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Abstract

Vision-language models (VLMs), such as the Generative Pre-trained Transformer
4-omni (GPT-4o), are emerging multi-modal foundation models which have great
potential as powerful artificial-intelligence (AI) assistance tools for a myriad of
applications, including healthcare, industrial, and academic sectors. Although
such foundation models perform well in a wide range of general tasks, their ca-
pability without fine-tuning is often limited in specialized tasks. However, full
fine-tuning of large foundation models is challenging due to enormous computa-
tion/memory/dataset requirements. We show that GPT-4o can decode hand gestures
from forearm ultrasound data even with no fine-tuning, and improves with few-shot,
retrieval-augmented in-context learning.

1 Introduction

Large language models (LLMs), such as generative pre-trained transformers (GPTs) [Radford
et al., 2018], have recently emerged as powerful general assistance tools and exhibited tremendous
capabilities in a wide range of applications. LLMs are often configured with billions of parameters to
capture linguistic patterns and semantic relationships in natural language processing, enabling text
generation, summarization, translation, reasoning, question-answering, etc.

More recently, large multi-modal models (LMMs) [Wang et al., 2023a] with the capability to
understand both natural language and other modalities, such as images and sounds, have offered
new opportunities for biomedical applications. For example, it was demonstrated that large vision-
language models (LVLMs) such as GPT-4o [Shahriar et al., 2024] and LLaVa [Liu et al., 2024a] could
be a viable tool for medical applications [Zhang et al., 2024a], including surgical oncology [Zhu
et al., 2024] and radiology diagnosis [Sonoda et al., 2024, Oura et al., 2024, Cesur et al., 2024].
We examine the capabilities of GPT-4o for sonography [Kremkau, 2015], to analyze and decode
ultrasound images.

Musculoskeletal ultrasound is a non-invasive and non-radiative imaging technique that uses ultrasound
waves to visualize muscles, tendons, ligaments, and joints. For instance, ultrasound measurements can
be used to visualize the anatomical aspects of the forearm, to estimate hand gestures [Bimbraw et al.,
2023a, McIntosh et al., 2017]. This is applicable to several domains, such as control of prosthetic
hands [Yin et al., 2022], teleoperation of robotic grippers [Bimbraw et al., 2020], and controlling
virtual reality interfaces [Bimbraw et al., 2023b]. In particular, modern deep learning methods have
shown improved performance to estimate different hand gestures [Bimbraw and Zhang, 2024]. It
is highly expected that the use of LVLMs like GPT-4o to classify ultrasound images can provide a
lot more information through human readable explanations of the model’s predictions, which aids
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understanding of the reasoning behind gesture recognition. In addition, contextual information can
be potentially leveraged to improve the classification performance.

Although the pre-trained LVLMs work well for general tasks, their performance is often limited for
specialized tasks such as biomedical applications. Given specialized data, fine-tuning can greatly
improve the performance for downstream tasks in general. Nevertheless, fine-tuning LVLMs is
challenging due to the substantial amount of labelled data required [Zhai et al., 2024]. Additionally,
it demands significant computational resources and time. Therefore, it is more practical and cost-
effective to consider using the pre-trained LVLMs without fine-tuning but with prompt tuning [Lester
et al., 2021] or in-context learning (ICL) [Brown et al., 2020]. ICL does not modify the pre-trained
LVLMs, but instead adds some task-specific examples to the input context to improve the performance
of generating the desired responses. Compared with ICL, prompt tuning still needs significantly
more training samples for tuning, and also demands significantly more computational resources,
memory, and time, which are often prohibitive on edge devices. Prompt tuning may also suffer from
generalization issues when not specifically tuned for the test subject. In contrast, ICL only needs
few-shot examples (i.e., a few demos of each gesture provided by the user during the calibration
phase) and does not involve any model tuning. Further, ICL offers more flexibility in the sense that
the user can easily add new classes by providing few-shot examples, while prompt tuning needs
re-training/tuning. ICL has less generalization issues if the testing subject can provide few-shot
examples during the calibration. Though fine-tuning the whole model may lead to better performance
than ICL, it requires significant computational costs, and may not be available for closed-source
models.

In this work, we show that we can leverage GPT-4o to classify ultrasound images using a few-shot
ICL strategy. We demonstrate that providing some labelled examples to the LVLM significantly
improves its performance for forearm ultrasound-based gesture recognition. This opens up exciting
applications for LVLMs in medical imaging. The contributions of this paper are summarized as
follows.

• We examine the capability of LVLMs for sonography diagnosis.
• We use GPT-4o to analyze forearm ultrasound images for hand gesture decoding.
• We demonstrate that GPT-4o can achieve high accuracy of over 70% for cross-subsession

experiments to classify hand gesture even without any fine-tuning.
• We show that the few-shot ICL strategy is substantially effective to improve the classification

accuracy.
• We show that retrieval augmented generation (RAG) can help significantly improve the ICL

performance.

2 Motivation

LVLMs have the capability to handle tasks that involve both images and texts. They have been
utilized for tasks involving image classification, object detection and semantic segmentation with zero
or limited in-context learning examples [Zhang et al., 2024b]. For image classification, LVLMs have
been used for visual question answering [Wang et al., 2023b] and reasoning [Zhang et al., 2024c]
among other such applications [Wang et al., 2023a]. They have proven to be useful for understanding
medical image data, especially with extensive fine-tuning [Sonoda et al., 2024].

Since full fine-tuning of LVLMs requires substantial computational resources, we first examined
how GPT-4o would perform without fine-tuning. GPT-4o was provided a forearm ultrasound image,
and posed a question “What can you tell me about this image?”. The LVLM was able to identify
that it is an ultrasound image, and provided additional information about generic ultrasound images
and their visual properties. We then examined whether it could infer more details when it is given
some context. To this end, a follow-up question was asked: “This is forearm ultrasound data. Can
you tell me what the hand might be doing while this data was acquired?”. The LVLM gave some
more information about physiology of hand movement and how different hand movements would
lead to different ultrasound images. The full conversation can be seen in Fig. 4 in the Appendix.
This motivated us to experiment with GPT-4o to see if it could classify forearm ultrasound images
corresponding to different hand movements. We are also interested in evaluating its performance
while varying the amount of data and context that it is exposed to.
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Table 1: Subject Information
Subject 1 Subject 2 Subject 3

Age 37 29 39
Sex M M M
Height (cm) 176 180 175

3 Methodology

For this study, ultrasound data was acquired from 3 subjects. The demographic information is
provided in Table 1 (Age: 35 ± 4.32 years; Height: 177 ± 2.16 cm; Sex: Male). The study was
approved by the institutional research ethics committee (IRB reference number 23001). Written
informed consent was given by the subjects before data acquisition. Per subject, data was acquired
for 5 hand gestures as shown in Fig. 1: (a) index flexion; (b) all pinch; (c) hand horns; (d) fist; and (e)
open hand.

Figure 1: Hand gestures (a through e) and the corresponding forearm ultrasound image (f through j)
from subject 1. (a) and (f): Index flexion; (b) and (g): all pinch; (c) and (h) hand horns; (d) and (i)
fist; (e) and (j): open hand; The ultrasound probe shown strapped to the forearm with the hand (k),
ultrasound probe enclosed within a 3D printed casing (l), and a strap (m).

These are based on activities of daily living and the chosen gestures are a subset of the dataset
in [Bimbraw et al., 2023a]. The five gestures were selected to represent a diverse range of hand
movements, since these included a finger flexion, a pinch gesture, an indicative gesture (hand horns),
open hand and closed fist gestures, relevant to daily activities. These are the mainstay of daily human
interaction, and human manipulation of objects [Dollar, 2014, Saudabayev et al., 2018]. Limiting
the selection to these 5 enabled us to effectively perform 1, 2, and 3-shot learning experiments, given
the model’s constraint of using up to 19 images for ICL.

3.1 Data Acquisition

The ultrasound data was acquired using a Sonostar 4L linear palm Doppler ultrasound probe [Sonostar,
2024]. A custom-designed 3D-printed wearable was strapped onto the subject’s forearm. The probe
streamed brightness mode (B-Mode) ultrasound data, and was positioned perpendicular to the forearm
positioned in its upper portion. The ultrasound probe (Figure 1(l)) was strapped to the forearm using
a custom made 3D printed casing and Velcro straps (Figure 1(m)). The data from the probe was
streamed to a Windows system over Wi-Fi, and screenshots of the ultrasound images were captured
using a custom Python script. The 4L linear probe has 80 channels of ultrasound data, and the
post-processed beamformed B-mode data is obtained, from which 350 × 350-pixel images are
acquired.

For each subject, 5 sessions of data were collected. In each session, subjects performed a sequence
of 5 gestures. Within each session, this sequence was repeated 4 times, resulting in 20 sub-sessions.
For our study, we analyzed 10 frames per sub-session, resulting in a total of 1000 images (i.e., 20
sub-sessions, 10 frames/sub-session, 5 gestures) per subject.
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3.2 Large Vision-Language Model (LVLM)

We use GPT-4o [Shahriar et al., 2024] as one of the state-of-the-art LVLMs. GPT-4o is a multi-modal
generative pre-trained transformer designed by OpenAI. GPT-4o is a step towards much more natural
human-computer interaction — it accepts as input any combination of text, audio, image, and video,
and generates any combination of text, audio, and image outputs. This multi-modal foundation model
provides a new angle of understanding ultrasound images. We use Azure OpenAI API [OpenAI] for
GPT-4o inference, where the computation is through Azure cloud computing.

3.3 GPT-4o Prompts

Several prompting strategies have been used in the literature for leveraging large multimodal models
for computer vision tasks. Bar et al. [2022] achieved visual prompting by framing new tasks as
image inpainting, where the model fills in missing parts of a visual prompt based on given examples,
without needing task-specific model adjustments. Wang et al. [2023c] uses image-centric prompting,
where task prompts and outputs are represented as images, allowing the model to adapt to different
tasks by conditioning on these image pairs during inference. Zhang et al. [2024d] proposed Instruct
Me More (InMeMo) which augments visual in-context learning with learnable perturbations added to
input-output image pairs, improving task performance by refining the prompts provided to the model.
We use standard prompting techniques for this paper, where a few samples are used to condition the
model to perform well on unseen data. This is similar to the one used by Alayrac et al. [2022], where
in-context few-shot prompting strategy is used, and the Flamingo model is conditioned on a small
number of task-specific examples, enabling it to generalize and perform new multimodal tasks with
minimal additional data.

To optimize few-shot in-context learning (ICL) for ultrasound image classification, we implemented
a retrieval-augmented generation (RAG) [Gao et al., 2023] approach. This method enhances
standard ICL by dynamically selecting the most relevant examples from a labeled dataset to construct
each prompt, creating a task-specific context for the large vision-language model (LVLM). Let
D = {(x1, y1), ..., (xn, yn)} denote our labeled dataset, where xi represents an ultrasound image
and yi its corresponding label. For a given test sample xt, we compute its similarity to each example
in D using cosine similarity on flattened image vectors as described below:

sim(x̂t, x̂i) =
x̂t · x̂i

∥x̂t∥∥x̂i∥
. (1)

Here, x̂t is the flattened vector of the test image, x̂i is the flattened vector of a dataset image, · denotes
the dot product, and ∥ · ∥ represents the Euclidean norm. We select the k most similar examples to
the test sample as shown as follows:

Nk(xt) = Top-K(xi,yi)∈Dsim(x̂t, x̂i), (2)

where Nk(xt) is the set of k most similar examples to xt, and Top-K selects the k highest-scoring
pairs according to the similarity function. These selected examples are then used to construct the ICL
prompt for GPT-4o. The RAG approach enables dynamic construction of task-relevant contexts and
has been used for vision language models in medical data context [Xia et al., 2024]. By leveraging
similarity between the test sample and labeled examples, this method can provide more informative
contexts for the LVLM, leading to improved hand gesture classification performance in few-shot ICL
scenarios.

The conversation flow used in this study is illustrated in Fig. 5 in the Appendix. To effectively utilize
GPT-4o, we designed the conversation as follows.

3.3.1 System Message

We began with a system message to set context and guidelines for the conversation. GPT-4o was
informed that it would serve as a helpful research assistant and will assist in classifying hand gestures
using forearm ultrasound data.

3.3.2 In-Context Learning (ICL)

We used an ICL strategy which provides training examples in contexts. We use a few forearm
ultrasound image samples along with the class labels for the in-context examples to assist GPT-4o
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for specialized classification tasks. Note that ICL does not involve any ‘learning’ procedure such as
fine-tuning, adaptation, or post-training.

3.3.3 Query for Classification

The GPT-4o was then asked to predict the hand gesture class based on the given ultrasound image. It
was explicitly instructed to provide just the class number, which can be saved for further analysis.

4 Experimental Setup

The performance was evaluated with few-shot in-context strategies: 0-shot, 1-shot, 2-shot, and 3-shot
ICL. Two experiments were carried out: within-session analysis and cross-session analysis. The
within-session analysis was conducted to evaluate the model’s performance when there is minimal
time difference between the acquisition of samples used for training and evaluation, reflecting a
more controlled environment. In contrast, the cross-session analysis aimed to assess the model’s
robustness and generalization ability when there is a greater time gap between the acquisition of
samples, simulating more realistic and varied conditions. In the case of the former, for a given subject,
of the 40 images per class in session 1, the last sub-session (last 10 images) were used for evaluation,
and the remaining were used for training. For the latter, the last sub-session of session 5 was used
for evaluation, while the remaining data was used as ICL training samples. For the three different
experiments, different data was used for training and evaluation. For 0-shot strategy, the LVLM was
shown images from the test set directly and asked what class out of the 5 it belonged to. This assessed
its ability to generalize and classify without prior examples, testing its inherent understanding and
adaptability to unseen data. To mitigate overfitting, each sample used for training and evaluation
was sufficiently distinct, as different sessions of data were acquired at different points in time, and
for both the analyses, the training and testing samples were sufficiently different. The distinction
between training and evaluation samples is detailed in the descriptions of the within-session and
cross-session analyses.

4.1 Within-Session Analysis

For the 1, 2, and 3-shot strategies, the data-split is described below. For the 1-shot strategy, the first
image per class from sub-session 1 was shown to the model along with the class label before asking
the question. This leads to a total of 5 images and their corresponding class-labels shown. This can
be seen in Fig. 5. For 2-shot strategy, the first two images per class from sub-session 1 were shown to
the model along with the class labels, leading to a total of 10 images shown. For 3-shot strategy, the
first image per class from sub-sessions 1, 2, and 3 were shown to the model along with the class label,
leading to a total of 15 images shown.

4.2 Cross-Session Analysis

For the 1, 2, and 3-shot strategies, the data-split is described below. For the 1-shot strategy, the
first image per class from sub-session 1 was shown to the model along with the class label before
asking the question. This leads to a total of 5 images and their corresponding class-labels shown.
The training data shown in similar to the within-session experiment. For the 2-shot strategy, the first
image per class (sub-session 1) from sessions 1 and 2 were shown to the model along with the class
labels, leading to a total of 10 images shown. For the 3-shot strategy, the first image from sub-session
1 per class from sessions 1, 2, and 3 were shown to the model along with the class label, leading to a
total of 15 images shown.

4.3 Evaluation Metrics

To evaluate the performance, the predicted class labels from GPT-4o were compared to the true values.
Classification accuracy was used as a metric for evaluating the performance. Confusion matrices
were used to visualize the performance for different scenarios. Precision, recall and F1 scores were
also calculated for each confusion matrix.
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5 Results

This section provides the results for within-session and cross-session experiments for 0-shot, 1-shot,
2-shot, and 3-shot ICL strategies.

5.1 Within-Session Experiment

The confusion matrix, summed over the three subjects for the within-session experiment can be seen
in Fig. 6 (a)–(d) for 0, 1, 2, and 3-shot strategies respectively. The classification accuracy, along with
the precision, recall, and F1 scores are summarized in Table 2 of the Appendix.

For 0-shot strategy, the average classification accuracy was 19.3% (±1.0%). For 1-shot, 2-shot and
3-shot strategies, we achieved 60.0% (±15.9%), 74.0% (±12.0%), and 72.0% (±16.0%) respectively.
It was observed that in-context examples can significantly improve the classification accuracy even
without fine-tuning the pre-trained LVLM. A slight decline of 2 percentage points is observed when
the training examples increase from 2 to 3 per class. It may be within a statistical fluctuation due
to the small number of test samples. Using RAG for the within-session analysis demonstrated
improved performance with increasing shots. For 1-shot strategy, using RAG led to a mean accuracy
of 99.3± 1.2%, significantly higher than the ICL baseline’s 60.0± 15.9%. For the 2-shot strategy,
using RAG lead to a perfect accuracy at 100.0± 0.0%, while ICL shows 74.0± 12.0%. Similar trend
was observed for the 3-shot strategy, with the mean accuracy at 100.0± 0.0%, whereas ICL obtained
72.0± 16.0%. Overall, RAG demonstrates robust performance with low variability, while ICL shows
less consistency as shot count increases for the within-session experiment. The results are shown in
Fig. 2.

Figure 2: Average classification accuracy for within-session experiment under different shots. ICL
with RAG performed the best across the different number of training images per class provided.

5.2 Cross-Session Experiment

The confusion matrix, summed over the three subjects for the cross-session experiment can be seen
in Fig. 6(e)–(h) for 0, 1, 2, and 3-shot strategies respectively. The classification accuracy, along with
the precision, recall, and F1 scores are summarized in Table 3 of the Appendix.

For 0-shot strategy , the classification accuracy is comparable to a random guess because of 5 classes.
For 1-shot strategy, it was 52%. For 2-shot, it was 56%, which increased to 70% for the3-shot strategy.
This trend is encouraging since increasing the number of in-context samples can improve GPT-4o’s
performance in classifying forearm ultrasound images to predict the hand gestures.

This was repeated for subjects 2 and 3. Fig. 3 shows the classification results averaged over the three
subjects. For 0-shot strategy, the average classification accuracy was 20.0% (±0.0%). For 1-shot,
2-shot and 3-shot strategies, it was obtained to be 33.3% (±16.7%), 51.3% (±15.5%), and 61.3%
(±22.3%) respectively. These results show a clear improvement in the classifier performance for an
increasing number of in-context samples. It was interesting to observe that the standard deviation
increases sharply as the number of training examples increases from 2 to 3 per class.
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Figure 3: Average classification accuracy for cross-session experiment under different shots. ICL and
ICL with RAG under 3 shots performed the best.

The results for the case where the input samples were picked randomly from the training data are
shown in Fig. 3. While the performance with in-context learning was better than 0-shot strategy,
it was worse than non-randomized case. Increasing the number of training samples did not clearly
improve the average classification across subjects. For 0-shot strategy, the classification accuracy was
21.3% (±3.0%). For 1-shot strategy, the average classification accuracy was 42.0% (±10.6%). For
2-shot strategy, the average classification accuracy was 45.3% (±5.0%). And for 3-shot strategy, the
average classification accuracy was 43.3% (±4.2%).

Using RAG for the cross-session analysis demonstrated improved performance, but with a higher
standard deviation. For the 1-shot strategy, RAG achieved a mean accuracy of 42.7 ± 20.0%,
higher than the Baseline’s 33.3 ± 16.7%. For the 2-shot strategy, RAG led to a mean accuracy of
59.3± 30.7%, while the baseline ICL showed 51.3± 15.5%. The mean accuracy percentage was the
same for the RAG approach for 3-shot strategy, with mean accuracy at 61.3± 22.0%, matching the
baseline ICL accuracy of 61.3± 22.4%. Overall, using RAG for ICL in this context demonstrates
consistent improvement, while the baseline ICL exhibits less variability and performance gains as
shot count increases.

5.3 Comparison with Nearest Neighbor Classification

For performance without using LVLM, we used nearest neighbor classification approach by cal-
culating pairwise similarity to assess its performance over the test set for both within-session and
cross-session experiments. For the within-session analysis, the mean accuracy was 36.0 ± 21.0%,
35.0 ± 21.0%, and 81.0 ± 1.0% for 1-shot, 2-shot and 3-shot strategies respectively, averaged over
the three subjects. It can be seen from Fig. 2 that, nearest neighbor performs much worse than ICL
methods in 1-shot and 2-shot strategies. In the 3-shot strategy, nearest neighbor performs slightly
better than ICL, but still worse than ICL with RAG.

The mean accuracies were 55.0 ± 40.0%, 59.0 ± 40.0%, and 52.0 ± 8.0% in the cross-session
experiment for 1-shot, 2-shot and 3-shot strategies respectively. It can be seen from Fig. 3 that, the
nearest neighbor method achieves its best performance under 2 shots, but is still worse than ICL with
RAG under 2 shots and 3 shots.

6 Discussion

Several additional experiments were carried out for within-session data from subject 1 to understand
GPT-4o’s performance and reasoning. All these experiments were done for a 1-shot strategy. The
baseline confusion matrix is shown in Fig. 7(a) in the Appendix. For this case, the accuracy is 86%,
with the macro average precision, recall, and F1 scores being 0.9, 0.86, and 0.85, respectively.
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6.1 Results with different prompts

We wanted to see how GPT-4o would perform with prompts less and more descriptive than the
prompts shown in Fig. 5.

6.1.1 Less descriptive information

For this experiment, we did not provide the system message. And for training, we only stated the
class label with the image. For the question, we just asked ‘What class does the image belong to?
Only give the class number.’ With this minimal information, the confusion matrix obtained is shown
in Fig. 7(b). For this case, the accuracy is 82%, with the macro average precision, recall, and F1
scores being 0.86, 0.82, and 0.82, respectively. It was interesting to see that there was only a decline
of 4% in the classification accuracy from the baseline of Fig. 7(a), meaning that we can provide it a
lot less information without compromising significantly on the accuracy.

6.1.2 More descriptive information

For this experiment, we provided a lot more contextual information to GPT-4o both in the system
message, as well as in the final question. We mentioned that it should focus on the arrangement of
regions with different brightness. We also mentioned that the anatomical and physiological properties
visualized in the ultrasound image are distinct for different hand gestures. The confusion matrix is
shown in Fig. 7(c). For this case, the accuracy is 80%, with the macro average precision, recall, and
F1 scores being 0.87, 0.8, and 0.8, respectively.

It was interesting to see that providing so much extra information did not really help improve the
performance. Rather, it decreased the performance compared to the less descriptive information case
by 2%.

6.2 Reasoning ability

With the flow shown in Fig. 5, we wanted to understand why GPT-4o made that particular estimation.
Fig. 8 shows the user asking questions to GPT-4o, and it answering why it made that particular
estimation compared to the other classes. Based on this conversation, we can make the following
conclusions.

6.2.1 Logical Coherence

GPT-4o demonstrates a structured approach to reasoning, with each successive step logically following
the previous one. This indicates an ability to maintain logical consistency.

6.2.2 Contextual Understanding

The model incorporates context into its reasoning, ensuring that decisions are relevant to the given
scenario. It takes into consideration the information provided during training, as well as in the system
message.

6.2.3 Decision-Making

GPT-4o was able to express why the image does not belong to the other classes. It provides a clear
delineation between the different classes, such as for class 5 (open hand), it stated that there is a
different distribution of bright and dark areas with more spread out appearance, and hence, the image
does not belong to class 5.

While the model’s reasoning is not fully trustworthy and LVLMs are prone to hallucinations [Liu
et al., 2024b], it is encouraging to see that LVLMs like GPT-4o can be used to understand better why
it made a particular prediction. Conversations using more effective contextual clues may improve its
performance.
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6.3 Different input formats

Radiologists often look at stacked medical images to understand medical image data. This is done
especially with time-varying data to visualize how the physiological features change with time
[Gaillard]. We wanted to see how GPT-4o would perform for different stacks of ultrasound images.
Fig. 9 shows a stacked image sample with 4 ultrasound image frames.

6.3.1 Two images as input

Using two stacked ultrasound frames as input for 1-shot strategy, instead of one image per class, 1
image with two ultrasound frames corresponding to the class were shown. This can be visualized
in the top row of Fig. 9. The classification results are shown in Fig. 10(a). For this case, the
accuracy is 78.0%, with the macro average precision, recall, and F1 scores being 0.83, 0.78, and 0.77,
respectively.

6.3.2 Four images as input

Using 4 stacked ultrasound frames as input for 1-shot strategy, instead of one image per class, 1
image with 4 ultrasound frames corresponding to the class were shown. This can be visualized in Fig.
9. The classification results are shown in Fig. 10(b). For this case, the accuracy is 72.0%, with the
macro average precision, recall, and F1 scores being 0.84, 0.72, and 0.68, respectively.

Although more training samples are provided by stacking frames, the classification accuracy was
degraded. It may be because the image format is different for the testing image and the relative
image resolution is lower when stacked. We believe the performance can be improved through more
effective prompt design.

6.4 Future work

We conducted experiments to understand the capabilities of GPT-4o for hand gesture classification
based on forearm ultrasound data. We explored the combination of ICL and RAG for this task. Future
work will involve fine-tuning open-source LVLMs such as LLaVA [Liu et al., 2024c] for comparison.
Additionally, we plan to conduct extensive cross validation analysis, in addition to acquiring data
from more subjects. More rigorous prompt engineering should be considered as well. We are also
interested in exploring LVLM’s cross-subject generalizability for medical image datasets. In addition,
the comparison to parameter efficient fine-tuning (PEFT) [Han et al., 2024] methods should follow.

7 Conclusions

In this work, we show that we can use a large vision-language model (LVLMs), GPT-4o as a powerful
AI assistance tool for understanding and interpreting forearm ultrasound data. We show that by
providing some examples of ultrasound images, we can improve its performance for hand gesture
classification based on forearm ultrasound data. For within-session performance, we show that
the average gesture classification accuracy reached 74.0% for 5 hand gestures with just 2 training
samples, and for cross-session performance, it reached 61.3% for just 3 training samples per class.
Using retrieval augmented generation (RAG), the within session classification performance reached
100.0% for 2 and 3 training samples per class. Our approach can be used in cases where full-fine
tuning of these models is challenging because of limited compute/memory/dataset resources. This
research opens up promising avenues for research in utilizing large vision-language models for
medical imaging.
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A Appendix / supplemental material

Figure 4: Conversation with GPT-4o that motivated us to use the VLM for ultrasound image decoding.
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Figure 5: Conversation with GPT-4o for forearm ultrasound image classification based on n-shot ICL.
For 1, 2, and 3 shot ICL strategy, 1, 2 and 3 samples per class are a part of the prompt, respectively.
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Figure 6 shows the confusion matrices for different experiments.

Figure 6: Confusion matrices for within-session (a–d), cross-session (e–h), and randomized cross-
session (i–l) experiments summed over the three subjects for: 0-shot (a, e, and i), 1-shot (b, f, and j),
2-shot (c, g, and k), and 3-shot (d, h, and l) strategies.

Within session experiment results are shown in Table 2. Cross session experiment results are shown
in Table 3.

Table 2: Within-session experiment results
Accuracy Precision Recall F1 Score

0-shot 0.193 — 0.193 —
1-shot 0.600 0.817 0.600 0.618
2-shot 0.740 0.826 0.753 0.756
3-shot 0.720 0.846 0.720 0.731

Table 3: Cross-session experiment results
Accuracy Precision Recall F1 Score

0-shot 0.200 — 0.200 —
1-shot 0.333 — 0.333 —
2-shot 0.513 0.588 0.513 0.479
3-shot 0.613 0.688 0.613 0.605

Figure 7 shows the confusion matrices with different prompts.

Fig.8 shows the conversation with GPT-4o as a follow up to the 1-shot conversation in Fig. 5.

Figure 9 shows these stacked ultrasound images with 4 frames in a single image. Figure 10 shows the
confusion matrices for different stacked image prompts.
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(a) Baseline (Acc: 86%) (b) Low-descriptive (Acc: 82%) (c) High-descriptive (Acc: 80%)

Figure 7: Confusion matrices with different prompts (within-session, subject 1, 1-shot).

B Compute Resources

For this project, GPT-4o was accessed through Azure OpenAI Studio. The experiments were carried
in Python based on Azure OpenAI API [OpenAI]. All the experiments were performed on a Linux
Ubuntu 22.04 system with an Intel i7-12700K CPU and 64GB RAM.
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Figure 8: Conversation with GPT-4o as a follow up to the 1-shot conversation in Fig. 5 to demonstrate
its reasoning capabilities.
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Figure 9: Stacked ultrasound images for class 1 with ultrasound image frames taken at different
times.

(a) Stacked 2-frame (Accuracy: 78%)

(b) Stacked 4-frame (Accuracy: 72%)

Figure 10: Confusion matrix given stacked ultrasound images.
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