
τ )︷ ︸︸ ︷

λU [t− 1] +

WO[t]=RI[t]︷︸︸︷
X[t] −

n∑
i=0

giX[si]︸ ︷︷ ︸
TAB method

. (S.16)

In this formulation, the first exponential decay term, λU [t− 1], captures the temporal dependency
of the membrane potential from the preceding time-step. The second term, a simple current input
model, RI[t] = WO[t], incorporates spikes from the pre-connected neurons at the current time-step
[t]. Significantly, the third term, representing the temporal accumulated input across all previous
time-steps through a weighted sum of the input currents X[si] with associated weights gi, introduces
a novel concept. This accumulation mechanism of the inputs is a foundational component of the TAB
method, providing a link that connects the TAB method and the neural dynamics.

Comparing the commonly used discrete LIF model with the discrete closed-form solution, we observe
the absence of the accumulation term in the former. Our TAB method reintroduces this accumulation
term in the normalization procedure. In this paper, we still employ the commonly used discrete LIF
neuron model where the third term −

∑n
i=0 giX[si] is simplified/omitted, but in the TAB method,

we consider this term back during the normalization step.

The TAB method normalizes the data using temporal accumulated information from time-step 1 to t,
which takes into account historical temporal dependencies but does not look ahead to future temporal
information. This adjustment also brings the discrete LIF model closer to the analytical closed-form
counterpart and establishes a natural connection between neuron dynamics and batch normalization.

E EXPERIMENTS DETAILS

E.1 OPERATING ENVIRONMENTS

All of our models are trained on the PyTorch platform. Experiments are conducted on an NVIDIA
RTX A6000 GPU.

E.2 DATASETS

The CIFAR dataset (Krizhevsky et al., 2009) consists of 50, 000 training images and 10, 000 testing
images each with the size of 32× 32. There are 10 classes in CIFAR-10 dataset and 100 classes in
CIFAR-10 dataset.

CIFAR-10: The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60, 000 color images each
with image size of 32 × 32 in 10 classes of objects such as airplanes, cars, and birds, with 6, 000
images per class. There are 50, 000 samples in the training set and 10, 000 samples in the test set.

CIFAR-100: The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60, 000 32 × 32 color
images in 100 classes with 6, 000 images per class. There are 50, 000 samples in the training set and
10, 000 samples in the test set.

DVS-CIFAR10: DVS-CIFAR10 (Li et al., 2017), a challenging mainstream neuromorphic data set,
is used in this study. DVS-CIFAR10 is converted from CIFAR10. The DVS-CIFAR10 consists of
10, 000 images with size 128× 128.
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E.3 DATA PRE-PROCESSING

For CIFAR-10 and CIFAR-100 datasets, common data normalization and some data pre-processing
techniques are used in the experiments. For example, we resize the images in the CIFAR-10/CIFAR-
100 datasets into 32×32. We apply data normalization to the CIFAR-10 and CIFAR-100 datasets. We
apply random horizontal flipping and random cropping to the training images as data augmentation.
We use these above data pre-processing techniques on the datasets in comparison experiments with
other BN methods in SNNs. In addition, we add cutout operations (DeVries & Taylor, 2017) as
TEBN (Duan et al., 2022) and Dspike (Li et al., 2021b) did on ResNet, when comparing our TAB
method with other state-of-the-art methods.

Our DVS-CIFAR10 dataset is loaded from the Spikingjelly framework (Fang et al., 2020). Follow-
ing Samadzadeh et al. (2023); Duan et al. (2022), we split the dataset into 9, 000 training images and
1, 000 testing images, and reduce the spatial resolution from the original 128× 128 to 48× 48.

E.4 NETWORK ARCHITECTURES AND TRAINING CONFIGURATIONS

In comparison experiments with existing BN methods, we reproduce the same architectures as
BNTT (Kim & Panda, 2021) and TEBN (Duan et al., 2022): VGG-9 network architecture (64C3-
64C3-AP2-128C3-128C3-AP2-256C3-256C3-256C3-AP2-1024FC-10FC) on CIFAR-10, VGG-11
(64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-AP2-4096FC-100FC) on
CIFAR-100, and 7-layer CNN (64C3-AP2-128C3-128C3-AP2-256C3-256C3-AP2-1024FC-10FC)
on DVS-CIFAR10. Following TEBN (Duan et al., 2022), we add Dropout (Srivastava et al., 2014)
layers before fully-connected layers to enhance generalization, but we do not use a voting layer after
the last fully-connected layer in DVS-CIFAR10 experiments as in Duan et al. (2022). We use the
standard ResNet-19 for both CIFAR-10 and CIFAR-100.

The Stochastic Gradient Descent (SGD) optimizer (Bottou, 2012) is used in the experiments with a
momentum parameter of 0.9. We use a cosine decay scheduler (Loshchilov & Hutter, 2017) to adjust
the learning rate with a weight decay 5× 10−4 for CIFAR-10/CIFAR-100 datasets. All models are
trained for 200 epochs. We set the initial learning rate to ϵ = 0.01 for CIFAR-10 and CIFAR-100.

As for the input to the first layer and the output of the last layer of the SNN, we do not employ any
spiking mechanism as in Li et al. (2021a); Bu et al. (2022). We use constant input when evaluating
the SNNs. We directly encode the static image to temporal dynamic spikes as input to the first
layer, which can prevent the undesired information loss introduced by the Poisson encoding. For
the last layer output, we only integrate the pre-synaptic inputs and do not fire any spikes, so that
the output neurons only output the temporal average of the pre-synaptic inputs of all time-steps
(m1,m2, · · · ,mC) with C as the number of classes. The output is then fed into a Softmax layer to
compute the cross-entropy loss with the true labels (y1, y2, · · · , yC),

LCE = −
C∑
i=1

yi log

(
emi∑C
j=1 e

mj

)
.

To allow for effective BP training, the triangle-shaped surrogate gradients are used

∂oi[t]

∂ui[t]
= max {0, 1− |ui[t]− θ|} .

Other hyperparameters can be found in Table S2.

Table S2: Hyperparameters optimization for training
Dataset Optimizer Scheduler Epochs Learning Rate Batch Size

CIFAR-10 SGD CosineAnnealingLR(T=200) 200 0.02 64
CIFAR-100 SGD CosineAnnealingLR(T=200) 200 0.02 64
DVS-CIFAR10 SGD CosineAnnealingLR(T=200) 200 0.05 64
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E.5 MORE RESULTS

We compare our TAB method with other state-of-the-art approaches in SNNs, including RMP (Han
et al., 2020), ReLU-Threshold-Shift (RTS) (Deng & Gu, 2021), quantization clip-floor-shift
(QCFS) (Bu et al., 2022), progressive tandem learning (PTL) (Wu et al., 2021b), Hybrid Con-
version (HC) (Rathi et al., 2020), Temporal-Coded method (TC) (Zhou et al., 2021), Temporal
Spike Sequence Learning Back-Propagation (TSSL-BP) (Zhang & Li, 2020), Differentiable Spike
(Dspike) (Li et al., 2021b), Temporal Efficient Training (TET) (Deng et al., 2022), TEBN (Duan
et al., 2022). We compare our method with other state-of-the-art learning methods for SNNs on
CIFAR-100, and DVS-CIFAR10 datasets and report the results in Table S3. Results on ImageNet
dataset are reported in Table S4, with other state-of-the-art learning methods.

Table S3: Comparison between the proposed TAB and other state-of-the-art approaches in SNNs.

Dataset Model Method Architecture Time-steps Accuracy (%)

CIFAR-100

RMP (Han et al., 2020) ANN-to-SNN ResNet-20 2048 67.82
RTS (Deng & Gu, 2021) ANN-to-SNN ResNet-20 512 72.34
QCFS (Bu et al., 2022) ANN-to-SNN ResNet-20 128 70.55
HC (Rathi et al., 2020) Hybrid Training VGG-11 2500 70.94

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 6 / 4 / 2 74.24 / 73.35 / 71.68
TET (Deng et al., 2022) Surrogate Gradient ResNet-19 6 / 4 / 2 74.72 / 74.47 / 72.87

TEBN (Duan et al., 2022) Surrogate Gradient VGG-11 4 74.37
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-19 6 / 4 / 2 76.41 / 76.13 / 75.86

TAB (Ours) Surrogate Gradient VGG-11 4 75.89
ResNet-19 6 / 4 / 2 76.82 / 76.81 / 76.31

DVS-CIFAR10

PLIF (Fang et al., 2021b) Surrogate Gradient 6-layer CNN 20 74.80
Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 10 75.40
TET (Deng et al., 2022) Surrogate Gradient VGGSNN 10 83.17

TEBN (Duan et al., 2022) Surrogate Gradient 6-layer CNN 10 80.00
TEBN (Duan et al., 2022) Surrogate Gradient VGGSNN 10 84.90

TAB (Ours) Surrogate Gradient 7-layer CNN 4 76.7
6-layer CNN 2 84.21

Table S4: Comparison between the proposed TAB and other state-of-the-art approaches on ImageNet.

Model Method Architecture Time-steps Accuracy (%)
SPIKE-NORM (Sengupta et al., 2019) ANN-to-SNN ResNet-34 2500 69.96

RTS (Deng & Gu, 2021) ANN-to-SNN VGG-16 16 55.80
QCFS (Bu et al., 2022) ANN-to-SNN ResNet-34 16 59.35

SlipReLU (Jiang et al., 2023) ANN-to-SNN ResNet-34 32 66.61
SNNC-AP (Li et al., 2021a) ANN-to-SNN ResNet-34 32 64.54

Hybrid Conversion (Rathi et al., 2020) Hybrid Training ResNet-34 250 61.48

TET (Deng et al., 2022) Surrogate Gradient Spiking-ResNet-34 6 64.79
tdBN (Duan et al., 2022) Surrogate Gradient ResNet-34 6 63.72
TEBN (Duan et al., 2022) Surrogate Gradient ResNet-34 4 64.29

TAB (Ours) Surrogate Gradient ResNet-34 4 67.78
ResNet-34 2 65.94

F THE OPTIMIZING OBJECTIVE FUNCTION OF BN METHODS IN SNNS

In the main paper, we have developed the TAB method to address the temporal covariate shift problem
by investigating the neuron dynamics, specifically by aligning with the accumulated membrane
potential. The TAB method utilizes the temporal accumulated statistics for normalization. As the
accumulation process aligns naturally with the membrane potential accumulation procedure, the TAB
method is conceived.
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In fact, we can take a more general approach by directly exploring the additional temporal dimension,
which opens up possibilities for developing different variants of BN methods for SNNs. To facilitate
this adaptability and the development of a range of BN variants in SNNs, we introduce an optimizing
objective function that highlights the distinctions in defining BN methods along the time dimension.
This framework empowers the creation of a broader spectrum of BN methods tailored to the unique
characteristics of SNNs.

We draw inspiration from BN techniques used in ANNs (Ioffe & Szegedy, 2015; Lian & Liu, 2019),
and we establish a rigorous mathematical optimization objective function for BN methods in SNNs.
Given the presence of an additional temporal/time dimension in SNNs,it is imperative to handle
the time dimension meticulously when formulating the objective function for BN in SNNs. Refer
to Sect. 5 for notation details.

Let us define the normalization operator fB,ϕ
W (·) as the mapping of a function to a function, associated

with a mini-batch data samples B, an activation function ϕ, and parameters W . Additionally, we
introduce the function g(·) defined as g(·) = (g1(·), · · · , gn(·), 1)T , where each gi(·) maps a tensor
to a scalar value. The normalization operator fB,ϕ

W (·) can be defined by

fB,ϕ
W ◦ g(·) := fB,ϕ

W (g)(·) = ϕ

(
W

(
g1 −mean(g1, B)

var(g1, B)
, · · · , gn −mean(gn, B)

var(gn, B)
, 1

)T
)

where mean(gi, B) := 1
|B|
∑

b∈B gi(b) and var(gi, B) := mean(g2i , B) − (mean(gi, B))2.

Note that the argument of fB,ϕ
W is a function g(·), and fB,ϕ

W ◦ g is another function, the first argument
of mean(gi, B) and var(gi, B) is a function and the second augment is a set of sample from the
mini-batch B.

An m-layer spiking neural network with BN can be represented by a function

FB
W (·) := FB

{Wj}m
j=1

(·) := fB,ϕm

Wm
◦ fB,ϕm−1

Wm−1
◦ · · · ◦ fB,ϕ1

W1
◦ I(·) ,

where I(·) is the identical mapping function I(x) = x, and W := {Wj}mj=1 denote all the learnable
weights in the neural network, and ϕj’s are the activation functions for each layer. Using similar
notations, we can represent an SNN without BN by another function f̃ϕ

W

FW (·) := F{Wj}m
j=1

(·) := f̃ϕm

Wm
◦ f̃ϕm−1

Wm−1
◦ · · · ◦ f̃ϕ1

W1
◦ I(·) ,

where f̃ϕ
W is defined by f̃ϕ

W ◦ g(·) = ϕ(Wg(·)).

Besides the difference of operator functions f̃ϕm

Wm
and fB,ϕm

Wm
, their optimization objective functions

with BN and without BN are also different.

Given the training dataset D, the optimization objective function without BN is defined by

min
W

1

| D |
∑

(x[t],y)∈Dt

LCE

(
1

T

T∑
t=1

FW (x[t]), y

)
, (S.17)

where LCE(·, ·) is a predefined Cross-Entropy loss function, Dt is spiking representation at time-step
t, D is the training dataset consisting of spiking representations from all time-steps. Specially

Dt = {(x[t], y), with x[t] = SpikeRep(x, t) and ∀ (x, y) ∈ D} .
At each time-step t, we feed spiking data x[t] into the network FW (·), which produces output
FW (x[t]). The final prediction is obtained by aggregating results over the time dimension, resulting
in ŷ = 1

T

∑T
t=1 FW (x[t]).

The optimization objective function with BN is

(BN) min
W

1

| B |
∑
B∈B

1

| B |
∑

(x[t],y)∈Bt

LCE

(
1

T

T∑
t=1

FB
W (x[t]), y

)
, (S.18)

where Bt ⊂ Dt represents a subset of the dataset at time-step t, and B is a partition of the whole
dataset D, that is, the set of mini-batch sets, with

∑
B∈B |B| = |D|. The mini-batch set B is used to
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calculate the mini-batch mean and variance. The objective function of SNN with BN is very different
from that without BN, due to the inclusion of BN.

The presence of the additional temporal dimension in SNNs gives rise to different BN variants,
depending on the chosen approaches for defining mini-batches along the time dimension. Therefore,
BN methods in SNNs are more varied than in ANNs because of the additional temporal dimension in
SNNs.

The mini-batch sets B in SNNs differ significantly from those in ANNs due to the presence of the
additional temporal dimension, as the mini-batch set B is used to calculate the mini-batch mean
and variance. Specifically, the mini-batch sets B can be viewed as a partition function of the subset
{Bt}Tt=1 along the temporal dimension, represented as

B = r(B1,B2, · · · ,Bt, · · · ,BT ) .

Denote the partition B = {B ⊂ B, B = r(B1, · · · ,Bt, · · · ,BT ),Bt ⊂ Dt}. Moreover, it is
noteworthy that at each time-step t, the data (x[t], y) always come from Bt.
The definition and partitioning of mini-batches along the time dimension are critical factors that
shape BN methods in SNNs and their associated objective functions. This leads us to the following
important observation: Different partition/sampling strategies along the temporal dimension give
rise to distinct BN methods in SNNs.

F.1 SPECIAL CASES OF THE OPTIMIZING OBJECTIVE FUNCTION

For the optimizing objective function, the mini-batch set B (or the sampling strategy) plays an
important role, as it is used to calculate the mini-batch mean and variance. Research works on BN
methods in SNNs primarily differ in their partition strategies along the temporal dimension. Notably,
the proposed optimizing objective function encompasses most existing BN methods in SNNs as
special cases, including our proposed TAB method. Refer to Append. F.2 for details.

In the BNTT method (Kim & Panda, 2021), data are normalized independently at each time-step
t, where the mini-batch B is defined temporal-independently with data at each time-step t, i.e.,
B ≜ Bt. In TEBN (Duan et al., 2022) and tdBN (Zheng et al., 2021), data are normalized temporal-
jointly across all T time-steps. The mini-batch B is defined with data across all T time-steps, i.e.,
B ≜ B1:T . However, the underlying assumption of sampling strategy B1:T implicitly assumes that
at each time-step t, we have access to data spanning all T time-steps, including the current time-
step t < T even future time-steps T . Nevertheless, this assumption may not hold true in practical
situations. In contrast, our proposed TAB method takes a different partition approach. It employs
a strategy to jointly normalize the data using temporal accumulated information from time-step 1
to t, denoted as B ≜ B1:t. By incorporating the temporal accumulated information, TAB ensures
efficient utilization of all available information up to the current time-step t, while it does not look
ahead to the future information beyond t such as T . The data normalization process in TAB follows
an accumulative-joint scheme, which aligns with the analytical closed-form solution of the neuron
dynamics.

F.2 SPECIAL CASES OF BN METHODS IN SNNS

For the optimizing objective function of BN methods for SNNs, the mini-batch set B (or the sampling
strategy) plays an important role, as it is used to calculate the mini-batch mean and variance. The
research works on BN methods in SNNs primarily differ in their approaches to sampling strategies.
Notably, the proposed optimizing objective function encompasses most existing BN methods in SNNs
as special cases, including our proposed TAB method.

Current research works on batch normalization methods for SNNs differ from each other from the
perspective of sampling strategies.

• A typical B can be defined temporal-independently using data at each time-step t, i.e.,

B = Bt, by B =
⋃
B :=

T⋃
t=1
{Bt} = {B1,B2, · · · ,BT } with Bt ⊂ Dt, where

B = Bt = {(x[t], y), where xt ∈ RC×H×W , ∀ (x[t], y) ∈ Dt} .
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As Dt ∩Ds = ∅ if t ̸= s, then Bt ∩ Bs = ∅ if t ̸= s, and | B |= T . As the mini-batch set
B only uses Bt, we denote B ≜ Bt . The objective function becomes,

(BN) min
W

1

T

∑
Bt∈B

1

| Bt |
∑

(x[t],y)∈Bt

LCE

(
1

T

T∑
t=1

FBt

W (x[t]), y

)
,

By using this sampling strategy, Kim & Panda (2021) proposed the BNTT method, in which
the data are normalized independently at each time-step t.

• Another common construction of B is defined temporal-jointly using information from all
T time-steps, by B =

⋃
B with B ⊂ D, where

B = {(x1:T , y), where x1:T = (x[1]⊤,x[2]⊤, · · · ,x[T ]⊤) ∈ RT×C×H×W ,∀ (x[t], y) ∈ Dt} .

As the mini-batch set B uses all Bt at all time-steps from t = 1 to t = T , we denote
B ≜ B1:T . The objective function becomes,

min
W

∑
B1:T∈B

1

| B1:T |
∑

(x[t],y)∈Bt

LCE

(
1

T

T∑
t=1

FB1:T

W (x[t]), y

)
,

Using this sampling strategy, researchers have proposed the TEBN method (Duan et al.,
2022) and the tdBN method (Zheng et al., 2021). In these methods, the data are temporal-
jointly normalized across all time-steps T .
However, choosing B in this way implicitly assumes that all nodes at each time-step t can
access the same dataset over all T time-steps, which may not be true in practice.

Another possible B can be defined jointly using the temporal accumulated information from all
previous time-steps up to the current time-step t, represented as B := {B1, B1:2, · · · , B1:t} with

B = B1:t := {B1 ∪ · · · ∪Bt, Bt ⊂ Dt} .

The objective function becomes,

min
W

1

t

∑
B1:t∈B

1

| B1:t |
∑

(x[t],y)∈Bt

LCE

(
1

T

T∑
t=1

FB1:t

W (x[t]), y

)
,

From an optimization perspective, this sampling strategy aligns with our proposed TAB method,
where TAB normalizes the data using the accumulated information over all time-steps from 1 to t,
i.e., B := B1:t.

Moreover, the optimizing objective function highlights the distinctions in defining BN methods in
SNNs along the time/temporal dimension, by which we can optimize and develop more BN variants
along the time dimension.

G LIMITATIONS AND SOCIETAL IMPACT

While achieving better performance compared to existing methods, our method has only been tested
on rate-encoding-based SNNs with surrogate gradients for back-propagation. Rate-encoding is
popularly used in conventional SNNs where each neuron fires at most once, which is very different
from timing-based encoding. Since timing-based encoding methods encode information in the relative
timing across individual neurons without single-spike restrictions. Therefore, they allow each neuron
to fire multiple times and bring better asynchronism. In our future research, we intend to investigate
the application of our method within timing-based SNNs

In terms of social impacts, our research primarily focuses on the direct training of high-performance
and low-latency SNNs, which does not bring obvious negative effects. Furthermore, with the
increasing adoption of SNNs due to their energy-saving consumption properties, SNNs will become
indispensable in edge computing applications.
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