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Abstract Despite the growing interest in designing truly interactive hyperparameter optimization
(HPO) methods, to date, only a few allow to include feedback from experts. However, these
methods add friction to the interactive process, rigidly requiring to fully specify the expert
input as prior distribution ex ante and often imposing additional constraints on the optimiza-
tion framework. This hinders the flexible incorporation of expertise and valuable knowledge
of domain experts, which might provide partial feedback at any time during optimization. To
overcome these limitations, we introduce a novel Bayesian optimization approach leveraging
tractable probabilistic models named probabilistic circuits (PCs) as surrogate model. PCs
encode a tractable joint distribution over the hybrid hyperparameter space and enable exact
conditional inference and sampling, allowing users to provide valuable insights interactively
and generate configurations adhering to their feedback. We demonstrate the benefits of the
resulting interactive HPO through an extensive empirical evaluation of diverse benchmarks,
including the challenging setting of neural architecture search.

1 Introduction
Hyperparameters crucially influence the performance of machine learning (ML) algorithms and
have to be set with care to fully unleash the algorithm’s potential. For example, in deep learning,
to achieve high performance it is necessary to find optimal values for hyperparameters such as
learning rate and batch size. A poor hyperparameter configuration, even for only one of them,
could drastically drop the model performance (Bergstra and Bengio, 2012; Hutter et al., 2013; Probst
et al., 2019). Manually finding good hyperparameters is a tedious and costly task. Thus, various
approaches have been proposed to automatize this process which is referred to as hyperparameter
optimization (HPO) (Bischl et al., 2023). HPO consists of three distinct components: a search space
that defines possible configurations, a search strategy to navigate through the search space with
the aim of efficiently finding a good candidate, and an evaluation function that indicates how good
a candidate is. The evaluation function is commonly a black-box function, often with no closed
form or information like gradients w.r.t. the hyperparameters that could guide the optimization.
Moreover, the evaluation function is often computationally demanding. Therefore, a recurrent
desideratum consists of minimizing the number of candidate evaluations.

To date, numerous search strategies have been devised with the goal of effectively traversing
the search space. A simple strategy, often surprisingly competitive, is random search (RS) which
operates by randomly sampling configurations (Bergstra and Bengio, 2012). However, in RS
each hyperparameter configuration is chosen independently, disregarding relationships between
hyperparameters and previous choices, leading to potentially wasteful computations. On the
contrary, Bayesian optimization (BO) methods stand out for their ability to efficiently navigate the
search space. They exploit knowledge about previously evaluated configurations to faster converge
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Figure 1: Interactive Bayesian Hyperparameter Optimization. We achieve interactive Bayesian HPO
by controlling the sampling process of new configurations based on previous evaluations
and optional expert knowledge (left). Probabilistic circuits (right) are employed as surrogate
models which model a joint distribution over hyperparameters and evaluation score(s). They
can answer to a wide range of probabilistic queries and perform sampling in a tractable
fashion, allowing experts to take control of the generation of new candidates via efficient
conditional sampling. Inference is performed by evaluating the circuit bottom-up while
conditional sampling is achieved by following with a top-down pass.

on promising solutions (Hutter et al., 2011; Falkner et al., 2018). These methods leverage a surrogate
model whose aim is to capture the underlying characteristics of the unknown objective function
being optimized based on the information gained through previous evaluations. Thus, the surrogate
model is used to identify the next most promising configuration to be evaluated balancing the
exploitation of well-known regions of the search space with the exploration of undiscovered ones.

Albeit the recent advancements in HPO and neural architecture search (NAS) could facilitate
the design and optimization of neural models for non-experts, the majority of cutting-edge neural
architectures, e.g., transformers (Vaswani et al., 2017), are derived and optimized manually. Thus,
the ability to integrate expert knowledge and interactive expert-guided optimization is of high value
and can substantially foster the search and mitigate its cost. While being efficient in search space
navigation, current BOmethods lack the ability to easily integrate expert knowledge for an arbitrary
subset of hyperparameters at arbitrary points in time during optimization. This might be helpful in
several circumstances. For instance, based on initial evaluations, an expert might want to fix certain
dimensions of the search space during optimization to observe whether such search bias is beneficial
and helps in finding a better-performing configuration. After a few optimization steps, the expert
might decide to change their search bias, or even remove it, and assess whether performances can
be further improved. Although the recent efforts made to allow users infusing prior knowledge
into an HPO algorithm before optimization and related to the entire search space (Hvarfner et al.,
2022; Giovanelli et al., 2023), there is still a lack of methods enabling expert-guided interactive
exploration of arbitrary subspaces any time during optimization. Unfortunately, this limitation with
the additional shared requirement of formulating feedback in form of a probability distribution
hinder the expert’s interaction with an ongoing search process.

In this paper, we introduce Interactive Bayesian Optimization via Hyperparameter Prob-
abilistic Circuits (IBO-HPC)1 as a novel BO method that enables the agile integration of expert
knowledge at any time during optimization. This is achieved by employing as a surrogate model a
fairly recent tractable probabilistic model called probabilistic circuits (PCs) (Poon and Domingos,
2011) encoding a joint distribution over the hyperparameter space and evaluation space. In the
following, we will refer to these models as hyperparameter probabilistic circuits (HPC). By leveraging
HPCs, our method empowers the search strategy to navigate towards promising regions of the

1We make our code available at https://github.com/ml-research/ibo-hpc and provide all logs and data at https:
//1drv.ms/u/s!Aty3JfFPZnuutVz0eNifHh6Uhvjz?e=hX2chn.
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search space while allowing the incorporation of a variable amount of expert knowledge at any
time. As depicted in Figure 1, such incorporation is performed by exploiting the abilities of HPCs
to answer a wide range of probabilistic queries and thus by conditioning the inference of promising
configurations with expert knowledge resulting in faster convergence to the best solutions.

To summarize, we make the following contributions: (1)We introduce a formal definition of
interactivity in HPO and a novel HPO method named IBO-HPC which enables the incorporation of
a variable amount of expert knowledge at any time leveraging HPCs. (2)We formally show that
IBO-HPC conforms to our notion of interactivity. (3) We provide an extensive empirical evaluation
of IBO-HPC showing that it is competitive with state-of-the-art HPO and NAS methods without
expert interaction and outperforms them when leveraging expert knowledge.

2 Related Work

The main goal of our paper is to leverage the inference capabilities of probabilistic circuits to exploit
expert feedback in HPO and NAS at any time. While several works have introduced methods
to provide explanations to make HPO more trustworthy (Hutter et al., 2014; Moosbauer et al.,
2021; Watanabe et al., 2023; Segel et al., 2023), involving feedback during search has received
little to no attention and tackled from distinct directions. For instance, in the context of multi-
objective problems, Giovanelli et al. (2023) presented a framework where quality indicators of
the Pareto front are learned taking into account user preference. From another direction, and
more similar to ours, different methods based on BO allow users to incorporate feedback as prior
beliefs (Hvarfner et al., 2022), but they are limited to an ex ante full specification of the priors in
the form of a probability distribution, often with additional constraints such as requiring invertible
priors (Ramachandran et al., 2020) or a specific acquisition function (Souza et al., 2021). However,
we believe that truly interactive methods should be able to include expert feedback at any time and
in a more flexible and simple way, allowing users to narrow down the search space by either fixing
desired hyperparameters to specific values or provide a belief in form of a probability distribution.
Additionally, we believe that users should interact with the surrogate directly instead of shaping the
acquisition function through a distribution such as in Hvarfner et al. (2022). This makes specifying
beliefs easier as users do not have to factor in the behavior of the acquisition function and, with
that, the exploration-exploitation trade-off. For completeness, before introducing our method, we
provide a brief overview of both HPO and NAS.

Hyperparameter Optimization (HPO). Finding a good configuration for a given algorithm often
requires a considerable amount of human and computational resources. The main aim of HPO is to
ease this process by reframing such search as an optimization task. Besides a systematic search
where expert input is essential to narrow the space of candidates making the search feasible, the
simplest approach is random search (Bergstra and Bengio, 2012). However, in its simplicity, random
search disregards any relevant information about the relationships between configurations and
their goodness and thus might require several expensive evaluations before encountering a good
solution. On the contrary, Bayesian optimization methods, in particular, sequential model-based
ones, are more sophisticated counterparts that aim to learn such relationships based on what has
been previously observed. These methods employ a surrogate model to approximate the objective
function and use it to evaluate only promising configurations (Hutter et al., 2011; Snoek et al., 2012).
When it comes to high-dimensional search spaces, however, BO becomes challenging. Eriksson
et al. (2019) tackle high-dimensional BO problems by defining trust-based regions in which the
objective can be approximated by simple models (e.g. linear models) instead of a global surrogate.

Neural networks are preponderant in machine learning. Still, to perform well, they need an
accurate hyperparameter tuning and long training procedures. Therefore, methods tailored to
neural models try to save computation by avoiding the complete training and base their judgment
on fidelities. For instance, Domhan et al. (2015) try to save computation by predicting the loss curves
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based on the performance achieved after a few training iterations. A related method proposed by Li
et al. (2018) integrates an early-stopping strategy that allocates resources only to the most promising
candidates selected with a bandit-based approach. To further avoid unnecessary evaluations Falkner
et al. (2018) combine a bandit approach with BO. A different direction is taken by evolutionary
methods that enhance stochastic methods employing a heuristic function (Jaderberg et al., 2017).

Neural Architecture Search (NAS). Most neural models achieving state-of-the-art performance
are crafted by hand, requiring significant efforts and expertise. Thus, there is a great demand of
automatic methods to find valuable neural architectures. The first modern approach is based on
reinforcement learning (Zoph and Le, 2017) where agents build an architecture and get its evaluation
on the task at hand as a reward. Prominent alternatives are based on one-shot methods that use
stochastic gradient descent to select a subgraph from a superarchitecture (Pham et al., 2018; Liu et al.,
2019). Although being efficient, the major drawback of this approach is the limited search space
composed only by a relatively small set of valid subgraphs of the superarchitecture. Surprisingly,
recent works have shown that local search (LS) is a strong baseline for NAS, often outperforming
more sophisticated methods (White et al., 2020; Den Ottelander et al., 2021). Nevertheless, LS
performance strongly depends on the horizons of the neighborhood and on the predefined operators
to create it. For an exhaustive review of NAS methods, we point to the work by White et al. (2023).

3 Interactive Hyperparameter Optimization

Our primary goal is to enhance HPO by providing a flexible way to interact with the optimization
process. To this aim, we provide a method that enables practitioners to interact by providing a
variable amount of knowledge at any desired point during optimization. In this section, we briefly
revise Bayesian optimization as a general framework for HPO before introducing our definition of
interactivity. Next, we introduce HPCs and present the concrete instantiation of our interactive
optimization method. For completeness, we start with a general formal definition of the HPO
problem (Kohavi and John, 1995; Hutter et al., 2019).

Definition 1 (Hyperparameter optimization). Given hyperparametersH = {𝐻1, . . . , 𝐻𝑛} with associ-
ated domainsH1, . . . ,H𝑛 , and a space of problem instancesX , we define a search spaceΘ = H1×· · ·×H𝑛 .
For a given problem instance x ∈ X , hyperparameter optimization aims to find the best set of hyper-
parameters θ∗ ∈ 𝚯 w.r.t. an evaluation function 𝑓 : 𝚯 × X → R:

θ∗ = argmin
θ∈𝚯

𝑓 (θ; x) (1)

3.1 Interactivity in Bayesian HPO

Bayesian HPO. The aim of BO is to optimize a black-box objective function 𝑓 : Θ → R which is
costly to evaluate, i.e., to find the input θ∗ ∈ argminθ∈Θ 𝑓 (θ) that minimizes 𝑓 (Shahriari et al.,
2016). BO typically tackles such problem in sequential steps, leveraging two key ingredients: a
probabilistic surrogate model and an acquisition function. Given a setD𝑛 of observations, that in our
case correspond to the configurations with their evaluations (θ𝑗 , 𝑓 (θ𝑗 )) 𝑗=1...𝑛 , the surrogate aims
to induce 𝑝 (𝑓 |D𝑛) while the acquisition function 𝑎 : Θ → R, such as expected improvement (Jones
et al., 1998), estimates the utility of an evaluation at an arbitrary point θ. The configuration θ′

which is evaluated next is selected by maximizing 𝑎. The obtained tuple (θ′, 𝑓 (θ′)) is added to D𝑛

and used to update the surrogate model for the next iteration. This process is repeated until there
is resource budget available or convergence.

An interactive Bayesian optimization method should be capable of incorporating, at any time,
the knowledge provided by the experts to update the surrogate model and the search space 𝚯

accordingly. Thus, as commonly done in the literature, defining a prior distribution over 𝑓 is
not sufficient and a broader set of interactions must be allowed (e.g., setting hyperparameters to
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an exact value). Before introducing our method, we now provide a formalization of this idea of
interactivity in the following definition.

Definition 2 (Interactivity). Given a Bayesian optimization algorithm 𝐴 using a surrogate model
𝑠 : Θ → R approximating 𝑓 for a given problem instance x ∈ X , and given K ∈ K with K
being the set of external knowledge (e.g., constraints or priors), we define interactivity by an operator
transform(𝑠,Θ,K) : S×Φ×K → S×Φwhich transforms a surrogate 𝑠 from the space of all surrogates
S and a search space Θ ∈ Φ from the set of search spaces Φ s.t. it incorporates the provided K.

Algorithm 1: Interactive BO with
HPCs (IBO-HPC). Our interactive
Bayesian optimization method al-
lows for flexible incorporation of
expert knowledge at any iteration
via conditional sampling enabling
true interaction with users.
Data: Search space Θ over

H = {𝐻1, . . . , 𝐻𝑛}, problem
instance x ∈ X , prior
distribution 𝑝 (Θ), evaluation
function 𝑓 : X × Θ → R, 𝐽
initial samples, user
knowledge K is optional and
can be provided at any time

1 D = ∅;
2 for 𝑖 ∈ {1, . . . , 𝐽 } do
3 θ ∼ 𝑝 (Θ);
4 D = D ∪ {(θ, 𝑓 (θ, x))};
5 end
6 while not converged do
7 estimate 𝑝 (H, 𝐹 ) w/ HPC 𝑠 from

D;
8 𝑓 ∗ = max𝑓 D;
9 if user knowledge K ≠ ∅ then
10 ensure all variables

addressed in K exist inH;
11 θ′ ∼ 𝑝 (H \K|K, 𝐹 = 𝑓 ∗);
12 else
13 θ′ ∼ 𝑝 (H|𝐹 = 𝑓 ∗);
14 end
15 D = D ∪ (θ′, 𝑓 (θ′, x));
16 present evaluations D;
17 end

In Def. 2, the set of knowledge, denoted as K, is
intentionally left unspecified as it heavily relies on
the choice of algorithm 𝐴 and surrogate 𝑠 employed
for the optimization process. As an example, in the
context of HPO, expert knowledge could be a set
of constant values for a subset of hyperparameters,
effectively reducing the search space. Similarly, the
properties of the transform function are not explic-
itly defined due to their dependence on the char-
acteristics of the problem and surrogate model at
hand.

3.2 Interactive Bayesian Optimization with Hyperpa-
rameter Probabilistic Circuits (IBO-HPC)

In this section, we introduce an interactive Bayesian
optimization method that fulfills Def. 2. It employs
hyperparameter probabilistic circuits as surrogate
model levereging their flexible inference and sam-
pling. Before delving into our method, we first pro-
vide preliminaries w.r.t. these models.

Hyperparameter Probabilistic Circuits (HPCs). Mo-
tivated by the lack of truly interactive Bayesian HPO
methods, we seek a surrogatemodel that enables flex-
ible interactions with the optimization procedure by
providing an arbitrary amount of knowledge about
hyperparameters at any time during the optimiza-
tion. Probabilistic circuits (Choi et al., 2020) are com-
putation graphs that compactly represent multivari-
ate distributions, also in the challenging case of hy-
brid domains. They have been successfully applied
on a variety of applications, e.g., in robotics (Zheng
et al., 2018), computer vision (Stelzner et al., 2019),
and time series (Yu et al., 2021). PCs can answer
a wide range of probabilistic queries in a tractable
fashion and (conditionally) generate new samples.

These features make them a good candidate for our purpose, i.e., learning a joint distribution over
the search space and efficiently querying it for interactive HPO.

More formally, a PC encodes a distribution over a set of random variables Z and is defined as
a tuple (G, 𝜙) where G = (𝑉 , 𝐸) is a rooted, directed acyclic graph and 𝜙 : 𝑉 → 2Z is the scope
function assigning a subset of random variables to each node in G. For each internal node N of
G the scope is defined as the union of scopes of its children ch(N). Each leaf node L computes a
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distribution/density over its scope. All internal nodes of G are either a sum node S or a product node
P where each sum node computes a convex combination of its children, i.e., S =

∑
N∈ch(S) 𝑤S,NN,

and each product computes a product of its children, i.e., P =
∏

N∈ch(P) N. In our case, the random
variables jointly model the hyperparameter search space, thus, we refer to these surrogates as
hyperparameter probabilistic circuits (HPC). Figure 1 shows an example of a PC. Given the hybrid
nature of hyperparameter search spaces, in this work, we focus on a type of PCs tailored for hybrid
domains named mixed sum-product networks (MSPNs) (Molina et al., 2018). An MSPN is a PC
employing piecewise polynomial leaves which is decomposable and smooth. These properties
guarantee to encode a valid distribution, and allow efficient inference and sampling with a variable
amount of evidence such as expert feedback (Peharz et al., 2015).

Method. We now describe our method shown in Algorithm 1. As usual in Bayesian HPO, we
start off by sampling 𝐽 hyperparameter configurations from a prior distribution 𝑝 , e.g., a uniform
distribution. Each sampled configuration is evaluated by a function 𝑓 (Line 1-5). Typically 𝑓

evaluates the performance of a model trained to solve a given problem instance x with the sampled
configuration θ. This yields a performance score for each sampled θ indicating how well a certain
configuration works for the given problem. After evaluating each sampled θ we obtain a set D of
pairs (θ, 𝑓θ (x)) that we employ to fit a HPC 𝑠 estimating the joint distribution 𝑝 (H, 𝐹 ), whereH
is the set of hyperparameters and 𝐹 is a random variable representing the evaluation score (Line
7). IBO-HPC proceeds by selecting a batch of configurations that gets evaluated next. We target
the configurations which are likely to achieve a better evaluation score. Thanks to the flexible
inference of HPCs, we are no longer limited to a conditional posterior of the form 𝑝 (𝐹 |H), but we
can derive arbitrary conditional distributions according to the partial evidence at hand (Peharz et al.,
2015). Instead of employing an acquisition function such as Expected Improvement, we leverage
the ability of HPCs to exactly compute the conditional distribution and sample 𝑅 configurations
from it that are evaluated next. We obtain a posterior distribution over the hyperparameter space
by conditioning on the best score 𝑓 ∗ = max𝑓 D observed so far and (optional) expert knowledge K
(Line 8-14). With Bayes rule and tractable marginal inference of HPCs, we obtain the conditional
distribution as 𝑝 (H \ K|K, 𝐹 = 𝑓 ∗) = 𝑠 (H \ K,K, 𝐹 = 𝑓 ∗). H \ K indicates the set of random
variables corresponding to the remaining hyperparameters that we want to conditionally sample.
This distribution 𝑝 can then be used to sample configurations from a promising region of the search
space. Hence, conditioning can be viewed as the acquisition function to be in line with the BO
framework: Configurations achieving a similar score as the current incumbent according to the
HPC are likely to be evaluated in the next round. Due to the stochasticity of the sampling process,
exploration is ensured. The procedure is concluded by updating the set of evaluations D that can
be presented to the users (Line 15-16). The algorithm runs until convergence or another condition
for termination, e.g., time budget limit, is encountered. To note that a user might also provide
an arbitrary evaluation score as feedback and obtain insights on the relationships between the
configurations and 𝑓 . Note that the knowledgeK is assumed to be given in the form of conditioning
values such as 𝐻𝑖 = ℎ𝑖 where 𝐻𝑖 is the 𝑖-th hyperparameter being set to ℎ𝑖 in Algorithm 1. However,
allowing distributions 𝐻𝑖 ∼ 𝑝𝐻𝑖

to be defined instead of mere conditioning can be easily achieved.
In that case, for each 𝐻𝑖 an expert can define a distribution. We independently sample 𝑅 values and
apply the conditional sampling scheme from (Line 8-14) where we sample one configuration from
the conditional for each of the 𝑅 sampled interactions.

After presenting IBO-HPC as an instance of an IBO algorithm, it remains to show that IBO-HPC
formally conforms to the above Def. 2 of interactivity. For this scope, we define the transform
operation mentioned in the definition to be the conditioning operation in HPCs. The following
proposition states that IBO-HPC is indeed interactive following Def. 2 (for proof see Appendix A).

Proposition 1 (Conditioning transform). Assuming a search space Θ over a subset of hyperparameters
Ĥ ⊆ H, a set of knowledge K := {𝐻𝑖 = ℎ𝑖 : 𝐻𝑖 ∈ Ĥ, ℎ𝑖 ∈ H𝑖} where H𝑖 is the domain of hyperparam-
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Figure 2: IBO-HPC outperforms state of the art. For 5 tasks across three challenging benchmarks,
IBO-HPC is competitive with state-of-the-art methods when no expert knowledge is provided.
It also meaningfully incorporates valuable expert knowledge. When interactions (vertical
dotted line) with beneficial expert knowledge happen, it outperforms all the competitors in
terms of convergence and solution quality. Early interactions (in brown at 5th, in blue at
10th iteration) speed convergence up. Note that we omit the standard deviation of LS for
better readability, refer to Appendix B for the full plot.

eter 𝐻𝑖 , and a HPC 𝑠 ∈ S s.t. its scope includes all hyperparameters in H, then, conditioning is a valid
instance of the transform operation.

With this formal description of IBO-HPC interactivity, we can now proceed and evaluate our
method empirically.

4 Experimental Evaluation

We now provide an extensive empirical evaluation of IBO-HPC and aim to answer the following
research questions: (Q1) Can IBO-PC compete with state-of-the-art algorithms in HPO and NAS?
(Q2) Does providing expert knowledge at various time points during optimization with IBO-HPC
improve the convergence speed and quality of the solutions? (Q3) Is IBO-HPC capable of recovering
from harmful user interactions?

Experimental Setup. We compare IBO-HPC against five diverse competitors: random search
(RS) (Bergstra et al., 2011), local search (LS) (White et al., 2020), SMAC (Hutter et al., 2011), Hyper-
band (Li et al., 2018), and 𝜋BO (Hvarfner et al., 2022) which allows the incorporation of user knowl-
edge. For our evaluation, we employ three real-world benchmarks, i.e., NAS-Bench-101 (Ying et al.,
2019) and NAS-Bench-201 (Dong and Yang, 2020) as tabular NAS benchmarks, and JAHS (Bansal
et al., 2022) as surrogate benchmark for joint architecture and hyperparameter search. We evaluate
IBO-HPC on five image classification tasks: CIFAR-10 (JAHS, NAS-Bench-101, NAS-Bench-201),
Fashion-MNIST (JAHS), and Colorectal Histology (JAHS). To make the optimization problem more
challenging, we extended the search space definition of JAHS (see Appendix B). This is possible
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since JAHS is a surrogate benchmark. The incumbent solution is selected by using validation
accuracy as evaluation score and we report the corresponding test regret in the following. All
experiments were run on DGX-A100 machines and repeated with 500 seeds to account for random
effects. We report the average test error and standard deviation (the latter in Appendix B) against
the computational costs estimated by accumulating the wall-clock time of training and evaluating
each sampled configuration. The wall clock time is provided by the employed benchmarks. To
estimate the costs, we sum up the estimated wall-clock time for evaluating all the configurations
sampled at each optimization iteration.

For the experiments, beneficial and harmful expert interactions have been chosen. Both were
identified by querying each benchmark with 10𝑘 randomly chosen configurations where the best
and worst configurations were kept. Only a few hyperparameters were fixed for the beneficial
configuration to demonstrate that it is enough to incorporate user knowledge for a small subset of
hyperparameters to gain performance. In the case of the harmful interaction, most hyperparameters
were set to poor values to demonstrate that IBO-HPC recovers even if a large amount of misleading
information is provided, but removed after 15 iterations. We additionally evaluate IBO-HPC in
cases where users specify a distribution over possible interactions. This allows a fair comparison to
𝜋BO as users are required to define a prior over hyperparameter configurations. The interactions
employed above are used to define a distribution strongly favoring the found interaction. For
example, if an edge 𝑒𝑖 𝑗 = 1 in an interaction (i.e., the edge is supposed to exist in the architecture),
a prior is defined s.t. 𝑒𝑖 𝑗 = 1 is 1000 times more likely than 𝑒𝑖 𝑗 = 0. The defined distributions were
used for IBO-HPC and 𝜋BO. For a detailed list of interactions, refer to Appendix B.

Following Algorithm 1, at each iteration of IBO-HPC, we conditionally sample 𝐽 = 20 config-
urations from the surrogate HPC (or uniform distribution in the first iteration). These are then
evaluated and added to the dataset of evaluations. Then, the surrogate is learned on this updated
set and the procedure reiterated.

4.1 (Q1) IBO-HPC is Competitive in HPO & NAS

To demonstrate the effectiveness of IBO-HPC, we run IBO-HPC on all tasks with no expert in-
teraction. We show the results in Fig. 2. We find that the performance of IBO-HPC without user
interaction is competitive or superior to current state-of-the-art HPO algorithms on most tasks.
However, on NAS local search, known to be a strong baseline for NAS (White et al., 2020; Den Otte-
lander et al., 2021), yields the best results. We attribute this to the discrete nature of the search space
where LS is capable of efficiently navigating towards good solutions. Notably, for joint architecture
and hyperparameter search spaces, IBO-HPC outperforms all state-of-the-art HPO algorithms as
well as LS. These results show that IBO-HPC can also handle more complex and realistic cases well.
Besides the quality of the final solution, we also observe that our method comes with a similar
convergence speed as the other methods. Thus, we can state that IBO-HPC achieves state-of-the-art
results in HPO and NAS when no expert interaction takes place, and answer (Q1) affirmatively.

4.2 (Q2, Q3) Interactive and Resilient HPO & NAS with IBO-HPC

The main benefit of IBO-HPC is the incorporation of a variable amount of user knowledge at any
time during optimization. We further validate how providing valuable user knowledge positively
affects the optimization with IBO-HPC, and how IBO-HPC can recover from harmful interactions.

Interactions. We retrieve beneficial/harmful knowledge from the benchmarks by obtaining hy-
perparameter configurations that yield high/low test performance. Then, we provide parts of
these configurations as user knowledge at one or more iterations. For NAS-Bench-101 we fix
the architecture skeleton, for NAS-Bench-201 we fix half of the operations per cell, and for JAHS
we fix the resolution, depth multiplier, and width multiplier as expert knowledge. Besides fixing
certain hyperparameters, we allow users to specify a distribution over interactions. The same
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Figure 3: IBO-HPC recovers from harmful interactions. Harmful feedback is provided at the 5th
iteration of the search limiting the performance of the optimization routine. After removing
harmful expert knowledge at iteration 20 (blue dotted vertical line), IBO-HPC (blue) converges
towards a good solution. Similarly, if beneficial expert knowledge is provided at iteration 15
(brown dotted vertical line), IBO-HPC (brown) outperforms all other methods on most tasks.
We omit the standard deviation of LS for better readability, refer to Appendix B for details.

distribution is used as a prior for 𝜋BO for fair comparison. For that, we reuse the interactions.
However, we define a distribution s.t. the values included in the interaction have a high probability
of being sampled while all other possible choices have a low probability. For details, see Appendix
B. However, as 𝜋BO only allows to define expert knowledge in terms of prior distribution, we
define the priors s.t. sampling the interaction used for IBO-HPC is 1000 times more likely than
other possible interactions. In Figure 2, a clear positive effect of providing beneficial expert knowl-
edge to IBO-HPC can be seen. This holds for very early interactions (after 5 iterations) and later
interactions (after 10 iterations). Remarkably, it is possible to observe a clear benefit in terms of
convergence speed and improvement in terms of solution quality, especially for larger and more
complex search spaces. Not only does IBO-HPC outperform state-of-the-art HPO algorithms not
capable of incorporating expert knowledge, but it also outperforms 𝜋BO which is specifically
designed to incorporate expert knowledge as prior distribution. Besides being able to incorporate
feedback at any point during optimization, another major feature of IBO-HPC is its flexibility. In
fact, during optimization experts can interact multiple times, arbitrarily often. To demonstrate that
IBO-HPC handles these multiple interactions well, we perform the same experiments as above
with instead performing two interactions, one harmful at an early stage (after 5 iterations) and
one useful after, at a later stage (after 15 iterations). As expected, the early harmful interaction
blocks IBO-HPC at a certain performance level. Later, the useful interaction comes in allowing
IBO-HPC to catch up with the competitors or even outperform them showing that IBO-HPC is able
to leverage valuable feedback also in critical conditions. Results are shown in Fig. 3.

Speed-up. To provide evidence on the benefit of good expert interactions in terms of conver-
gence speed, we show the average improvement in terms of convergence speed of IBO-HPC with
(useful) expert interaction vs. IBO-HPC with no expert feedback during optimization. For the
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analysis, we run IBO-HPC and obtained the best evaluation result achieved as well as the time
needed to get to this result (denoted as 𝑡𝑤). Then, we run IBO-HPC with a useful interaction
(an early one after 5 iterations and a later one after 10 iterations) and measured the estimated
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Figure 4: Expert interaction leads to speed-ups. Bene-
ficial interactions lead to significant speed-up
in terms of convergence, from 2 to 10×.

wall-clock time until IBO-HPC finds an equally
well or better-performing configuration (de-
noted as 𝑡𝑖 ). We then compute 𝑡𝑤

𝑡𝑖
as the perfor-

mance speed-up for each run. The results are
shown in Fig. 4 and reveal that useful expert
interactions lead to a remarkable median speed-
up of 2 to 10×. These results clearly show that
IBO-HPC is able to leverage expert knowledge
improving performance and saving resources.
Thus, we can answer (Q2) positively.

Harmful Interactions. Expert feedback could
also be misleading for the optimization process,
thus, an interactive HPO algorithm should re-
cover from such harmful interactions. Here, we
demonstrate that IBO-HPC recovers from harmful interactions employing the same protocol as the
previous scenarios. However, this time, we retrieve from each benchmark a configuration with a
low test performance. For NAS-Bench-101 and NAS-Bench-201 we take the same hyperparameters
as above and we set them to the values of the selected bad configuration. For JAHS we additionally
fix the activation function, learning rate, and four out of six operations in the architecture to
sub-optimal values to ensure a significant harmful effect on the interaction. The interaction is
removed after 15 iterations and the optimization is terminated with no further user interaction.
Fig. 3 shows that IBO-HPC is able to recover from harmful interactions and to catch up with the
competitor methods that have not received any harmful feedback. Thus, we can answer (Q3)
affirmatively.

5 Conclusion
In this work, we have introduced a definition of interactive BO and a novel interactive BO method
named IBO-HPC which leverages the flexible inference of probabilistic circuits to easily incorporate
expert feedback at any time during the optimization. IBO-HPC is competitive with state-of-the-art
methods when no expert knowledge is given and it can outperform competitors accelerating the
optimization when valuable expert knowledge is available, thus, saving resources. Furthermore,
IBO-HPC is resilient since it can recover the optimization after harmful feedback is provided.

Limitations & Future Work. Whereas IBO-HPC enables truly interactive BO, the necessity to
retrain the surrogate model at each iteration remains. Thus, prospective directions could explore
methods of continual learning (Mundt et al., 2023) to increase the overall efficiency and knowledge
reuse over different HPO and NAS settings. Also, currently, our method requires users to recognize
and remove harmful interactions before recovering from such interactions. This limitation could
be tackled similarly to Hvarfner et al. (2022). Moreover, to model hybrid domains, we relied on
HPCs employing piecewise polynomials that might not be sufficient to model complex distributions.
Therefore, more sophisticated alternatives could further improve performance.

6 Broader Impact Statement
We believe that this work presents no notable negative impacts to society or the environment. We
would like to point out that, as we empirically demonstrated, expert feedback can help to quickly
guide the HPO procedure towards promising regions in the hyperparameter search space. Thus, it
can make HPO and NAS more energy-efficient, reducing its environmental impact.
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We have provided a formal definition of interactive Bayesian
HPO in Section 3 and an extensive experimental evaluation in Section 4 showing its benefits.

(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes, in Section 6
we briefly explained that in our view there are no potential negative impacts and we pointed
out that incorporating expert knowledge with the introduced method could be beneficial
for the environment since it could save computations.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?
https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same
benchmarks, data (sub)sets, available resources)? [Yes] All experiments were executed on
the same well-known challenging benchmarks and tasks.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning)? [Yes] We provide code of the implementation and
the listed interactions with additional experimental details in the Appendix B and in Section
4.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for
the impact of randomness in your methods or data? [Yes] Yes, we executed each experiment
with 500 different random seeds.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or
splits)? [Yes] Following common practice, we only report the mean test regret / error,
however, we provide variance regarding the speed-ups (Fig. 4).

(e) Did you report the statistical significance of your results? [No] We did not report statistical
significance as our results clearly show the benefit of incorporating expert knowledge.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used
NAS-Bench-101, NAS-Bench-201, and JAHS.

(g) Did you compare performance over time and describe how you selected the maximum
duration? [Yes] See Section 4.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [No] We did not collect any of these metrics.

(i) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] In our case, the ablation study consisted in providing a variable amount of expert
feedback (including no feedback scenario) at different times.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results, including all requirements (e.g., requirements.txt with explicit versions),
random seeds, an instructive README with installation, and execution commands (either in
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the supplemental material or as a url)? [Yes] We provide code and logs (the URLs) and
experimental details in the paper and in the Appendix B.

(b) Did you include a minimal example to replicate results on a small subset of the experiments
or on toy data? [Yes] See anonymous GitHub repository.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] See anonymous GitHub repository.

(d) Did you include the raw results of running your experiments with the given code, data, and
instructions? [Yes] Yes, see Footnote 1.

(e) Did you include the code, additional data, and instructions needed to generate the figures
and tables in your paper based on the raw results? [Yes] We include all of our logs and the
code to generate plots is available on the anonymous GitHub repository.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] See Section 4.

(b) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [No]
We will choose an open-source license later on.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,
GitHub or Hugging Face)? [Yes] We provided the URLs, see Footnote 1.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix A.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.
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A Proofs

In this section we provide the proof of Proposition 1 of the main paper.

A.1 Conditioning as Valid Transform Operation

Proposition 2 (Conditioning transform). Assuming a search space Θ over a subset of hyperparameters
Ĥ ⊆ H, a set of knowledge K := {𝐻𝑖 = ℎ𝑖 : 𝐻𝑖 ∈ Ĥ, ℎ𝑖 ∈ H𝑖} where H𝑖 is the domain of hyperparam-
eter 𝐻𝑖 , and a HPC 𝑠 ∈ S s.t. its scope includes all hyperparameters in H, then, conditioning is a valid
instance of the transform operation.

Proof. We have to show that (1) conditioning yields a valid HPC again, (2) conditioning yields
a valid search space, and (3) conditioning is reversible. Since HPCs encode joint distributions
and each conditional can be represented as 𝑝 (𝐻1, . . . , 𝐻𝑛−1 |𝐻𝑛 = ℎ𝑛) = 𝑝 (𝐻1,...,𝐻𝑛 )∫

ℎ1
· · ·

∫
ℎ𝑛−1

𝑝 (𝐻1,...,𝐻𝑛−1,𝐻𝑛=ℎ𝑛 )
,

only the evaluation of the HPC s changes, but not the HPC itself, i.e. after conditioning we still
have the same HPC 𝑠 . Thus, (1) is fulfilled. The Bayes’ rule implies that (2) is fulfilled as well
since conditioning with HPCs results in a distribution over a subset of hyperparameters. Finally,
(3) directly follows from (1), as removing the conditions yields the same HPC 𝑠 and recovers the
original search space. □

B Experimental Details

Here we present additional details of our empirical evaluation.

B.1 Search Space Extension of JAHS

To make the HPO problem on JAHS more challenging, we decided to extend the search space
slightly as JAHS – as a surrogate benchmark – allows us to query hyperparameter values which
were not tested explicitly in the benchmark. We defined three search spaces for JAHS which are
presented in the following table.

S1 S2 S3
Activation [Mish, ReLU, Hardswish] [Mish, ReLU, Hardswish] [Mish, ReLU, Hardswish]
Learning Rate [1e-3, 1e0] [1e-3, 1e0] [1e-3, 1e0]
Weight Decay [1e-5, 1e-2] [1e-5, 1e-2] [1e-5, 1e-2]
Trivial Argument [True, False] [True, False] [True, False]
Op1 0-6 0-6 0-6
Op2 0-6 0-6 0-6
Op3 0-6 0-6 0-6
Op4 0-6 0-6 0-6
Op5 0-6 0-6 0-6
Op6 0-6 0-6 0-6
N 1-15 1-11 1-5
W 1-31 1-23 1-16
Epoch 1-200 1-200 1-200
Resolution 0-1 0-1 0-1

Table 1: JAHS Search Space. We define three versions of the JAHS search space, ranging from simpler
to harder spaces.

B.2 Interactions

Here we provide the interactions used for our experiments.
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JAHS. The following JSON code shows the interactions performed in our JAHS experiments. The
first interaction is a harmful interaction, followed by a beneficial interaction and a no interaction
(for recovery).

[
{

"type": "bad",
"intervention": {"Activation": 1, "LearningRate": 0.8201676371308472, "N": 15,

"Op1": 3, "Op2": 4, "Op3": 1, "Op4": 2, "Resolution": 0.5096959403985494,
"TrivialAugment": 0, "W": 14,
"WeightDecay": 0.002697686639935806, "epoch": 10},

"iteration": 5
},
{

"type": "good",
"intervention": {"N": 3, "W": 16, "Resolution": 1},
"iteration": 15

},
{

"type": "good",
"intervention": null,
"iteration": 20

},
{

"type": "good",
"kind": "dist",
"intervention": {"N": {"dist": "cat", "parameters":
[1, 1, 1, 1e4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]},
"W": {"dist": "cat", "parameters":
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1e4]},
"Resolution": {"dist": "uniform", "parameters": [0.98, 1.02]}},
"iteration": 5

}
]

NAS-Bench-101. The following JSON code shows the interactions performed in our experiments on
NAS-Bench-101. The first interaction is a harmful interaction, followed by a beneficial interaction
and a no interaction (for recovery).

[
{

"type": "bad",
"kind": "point",

"intervention": [0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1],
"iteration": 5

},
{

"type": "good",
"kind": "point",

"intervention": [1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1],
"iteration": 12
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},
{

"type": "good",
"kind": "point",
"intervention": null,
"iteration": 20

},
{

"type": "good",
"kind": "dist",
"intervention": {

"e_0_1": {"dist": "cat", "parameters": [1, 1e4]},
"e_0_2": {"dist": "cat", "parameters": [1e4, 1]},
"e_0_3": {"dist": "cat", "parameters": [1, 1e4]},
"e_0_4": {"dist": "cat", "parameters": [1e4, 1]},
"e_0_5": {"dist": "cat", "parameters": [1, 1e4]},
"e_0_6": {"dist": "cat", "parameters": [1, 1e4]},
"e_1_2": {"dist": "cat", "parameters": [1, 1e4]},
"e_1_3": {"dist": "cat", "parameters": [1e4, 1]},
"e_1_4": {"dist": "cat", "parameters": [1e4, 1]},
"e_1_5": {"dist": "cat", "parameters": [1e4, 1]},
"e_1_6": {"dist": "cat", "parameters": [1e4, 1]},
"e_2_3": {"dist": "cat", "parameters": [1e4, 1]},
"e_2_4": {"dist": "cat", "parameters": [1, 1e4]},
"e_2_5": {"dist": "cat", "parameters": [1e4, 1]},
"e_2_6": {"dist": "cat", "parameters": [1e4, 1]},
"e_3_4": {"dist": "cat", "parameters": [1e4, 1]},
"e_3_5": {"dist": "cat", "parameters": [1, 1e4]},
"e_3_6": {"dist": "cat", "parameters": [1e4, 1]},
"e_4_5": {"dist": "cat", "parameters": [1, 1e4]},
"e_4_6": {"dist": "cat", "parameters": [1e4, 1]},
"e_5_6": {"dist": "cat", "parameters": [1, 1e4]}

},
"iteration": 5

}
]

NAS-Bench-201. The following JSON code shows the interactions performed in our experiments on
NAS-Bench-201. The first interaction is a harmful interaction, followed by a beneficial interaction
and a no interaction (for recovery).

[
{

"type": "good",
"kind": "point",
"intervention": {"Op_0": 2, "Op_1": 2, "Op_2": 0},
"iteration": 5

},
{

"type": "bad",
"kind": "point",
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"intervention": {"Op_0": 1, "Op_1": 2, "Op_2": 1},
"iteration": 5

},
{

"type": "good",
"kind": "point",
"intervention": null,
"iteration": 20

},
{

"type": "good",
"kind": "dist",
"intervention": {"Op_0": {"dist": "cat", "parameters": [1, 1, 1e4, 1, 1]},

"Op_1": {"dist": "cat", "parameters": [1, 1, 1e4, 1, 1]},
"Op_2": {"dist": "cat", "parameters": [1e4, 1, 1, 1, 1]}},

"iteration": 5
}

]

B.3 Results
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Figure 5: IBO-HPC outperforms existing (interactive) HPO algorithms. IBO-HPC is competitive
with existing state-of-the-art approaches on standard HPO tasks while outperforming 𝜋BO
in 4/5 tasks when user interaction is provided, also in form of a distribution (green line). This
further emphasizes the flexibility of IBO-HPC since it allows to incorporate user feedback in
several forms. Notably, LS has a high standard deviation on almost all tasks. We conjecture
that this is due to the local nature of the optimization process.
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Figure 6: IBO-HPC recovers from harmful interactions. User knowledge might be even harmful
during optimization. Once users recognize that a set interaction is harmful, IBO-HPC recovers
after removal of the harmful interaction. Notably, LS has a high standard deviation on almost
all tasks. We conjecture that this is due to the local nature of the optimization process.
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Figure 7: CDF of Test Accuracy. IBO-HPC samples more good performing configurations than most
of the baseline on most of the tasks. Thus, IBO-HPC invests more computational resources
in good configurations than other methods.
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C Working Example

In the following we consider a more detailed example of our proposed method from a user perspec-
tive. We assume that we only optimize 3 hyperparameters here,W, N and R which correspond to
the hyperparametersW, N and Resolution in the JAHS benchmark.

The optimization starts where each of the hyperparameters gets optimized by our method. At
some point, the user interacts with the optimization process and sets W and N to a fixed value
(blue in Figure 8). From then on, the model only optimizes the remaining hyperparameter R (green
in Figure 8), using conditional sampling from the resulting conditional distribution that the HPC
represents after the interaction.

optimize

HPC

S

X3 X 1

P1 P2

S2 L31 L12 S3

P3 P4 P5 P6

L13 L24 L15 L26 L27 L38 L29 L310

W WN NW W R R

{N=16, W=3}

optimize

HPC

iterations

Figure 8: Example of IBO-HPC. A user specifies certain aspects of the hyperparameter search space
during optimization. Afterward, IBO-HPC takes user knowledge into account when sampling
new configuration candidates.
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