
Enhancing NLIDBs: Advancing from Text-to-SQL to Text-to-Multi-SQL

Anonymous ACL submission

Abstract

Text-to-SQL is a key part of Natural Language001
Interfaces to Databases (NLIDB), helping non-002
technical users query databases. However,003
it has one significant limitation: it assumes004
users know that SQL queries return data in005
a table format. This often leads to problems006
when users ask for data that cannot be handled007
by a single query. To address this, we pro-008
pose Text-to-Multi-SQL, which uses multiple009
SQL queries to meet complex user needs. We010
created SpiderS, the first Text-to-Multi-SQL011
dataset, based on the Spider dataset. It includes012
7,000 training examples, 1,024 validation ex-013
amples, and 2,147 test examples, created using014
a mix of manual and GPT4o generated data.015
Tests show that current models struggle with016
multiple SQL generation, and even advanced017
models perform worse (0.167-0.327 drop in018
accuracy) on SpiderS. We also found that mod-019
els are very sensitive to prompts—switching020
from “generate one SQL” to “generate one or021
multiple SQL” significantly reduces their per-022
formance.023

1 Introduction024

The research on NLIDB (Natural Language Inter-025

face to DataBases) has always been a hot topic in026

the fields of databases and Natural Language Pro-027

cessing (NLP) (Abbas et al., 2022; Pourreza and028

Rafiei, 2023; Hong et al., 2024; Zhang et al., 2024).029

In the study of NLIDB, Text-to-SQL is considered030

one of the key components (Abbas et al., 2022;031

Qin et al., 2022; Deng et al., 2022; Katsogiannis-032

Meimarakis and Koutrika, 2023a; Hong et al.,033

2024; Zhang et al., 2024). Many studies suggest034

that Text-to-SQL technology allows users without035

database knowledge to easily access data from a036

database (Iacob et al., 2020; Abbas et al., 2022;037

Qin et al., 2022; Katsogiannis-Meimarakis and038

Koutrika, 2023a; Gao et al., 2023; Pourreza et al.,039

2024; Hong et al., 2024; Zhang et al., 2024; Zhu040

et al., 2024).041

Figure 1: An example of Text-to-Multi-SQL.

However, in our practice, we discovered an im- 042

plicit assumption in Text-to-SQL: users are ex- 043

pected to understand that the data returned by each 044

SQL query is expected to be a tabular format, typi- 045

cally a rectangular table with a consistent column 046

structure (though there may be variations, such 047

as missing values in sparse data or more complex 048

structures in nested data). For many users without 049

SQL knowledge, they are unaware of this assump- 050

tion, which leads to the problem that their requests 051

often cannot be fulfilled by a single SQL query, 052

or even by SQL queries at all. This can cause a 053

problem: users may request data that exceeds the 054

capabilities of a single SQL query. 055

Figure 1 shows a practical example from an 056

NLIDB-based census flow data platform. The data 057

the user needs cannot be fulfilled by a single SQL 058

query; however, two SQL queries can perfectly 059

meet the user’s needs. Although it’s possible to 060

force the query to be completed with a single SQL, 061

the returned data is neither elegant nor easy to un- 062

derstand. Both we and the users agree that using 063

two SQL queries to return two separate result sets 064

would be a better approach. 065

Based on this finding, we believe it is necessary 066

to extend traditional Text-to-SQL to Text-to-Multi- 067

SQL to better meet the diverse data needs of users. 068

To this end, we chose the Spider (Yu et al., 2018) 069

Text-to-SQL dataset as the basis and constructed 070

the first Text-to-Multi-SQL dataset: SpiderS. Like 071

1

the Spider dataset, SpiderS contains 7,000 training072

examples, 1,024 validation examples, and 2,147073

test examples. The data was constructed using a074

combination of manual annotation and data gen-075

erated by Large Language Models (LLMs), with076

around 1,100 manually annotated examples used to077

guide the LLM in generating additional paired data,078

where each question could be paired with multiple079

SQL queries. During generation, we rewrote the080

original Spider questions and SQLs to ensure the081

diversity of the SpiderS dataset. To the best of our082

knowledge, SpiderS is the first Text-to-Multi-SQL083

dataset, and this paper is the first dedicated to the084

study of Text-to-Multi-SQL.085

Experimental results show that many existing086

Text-to-SQL models are unable to generate multi-087

ple SQL queries. While LLM-based Text-to-SQL088

models can output multiple SQL queries by modi-089

fying the prompt, their performance drops signif-090

icantly on the SpiderS dataset because they may091

not be trained on a Text-to-Multi-SQL dataset. The092

absolute drop in execution accuracy ranges from093

0.167 to 0.327. Interestingly, most models show094

poor robustness to prompts that request one or095

multiple SQL queries. When we simply changed096

the prompt from ‘generate one SQL’ to ‘generate097

one or multiple SQL,’ the performance of most098

models on the original Spider dataset decreased099

to varying degrees, with the largest drop seen in100

the CHESS (Talaei et al., 2024) model—an SOTA101

open source Text-to-SQL model on the BIRD (Li102

et al., 2024)—whose execution accuracy dropped103

from 0.759 to 0.462.104

Overall, the contributions of this paper are as105

follows:106

1. We systematically study Text-to-Multi-SQL107

and construct the first Text-to-Multi-SQL108

dataset, SpiderS, based on the Spider Text-109

to-SQL dataset.110

2. We found that Text-to-SQL models are highly111

vulnerable to prompt modifications: simply112

changing the instruction from ‘generate one113

SQL’ to ‘generate one or multiple SQLs’ leads114

to a significant performance drop.115

3. We found that existing Text-to-SQL mod-116

els/LLMs fail to address the need for Text-117

to-Multi-SQL, with some unable to generate118

multiple SQL queries. Even capable models119

show a significant accuracy drop on SpiderS120

compared to the Spider dataset.121

2 Relate Work 122

2.1 Natural Language Interface to Databases 123

Research in Natural Language Interface to 124

Databases (NLIDB) focuses on enabling users 125

to query databases using natural language, with 126

key tasks including Text2SQL, Text-to-Graph, and 127

Text-to-SPARQL. The Text2SQL (Katsogiannis- 128

Meimarakis and Koutrika, 2023b) task, which 129

converts natural language questions into SQL 130

queries, is the most prominent, addressing chal- 131

lenges such as query intent interpretation, schema 132

mapping, and handling complex SQL constructs 133

like joins and subqueries. Recent advancements in 134

deep learning, particularly transformer (Vaswani, 135

2017) and large language (Devlin, 2018; Achiam 136

et al., 2023) models, have significantly improved 137

performance (Scholak et al., 2021; Qi et al., 138

2022; Li et al., 2023; Gao et al., 2024b) in this 139

area. In addition to Text2SQL, other tasks such 140

as Text-to-Graph (Lawrence, 2024) and Text-to- 141

SPARQL (Luo et al., 2023) aim to extend NLIDB 142

systems to graph and semantic web databases, each 143

introducing unique challenges related to graph 144

structure and ontology-based querying. There is 145

a growing emphasis on improving related models’ 146

ability to handle more complex domain-specific 147

queries and to provide accurate context-sensitive 148

responses. 149

2.2 Popular Text-to-SQL Datasets 150

As one of the most important studies in human- 151

computer interaction systems, Text2SQL has at- 152

tracted many people to explore. Several popu- 153

lar databases are proposed for converting natural 154

language queries into structured query language. 155

WikiSQL (Zhong et al., 2017) is a large-scale 156

dataset for converting natural language questions 157

into SQL queries, containing 80,000 question-SQL 158

pairs over tables extracted from Wikipedia. Spi- 159

der (Yu et al., 2018) is a large-scale, cross-domain 160

dataset for SQL query generation, with a focus 161

on multi-table queries, complex conditions, and 162

aggregation. BIRD (Li et al., 2024) is a bench- 163

mark for evaluating multi-lingual and cross-lingual 164

SQL query generation models, particularly focus- 165

ing on database retrieval across different languages. 166

NL2GQL (Zhou et al., 2024) is a dataset that 167

pairs natural language questions with correspond- 168

ing GQL queries, designed to help develop models 169

for querying graph databases, including tasks like 170

node selection, graph traversal, and pathfinding. 171

2

SQL-eval1 is an open-source PostgreSQL evalua-172

tion dataset constructed based on Spider (Yu et al.,173

2018), which is used to evaluate Text-to-SQL mod-174

els’ ability to generate executable SQL queries175

from natural language questions. However, all of176

the above datasets focus on convert one natural177

language question into one SQL query. It does178

not apply to many real-world scenarios where the179

answer to the user’s question should come from180

multiple SQL.181

2.3 Limitations of Text-to-SQL Systems182

Recent studies have advanced Text-to-SQL sys-183

tems from several complementary angles. However,184

it’s still hard for these methods to address com-185

plex tasks. Biswal et al. (2024) integrate Retrieval-186

Augmented Generation (RAG) with database tables187

to propose a unified, general-purpose paradigm188

for answering natural language questions over189

databases, aiming to provide a better user experi-190

ence than traditional text-to-SQL approaches. Like-191

wise, CHASE (Ma et al., 2025) enhances hybrid192

query execution by bridging structured and unstruc-193

tured data. Renggli et al. (2025) analyze the lim-194

itations of Text-to-SQL from an evaluation per-195

spective, which can lead to both prediction and196

evaluation errors. However, none of these papers197

involved Text-to-Multi-SQL.198

3 Task Definition199

Traditional Text-to-SQL approaches typically as-200

sume a one-to-one mapping between question and201

SQL query. However, in many real-world appli-202

cations, a single query is insufficient to fully cap-203

ture the intent of a complex question. For exam-204

ple, multi-faceted questions often require retrieving205

information from different perspectives, applying206

multiple filtering conditions, or aggregating distinct207

sets of records.208

Text-to-Multi-SQL aims to convert a natural lan-209

guage question Q into one or multiple SQL queries210

y1, y2, . . . that retrieve the correct results from a211

given database D. A database is formally defined212

as D = <C, T>, where C = {c1, c2, ..., cm}213

represents the set of column names and T =214

{t1, t2, ..., tm} represents the set of table names.215

Given D and Q, the objective is to generate the216

most appropriate SQL query (or queries set), such217

that executing y1, y2, . . . on D yields the expected218

1https://github.com/defog-ai/sql-eval

answer. The query generation process can be ex- 219

pressed as 220

{y1, y2, . . . } = f(Q,D|θ), (1) 221

where f(·|θ) is a model parameterized by θ, 222

which maps the natural language question Q and 223

database schema D to a set of SQL queries 224

{y1, y2, . . . }. 225

For some questions that can be solved using ei- 226

ther multiple SQL queries or a single SQL query, 227

we prepare two sets of gold SQL queries. As long 228

as the prediction matches any one of the gold SQL 229

sets, we consider the task successful. For example, 230

in all cases generated by the 6th generation strategy 231

in Appendix A, we have prepared two gold SQL 232

sets for evaluation. However, during training, we 233

use the multi-SQL gold SQL set because its query 234

results better align with the user’s intent. 235

4 Dataset Construction 236

Figure 2 illustrates our data annotation process. 237

4.1 Question and SQL Annotation 238

SQL pattern coverage. Before beginning the an- 239

notation process, our team surveyed multiple SQL 240

queries commonly found in real-world applications 241

and identified 14 distinct patterns (e.g., requiring an 242

aggregated result and columns before aggregated 243

(type 6), grouping the same table based on different 244

attributes (type 7), and sorting the same data based 245

on different ordering (type 9) in Appendix A). Each 246

pattern was carefully documented in our annota- 247

tion manual, detailing the associated SQL clauses 248

and typical ways users might phrase correspond- 249

ing questions. This approach ensured that the final 250

dataset would capture a broad spectrum of query 251

complexities and structures. 252

Question clarity. Consistent with the Spider 253

dataset, we aimed to avoid ambiguous questions 254

that either lacked sufficient details or required 255

knowledge outside the database to answer. Instead, 256

we focused on queries that explicitly stated the nec- 257

essary conditions and returned values. For example, 258

the question "Find all the teacher names and also 259

all the classrooms for math courses" can be inter- 260

preted in two ways: either as a request for teachers 261

and classrooms for math courses, or as separate 262

requests for all teacher names and all math course 263

classrooms. To avoid ambiguity, we use phrases 264

like "first ..., then ..." or "separately list ..." to clarify 265

that multiple distinct SQL queries are needed. 266

3

Figure 2: Data annotation process.

Annotation steps. We began by creating a de-267

tailed data annotation manual that described each268

of the 14 SQL patterns, including examples of269

both questions and their corresponding SQL state-270

ments. Two Computer science students(paper au-271

thors) studying in the US, all proficient in SQL,272

were then tasked with labeling one example for273

each pattern across different databases. These ex-274

amples served as references for One-Shot Learning275

in later data generation stages.276

After the initial round of labeling, we conducted277

a manual cross-check to detect obvious inconsis-278

tencies or errors. Next, the annotated data was run279

through an automatic validation script (described280

in Section 4.2) that checked structural correctness281

(e.g., matching pattern design, proper use of SQL282

keywords) and basic logical consistency. Finally,283

we used GPT-4o to assess whether each user ques-284

tion was clearly stated and matched the correspond-285

ing SQL queries accurately. Any data flagged dur-286

ing this process was subjected to a second manual287

review to resolve potential issues.288

Annotation tools. In order to conduct data an-289

notation more efficiently, we establish a website290

which display the database schema and provide291

some possibly useful examples as annotation refer-292

ences. After modifying or adding SQLs on the web-293

page, we can directly execute the SQLs and check294

whether the result is as expected. The website also295

is connected to GPT-4o, which may provide mean-296

ingful suggestions to make the modified questions297

without ambiguity. The website also provides data298

comparison, allowing users to intuitively view the299

differences between the original questions and the300

new questions, facilitating modification and review.301

4.2 Data Review302

Automatic validation script. To maintain anno-303

tation consistency and reduce human error, we de-304

veloped and iteratively refined an automatic valida-305

tion script. The script performed several checks: 306

• Syntactic correctness: Verified that all SQL 307

queries could be parsed and executed without 308

errors. 309

• Pattern matching: Ensured each query corre- 310

sponded to one of the 15 predefined SQL pat- 311

terns and did not include extraneous or miss- 312

ing clauses. 313

• Schema alignment: Checked that table 314

names and column names used in the SQL 315

were present in the database schema. 316

Entries that did not pass any of these checks were 317

returned to the annotators for correction or deletion. 318

GPT4o-Based validation. In addition to the rule- 319

based checks, we employed GPT-4o as a second 320

layer of validation. GPT-4o was given a pair con- 321

sisting of a user query and its corresponding SQL 322

statement. It was then asked to: 323

1. Evaluate whether the question was sufficiently 324

clear and unambiguous. 325

2. Verify if the SQL query logically aligned with 326

the question. 327

3. Flag any potential misalignment or unclear 328

phrasing. 329

Data flagged by GPT-4o for potential issues—such 330

as vague question wording or mismatches in con- 331

ditions—was forwarded to a human reviewer for 332

final judgment. This hybrid workflow ensured a 333

more robust validation process than either method 334

could achieve in isolation. 335

4.3 Construct the Final Dataset 336

After one round of manual validation, one round 337

of automatic validation, and one round of GPT-4o 338

4

SQL keyword Spider SpiderS
WHERE 51.37% 52.34%
GROUP 29.02% 31.66%
ORDER 15.70% 14.93%
LIMIT 39.40% 35.10%
UNION 1.02% 0.11%
INTERSECT 3.91% 0.22%
EXCEPT 3.49% 0.37%
JOIN 58.55% 39.33%

Table 1: Percentage of SQL keywords in Spider and
SpiderS.

verification, we obtained a high-quality set of an-339

notated question-SQL pairs. Then, we generated340

additional data using GPT-4o based on One-Shot341

learning if a proper example was found; otherwise,342

we used the Zero-Shot learning approach to gener-343

ate extra data.344

We expanded the dataset to about twice the size345

of the original Spider dataset and applied the same346

multi-step validation process, including automatic347

checks, manual review, and GPT-4o-based vali-348

dation, to ensure accuracy and consistency. For349

most data that failed automatic validation or GPT-350

4o checks, we removed it directly to save annota-351

tion time. Through manual inspection and review,352

we ensured that the new dataset remained consis-353

tent in quality with the original Spider dataset. To354

maintain balance, we set a limit so that no single355

SQL pattern made up more than 15% of the dataset.356

This prevented overrepresentation of certain query357

types and ensured diversity. After these rigorous358

validation steps, we produced a well-verified, high-359

quality Text-to-Multiple-SQL dataset.360

4.4 Dataset Statistics361

Our dataset follows the same structure as the Spider362

dataset, with 7,000 training samples, 1,034 valida-363

tion samples, and 2,147 test samples. Of these,364

1,130 examples were manually created, and the re-365

maining 9,051 were automatically generated. On366

average, each question requires 2.125 SQL queries367

to answer. Specifically, 1,266 samples need 3 SQL368

queries, while 8,915 samples require 2. Table 1369

compares the frequency of SQL keywords between370

the two datasets. Compared to the original Spider,371

SpiderS has similar frequencies for keywords like372

WHERE, GROUP, ORDER, and LIMIT. However,373

JOIN, UNION, INTERSECT, and EXCEPT are374

less frequent in SpiderS because we opted for sim-375

pler SQL queries in SpiderS, aiming to avoid overly376

complex queries, as multiple complex queries are 377

less common in real user scenarios. 378

5 Evaluation Metrics 379

Execution Score (ES). In order to evaluate the cor- 380

rectness of each of the multiple generated SQL 381

queries, we propose a metric called Execution 382

Score (ES). For the ith evaluation question requir- 383

ing multiple SQL queries to address, given Pi and 384

Gi as the executed result sets of the predicted SQLs 385

and the ground-truth SQLs separately, ESi is de- 386

fined as the intersection of the result set Pi and Gi, 387

relative to the maximum between the size of the 388

two result sets. This metric is applied to evaluate 389

the ability of generating meaningful and correct 390

SQL queries matching part of the question. There- 391

fore, we consider the correctness for each single 392

predicted SQL and assign a higher score if the 393

executed results of predicted SQLs match more 394

ground-truth ones. The final ES is the accumula- 395

tion of ESi, which is shown below: 396

ESi =
|Pi ∩Gi|

max(|Pi|, |Gi|)
, (2) 397

where: 398

• Pi : The set of the ith predicted SQL queries. 399

• Gi : The set of the ith ground-truth SQL 400

queries. 401

• Pi∩Gi : The set of SQL query pairs (p, g) for 402

the ith question such that the execution result 403

of p and g is identical. 404

• | · | : The cardinality (size) of a set. 405

Execution Accuracy (EX). EX is formally defined 406

as the proportion of examples in the evaluation set 407

for which the executed results of both the predicted 408

and ground-truth SQLs for a single question are 409

identical, relative to the overall number of SQLs. 410

However, in our task definition, we require multi- 411

ple SQLs to address one single question. There- 412

fore, following the previous definition of Execution 413

Score (ES), the ith question in the evaluation set 414

is considered solved only when ESi is equal to 415

1. That is, the execution result of each of the pre- 416

dicted SQLs can match the one of a corresponding 417

ground-truth SQL. The computation of EX can be 418

expressed as follows: 419

EX =

∑N
i=1M(ESi)

N
, (3) 420

5

Models
Spider SpiderM SpiderS Spidersmall SpiderMsmall SpiderSsmall

EX ES EX ES EX ES EX ES EX ES EX ES

Closed-source Models

GPT-4o - - - - 0.497 0.648 0.733 0.733 0.572 0.625 0.519 0.667

Claude-3.5-Sonnet - - - - - - 0.629 0.629 0.589 0.589 0.302 0.461

o3-mini - - - - - - 0.737 0.737 0.722 0.723 0.525 0.650

Open-source Models

Qwen2.5-Coder-7B-Instruct 0.756 0.756 0.674 0.694 0.442 0.596 0.761 0.761 0.678 0.697 0.454 0.608

Qwen2.5-Coder-32B-Instruct 0.766 0.766 0.675 0.695 0.503 0.647 0.779 0.779 0.689 0.705 0.515 0.659

CodeLlama-7b-Instruct-hf 0.123 0.123 0.082 0.089 0.038 0.069 0.125 0.125 0.070 0.078 0.033 0.065

CodeLlama-34b-Instruct-hf 0.177 0.177 0.221 0.224 0.088 0.141 0.172 0.172 0.216 0.218 0.086 0.140

Llama-3.1-8B-Instruct 0.628 0.628 0.621 0.628 0.392 0.549 0.622 0.622 0.615 0.620 0.411 0.567

Llama-3.1-405B-Instruct - - - - - - 0.787 0.787 0.748 0.750 0.534 0.688

DeepSeek-R1-Distill-Qwen-7B 0.394 0.394 0.320 0.347 0.195 0.322 0.375 0.375 0.300 0.330 0.195 0.330

DeepSeek-R1-Distill-Llama-8B 0.435 0.435 0.388 0.404 0.125 0.283 0.415 0.415 0.374 0.387 0.137 0.293

Mistral-Large-Instruct-2411 - - - - - - 0.671 0.671 0.454 0.522 0.453 0.634

Fine-tuned Models

Qwen2.5-Coder-7B-Instruct - - 0.786 0.787 0.725 0.831 - - 0.784 0.785 0.731 0.837

CodeLlama-7b-Instruct-hf - - 0.728 0.728 0.656 0.781 - - 0.728 0.729 0.651 0.781

Llama-3.1-8B-Instruct - - 0.761 0.761 0.706 0.811 - - 0.753 0.753 0.724 0.822

DeepSeek-R1-Distill-Qwen-7B - - 0.664 0.664 0.604 0.734 - - 0.660 0.661 0.615 0.744

DeepSeek-R1-Distill-Llama-8B - - 0.728 0.729 0.665 0.788 - - 0.730 0.730 0.672 0.793

Text2SQL Models

CHESS - - - - - - 0.759 0.759 0.462 0.589 0.559 0.699

XiYanSQL-QwenCoder-32B 0.849 0.849 0.809 0.814 0.669 0.782 0.852 0.852 0.823 0.827 0.685 0.799

Table 2: Performance Comparison of Various Models on Spider and SpiderS Datasets.

where function M (·) returns 1 only if ESi is equal421

to 1, indicating that every executed result in pre-422

dicted result set Pi can match a corresponding one423

in ground-truth result set Gi. The expression of424

M (·) is shown below:425

M(ES) =

{
1, if ESi = 1,

0, otherwise.
(4)426

6 Experiments427

6.1 Experimental Setup428

Prompt. In terms of prompt design, the distinc-429

tion lies in generating one SQL versus one or more430

SQL. When evaluating SpiderS, the latter must be431

used, whereas for Spider, both approaches are ap-432

plicable. To analyze the impact of prompts, we433

employ different prompts on Spider to observe how434

the model’s performance is affected when the gen-435

erated SQL is no longer restricted to a single query.436

Dataset. We conducted our experiments in both437

the Spider and SpiderS test sets. The test set dis-438

tribution of the original Spider dataset consists439

of 470 easy, 857 medium, 463 hard, and 357440

extra-hard samples, totaling 2,147 queries. In our441

SpiderS dataset, the distribution has slightly shifted, 442

with 351 easy, 837 medium, 595 hard, and 364 443

extra-hard samples, while still maintaining a to- 444

tal of 2,147 queries. Despite these minor vari- 445

ations—such as a decrease in easy queries (470 446

→ 351) and an increase in hard queries (463 → 447

595)—the overall difficulty distribution remains 448

similar across both datasets. 449

To improve evaluation efficiency and reduce 450

evaluation costs, we randomly sampled 1,000 ex- 451

amples each from the original Spider and Spider-S 452

test sets to create a small test set for low-cost eval- 453

uation. 454

The evaluation tasks used in this study are shown 455

as follows: 456

• SpiderS: The complete SpiderS test set(2,147- 457

item). 458

• SpiderSsmall:The small SpiderS test set(1,000- 459

item). 460

• Spider: The complete Spider test set(2,147-item) 461

with a prompt for generating one SQL. 462

• Spidersmall: The small Spider test set (1,000- 463

item) with a prompt for generating one SQL. 464

• SpiderM: The complete Spider test set(2,147- 465

item) with a prompt for generating one or multi 466

6

Figure 3: Model EX rankings on the Spider(a), SpiderM(b), and SpiderS(c), and the EX drop caused by task
migration(d,e).

Figure 4: EX scores for different question types.

SQL.467

• SpiderMsmall:The small Spider test set (1,000-468

item) with a prompt for generating one or multi469

SQL.470

Models. To comprehensively evaluate the Text-471

to-Multi-SQL capabilities of different models, we472

assessed a diverse set of models, including open-473

source, fine-tuned, closed-source, and specialized474

Text2SQL models. For open source models, we475

study LLama3.1 (Grattafiori et al., 2024), Qwen476

2.5 Coder (Qwen et al., 2025), DeepSeek-R1-477

Distill-models(DeepSeek-AI et al., 2025), CodeL-478

lama (Rozière et al., 2024). Among the closed-479

source model, we evaluate GPT-4o (OpenAI et al.,480

2024), Claude-3.5-Sonnet, and o3-mini. For text-481

to-SQL models, we choose CHESS (Talaei et al.,482

2024) and XiYanSQL-QwenCoder-32B (Gao et al.,483

2024a).484

6.2 Main Results485

Table 2 compares the performance of different mod-486

els on the Spider and SpiderS datasets. Overall,487

XiYanSQL-QwenCoder-32B, which is specifically488

optimized for SQL generation, performs the best.489

Among the other models, Llama-3.1-405B-Instruct490

achieves the best results, with o3-mini close be-491

hind. The model with the lowest performance is492

CodeLlama-34B-Instruct, mainly due to its inabil-493

ity to generate correct JSON output and the signifi-494

cant hallucinations it produces.495

While the highest EX score on the Spider dataset 496

is 0.85, even models fine-tuned specifically for 497

SpiderS only reach a maximum EX score of 0.731. 498

This suggests that there is still room for improve- 499

ment on SpiderS. More importantly, our experi- 500

ments show that many models struggle with robust- 501

ness when generating multiple SQL queries, which 502

we discuss in more detail in Section 6.3. 503

Comparison of Small and Full Datasets. When 504

comparing the full test set to its subset, we find that 505

the results are very similar, with the small dataset 506

slightly outperforming the larger one. This shows 507

that our results on the small dataset are reliable. 508

Model Size and Performance. There is a clear 509

positive correlation between model size and per- 510

formance. For example, in the Llama-3.1 series, 511

the 8B-parameter achieves an EX score of 0.411 512

on the SpiderSsmall, while the 405B-parameter 513

model achieves a score of 0.534. A similar trend is 514

seen in the Qwen2.5 series, where the 32B model 515

outperforms the 7B model by 0.059 in EX score on 516

the SpiderSsmall. 517

Effectiveness of Fine-Tuning. Comparing 518

model performance before and after fine-tuning, 519

we find that domain-specific fine-tuning leads 520

to significant improvements. For example, 521

CodeLlama-7B’s EX score on the SpiderS in- 522

creased from 0.082 to 0.728, a 788% improvement. 523

7

6.3 Robustness Analysis524

Almost all models show a drop in performance525

when moving from Spider to SpiderM or from526

SpiderM to SpiderS. The performance decreases527

for these models are shown in Figures 3 (d) and528

(e). The only exception is CHESS, which improved529

from SpiderM to SpiderS, likely because its per-530

formance had already dropped considerably from531

Spider to SpiderM.532

This led to an interesting finding: simply adding533

the words ‘or multi’ to the prompt caused a534

sharp decline in the model’s ability to generate535

correct SQL, indicating that the model wasn’t536

well-prepared for handling multiple SQL queries.537

Among these models, Llama-3.1-8B-Instruct and538

o3-mini were the most robust, with their EX scores539

dropping by only 0.007 and 0.015, respectively. In540

contrast, CHESS and Mistral-Large-Instruct-2411541

experienced the largest performance drops, with542

declines of 0.292 and 0.217, respectively.543

6.4 Challenges of Text-to-SQL Models in544

Supporting Multi-SQL Generation545

Many text-to-SQL models struggle to accommo-546

date Text-to-Multi-SQL, which is why Table 2547

only reports the results of two text-to-SQL models.548

Firstly, traditional sequence-to-sequence models549

based on grammar decoders are incapable of gen-550

erating multiple SQL statements. Secondly, even551

modern models built on LLMs often lack support552

for multi SQL in their design. For instance, the553

MAC-SQL (Wang et al., 2024) model breaks down554

the SQL generation task into a process of generat-555

ing multiple SQL clauses, which are then combined556

to form a complete SQL statement. However, this557

generation process is not well-suited to the require-558

ments of producing multiple SQL statements.559

6.5 Analysis on DeepSeek-R1-Distill Models560

The performance of the DeepSeek-R1-Distill mod-561

els was relatively poor, so we conducted a detailed562

analysis of the generated data to identify the causes.563

First, we set the maximum generation token for564

these models to 1024, but around 17% of the exam-565

ples exceeded this limit, which prevented the tasks566

from being completed. One reason for the token567

shortage is that the model repeatedly included the568

prompt’s requirements in its output.569

We randomly selected 30 examples where the570

task was completed successfully and analyzed the571

model’s reasoning process. We found that only 11572

of these examples were correct. The model made 573

several mistakes, such as generating hallucinations, 574

frequently using non-existent database columns, 575

or selecting incorrect columns. It also seemed to 576

lose track of the original schema structure as the 577

reasoning progressed. Based on this analysis, we 578

conclude that the Distill models used in this ex- 579

periment are not well-suited for text-to-SQL tasks. 580

Additionally, the influence of prior knowledge on 581

the Distill models led to suboptimal performance, 582

even after fine-tuning, compared to traditional mod- 583

els. 584

6.6 Analysis on Question Types 585

To explore the question types (see Appendix A) 586

where the models perform poorly, and to identify 587

the reasons for their lower performance, we se- 588

lected three representative models and analyzed 589

their execution accuracy across all question types. 590

The results are shown in Figure 4. Overall, there 591

are 14 question types in total, with type 14 having 592

4 subclasses to represent all patterns requiring 3 593

SQLs. This distinction was made to easily differ- 594

entiate them from patterns requiring only 2 SQLs. 595

The fine-tuned Qwen2.5-Coder-7B-Instruct 596

shows improvements across all question types. 597

Type 12 sees marked improvement after fine-tuning, 598

as the questions are actually quite simple; the pre- 599

vious low performance was due to the model’s lack 600

of training. XiYanSQL-QwenCoder-32B, while 601

strong overall, struggles with multi-SQL tasks 602

(types 14.1, 14.2, and 14.3), likely due to its prior 603

single-SQL training. All models struggle with type 604

14.1, which is our most complex question type: 605

combining one original question with one gener- 606

ated question that requires two SQL queries. Type 607

4 is also difficult for models, as it lacks common 608

patterns and requires precise handling of each SQL. 609

7 Conclusion 610

We introduce the Text-to-Multi-SQL paradigm and 611

the SpiderS dataset, shedding light on key limi- 612

tations in current Text-to-SQL models. Our ex- 613

periments reveal that even state-of-the-art models 614

like GPT-4o and XiYanSQL experience significant 615

performance drops when tasked with multi-SQL 616

generation. A factor is the models’ sensitivity to 617

prompt changes. To address these issues, future 618

work should focus on improving model robustness 619

and enhancing multi-query coordination to make 620

data more accessible to non-technical users. 621

8

Limitations622

Our work focuses solely on Text-to-SQL and Text-623

to-Multi-SQL, but even text-to-Multi-SQL can-624

not meet all user needs. As in the example in625

TAG (Biswal et al., 2024), users want to summarize626

the content of tables, and relying purely on SQL is627

currently difficult to achieve. Due to limitations in628

computing resources, we have not fine-tuned larger629

models (such as the 70B). At the moment, it is un-630

clear how much better these models would perform631

after being fine-tuned.632

References633

Shanza Abbas, Muhammad Umair Khan, Scott Uk-Jin634
Lee, Asad Abbas, and Ali Kashif Bashir. 2022. A635
review of nlidb with deep learning: Findings, chal-636
lenges and open issues. IEEE Access, 10:14927–637
14945.638

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama639
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,640
Diogo Almeida, Janko Altenschmidt, Sam Altman,641
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.642
arXiv preprint arXiv:2303.08774.643

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-644
setty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin,645
and Matei Zaharia. 2024. Text2sql is not enough:646
Unifying ai and databases with tag. Preprint,647
arXiv:2408.14717.648

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,649
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,650
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,651
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong652
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,653
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,654
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,655
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,656
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,657
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,658
Han Bao, Hanwei Xu, Haocheng Wang, Honghui659
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,660
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang661
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.662
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai663
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai664
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong665
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan666
Zhang, Minghua Zhang, Minghui Tang, Meng Li,667
Miaojun Wang, Mingming Li, Ning Tian, Panpan668
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,669
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,670
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,671
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,672
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng673
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing674
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,675
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,676

Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 677
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 678
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 679
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 680
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 681
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 682
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 683
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 684
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 685
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 686
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 687
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 688
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 689
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 690
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 691
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 692
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 693
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 694
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 695
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 696
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 697
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 698
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 699
tivizing reasoning capability in llms via reinforce- 700
ment learning. Preprint, arXiv:2501.12948. 701

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re- 702
cent advances in text-to-SQL: A survey of what we 703
have and what we expect. In Proceedings of the 704
29th International Conference on Computational Lin- 705
guistics, pages 2166–2187, Gyeongju, Republic of 706
Korea. International Committee on Computational 707
Linguistics. 708

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 709
rectional transformers for language understanding. 710
arXiv preprint arXiv:1810.04805. 711

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 712
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 713
Text-to-sql empowered by large language models: A 714
benchmark evaluation. Preprint, arXiv:2308.15363. 715

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin 716
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, 717
Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. 718
2024a. A preview of xiyan-sql: A multi-generator 719
ensemble framework for text-to-sql. arXiv preprint 720
arXiv:2411.08599. 721

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin 722
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, 723
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi- 724
generator ensemble framework for text-to-sql. arXiv 725
preprint arXiv:2411.08599. 726

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 727
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 728
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 729
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 730
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 731
tra, Archie Sravankumar, Artem Korenev, Arthur 732
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro- 733
driguez, Austen Gregerson, Ava Spataru, Baptiste 734
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, 735

9

https://doi.org/10.1109/ACCESS.2022.3147586
https://doi.org/10.1109/ACCESS.2022.3147586
https://doi.org/10.1109/ACCESS.2022.3147586
https://doi.org/10.1109/ACCESS.2022.3147586
https://doi.org/10.1109/ACCESS.2022.3147586
https://arxiv.org/abs/2408.14717
https://arxiv.org/abs/2408.14717
https://arxiv.org/abs/2408.14717
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599

Charlotte Caucheteux, Chaya Nayak, Chloe Bi,736
Chris Marra, Chris McConnell, Christian Keller,737
Christophe Touret, Chunyang Wu, Corinne Wong,738
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-739
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,740
Danny Wyatt, David Esiobu, Dhruv Choudhary,741
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,742
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,743
Elina Lobanova, Emily Dinan, Eric Michael Smith,744
Filip Radenovic, Francisco Guzmán, Frank Zhang,745
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-746
derson, Govind Thattai, Graeme Nail, Gregoire Mi-747
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,748
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan749
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-750
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,751
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,752
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,753
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,754
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,755
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,756
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-757
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,758
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth759
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,760
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal761
Lakhotia, Lauren Rantala-Yeary, Laurens van der762
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,763
Louis Martin, Lovish Madaan, Lubo Malo, Lukas764
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline765
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar766
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew767
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-768
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,769
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-770
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,771
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick772
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-773
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,774
Praveen Krishnan, Punit Singh Koura, Puxin Xu,775
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj776
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,777
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,778
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-779
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan780
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-781
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-782
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-783
ran Narang, Sharath Raparthy, Sheng Shen, Shengye784
Wan, Shruti Bhosale, Shun Zhang, Simon Van-785
denhende, Soumya Batra, Spencer Whitman, Sten786
Sootla, Stephane Collot, Suchin Gururangan, Syd-787
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek788
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias789
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal790
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh791
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-792
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-793
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-794
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-795
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-796
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-797
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,798
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,799

Zacharie Delpierre Coudert, Zheng Yan, Zhengxing 800
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri- 801
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, 802
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, 803
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei 804
Baevski, Allie Feinstein, Amanda Kallet, Amit San- 805
gani, Amos Teo, Anam Yunus, Andrei Lupu, An- 806
dres Alvarado, Andrew Caples, Andrew Gu, Andrew 807
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan- 808
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara- 809
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 810
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 811
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 812
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 813
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 814
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 815
Brian Gamido, Britt Montalvo, Carl Parker, Carly 816
Burton, Catalina Mejia, Ce Liu, Changhan Wang, 817
Changkyu Kim, Chao Zhou, Chester Hu, Ching- 818
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe- 819
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, 820
Daniel Kreymer, Daniel Li, David Adkins, David 821
Xu, Davide Testuggine, Delia David, Devi Parikh, 822
Diana Liskovich, Didem Foss, Dingkang Wang, Duc 823
Le, Dustin Holland, Edward Dowling, Eissa Jamil, 824
Elaine Montgomery, Eleonora Presani, Emily Hahn, 825
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este- 826
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, 827
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat 828
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank 829
Seide, Gabriela Medina Florez, Gabriella Schwarz, 830
Gada Badeer, Georgia Swee, Gil Halpern, Grant 831
Herman, Grigory Sizov, Guangyi, Zhang, Guna 832
Lakshminarayanan, Hakan Inan, Hamid Shojanaz- 833
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun 834
Habeeb, Harrison Rudolph, Helen Suk, Henry As- 835
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim 836
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, 837
Irina-Elena Veliche, Itai Gat, Jake Weissman, James 838
Geboski, James Kohli, Janice Lam, Japhet Asher, 839
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen- 840
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy 841
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe 842
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc- 843
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang, 844
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan- 845
delwal, Katayoun Zand, Kathy Matosich, Kaushik 846
Veeraraghavan, Kelly Michelena, Keqian Li, Ki- 847
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle 848
Huang, Lailin Chen, Lakshya Garg, Lavender A, 849
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng 850
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst- 851
edt, Madian Khabsa, Manav Avalani, Manish Bhatt, 852
Martynas Mankus, Matan Hasson, Matthew Lennie, 853
Matthias Reso, Maxim Groshev, Maxim Naumov, 854
Maya Lathi, Meghan Keneally, Miao Liu, Michael L. 855
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa- 856
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, 857
Mike Macey, Mike Wang, Miquel Jubert Hermoso, 858
Mo Metanat, Mohammad Rastegari, Munish Bansal, 859
Nandhini Santhanam, Natascha Parks, Natasha 860
White, Navyata Bawa, Nayan Singhal, Nick Egebo, 861
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich 862
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, 863

10

Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin864
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-865
dro Rittner, Philip Bontrager, Pierre Roux, Piotr866
Dollar, Polina Zvyagina, Prashant Ratanchandani,867
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel868
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu869
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,870
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky871
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,872
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara873
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,874
Satadru Pan, Saurabh Mahajan, Saurabh Verma,875
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-876
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,877
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,878
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,879
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,880
Stephanie Max, Stephen Chen, Steve Kehoe, Steve881
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,882
Summer Deng, Sungmin Cho, Sunny Virk, Suraj883
Subramanian, Sy Choudhury, Sydney Goldman, Tal884
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,885
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim886
Matthews, Timothy Chou, Tzook Shaked, Varun887
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai888
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad889
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,890
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-891
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng892
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo893
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,894
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,895
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,896
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary897
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,898
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd899
of models. Preprint, arXiv:2407.21783.900

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,901
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.902
Next-generation database interfaces: A survey of llm-903
based text-to-sql. Preprint, arXiv:2406.08426.904

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan905
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and906
Weizhu Chen. 2021. Lora: Low-rank adaptation of907
large language models. Preprint, arXiv:2106.09685.908

Radu Cristian Alexandru Iacob, Florin Brad,909
Elena-Simona Apostol, Ciprian-Octavian Tru-910
ică, Ionel Alexandru Hosu, and Traian Rebedea.911
2020. Neural approaches for natural language912
interfaces to databases: A survey. In Proceedings of913
the 28th International Conference on Computational914
Linguistics, pages 381–395, Barcelona, Spain915
(Online). International Committee on Computational916
Linguistics.917

George Katsogiannis-Meimarakis and Georgia Koutrika.918
2023a. A survey on deep learning approaches for919
text-to-sql. The VLDB Journal, 32(4):905–936.920

George Katsogiannis-Meimarakis and Georgia Koutrika.921
2023b. A survey on deep learning approaches for922
text-to-sql. The VLDB Journal, 32(4):905–936.923

Peter Lawrence. 2024. Text-to-graph via llm: pre- 924
training, prompting, or tuning. 925

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 926
2023. Resdsql: Decoupling schema linking and 927
skeleton parsing for text-to-sql. In Proceedings of 928
the AAAI Conference on Artificial Intelligence, vol- 929
ume 37, pages 13067–13075. 930

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 931
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 932
Geng, Nan Huo, et al. 2024. Can llm already serve 933
as a database interface? a big bench for large-scale 934
database grounded text-to-sqls. Advances in Neural 935
Information Processing Systems, 36. 936

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, 937
Wentai Zhang, Chenghao Ma, Guanting Dong, Meina 938
Song, Wei Lin, Yifan Zhu, et al. 2023. Chatkbqa: A 939
generate-then-retrieve framework for knowledge base 940
question answering with fine-tuned large language 941
models. arXiv preprint arXiv:2310.08975. 942

Rui Ma, Kai Zhang, Zhenying He, Yinan Jing, X Sean 943
Wang, and Zhenqiang Chen. 2025. Chase: A 944
native relational database for hybrid queries on 945
structured and unstructured data. arXiv preprint 946
arXiv:2501.05006. 947

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, 948
Adam Perelman, Aditya Ramesh, Aidan Clark, 949
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec 950
Radford, Aleksander Mądry, Alex Baker-Whitcomb, 951
Alex Beutel, Alex Borzunov, Alex Carney, Alex 952
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex 953
Renzin, Alex Tachard Passos, Alexander Kirillov, 954
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan 955
Jabri, Allison Moyer, Allison Tam, Amadou Crookes, 956
Amin Tootoochian, Amin Tootoonchian, Ananya 957
Kumar, Andrea Vallone, Andrej Karpathy, Andrew 958
Braunstein, Andrew Cann, Andrew Codispoti, An- 959
drew Galu, Andrew Kondrich, Andrew Tulloch, An- 960
drey Mishchenko, Angela Baek, Angela Jiang, An- 961
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka 962
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, 963
Barret Zoph, Behrooz Ghorbani, Ben Leimberger, 964
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin 965
Zweig, Beth Hoover, Blake Samic, Bob McGrew, 966
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad 967
Lightcap, Brandon Walkin, Brendan Quinn, Brian 968
Guarraci, Brian Hsu, Bright Kellogg, Brydon East- 969
man, Camillo Lugaresi, Carroll Wainwright, Cary 970
Bassin, Cary Hudson, Casey Chu, Chad Nelson, 971
Chak Li, Chan Jun Shern, Channing Conger, Char- 972
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, 973
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris 974
Koch, Christian Gibson, Christina Kim, Christine 975
Choi, Christine McLeavey, Christopher Hesse, Clau- 976
dia Fischer, Clemens Winter, Coley Czarnecki, Colin 977
Jarvis, Colin Wei, Constantin Koumouzelis, Dane 978
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, 979
David Carr, David Farhi, David Mely, David Robin- 980
son, David Sasaki, Denny Jin, Dev Valladares, Dim- 981
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan 982

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2020.coling-main.34
https://doi.org/10.18653/v1/2020.coling-main.34
https://doi.org/10.18653/v1/2020.coling-main.34
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8

Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-983
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,984
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-985
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,986
Felipe Petroski Such, Filippo Raso, Francis Zhang,987
Fred von Lohmann, Freddie Sulit, Gabriel Goh,988
Gene Oden, Geoff Salmon, Giulio Starace, Greg989
Brockman, Hadi Salman, Haiming Bao, Haitang990
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,991
Heather Whitney, Heewoo Jun, Hendrik Kirchner,992
Henrique Ponde de Oliveira Pinto, Hongyu Ren,993
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,994
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-995
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya996
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,997
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub998
Pachocki, James Aung, James Betker, James Crooks,999
James Lennon, Jamie Kiros, Jan Leike, Jane Park,1000
Jason Kwon, Jason Phang, Jason Teplitz, Jason1001
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-1002
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui1003
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,1004
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-1005
ders, Joel Parish, Johannes Heidecke, John Schul-1006
man, Jonathan Lachman, Jonathan McKay, Jonathan1007
Uesato, Jonathan Ward, Jong Wook Kim, Joost1008
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,1009
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,1010
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai1011
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin1012
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,1013
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,1014
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle1015
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-1016
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia1017
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-1018
ian Weng, Lindsay McCallum, Lindsey Held, Long1019
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-1020
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,1021
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine1022
Boyd, Madeleine Thompson, Marat Dukhan, Mark1023
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,1024
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,1025
Max Johnson, Maya Shetty, Mayank Gupta, Meghan1026
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao1027
Zhong, Mia Glaese, Mianna Chen, Michael Jan-1028
ner, Michael Lampe, Michael Petrov, Michael Wu,1029
Michele Wang, Michelle Fradin, Michelle Pokrass,1030
Miguel Castro, Miguel Oom Temudo de Castro,1031
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-1032
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,1033
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-1034
talie Cone, Natalie Staudacher, Natalie Summers,1035
Natan LaFontaine, Neil Chowdhury, Nick Ryder,1036
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,1037
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel1038
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,1039
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,1040
Olivier Godement, Owen Campbell-Moore, Patrick1041
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-1042
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,1043
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip1044
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming1045
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-1046

jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul 1047
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, 1048
Reza Zamani, Ricky Wang, Rob Donnelly, Rob 1049
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan- 1050
dani, Romain Huet, Rory Carmichael, Rowan Zellers, 1051
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan 1052
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, 1053
Sam Toizer, Samuel Miserendino, Sandhini Agar- 1054
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean 1055
Grove, Sean Metzger, Shamez Hermani, Shantanu 1056
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi- 1057
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, 1058
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew- 1059
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao 1060
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, 1061
Tejal Patwardhan, Thomas Cunninghman, Thomas 1062
Degry, Thomas Dimson, Thomas Raoux, Thomas 1063
Shadwell, Tianhao Zheng, Todd Underwood, Todor 1064
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, 1065
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce 1066
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, 1067
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne 1068
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, 1069
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, 1070
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen 1071
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and 1072
Yury Malkov. 2024. Gpt-4o system card. Preprint, 1073
arXiv:2410.21276. 1074

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, 1075
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok 1076
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and 1077
Sercan O. Arik. 2024. Chase-sql: Multi-path reason- 1078
ing and preference optimized candidate selection in 1079
text-to-sql. Preprint, arXiv:2410.01943. 1080

Mohammadreza Pourreza and Davood Rafiei. 2023. 1081
Din-sql: Decomposed in-context learning of text-to- 1082
sql with self-correction. Preprint, arXiv:2304.11015. 1083

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, 1084
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi 1085
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating 1086
relational structures into pretrained seq2seq model 1087
for text-to-sql. arXiv preprint arXiv:2205.06983. 1088

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, 1089
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, 1090
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022. 1091
A survey on text-to-sql parsing: Concepts, methods, 1092
and future directions. Preprint, arXiv:2208.13629. 1093

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 1094
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 1095
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 1096
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 1097
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 1098
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 1099
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 1100
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 1101
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 1102
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 1103
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 1104
report. Preprint, arXiv:2412.15115. 1105

12

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115

Cedric Renggli, Ihab F Ilyas, and Theodoros Rekatsi-1106
nas. 2025. Fundamental challenges in evaluating1107
text2sql solutions and detecting their limitations.1108
arXiv preprint arXiv:2501.18197.1109

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten1110
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,1111
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy1112
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna1113
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron1114
Grattafiori, Wenhan Xiong, Alexandre Défossez,1115
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-1116
tin, Nicolas Usunier, Thomas Scialom, and Gabriel1117
Synnaeve. 2024. Code llama: Open foundation mod-1118
els for code. Preprint, arXiv:2308.12950.1119

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-1120
danau. 2021. Picard: Parsing incrementally for1121
constrained auto-regressive decoding from language1122
models. arXiv preprint arXiv:2109.05093.1123

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen1124
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.1125
Chess: Contextual harnessing for efficient sql synthe-1126
sis. arXiv preprint arXiv:2405.16755.1127

A Vaswani. 2017. Attention is all you need. Advances1128
in Neural Information Processing Systems.1129

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-1130
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,1131
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A1132
multi-agent collaborative framework for text-to-sql.1133
Preprint, arXiv:2312.11242.1134

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,1135
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-1136
ing Yao, Shanelle Roman, et al. 2018. Spider: A1137
large-scale human-labeled dataset for complex and1138
cross-domain semantic parsing and text-to-sql task.1139
In Proceedings of the 2018 Conference on Empiri-1140
cal Methods in Natural Language Processing, pages1141
3911–3921.1142

Weixu Zhang, Yifei Wang, Yuanfeng Song, Victor Jun-1143
qiu Wei, Yuxing Tian, Yiyan Qi, Jonathan H.1144
Chan, Raymond Chi-Wing Wong, and Haiqin Yang.1145
2024. Natural language interfaces for tabular data1146
querying and visualization: A survey. Preprint,1147
arXiv:2310.17894.1148

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan1149
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.1150
2024. Llamafactory: Unified efficient fine-tuning1151
of 100+ language models. In Proceedings of the1152
62nd Annual Meeting of the Association for Compu-1153
tational Linguistics (Volume 3: System Demonstra-1154
tions), Bangkok, Thailand. Association for Computa-1155
tional Linguistics.1156

Victor Zhong, Caiming Xiong, and Richard Socher.1157
2017. Seq2sql: Generating structured queries from1158
natural language using reinforcement learning. arXiv1159
preprint arXiv:1709.00103.1160

Yuhang Zhou, Yu He, Siyu Tian, Yuchen Ni, Zhangyue 1161
Yin, Xiang Liu, Chuanjun Ji, Sen Liu, Xipeng Qiu, 1162
Guangnan Ye, et al. 2024. r3-nl2gql: A model coor- 1163
dination and knowledge graph alignment approach 1164
for nl2gql. In Findings of the Association for Com- 1165
putational Linguistics: EMNLP 2024, pages 13679– 1166
13692. 1167

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. 1168
2024. Large language model enhanced text-to-sql 1169
generation: A survey. Preprint, arXiv:2410.06011. 1170

A Data Generation Patterns 1171

To enhance the diversity and complexity of text-to- 1172

SQL datasets, we propose a systematic approach 1173

to data generation. Our methodology is based on 1174

modifying existing text-to-SQL pairs, ensuring that 1175

a single natural language query can correspond to 1176

multiple SQL queries while preserving the seman- 1177

tics of the original question. This approach allows 1178

us to construct a dataset with richer linguistic and 1179

structural variations, facilitating robust model train- 1180

ing and evaluation. 1181

We adopt multiple patterns to transform single- 1182

query data into multi-query pairs. These patterns 1183

fall into 14 different categories, each designed to 1184

introduce different types of complexity while main- 1185

taining the integrity of the original intent. Below is 1186

a detailed introduction of our generation patterns. 1187

1. Reverse Selection in One-to-Many Relation- 1188

ships 1189

To introduce compositional complexity into 1190

text-to-SQL pairs, we employ reverse selec- 1191

tion on one-to-many relationships. This ap- 1192

proach ensures that a given natural language 1193

query requires multiple SQL statements to re- 1194

trieve the requested information, as opposed 1195

to a single SQL query. 1196

In relational databases, a one-to-many rela- 1197

tionship exists when an entity in one table 1198

(e.g., departments) is associated with multi- 1199

ple entities in another table (e.g., teachers). 1200

The department table serves as the parent 1201

(one), while the teacher table acts as the child 1202

(many), with the foreign key in the teacher 1203

table referencing the primary key in the de- 1204

partment table. 1205

Consider the following example, where the 1206

original query is: 1207

Find the names of teachers who are older than 1208

40. 1209

13

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2310.17894
https://arxiv.org/abs/2310.17894
https://arxiv.org/abs/2310.17894
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011
https://arxiv.org/abs/2410.06011

This query can be answered using a single1210

SQL statement:1211

SELECT name FROM teacher WHERE age >1212

40;1213

To enforce multi-query execution, we intro-1214

duce a reverse selection constraint by modify-1215

ing the query as follows:1216

Find the names of teachers who are older1217

than 40 and the departments of the remain-1218

ing teachers.1219

Here, the teacher name and the department1220

name of other teachers are semantically in-1221

compatible in a single SQL query, necessitat-1222

ing at least two queries:1223

SELECT name FROM teacher WHERE age >1224

40;1225

SELECT department_name FROM teacher1226

WHERE age <= 40;1227

This transformation ensures that a single query1228

is insufficient to retrieve all requested infor-1229

mation, thereby enriching the complexity of1230

text-to-Multiple-SQLs pairs.1231

2. Reverse Selection in One-to-One Relation-1232

ships1233

Unlike the one-to-many relationships dis-1234

cussed previously, a one-to-one relationship1235

occurs when each record in a table corre-1236

sponds to a single record in another table. In1237

this case, reverse selection cannot involve di-1238

rect inclusion of attributes from the same table,1239

as such queries can always be answered using1240

a single SQL statement. Therefore, to enforce1241

compositional complexity, reverse selection1242

in one-to-one relationships must ensure that1243

the two queries retrieve different types of in-1244

formation.1245

A critical constraint of one-to-one reverse se-1246

lection is that the secondary query must re-1247

trieve different attributes. If the modified1248

query asks for the same attribute from dif-1249

ferent records, it can always be rewritten as a1250

single SQL query, rendering the transforma-1251

tion invalid. So we need to ensure the queries1252

ask for logically distinct attributes. Consider1253

the following transformation:1254

Find the names of teachers who are older than1255

40 and retrieve the average age of the remain-1256

ing teachers.1257

This results in the following SQL queries: 1258

SELECT name FROM teacher WHERE age > 1259

40; 1260

SELECT AVG(age) FROM teacher WHERE 1261

age <= 40; 1262

Here, the first query retrieves individual 1263

teacher names, while the second query re- 1264

trieves an aggregate statistic, ensuring they 1265

cannot be merged into a single SQL statement. 1266

3. Reverse Selection in One-to-One Relation- 1267

ships Without Aggregation 1268

One-to-one reverse selection can be further 1269

constrained by eliminating aggregation func- 1270

tions, making the compositional SQL queries 1271

more structurally distinct while still requiring 1272

multiple SQL queries to fully answer the ques- 1273

tion. This ensures that query decomposition 1274

is necessary but does not rely on aggregate 1275

statistics to enforce multi-query generation. 1276

4. Distinguishing Separate Entities for Inde- 1277

pendent Queries 1278

In the process of constructing diverse SQL 1279

queries, one effective approach is to generate 1280

questions that target distinct entities within 1281

the database. At first glance, it may seem 1282

intuitive that retrieving different types of in- 1283

formation always necessitates multiple SQL 1284

queries. However, this is not necessarily the 1285

case. When two entities are inherently linked 1286

through a foreign key relationship, it is often 1287

possible to retrieve both pieces of information 1288

using a single query. For instance, if the orig- 1289

inal query asks for the names of all teachers, 1290

it can be extended to also request their depart- 1291

ment names without requiring an additional 1292

SQL statement. Since teachers are linked to 1293

departments via a foreign key, a simple join 1294

operation suffices to bring both sets of infor- 1295

mation together within a single query. 1296

However, to ensure that two distinct queries 1297

are required rather than one combined query, 1298

the entities being retrieved must not only be- 1299

long to different tables but also be subject to 1300

independent constraints. Consider the case 1301

where we modify the original question from 1302

"Find the names of teachers older than 40" to 1303

"Find the names of teachers older than 40 and 1304

the names of departments with more than 40 1305

members." This slight modification forces the 1306

14

retrieval of two independent sets of informa-1307

tion—one about teachers filtered by age, and1308

another about departments filtered by the num-1309

ber of members. Since these conditions apply1310

to separate tables and do not share a common1311

join path that would allow them to be merged1312

into a single SQL query, it becomes necessary1313

to generate two distinct SQL statements.1314

Find the names of teachers who are older than1315

40 and the names of departments with more1316

than 40 people.1317

This question introduces conditions on differ-1318

ent attributes from separate tables, making it1319

impossible to construct a single SQL query1320

that answers both parts. Instead, two indepen-1321

dent queries must be generated:1322

SELECT name FROM teacher WHERE age >1323

40;1324

SELECT name FROM department WHERE1325

num_people > 40;1326

5. Asymmetric Query Expansion: One Condi-1327

tion, One Open Query1328

In contrast to the previous method, which en-1329

sured that two distinct objects were queried1330

with their own independent constraints, this1331

method introduces an asymmetry: one of1332

the SQL queries retains a specific condition1333

while the other remains unrestricted. This sub-1334

tle shift in design changes the way queries1335

are structured and how they interact with the1336

database schema. Instead of ensuring that1337

both queries are filtered by independent con-1338

straints, one query maintains a filtering condi-1339

tion while the other remains a general retrieval1340

of all records from a related table.1341

To illustrate, consider an original query ask-1342

ing for "Find the names of all teachers." A1343

straightforward extension would be to also re-1344

trieve the names of all departments, a task that1345

could easily be achieved using a single SQL1346

query through a simple join operation. How-1347

ever, if we modify this to "Find the names of1348

teachers who are older than 40 and all depart-1349

ment names," we introduce a structural asym-1350

metry—one query applies a condition (teach-1351

ers older than 40), while the other query re-1352

trieves all departments without filtering. This1353

distinction ensures that the two queries must1354

remain separate rather than being merged into 1355

a single SQL statement. 1356

The process of generating such queries relies 1357

on selecting an appropriate example from ex- 1358

isting data, ensuring that one query retains a 1359

condition while the other does not. The sys- 1360

tem systematically scans the dataset to iden- 1361

tify candidate queries that fit this asymmetric 1362

pattern, filtering out those that contain mul- 1363

tiple constraints or already require multiple 1364

SQL statements. Once an appropriate pair 1365

of queries is selected, the prompt is carefully 1366

constructed to emphasize the independence of 1367

the two queries while maintaining clarity in 1368

natural language. 1369

6. Blending Aggregates with Individual At- 1370

tributes: Merging Statistical Insights with 1371

Specifics 1372

In natural language database queries, there is 1373

often a need to balance between querying in- 1374

dividual records and summarizing trends. A 1375

common way to expand a query is by introduc- 1376

ing an aggregation function alongside a stan- 1377

dard selection. This method ensures that both 1378

specific details and overarching insights are 1379

retrieved simultaneously, making the query 1380

richer and more informative. 1381

For example, consider the original query: 1382

Find the names of teachers who are older than 1383

40. 1384

This query retrieves a list of individual teach- 1385

ers who meet the condition, focusing on gran- 1386

ular details. However, by expanding the ques- 1387

tion to include an aggregation function, we 1388

can introduce a statistical perspective. The 1389

modified query becomes: 1390

Find the names of teachers who are older than 1391

40 and their average age. 1392

Here, in addition to retrieving individual 1393

teacher names, the query also calculates the 1394

overall average age of teachers above 40. 1395

This transformation creates a dual perspec- 1396

tive—while one part of the query extracts di- 1397

rect information from the database, the other 1398

part summarizes the information using an ag- 1399

gregation function. 1400

To construct such queries correctly, it is cru- 1401

cial to ensure that both components operate 1402

15

on the same filtered dataset. This prevents in-1403

consistencies, such as computing an average1404

age across all teachers instead of just those1405

older than 40. The corresponding SQL query1406

would look like this:1407

SELECT name FROM teachers WHERE age1408

> 40;1409

SELECT AVG(age) FROM teachers WHERE1410

age > 40;1411

Alternatively, a single SQL statement can of-1412

ten achieve the same result using a GROUP1413

BY clause:1414

SELECT name, (SELECT AVG(age) FROM1415

teachers WHERE age > 40) AS avg_age1416

FROM teachers WHERE age > 40;1417

Since this data generation method can also be1418

completed with a SQL query, we introduced1419

the sql_0 statement to store all queries inte-1420

grated into one SQL.1421

7. Querying Different Grouping Dimensions1422

Grouping data is a fundamental aspect of1423

SQL queries, allowing us to derive meaning-1424

ful insights by categorizing and summarizing1425

records. While most queries focus on a sin-1426

gle way to group data, an alternative approach1427

introduces multiple GROUP BY clauses, ef-1428

fectively broadening the scope of the query.1429

By shifting the lens through which data is ag-1430

gregated, we can uncover deeper relationships1431

within the dataset that a single GROUP BY1432

might miss.1433

This method is especially useful when deal-1434

ing with datasets where different categorical1435

attributes can provide valuable insights when1436

analyzed separately. For example, consider1437

a dataset of department management. The1438

original question:1439

Tell me which states have at least 3 heads born1440

there?1441

The corresponding SQL query would look like1442

this:1443

SELECT born_state FROM head GROUP BY1444

born_state HAVING COUNT(*) >= 3;1445

However, what if we want to explore a differ-1446

ent way of grouping the data? We could also1447

ask:1448

Tell me which states have at least 3 heads 1449

born there and which age groups have at least 1450

3 heads? 1451

The result is that we have to use 2 different 1452

SQL queries to answer this question: 1453

SELECT age FROM head GROUP BY age 1454

HAVING COUNT(*) >= 3; 1455

SELECT born_state FROM head GROUP BY 1456

born_state HAVING COUNT(*) >= 3; 1457

8. Switching Between HAVING and LIMIT 1458

for Diverse Filtering 1459

This method modifies SQL queries by ensur- 1460

ing that one query filters aggregated results us- 1461

ing HAVING, while the other applies ORDER 1462

BY and LIMIT. Unlike the previous approach, 1463

which changed the GROUP BY column to 1464

introduce variation, this method focuses on 1465

switching between filtering patterns to gener- 1466

ate distinct yet complementary queries. 1467

If the original query includes LIMIT, the sec- 1468

ond query must replace it with a HAVING 1469

clause to introduce a different filtering method. 1470

Conversely, if the original query already uses 1471

HAVING, the new query must avoid it and in- 1472

stead adopt an ORDER BY and LIMIT struc- 1473

ture. This ensures that the two queries cannot 1474

be merged into one, as they use fundamentally 1475

different ways of selecting data. 1476

For example, if the original query retrieves 1477

the department with the most teachers using 1478

ORDER BY and LIMIT: 1479

SELECT department FROM teachers GROUP 1480

BY department ORDER BY COUNT(*) DESC 1481

LIMIT 1; 1482

The second query should instead filter using 1483

HAVING, such as selecting age groups where 1484

the number of teachers exceeds a threshold: 1485

SELECT age FROM teachers GROUP BY age 1486

HAVING COUNT(*) > 2; 1487

This variation ensures that both queries serve 1488

different analytical purposes while maintain- 1489

ing structural diversity. By alternating be- 1490

tween HAVING and LIMIT, we create queries 1491

that offer different perspectives on the dataset, 1492

preventing them from being collapsed into a 1493

single SQL statement. 1494

9. Reordering the Same Data from Different 1495

Perspectives 1496

16

This method transforms a query that sorts data1497

using ORDER BY into two separate queries,1498

each sorting the same dataset by a different1499

attribute. Unlike cases where LIMIT is in-1500

volved, which restricts the number of results,1501

this approach ensures that both queries return1502

the full dataset, just presented in different or-1503

ders.1504

Consider the original query:1505

Find the names of all teachers, sorted by age1506

in descending order.1507

Original SQL Query:1508

SELECT name FROM teachers ORDER BY1509

age DESC;1510

To introduce variety, we modify the query by1511

adding an alternative sorting criterion. Instead1512

of only ordering by age, we ask for two sep-1513

arate orderings—one by age and another by1514

salary. The question can be transformed into:1515

Give me two separate lists of teacher names:1516

one sorted by age in descending order and the1517

other sorted by salary in descending order.1518

Corresponding SQL Queries:1519

SELECT name FROM teachers ORDER BY1520

age DESC;1521

SELECT name FROM teachers ORDER BY1522

salary DESC;1523

This transformation ensures that both results1524

remain distinct and cannot be merged into a1525

single SQL query.1526

10. Sorting One Object While Leaving the1527

Other Unordered1528

This method builds upon the previous ap-1529

proach of modifying ORDER BY queries but1530

introduces a crucial difference: instead of ap-1531

plying sorting criteria to both SQL queries,1532

one query retains the ORDER BY clause1533

while the other remains unsorted. The key1534

idea is to introduce contrast—one dataset fol-1535

lows an explicit order while the other remains1536

in its natural or default arrangement.1537

Consider the original query:1538

Find the names of all teachers, sorted by age1539

in descending order.1540

Original SQL Query:1541

SELECT name FROM teachers ORDER BY1542

age DESC;1543

To introduce variation while maintaining 1544

meaningful structure, we modify the query 1545

to introduce an additional unordered dataset. 1546

Instead of just listing teachers sorted by expe- 1547

rience, we now also retrieve the departments 1548

they belong to, but without any explicit sorting 1549

applied to them. 1550

Modified Question: 1551

Find the names of all teachers, sorted by their 1552

ages in descending order, and separately list 1553

all department names. 1554

Corresponding SQL Queries: 1555

SELECT name FROM teachers ORDER BY 1556

age DESC; 1557

SELECT department_name FROM depart- 1558

ments; 1559

This modification ensures that two separate 1560

results are produced, but unlike the previous 1561

approach (where both queries applied sort- 1562

ing in different ways), here only one result is 1563

ordered while the other remains unaffected. 1564

This distinction is important because it em- 1565

phasizes that ORDER BY is not necessarily 1566

required for every SQL statement—it depends 1567

on the nature of the query and what needs to 1568

be compared or presented. 1569

11. Sorting One Object with LIMIT Condition 1570

While Leaving the Other Unordered 1571

This method is quite similar to the previous 1572

method (10) in that it requires an SQL query 1573

with an ORDER BY clause and an extra query 1574

remaining unsorted. However, the ORDER 1575

BY query also includes an additional LIMIT 1576

condition. Furthermore, we intentionally se- 1577

lect the additional SQL query to include a 1578

WHERE clause while minimizing the use of 1579

any aggregation functions. This is set to make 1580

the problem more challenging and to ensure 1581

the conditions of both 2 queries are clearly 1582

described to avoid any potential ambiguity. 1583

Consider the original query: 1584

Find the name of the oldest teacher 1585

Original SQL Query: 1586

SELECT name FROM teachers ORDER BY 1587

age DESC LIMIT 1; 1588

To introduce variation while maintaining 1589

meaningful structure, we modify the query to 1590

17

introduce an additional unordered query with1591

a WHERE clause. We intentionally select an1592

additional query with a WHERE clause and1593

avoid using any aggregation function.1594

Modified Question:1595

Find the name of the oldest teacher and the1596

ages of all teachers whose names contain the1597

letter "A".1598

Corresponding SQL Queries:1599

SELECT name FROM teachers ORDER BY1600

age DESC LIMIT 1;1601

SELECT age FROM teachers WHERE name1602

LIKE "%A%";1603

This modification is similar to the previous1604

method, but introduces more conditions: One1605

query is required to select only some results1606

from the whole sorted list, while another query1607

should return the unsorted results under the1608

WHERE condition. This type of modification1609

further challenges agents’ ability to compre-1610

hend the nature of the questions.1611

12. Dual Attribute Selection Sorted by the1612

Same Attribute but in Reverse Orders with1613

LIMIT Condition1614

This method also requires an original SQL1615

query to return results constrained by the1616

LIMIT clause sorted by some attributes. We1617

then add another query to select another at-1618

tribute sorted by exactly the same attribute but1619

in reverse order. Notice that the results are still1620

constrained by the LIMIT clause. Intuitively,1621

one simple way to achieve this type of modi-1622

fication is to transform the statements in the1623

original question that use superlative forms1624

into their opposites (e.g., changing ’maxi-1625

mum’ to ’minimum’ and ’most’ to ’least’).1626

Also, we intentionally include some questions1627

to change the number of results required by1628

the LIMIT clause to make this type of modifi-1629

cations more variant and more challenging.1630

Consider the original query:1631

Show the name of the teacher with the highest1632

salary.1633

Original SQL Query:1634

SELECT name FROM teachers ORDER BY1635

salary DESC LIMIT 1;1636

Based on the the detailed explained pattern 1637

above, we introduce an additional query to se- 1638

lect another attribute in the same table sorted 1639

by exactly the same attribute (e.g, salary) 1640

but in the reverse order (e.g, ASC). We can 1641

also change the number of results returned by 1642

changing the LIMIT clause (e.g, the lowest 1643

three salaries). 1644

Modified Question: 1645

Show the name of the teacher with the highest 1646

salary and the office numbers of the teachers 1647

who have the lowest three salaries. 1648

Corresponding SQL Queries: 1649

SELECT name FROM teachers ORDER BY 1650

salary DESC LIMIT 1; 1651

SELECT office_no FROM teachers ORDER 1652

BY salary ASC LIMIT 3; 1653

This modification requires the agent to output 1654

two distinct SQL queries to select two sub- 1655

sets of different attributes based on the sorted 1656

result of the same attribute but in reverse or- 1657

ders. This type of modification could pose 1658

challenges for some agents, as they must se- 1659

lect two distinct attributes based on a condi- 1660

tion and its nearly opposite form. 1661

13. Dual Attribute Selection Sorted by the 1662

GROUP BY clause of the Primary Key but 1663

in Reverse Orders with LIMIT Condition 1664

This method can be considered as a more chal- 1665

lenging variant of the previous method (12) as 1666

the main logic is quite similar. The only dif- 1667

ference is that we use the GROUP BY clause 1668

of the primary key of the table to do sorting 1669

(e.g, GROUP BY id ORDER BY COUNT(*) 1670

DESC LIMIT 1). This task is considered more 1671

challenging as the original question requires 1672

the agent to understand the structure of the 1673

table and use the GROUP BY clause properly. 1674

A more complex task in the same setting to se- 1675

lect two attributes sorted by some attributes of 1676

groups in reverse orders can result in greater 1677

confusion for agents. 1678

Consider the original query: 1679

Show the status of the city that has hosted the 1680

greatest number of competitions. 1681

Original SQL Query: 1682

SELECT T1.Status FROM city AS T1 1683

JOIN farm_competition AS T2 ON 1684

18

T1.City_ID = T2.Host_city_ID GROUP1685

BY T2.Host_city_ID ORDER BY COUNT(*)1686

DESC LIMIT 1;1687

Based on the additional explanation of this1688

variant, we select another proper attribute (e.g,1689

the primary key itself) in the table and only1690

changes the sorting order to the reverse one.1691

Modified Question:1692

Show the status of the city that has hosted the1693

greatest number of competitions and the city1694

ID with the fewest competitions.1695

Corresponding SQL Queries:1696

SELECT T1.Status FROM city AS T11697

JOIN farm_competition AS T2 ON1698

T1.City_ID = T2.Host_city_ID GROUP1699

BY T2.Host_city_ID ORDER BY COUNT(*)1700

DESC LIMIT 1;1701

SELECT T1.City_ID FROM city AS1702

T1 JOIN farm_competition AS T2 ON1703

T1.City_ID = T2.Host_city_ID GROUP BY1704

T2.Host_city_ID ORDER BY COUNT(*) ASC1705

LIMIT 1;1706

14. Question Generation with Three SQL1707

Queries1708

We also introduce a small proportion of ques-1709

tions that require three SQL queries to address.1710

These questions are generated based on some1711

of the previous methods. As this could be a1712

more challenging and difficult task for agents,1713

we only select some relatively simple methods1714

to generate questions.1715

14.1 Combining One Original Question1716

with One Already Generated Question1717

Requiring Two SQL Queries1718

An intuitive way to generate questions1719

requiring three SQL queries to address1720

is to combine one original question from1721

the dataset with one generated and well-1722

evaluated question requiring two queries.1723

To ensure that the final generated ques-1724

tion is reasonable, relatively concise, and1725

unambiguous, we intentionally select1726

those original SQL queries that include1727

a WHERE clause while excluding cer-1728

tain keywords that may form complex1729

questions (such as LIMIT, GROUP, EX-1730

CEPT, INTERSECT, UNION, ORDER)1731

and control the length of the selected1732

SQL queries. Then we sample a well- 1733

evaluated question from our generated 1734

dataset and ask the agent to merge the 1735

two questions. The agent is also sug- 1736

gested to use some keywords like "sep- 1737

arately" or "first, then," to avoid any po- 1738

tential ambiguous statements. 1739

14.2 Querying Different Grouping Dimen- 1740

sions to Generate three queries 1741

This method is quite similar to the previ- 1742

ous method 7 as we still ask to group the 1743

table data based on different attributes 1744

separately, but now three different at- 1745

tributes are used instead of only two. 1746

Two example generated questions are 1747

shown below: 1748

1. Show the number of teachers for each 1749

department, age, and country separately. 1750

2. Find the department, the age group 1751

and the country group with the highest 1752

number of teachers. 1753

14.3 Reordering the Same Data from Three 1754

Different Perspectives 1755

This method is quite similar to the previ- 1756

ous method 9 as we still ask to provide 1757

lists of one single attribute sorted sep- 1758

arately by different attributes, but this 1759

time we require three lists. Notice that 1760

each query sorted by each attribute can 1761

still be in ascending or descending order 1762

randomly. 1763

An example generated questions are 1764

shown below: 1765

Provide me with three lists of teacher 1766

names, sorted by age, department id and 1767

salary in descending order, respectively. 1768

14.4 Two or Three Queries with DISTINCT 1769

Previously our methods didn’t consider 1770

the keyword DISTINCT to avoid any po- 1771

tential ambiguous statement. Here we 1772

ask the agent to generate a small sub- 1773

set of questions to ask for distinct values 1774

for selected columns only. The gener- 1775

ated questions may require two or three 1776

queries to return only distinct/unique val- 1777

ues for mentioned attributes. 1778

A simple example question is shown be- 1779

low: 1780

Provide me with distinct teacher name, 1781

unique department names, and distinct 1782

teacher ages, respectively. 1783

19

B Implementation Details1784

All experiments were conducted using LLAMA1785

Factory (Zheng et al., 2024), with LoRA-based (Hu1786

et al., 2021) fine-tuning utilizing the bf16 precision.1787

The relevant hyperparameters were configured as1788

follows:1789

• preprocessing_num_workers: 161790

• per_device_train_batch_size: 11791

• gradient_accumulation_steps: 41792

• learning_rate: 1.0e-41793

• num_train_epochs: 3.01794

• lr_scheduler_type: cosine1795

• warmup_ratio: 0.11796

Other parameters were set to the default values1797

provided by LLAMA Factory (Zheng et al., 2024).1798

The experiments were conducted on single or mul-1799

tiple A100 GPUs (40GB/80GB). For multi-GPU1800

setups, DeepSpeed was used to optimize parallel1801

training.1802

20

	Introduction
	Relate Work
	Natural Language Interface to Databases
	Popular Text-to-SQL Datasets
	Limitations of Text-to-SQL Systems

	Task Definition
	Dataset Construction
	Question and SQL Annotation
	Data Review
	Construct the Final Dataset
	Dataset Statistics

	Evaluation Metrics
	Experiments
	Experimental Setup
	Main Results
	Robustness Analysis
	Challenges of Text-to-SQL Models in Supporting Multi-SQL Generation
	Analysis on DeepSeek-R1-Distill Models
	Analysis on Question Types

	Conclusion
	Data Generation Patterns
	Implementation Details

