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ABSTRACT

The tension between rational and irrational behaviors in human decision-making
has been acknowledged across a wide range of disciplines, from philosophy to
psychology, neuroscience to behavioral economics. Models of multi-agent in-
teractions, such as von Neumann and Morgenstern’s expected utility theory and
Nash’s game theory, provide rigorous mathematical frameworks for how agents
should behave when rationality is sought. However, the rationality assumption
has been extensively challenged, as human decision-making is often irrational,
influenced by biases, emotions, and uncertainty, which may even have a positive
effect in certain cases. Behavioral economics, for example, attempts to explain
such irrational behaviors, including Kahneman’s dual-process theory and Thaler’s
nudging concept, and accounts for deviations from rationality. In this paper, we
analyze this tension through a causal lens and develop a framework that accounts
for rational and irrational decision-making, which we term Causal Game The-
ory. We then introduce a novel notion called counterfactual rationality, which
allows agents to make choices leveraging their irrational tendencies. We extend
the notion of Nash Equilibrium to counterfactual actions and Pearl Causal Hierar-
chy (PCH), and show that strategies following counterfactual rationality dominate
strategies based on standard game theory. We further develop an algorithm to
learn such strategies when not all information about other agents is available.

1 INTRODUCTION

Decision-making in multi-agent systems (MAS) is a critical problem with broad applications across
disciplines such as economics, social sciences, political science, distributed systems, robotics, and
more recently, in aligning AI systems with human preferences. At its core, such decision-making
involves taking into account multiple agents – individuals, autonomous systems, or organizations –
each with their own objectives, preferences, and constraints, to make coherent and coordinated de-
cisions within complex, dynamic environments. The complexity of decision-making in MAS arises
from the interplay of several factors, including uncertainty, inherent biases, conflicting objectives,
and the limitations of the agents’ computational and observational capabilities.

Von Neumann & Morgenstern (1947) reformulated and popularized expected utility theory Ramsey
(1926), laying the foundation for rational decision-making, where agents select actions to maximize
their expected utility. Since then, Game Theory (GT) has become central to MAS, with models,
such as Nash equilibrium Nash Jr (1950), cooperative game theory Shapley (1953), evolutionary
game theory, and Bayesian games Harsanyi (1967), offering tools to analyze scenarios where agents’
choices impact one another. Although rational decisions are grounded in systematic analysis and ob-
jective reasoning, human choices are often influenced by cognitive biases, emotions, social factors,
and various unobserved factors that lead to seemingly irrational outcomes. Sometimes, irrational
or naive choices can even result in better outcomes than rational ones, a phenomenon known as
paradox of rationality Howard (1971); Colman (2003); Basu (1994). Behavioral economics seeks
to model such deviations from rationality, with models such as loss aversion Kahneman & Tversky
(1979), anchoring Tversky & Kahneman (1974), framing of choices Kahneman & Tversky (1984),
social preferences Fehr & Schmidt (1999), and emotions Loewenstein (2003). Kahneman (2011)
also advanced and popularized dual-process theory Wason & Evans (1974); Sloman (1996), which
posits two cognitive systems: a fast automatic System 1 and a slow deliberate System 2. While these
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Figure 1: (a) Y1, Y2 as a function of U1, U2, X1, X2 (b) Should the agents be rational or not?

approaches help explain aspects of irrational human decision-making, the broader question of when
and how such unobserved biases can be strategically leveraged in MAS remains largely unexplored.

In this work, we make a significant step towards addressing this gap by proposing a framework
rooted in causal modeling Pearl (2009); Bareinboim et al. (2022). Human decisions are often guided
by causal structures Tversky & Kahneman (2015); Sloman & Hagmayer (2006); Nichols & Danks
(2007), and actions can be viewed as interventions Hagmayer & Sloman (2009). Building on these
insights, we model the environment and the agent’s decision-making process as an interplay be-
tween exogenous and endogenous factors, represented as a structural causal model (SCM). SCMs
have been used successfully in the context of decision-making, both for single-step bandit prob-
lems Bareinboim et al. (2015); Zhang & Bareinboim (2017) and for multistep RL settings Lee &
Bareinboim (2020); Ruan et al. (2023), as surveyed in Bareinboim et al. (2024). The advantage of
such modeling is not only computational but more fundamental. Consider the example of Greedy
Casino in Bareinboim et al. (2015), where a randomized control trial (RCT) suggests that the ex-
pected payoff is higher than the realized payoff of players following their natural instincts (irrational
behavior). One may naturally surmise that, given the superiority of the automated version based on
RCTs, humans and their irrationality could be removed from the loop. However, players could enact
a counterfactual randomization procedure that exploits their natural biases, which surprisingly led
to payoffs exceeding those based on the RCT.

Building on these insights, we model MAS through a causal lens and show that existing game models
may not capture similar fundamental features of the decision-making process. This framework
models the interactions of agents within a system through the different layers of PCH Bareinboim
et al. (2022). As a consequence, an agent will have the capability to act rationally (following Nash’s
prescription), instinctively, or as some mixture of both. We introduce the notion of counterfactual
rationality to formally determine when it is advantageous for agents to act irrationally and when it
is better to avoid doing so. The next example illustrates why this task is nontrivial.

Example 1.1 (Causal Prisoner’s Dilemma (CPD)). Two thieves are suspected of a crime, but due to
insufficient evidence, they cannot be convicted outright. Now, they have a choice to make – either
remain silent (cooperate, C) or betray the other (defect, D). We denote the choices by variables X1

and X2, and cooperation and defection by the values 0 and 1, respectively. The thieves’ decisions
are influenced by external circumstances, represented by variables U1 and U2, which capture factors
such as the temperament of police officers, the competence of legal defense, new evidence or wit-
nesses emerging, and even the disposition of the judge and the jury. Although these factors cannot
be explicitly measured by the prisoners, they may subconsciously shape their decisions.

Each prisoner has a natural ability to assess their circumstances, denoted by R1 and R2. If prisoner
i has an accurate reading of their situation (Ri = 1), they choose to cooperate (Xi = 0) if the
circumstances are favorable (Ui = 1), and defect when they are adversarial (Ui = 0); conversely, if
they have a poor reading of their situation (Ri = 0), they defect when circumstances are good, and
cooperate when circumstances are bad. For prisoner i, their instinctive or natural choice is modeled
as: Xi → fX(Ri, Ui) = Ri ↑ Ui, where ↑ is the exclusive-or operator. We note that the variables
U1, U2, R1, R2 and the function fX are determined by nature and are unknown to the prisoners.

Now, we analyze two scenarios, M1 and M2. In M1, the prisoners have a good reading of their
situation (R1 = R2 = 1), while in M2, they misjudge their circumstances (R1 = R2 = 0). In both
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cases, P (Ui = 0) = 0.6 for i ↓ {1, 2}. The outcome Y = (Y1, Y2) of their decisions is a function
of U1, U2, X1 and X2 as shown in Fig. 1a. For example, when the situation is favorable for both the
prisoners (U1 = 1, U2 = 1) and they cooperate (X1 = 0, X2 = 0), their payoff is (0, 0). However,
if circumstances are favorable for Prisoner 1 and not for Prisoner 2 (U1 = 1, U2 = 0), and Prisoner
1 defects while Prisoner 2 cooperates (X1 = 1, X2 = 0), their payoff is (0,↔8).

If both prisoners ignore their intuition and search for the optimal strategy, the situation corresponds
to the classical Prisoner’s Dilemma, where the payoff for the actions X1 = x1, X2 = x2 is given
by: ∑

u1,u2,y

Y · P (u1, u2)P (Y | x1, x2, u1, u2) (1)

Notably, both scenarios M1 and M2 lead to the same Prisoner’s Dilemma (PD) game, as shown in
the 2 ↗ 2 payoff table at the bottom of Fig. 1b. However, if both prisoners rely on their natural
instincts, their expected payoff is (0, 0) in M1 and approximately (↔2.4,↔2.4) in M2. This is
illustrated in Fig. 1b, where X

→
1 and X

→
2 denote the players acting based on their natural intuition

(shown in the top row). The situation presents a new dilemma – it is better to follow natural instincts
and be irrational in M1, whereas it is better to be rational and ignore intuition in M2.

This example raises a fundamental question: when is it better to follow natural intuition and when is
it better to override it and follow Nash’s prescription? In this paper, we explore the tension between
rational and instinctive behavior through a causal lens and derive from first principles how agents
should deliberate and make decisions, thus addressing the so-called ‘paradox of rationality’ (see
Appendix A). Specifically, we outline our technical contributions as follows:

1. We formalize a class of games that combine rational and irrational behavior (Def.2.10) and
show that it strictly generalizes traditional Normal Form Games (Thm.2.11).

2. We introduce a new family of counterfactual strategies, prove the existence of equilibrium
(Thm.3.5), and show that these strategies can outperform other strategies (Thm.3.6).

3. We develop an algorithm CTF-Nash-Learning (Alg. 2) that learns the payoff matrix in
the counterfactual action space and identifies equilibria, even when the actions of the other
agents are not fully observed.

Preliminaries. In this section, we introduce the notations and definitions used throughout the pa-
per. We use capital letters to denote random variables (X) and small letters to denote their values (x).
DX denotes the domain of X . |S| denotes the cardinality of the set S. The basic framework of our
model resides on Structural Causal Models Pearl (2009). An SCM M is a tuple ↘U,V,F , P (U)≃,
where V and U are sets of endogenous and exogenous variables, respectively. F is a set of func-
tions fV determining the value of V ↓ V, that is, V → fV (Pa(V ),UV ), where PaV ⇐ V and
UV ⇐ U. Naturally, M induces a distribution over the endogenous variables, P (V), called obser-
vational or L1 distribution. An intervention on a subset X ⇐ V, denoted by do(x) is an operation
where values of X are set to x, replacing the functions {fX : X ↓ X}. For an SCM M , Mx

denotes the model induced by the operation do(x) and Px(Y) or P (Yx) denotes the probability
of Y in Mx. Such distributions are called interventional or L2 distributions. For further details
and discussions on counterfactual distributions, refer to Appendix A.1 and Bareinboim et al. (2022,
Sec.1.2). Additional background and examples on decision-making in single-agent causal systems
can be found in Bareinboim et al. (2024) and Appendix A.5, along with comparisons to related work
Hammond et al. (2023); Gonzalez-Soto et al. (2019) in AppendixA.

2 CAUSAL NORMAL FORM GAMES

In this section, we model the interaction of multiple agents in a system through the language of
SCMs and PCH layers. Here, we generalize the concepts introduced in Bareinboim et al. (2024) to
multi-agent settings. We first define a set of action nodes and reward signals for the agents in the
system along with the SCM.
Definition 2.1 (Causal Multi-Agent System). A Causal Multi-Agent System (CMAS) is a tuple
↘M,N,X,Y≃, where (i) M : ↘U,V,F ,P≃ is an SCM, (ii) N is the set of n agents, (iii) X =
(X1, . . . ,Xn) is a tuple of action nodes with disjoint Xi,Xj ⇒ V for i, j ↓ [n], i ⇑= j, and (iv)
Y = (Y1, . . . ,Yn) is the ordered set of reward signals, with Yi ⇐ V \X for all i ↓ [n]. ↭
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(a)

P1
P2

X2 = X
→
2 X2 = 0 X2 = 1

X1 = X
→
1 ↔2, 2 ↔2,↔2 ↔2,↔2

X1 = 0 0, 0 ↔1.5,↔1.5 ↔1.5,↔1.5

X1 = 1 0, 0 ↔1.5,↔1.5 ↔1.5,↔1.5

X1 = 1↔X
→
1 2,↔2 ↔1,↔1 ↔1,↔1

(b)

Figure 2: (a) Illustration of decision flow fX (b) It is not always optimal to jump to L3 policy

A CMAS is essentially an SCM with a set of action nodes X, each controlled by one of the n agents.
In addition, the system includes reward variables, Y, representing the feedback each agent receives
based on their actions and the underlying causal mechanism.
Example 2.2. Consider the CPD presented in Ex. 1.1. The SCM M corresponding to scenario
M2 is defined as: (i) U = {U1, U2, R1, R2}, V = {X1, X2, Y1, Y2}, (ii) Xi = Ri ↑ Ui for
i ↓ {1, 2}. Y1, Y2 as a function of U1, U2, X1, X2 are shown in Fig. 1a, and (iii) P (Ui = 1) =
0.4, P (Ri = 0) = 1 for i ↓ {1, 2}. The CMAS can now be defined as ↘M = M, N = {1, 2},X =
({X1}, {X2}),Y = ({Y1}, {Y2}). ↭

Now, we define different forms of actions that an agent may take in such a system. First, we define
the different action and policy spaces and then explore how the action spaces are related.
Definition 2.3 (L1 action). Given a CMAS ↘M,N,X,Y≃, an L1 action of an agent i is the one in
which the value of their action variables Xi is determined by the natural mechanism fXi ↓ F . ↭

We will also call such actions natural actions and denote them by a0. Note that, while performing
a0, an agent does not know anything about the underlying SCM nor do they deliberately change any
mechanism of action variable in the system. The L1 action space is thus A1 = {a0} and the L1

policy space is also a singleton set !1 = {a0}.
Example 2.4. Consider the CMAS presented in Ex. 2.2. The natural action is when the values of
X1 and X2 are determined by their natural function, X1 = R1 ↑ U1, X2 = R2 ↑ U2 The expected
payoff when both the agents are following their natural intuition is then given by

∑

u1,u2,x1,x2,y

y · P (u1, u2)P (x1 | u1)P (x2 | u2)P (y | u1, u2, x1, x2) ⇓ (↔2.4,↔2.4) (2)

In traditional game-theoretic sense, an agent can intervene on the system via atomic interventions
(setting action variables to fixed values based on context) Pearl (2009), or soft interventions (sam-
pling actions from a distribution) Correa & Bareinboim (2020). Next, we define L2 actions and the
associated policy space.
Definition 2.5 (L2-action). Given a CMAS ↘M,N,X,Y≃, L2 action of an agent i is a hard inter-
vention do(x), where x ↓ DXi . ↭

Hence, if an agent i performs do(xi) in the SCM M , then the natural mechanism fXi is replaced by
Xi → xi. The set of such L2 actions is denoted by A2, and an L2 policy is a distribution over A2.
Example 2.6. Consider the CMAS introduced in Ex. 2.2. L2 action is when an agent performs
an intervention, that is, setting their action variable to a particular value. If Player 1 is playing 0
and Player 2 is playing 1, then the assignment of the variables are given by X1 → 0, X2 → 1 and
U1, U2, R1, R2 are sampled from P (U) as in Ex. 2.2. Similarly, Y1, Y2 are determined by Fig. 1a.
For instance, the expected payoff of the strategy (do(X1 = 0), do(X2 = 1)) will then be given by

∑

u1,u2,y

y · P (u1, u2)P (y | u1, u2, X1 = 0, X2 = 1) ⇓ (↔7.0,↔0.5) (3)

It is also possible for one agent to perform an L2 action and the other to perform an L1 action. For
instance, the payoff the strategy (do(X1 = 1), a0) is given by

∑

u1,u2,x2,y

y · P (u1, u2)P (x2 | u2)P (y | u1, u2, X1 = 1, x2) ⇓ (0,↔8.9) (4)
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c
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Figure 3: Change of Equilibrium with change of policies in Causal Prisoner’s Dilemma.

In many cases, an agent can interact with the environment through PCH’s Layer 3 Bareinboim et al.
(2015; 2022); Raghavan & Bareinboim (2025a), enabling counterfactual reasoning in their decision-
making, and entering the realm of L3 distribution. For example, in scenario M2 of Ex. 1.1, following
natural instinct led to a suboptimal outcome. However, if both agents had done the exact opposite of
their instinctive choices, they could have achieved a payoff of (0, 0). Now, we formally define L3

actions.
Definition 2.7 (L3-action space A3). Given a CMAS ↘N,M,X,Y≃, an L3 action for agent i is
defined as a mapping h : D(Xi) ⇔ D(Xi) from intuition to action. ↭

When an agent takes an L3 action, they first note their natural instinct X→
i → fXi(Ui) and then

executes Xi → hi(X→
i), where Ui is the set of unobserved parents of Xi. If h(x) = x, it corresponds

to the L1 action, and if h(x) is constant for all x, it is the L2 action. Bearing this in mind, we will
often denote a0 as X = X→, where X is the action variable and X→ is the intuition.

Bareinboim et al. (2015) introduces a novel form of randomization to interact through the Layer 3
of PCH – interrupt any reasoning agent just before they execute their choice, treat this choice as
their intention, and then act. This procedure involves subtle issues, and we refer readers to Sec. 7
in Bareinboim et al. (2024) for a more detailed discussion. The agent may consider various options
during the deliberation process, but only the final choice matters. For example, an agent may initially
choose X → = x1, then reconsider and change it to X

→ = x2 and may continue doing so, until at time
step t, it chooses X → = xt and decides to execute it. This final decision defines the agent’s instinct
irrespective of the path taken to reach it (see Fig. 2a). The same reference also proposed Ctf-RCT,
where an intended action is perceived first, but instead of executing it directly, the final action is
chosen uniformly at random from the entire action space. Now, we look at how to compute the
payoff under L3 action.
Example 2.8. Consider the CMAS in Ex. 2.2. An L3 action would allow the agent to choose
an action based on their natural intuition. Let g1 and g2 be two functions from {0, 1} to {0, 1}.
If the players are playing g1 and g2, respectively, then the variables are given by X

→
i → Ri ↑

Ui, Xi → gi(X →
i) for i ↓ {1, 2}. The variables U1, U2, R1, R2 are sampled from P (U), and Y1, Y2

are determined by Fig. 1a. For example, if g1(x) = 1 ↔ x and g2(x) = 1 ↔ x, then the expected
payoffs are given by

∑

u1,u2,x1,x2,y

y · P (u1, u2)P (x1, x2 | u1, u2)P (y | u1, u2, g1(x1), g2(x2)) = (0, 0) (5)

The payoffs for the various combinations of actions in Ex. 2.2 are shown in Fig. 3. Once the action
spaces are defined, the policy space can be defined as a distribution over the action space. Let ”(A)
denote the set of distributions over the set of actions A. Then L2 policy space !2 = ”(A2) and L3

policy space !3 = ”(A3). Next, we define the notion of reward.
Definition 2.9 (Reward Function). A reward function Ri : D(Yi) ⇔ R of an agent i is a function
from outcome Yi to real numbers. ↭

In Ex. 1.1, we assume that the reward function is identity, that is, Ri(Yi) = Yi for i ↓ {1, 2}. Now
that we have all the tools, we are ready to define Normal Form Games in proper causal language.
Definition 2.10 (Causal Normal Form Game). A tuple # = ↘M,A,R≃ is a Causal Normal Form
Game (CNFG), where (i)M is a CMAS ↘M,N,X,Y≃, (ii) A = (A1, . . . ,An) is the set of policies
for the n agents, Ai ⇐ {A1

,A2
,A3}, and (iii) R = (R1, . . . ,Rn) is the set of reward functions. ↭
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A CNFG is thus a CMAS, along with the policy space of the n agents and their reward functions.
Now we will formally state the result generalizing our observation from CPD (Ex. 1.1).
Theorem 2.11. Given a game in normal form, there exist two CNFGs C1 and C2 with equilibrium
payoffs µ1 and µ2 under the action space A1 ↖A2, and a Nash Equilibrium (NE) payoff µNE, such
that µ2 < µNE < µ1 where < denotes Pareto domination. ↭

The theorem implies some important observations. CNFGs strictly generalize Normal Form Games
(NFGs), capturing aspects such as instinctive behaviors and counterfactual policies that NFGs can-
not naturally express. Although one might argue that CNFGs can be flattened into an equivalent
NFG (Fig. 3), similar to Extensive Form or Bayesian Games, we claim causal modeling is not only
advantageous but necessary: (i) Constructing the full payoff matrix requires an SCM, since actions
are not arbitrary and defined only within that causal structure; (ii) NFGs do not clarify how actions
are executed or whether agents are even capable of executing them; SCMs provide a concrete notion
of agency; (iii) our solution concept presented in Sec. 3 relies on the hierarchical structure of the ac-
tion spaces; (iv) finally, NFGs cannot capture the structure between intuitions and executed actions.
In many cases, agents can only observe executed actions, and for computing equilibria, exploiting
the structure becomes a necessity (Alg. 2). More details are provided in Appendix E.

3 CAUSAL NASH EQUILIBRIUM

In this section, we introduce counterfactual rationality and establish the Causal Nash Equilibrium
(CNE) for a CNFG. Allowing agents to transition between layers of the PCH leads to a two-step
decision process. First, the agent determines which layers to operate in – instinct-based (L1), clas-
sical rationality (L2), or counterfactual reasoning (L3). Second, the agent must decide which action
to take within the chosen layer. We refer to this two-step process as a causal strategy. An agent is
counterfactually rational if it seeks to maximize its expected payoff using causal strategies, given
that other agents are also counterfactually rational. Next, we analyze how equilibrium outcomes
change when agents move to higher layers of the PCH.
Example 3.1 (Equilibria in CPD). Consider Ex. 1.1 (M2) where we analyze how the payoffs and
equilibria evolve as agents move across the layers of the PCH, from instinct-based L1 policies to
counterfactual-based, L3 policies. Fig. 3 shows the payoff of the prisoners in this larger action space.
If both prisoners follow their natural choices, playing L1, their payoffs are (↔2.4,↔2.4).

Now, suppose prisoner 1 starts thinking rationally, ignoring their natural instincts, which results in
transition (a) in Fig. 3. Prisoner 1 eventually defects, meaning they play the action do(X1 = 1),
while prisoner 2 still follows their instinct, X →

2 = X2. As a result, the payoffs become (0,↔8.9),
where prisoner 1 benefits while prisoner 2 suffers. Eventually, prisoner 2 also learns to think ratio-
nally, leading to transition (b). In this case, both prisoners enter the realm of Standard Game Theory
(SGT), each choosing to defect, playing the actions (do(X1 = 1), do(X2 = 1)). This results in NE
with payoffs of (↔1.9,↔1.9). A few observations are worth making at this point. First, the scope
of SGT is highlighted in the four central cells of Fig. 3. Second, as noted earlier, the equilibrium in
SGT is worse than when both agents act irrationally (L1). The SGT analysis stops at this point, but
our new framework suggests that strategic thinking may continue.

Over time, prisoner 2 introspects and contemplates counterfactual decisions, as highlighted in tran-
sition (c). They realize that their natural instincts provide insights that can be leveraged, and they
should choose to act opposite to their natural choices, X1 = 1↔X

→
1. This yields payoffs of (↔2.4, 0),

improving their baseline and hurting prisoner 1. Eventually, prisoner 1 also reaches L3, leading to
transition (d). Both players, now operating under Causal Game Theory (CGT), settle on actions
against their natural instincts, X1 = 1↔X

→
1, X2 = 1↔X

→
2, achieving payoffs of (0, 0). This is the

final state, where no unilateral deviation can increase payoffs. ↭

The game in this example reflects an increasingly refined form of human rationality, tracing its
evolution from primitive instincts based on raw intuition (L1) to a notion of rationality based on
game theory, where the intuition is ignored (L2), and going to advanced strategic thinking leveraging
both rational and irrational aspects of human cognition (L3). A natural question that arises from this
discussion is if it is always better to consider the full payoff table, since it provides the largest action
space. To answer this, consider the example shown in Fig. 2b. The full game specification is given
in Appendix D. If Player 1’s action space is limited to L1 and L2, then the equilibrium payoff is
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P1
P2 A1 A2 A1 ↖A2

A1 ↔2, 2 ↔2,↔2 ↔2, 2

A2 0, 0 ↔1.5,↔1.5 0, 0

A1 ↖A2 0, 0 ↔1.5,↔1.5 0, 0

A3 2,↔2 ↔1,↔1 ↔1,↔1

(a)

P1
P2 A1 A2 A1 ↖A2 A3

A1 ↔2.4,↔2.4 ↔8.9, 0 ↔8.9, 0 ↔8.9, 0

A2 0,↔8.9 ↔1.9,↔1.9 ↔1.9,↔1.9 ↔2.4, 0

A1 ↖A2 0,↔8.9 ↔1.9,↔1.9 ↔1.9,↔1.9 ↔2.4, 0

A3 0,↔8.9 0,↔2.4 0,↔2.4 0, 0

(b)

Figure 4: Layer selection game for (a) example in Fig. 2b, and (b) Causal Prisoner’s Dilemma.

(0, 0) (marked in blue). However, if the action space L3 is considered, the last row in the table is
also considered (gray), and the equilibrium payoff decreases to (↔1,↔1). Hence, regardless of what
the other player does, Player 1’s mere consideration of a larger action space harms them. Broadly,
deciding which action space to follow is non-trivial. Next, we define a projection of a CNFG, where
action spaces are restricted to specific layers of the PCH.
Definition 3.2 (PCH Projection). Given a CNFG # = ↘M,A,R≃, the PCH projection of #, denoted
by #(A1, . . . , An), is the subgame of # where the action space of agent i is constrained to a subset
Ai ↙ Ai ↓ {A1

i ,A2
i ,A1

i ↖A2
i ,A3

i }. ↭

This projection captures how a game evolves when agents operate within a restricted subset of
available strategies corresponding to different levels of reasoning within the PCH. The problem
now, is to find a projection from where agents have no incentive to unilaterally deviate to a different
layer of the PCH. To address this, we introduce a strategic layer selection game, a meta-game, where
agents choose which layer of PCH to operate at.
Definition 3.3 (Layer Selection Game). Given a CNFG # = ↘M,A,R≃, its Layer Selection Game
L! is the NFG with (i) the same set of agents N , (ii) action space A = A1 ↗ . . . , An, where Ai ↙
Ai ↓ {A1

i ,A2
i ,A1

i↖A2
i ,A3

i } and (iii) utility u(A) = NE(#(A1, . . . , An)) where NE(#(A1, . . . An))
is a Nash Equilibrium payoff of the CNFG # when actions spaces are restricted to A1, . . . , An. ↭

This metagame represents a higher-level decision process, where each cell in the payoff matrix
corresponds to a PCH projection of #, and its equilibrium will determine the layer of reasoning in
which the agents should operate. We will assume that such counterfactual rationality is common
knowledge, that both players are aware that the other player can forget a part of their actions space
and choose the PCH layers in which they operate. Let s↑i be the NE strategy for player i in the
layer selection game. Let supp(s↑i ) denote the support of s↑i – the set of action spaces with non-zero
probability in s

↑
i . In particular, if Aj

i ⇑↓ supp(s↑i ), then the agent can ignore, or “forget” about this
action space, and instead play a PCH projection of # that excludes Aj

i . For instance, in Fig. 2b, if
Player 1 is able to forget that it can play L3, the payoff for the agent is (0, 0), which is higher than
the payoff that with playing L3, (↔1,↔1).

In practice, agents can limit their reasoning layers by restricting their capabilities: (i) at L1, agents
act instinctively without requiring sampling mechanisms, (ii) at L2, agents may need access to
randomization (e.g., coin flips) for mixed strategies, and (iii) At L3, agents must introspect, observe
their intuition, and then decide how to act based on it, through more sophisticated procedures, such
as ctf-randomization. Refusing to observe intuition renders L3 inaccessible. One key observation
is that forgetting part of the action space may not always be a good idea. For example, consider
the simple prisoner’s dilemma. If the agents choose to forget defect D and just play with the action
space cooperate {C}, they will get a payoff (↔1,↔1). However, one agent may start using the action
space {C,D} and then choose to defect, obtaining a payoff of ↔0.5 while the other agent gets ↔7.0.
Thus it is not in the agent’s interest to forget about defecting (see Appendix D).
Definition 3.4 (Causal Nash Equilibrium, or CNE). Let # be a CNFG and L! be its corresponding
layer selection game with NE strategy s

↑. A strategy profile ω
↑ is called CNE if ω↑ is the Nash

Equilibrium of #(A↑), where A
↑ = A1 ↗ . . .↗An, and Ai = ↖A↓supp(s→i )A. ↭

Theorem 3.5 (Existence of CNE). For any CNFG, CNE always exists. ↭

If playing L2 is a pure strategy NE of the layer selection game L!, then the CNE of # in CGT and
the NE of the normal form game induced by # coincide. Note that it is possible for a CNFG to have
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Algorithm 1 Find-CNE
1: Input: PCH projections of CNFG # = ↘M,A,R≃ Output: CNE strategies ω↑

2: Construct the Layer Selection Game, L!: For all A = A1 ↗ . . . ↗ An, such that Ai ↙ Ai ↓
{A1

,A2
,A1 ↖A2

,A3}, u(A) ↓ NE(#(A1, . . . , An))
3: Let s↑ be the NE strategy of L! and A

↑ = A
↑
1 ↗ . . . A

↑
n, where A

↑
i =

⋃
A↓supp(s→i )

A
4: Return: NE strategies of #(A↑)

Algorithm 2 Ctf-Nash-Learning
1: Input: Dataset from Ctf-RCT: (x→

1, x1, x2,y)
2: Output: Causal Nash Equilibrium strategy f

↑

3: For each (x→
1, x1, x2), estimate the mean and weights of the distributions’ mixture from the

samples (y1, y2). Let the distribution means be R1(x→
1, x1, x2), . . . , Rk(x→

1, x1, x2) with corre-
sponding weights p1(x→

1, x1, x2), . . . , pk(x→
1, x1, x2) (in descending order)

4: If k distributions cannot be identified, assume they are from a single distribution set
Ri(x→

1, x1, x2) as the mean of the distribution and pi(x→
1, x1, x2) = pi(x→

1, x̄1, x̄2) where
x1, x2 ⇑= x̄1, x̄2. In case this assignment fails, set pi = 1/k for all k.

5: Define the action space for each player: F1 = {f : X →
1 ⇔ X1}, F2 = {g : [k] ⇔ X2}

6: Construct a payoff matrix where each cell corresponds to a pair of functions (f, g) ↓ F1 ↗ F2.
For each pair (f, g), compute the payoff

∑
X↑

1,i
P (X →

1)pi(x
→
1, f(x

→
1), g(i))Ri(x→

1, f(x
→
1), g(i))

7: (f↑
, g

↑) → Find-CNE on constructed payoff matrix without the action spaces A1
2,A1

2 ↖A2
2

8: Return: Strategy f
↑.

multiple layer selection games and CNEs. Next, we look at how causal strategies compare with
other strategies. NE(#(A);L!) is the NE payoff with action space A as chosen in L!.
Theorem 3.6 (Dominance of causal strategies). Let # be a CNFG with CNE payoff µ↑ and L!

be its layer selection game with NE strategy s
↑. If s↑ is a pure strategy NE and A

↑
i = supp(s↑i ),

µ
↑ ∝ NE(#(Ai, A

↑
↔i);L!) for all Ai ↓ {A1

i , A
2
i , A

1
i ↖A

2
i , A

3
i } and i ↓ [n]. ↭

In other words, Thm. 3.6 guarantees that if the layer selection game L! admits a pure strategy NE, no
agent benefits by unilaterally switching to a different PCH reasoning layer. Consider Fig. 4a, which
shows the layer selection game for the game in Fig. 2b: if Player 1 follows L2 policies and Player 2
follows L1 and L2 policies, neither has an incentive to switch to a different layer of PCH. This leads
to an interesting insight: CNE payoff of # is thus (0, 0), while the NE payoff of # with L3 actions is
(↔1.5,↔1.5) and that with interventions is (0, 0). In contrast, Fig. 4b, corresponding to the CPD in
Ex.3.1, has a pure strategy NE at (A3

,A3), indicating both players should adopt L3 policies. This
is consistent with Fig.3 resulting in a payoff (0, 0) while NE payoff in L2 is (↔1.9,↔1.9).

4 LEARNING CAUSAL NASH EQUILIBRIUM

In this section, we introduce two algorithms for computing the CNE in CNFGs. First, we present
Find-CNE (Alg. 1), which applies when the payoff matrix is common knowledge, as in SGT. Then,
we propose Ctf-Nash-Learning, which learns the payoff matrix under partial observability.

We begin with the setting where the action spaces and corresponding payoffs of the CNFG # are
known to both agents (as in SGT). For example, if Player 1 has access to L3 and Player 2 to L2,
both are aware of the payoffs for all combinations of actions within those spaces. We introduce
Find-CNE (Alg. 1), which implements the ideas presented in Sec. 3. The algorithm first constructs
the layer selection game L! corresponding to # (step 2). and then computes its NE strategy (step 3).
Any action space that occurs with nonzero probability in the NE strategy is used for CNE, or else
discarded. Step 4 computes the NE of the projection of # with the restricted action space.

However, such game dynamics may not be common knowledge. If the agents are learning the payoff
matrix through exploration, they may be able to observe only the other agents’ executed actions, but
not their intuitions. To this end, we propose Ctf-Nash-Learning (Alg. 2), an algorithm that
learns the payoff matrix in two-player CNFGs, where both agents have access to L3 policy space. We
assume that during exploration or learning phase, both players are playing Ctf-RCT Bareinboim
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Figure 5: (a) Change in payoffs of the players in Causal Prisoner’s Dilemma move up the layers
of PCH. Transitions (a), (b), (c) and (d) corresponds to the ones indicated in Fig. 3 (b) Equilibrium
Player 1 Payoffs with L1, L2 and L3 action spaces under two conditions.

et al. (2024) and collect the dataset (x→
1, x1, x2,y) (for player 1), where x

→
1 is the intuition of player

1, x1 and x2 are the actions executed by players 1 and 2, respectively, and y is the reward tuple. The
agents do not know the solution to the layer selection game or the optimal layer in which to play. For
a fixed (x→

1, x1, x2), the outcome y is sampled from the mixture
∑

x↑
2
P (x→

2 | x→
1)P (yx1,x2 | x→

2, x
→
1).

Step 3 recovers the means and weights of the mixture, which correspond (up to permutation) to
P (x→

2 | x→
1) and E[Yx1,x2 | x→

1, x
→
2]. In the CPD example, we identify p1(x→

1, x1, x2) ⇓ 0.6 and
p2(x→

1, x1, x2) ⇓ 0.4 for all (x→
1, x1, x2), matching P (U1 = 0) and P (U1 = 1). Examples of

sample means include R1(0, 0, 0) = (↔1.5,↔1.5) and R2(0, 0, 0) = (↔1,↔1), corresponding to
expectations conditioned on X

→
2 = 0 and X

→
2 = 1, respectively. These values can be consistently

identified under certain technical assumptions (Appendix D). Step 4 addresses the degenerate cases
where Y does not vary with intuition. Step 5 defines the agents’ L3 action spaces. In CPD, for
agent i, it is {f(x) = x, f(x) = 0, f(x) = 1, f(x) = 1 ↔ x} corresponding to actions {Xi =
X

→
i, do(Xi = 0), do(Xi = 1), Xi = 1 ↔ X

→
i}. However, the other agents’ intuitions deduced in

this manner may be a permutation of the actual intuitions X
→
2. Once we have a proxy for the L3

actions, the payoff matrix can be computed using Step 6 and the CNE strategy using Find-CNE.
The learned probabilities, mean, and payoff matrix for CPD are shown in the Appendix D.
Theorem 4.1. Given a two player CNFG # = ↘M, (A3

1,A3
2),R≃, let s

↑ be the NE strat-
egy of the corresponding PCH-LSG L! and A2 =

⋃
A↓supp(s→2)

A. If A2 ↓ {A2
2,A3

2}, then
Ctf-Nash-Learning correctly learns the CNE strategy for Player 1. ↭

Experimental evaluation: We empirically investigate how the behavior of the game changes when
the players move across the layers of PCH. In order to simulate two agents learning, we enable
them with Independent Q-Learning Tan (1993), a popular multi-agent RL algorithm. The dynamics
as Player 1 moves up the layers of PCH, while Player 2 remains in the previous layer is shown in
Fig. 5a This is an experimental realization of the discussions presented in Ex. 3.1 and Fig. 3. Every
20,000 timesteps, one of the agents moves up the layers of PCH, which triggers a change in payoff.
Next, we also investigate how the equilibrium payoffs change with the value of P (Ri = 0) for agent
i in Ex. 1.1. Earlier, we showed two extreme cases when P (Ri = 0) is 0 and 1. we show the
equilibrium payoffs for different values of P (Ri = 0) = r for i ↓ {1, 2}. Note that, for the causal
prisoner’s dilemma, following L3 policy space is better than following only L2 action space.

5 CONCLUSIONS

In this work, we examine the tension between rational and irrational decision-making through a
causal lens. We introduce an example where rationality is optimal in one setting and being instinc-
tive in another, despite both yielding the same game-theoretic solution. To address this dilemma, we
propose a causal framework that captures both rational and instinctive behaviors and strictly general-
izes Normal Form Games (Thm.2.11). We define counterfactual strategies and analyze equilibrium
properties under these strategies (Thm.3.6). Finally, we develop algorithms to compute such equilib-
ria: Alg. 1 (known payoffs) and Alg. 2 (learning through interaction). We hope that this framework
advances the design of more robust, rational decision-making systems.
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