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Abstract001

With the increasing use of large language mod-002
els (LLMs), ensuring reliable performance in003
diverse, real-world environments is essential.004
Despite their remarkable achievements, LLMs005
often struggle with adversarial inputs, signifi-006
cantly impacting their effectiveness in practical007
applications. To systematically understand the008
robustness of LLMs, we present RUPBench, a009
comprehensive benchmark designed to evalu-010
ate LLM robustness across diverse reasoning011
tasks. Our benchmark incorporates 15 reason-012
ing datasets, categorized into commonsense,013
arithmetic, logical, and knowledge-intensive014
reasoning, and introduces nine types of textual015
perturbations at lexical, syntactic, and seman-016
tic levels. By examining the performance of017
state-of-the-art LLMs such as GPT-4o, Llama3,018
Phi-3, and Gemma on both original and per-019
turbed datasets, we provide a detailed analy-020
sis of their robustness and error patterns. Our021
findings highlight that larger models tend to022
exhibit greater robustness to perturbations. Ad-023
ditionally, common error types are identified024
through manual inspection, revealing specific025
challenges faced by LLMs in different reason-026
ing contexts. This work provides insights into027
areas where LLMs need further improvement028
to handle diverse and noisy inputs effectively.029

1 Introduction030

Large language models (LLMs) have gained in-031

creasing popularity due to their unprecedented per-032

formance in various tasks such as sentiment analy-033

sis (Miah et al., 2024), complex reasoning (Wang034

et al., 2023a), and time series analysis (Zhao et al.,035

2021; Wang et al., 2022b). Models like GPT-036

3 (Brown et al., 2020), GPT-4o (gpt 4o, 2024),037

and Llama3 (AI@Meta, 2024) have set new bench-038

marks in natural language processing, pushing039

the boundaries of what these systems can achieve.040

However, as the deployment of LLMs in real-world041

applications grows, particularly in high-risk do-042

mains, ensuring their robustness against diverse043

and potentially adversarial inputs becomes critical. 044

Despite advancements, LLMs remain vulnerable 045

to perturbations that can significantly degrade their 046

performance. These perturbations can come in vari- 047

ous forms, including lexical variations (e.g., typos), 048

syntactic changes (e.g., cleft constructions), and 049

semantic distractions (e.g., red herrings). Such 050

weaknesses pose serious challenges, especially in 051

applications requiring high reliability and accuracy, 052

such as healthcare (Wang et al., 2024b), legal docu- 053

ment analysis (Cheong et al., 2024), and automated 054

customer service (Kolasani, 2023). 055

Several studies have explored the robustness 056

of LLMs from various angles. For instance, 057

datasets like AdvGLUE (Wang et al., 2021) and Ad- 058

vGLUE++ (Wang et al., 2024a) are specifically de- 059

signed to test how language models respond to ad- 060

versarial inputs, which are meticulously altered to 061

elicit incorrect responses from the models. Wang et 062

al. (Wang et al., 2023b) assessed the robustness of 063

ChatGPT and other LLMs against adversarial and 064

out-of-distribution (OOD) samples, while Zhuo et 065

al. (Zhuo et al., 2023) evaluated the robustness 066

of semantic parsing. However, these studies fo- 067

cus on restricted tasks or types of perturbations, 068

lacking a holistic evaluation framework that com- 069

prehensively assesses robustness across multiple 070

categories and distinct perturbation types. Addi- 071

tionally, they do not delve deeply into the specific 072

error patterns induced by different perturbations, 073

leaving gaps in understanding how to enhance the 074

models’ resilience in practical applications. 075

To address this gap, we introduce the Reasoning 076

Under Perturbations Benchmark (RUPBench), a 077

comprehensive benchmark designed to evaluate 078

the robustness of LLMs across different reason- 079

ing tasks. RUPBench includes 15 source datasets 080

spanning four major reasoning categories: com- 081

monsense, arithmetic, logical, and knowledge- 082

intensive. Each dataset is subjected to nine types 083

of textual perturbations, covering lexical, syntac- 084
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tic, and semantic levels, to simulate real-world085

input variations. Then, we conduct extensive086

experiments with several leading LLMs using087

RUPBench, including GPT-4o (gpt 4o, 2024),088

Llama3 (AI@Meta, 2024), Phi-3 (Abdin et al.,089

2024), and Gemma (Team et al., 2024) models,090

assessing their performance on both original and091

perturbed datasets. By analyzing the models’ re-092

sponses, we provide insights into their robustness093

and identify common error patterns. Our findings094

indicate that larger models generally exhibit greater095

robustness to perturbations. Manual inspection of096

incorrect predictions highlights specific error types097

prevalent across all LLMs, directing areas for im-098

provement and emphasizing the need for targeted099

strategies to address these weaknesses by task.100

In summary, our contributions are threefold:101

(1) We introduce RUPBench, a comprehensive102

benchmark designed to systematically evalu-103

ate the robustness of LLMs across 15 reason-104

ing tasks, incorporating nine types of textual105

perturbations, resulting in a total of 365,580106

perturbed samples.107

(2) We assess the performance of several state-108

of-the-art LLMs, including GPT-4o, Llama3,109

Phi-3, and Gemma, on both original and per-110

turbed datasets. Our extensive analysis pro-111

vides detailed insights into their robustness112

across different tasks and perturbations.113

(3) We identify common error types from per-114

turbations through manual inspection, high-115

lighting challenges LLMs face, such as con-116

text misinterpretation and knowledge gaps, to117

guide future research towards more resilient118

and reliable LLMs.119

2 Related Work120

In this section, we provide an overview of LLM121

evaluation, with a focus on robustness. We also122

discuss the role of textual perturbations in assessing123

the robustness and safety of LLMs.124

2.1 LLM Evaluation125

Pretrained language models like BERT (Kenton126

and Toutanova, 2019) and RoBERTa (Liu et al.,127

2019) have been the standard practice in many NLP128

tasks. However, the introduction of GPT-3 (Brown129

et al., 2020) shifted the focus towards minimal130

fine-tuning approaches, such as zero-shot (Ko- 131

jima et al., 2022) and few-shot learning. Re- 132

cently, advanced LLMs like GPT-4o (gpt 4o, 2024), 133

Llama3 (AI@Meta, 2024), and Gemini (Team 134

et al., 2023) have demonstrated significant improve- 135

ments across various domains, including complex 136

reasoning (Wang and Zhao, 2023b,a; Xia et al., 137

2024), machine translation (Ding et al., 2023), and 138

text classification (Wang et al., 2022a, 2023c). 139

Given the remarkable performance of LLMs, 140

their evaluation has garnered significant attention 141

across areas like robustness (Dong et al., 2023), 142

hallucination (Li et al., 2023), healthcare (Wang 143

et al., 2023d), and ethics (Wan et al., 2023). Bench- 144

marks such as GLUE (Wang et al., 2018) and Su- 145

perGLUE (Wang et al., 2019) have been founda- 146

tional in advancing natural language understand- 147

ing tasks. More recent benchmarks, including 148

MMLU (Hendrycks et al., 2020b), BigBench (Sri- 149

vastava et al., 2023), and HellaSwag (Zellers et al., 150

2019), assess capabilities in knowledge understand- 151

ing and complex reasoning. 152

Robustness is particularly crucial for LLMs as it 153

ensures reliable performance in diverse, real-world 154

environments and the ability to handle noisy, in- 155

complete, or adversarial inputs (Wang et al., 2024c). 156

Existing benchmarks like AdvGLUE (Wang et al., 157

2021) and AdvGLUE++ (Wang et al., 2024a), built 158

on the foundation of GLUE, focus on evaluating 159

robustness. However, these benchmarks do not 160

sufficiently challenge the advanced capabilities of 161

current LLMs, underscoring the need for more rig- 162

orous assessments. 163

Our benchmark, RUPBench, addresses this criti- 164

cal gap by incorporating diverse recent datasets that 165

emphasize complex reasoning. This approach not 166

only enhances performance differentiation but also 167

pushes the boundaries of reasoning and knowledge 168

in advanced LLMs, making it an essential tool for 169

the next generation of LLM evaluation. 170

2.2 Textual Perturbations and LLM Safety 171

Textual perturbations involve creating variations in 172

input text to evaluate the robustness and safety of 173

LLMs. Unlike efforts aimed at generating poten- 174

tially harmful outputs, such as SafetyPrompts (Sun 175

et al., 2023) or prompt injection attacks (Esmradi 176

et al., 2023), our perturbations mimic plausible user 177

mistakes in data samples. Our goal is to ensure that 178

LLMs can manage diverse, noisy, or slightly incor- 179

rect inputs without producing erroneous or harmful 180

outputs, thereby enhancing their robustness and 181
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Figure 1: Overview of the data construction pipeline for RUPBench.

safety in real-world applications. Additionally, cat-182

egorizing perturbations into lexical, syntactic, and183

semantic levels from a linguistic perspective covers184

a broad spectrum of text variations, enabling a nu-185

anced understanding of how different perturbations186

affect LLM performance.187

3 Dataset Construction188

In this section, we introduce the 15 source reason-189

ing datasets spanning commonsense, logic, arith-190

metic, and cross-domain areas. We describe the191

nine general text-based perturbations applied at192

lexical, syntactic, and semantic levels, resulting in193

a total of 365,580 perturbed samples. We also de-194

tail the involvement of human experts to ensure the195

quality and validity of the perturbations. The over-196

all data construction pipeline is shown in Figure 1.197

3.1 Tasks and datasets198

We consider 15 representative text-based reason-199

ing datasets, which are categorized into four major200

reasoning groups: commonsense reasoning, arith-201

metic reasoning, logical reasoning, and knowledge-202

intensive reasoning. Table 1 provides an overview203

of the reasoning datasets and tasks.204

3.1.1 Commonsense Reasoning205

This group encompasses nine datasets covering206

various dimensions of commonsense reasoning.207

• CommonsenseQA (Talmor et al., 2019): Fo-208

cuses on general commonsense knowledge,209

requiring models to answer questions based210

on everyday scenarios.211

• TRAM (Wang and Zhao, 2023c): Assesses212

the model’s ability to understand and reason213

about time-related information such as fre-214

quency, ordering, duration, and typical time.215

• PIQA (Bisk et al., 2020): Targets physical in- 216

teraction reasoning, challenging models with 217

questions about everyday situations, favoring 218

atypical solutions. 219

• QASC (Khot et al., 2020): Centers on sci- 220

entific reasoning, requiring models to inte- 221

grate and apply scientific knowledge to an- 222

swer questions. 223

• Social IQA (Sap et al., 2019): Emphasizes so- 224

cial reasoning, evaluating the model’s under- 225

standing of the social implications of everyday 226

events and situations. 227

• Cosmos QA (Huang et al., 2019): Focuses 228

on contextual reasoning, requiring models to 229

draw inferences from contextual information 230

in narrative passages. 231

• NumerSense (Lin et al., 2020): Tests numer- 232

ical reasoning by requiring models to fill in 233

missing numerical values (zero to ten) or “no” 234

in given sentences. 235

• RiddleSense (Lin et al., 2021): Challenges 236

models to solve riddles that often require mul- 237

tiple pieces of commonsense knowledge and 238

figurative language. 239

• ETHICS (Hendrycks et al., 2020a): Focuses 240

on moral reasoning, assessing the model’s 241

ability to make ethical judgments and under- 242

stand moral principles. 243

3.1.2 Arithmetic Reasoning 244

This group comprises two datasets focusing on 245

math word problems. 246

• GSM8K (Cobbe et al., 2021): Contains grade 247

school math word problems requiring basic 248

arithmetic and reasoning. 249
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• AQuA-RAT (Ling et al., 2017): Comprises250

algebraic math word problems, requiring mod-251

els to answer multiple-choice questions and252

generate rationales.253

3.1.3 Logical Reasoning254

This group comprises three datasets focused on de-255

ductive reasoning (i.e., drawing conclusions based256

on premises) and abductive reasoning (i.e., forming257

hypotheses from incomplete information) tasks.258

• ReClor (Yu et al., 2019): Contains logical259

reasoning problems from standardized tests260

such as LSAT and GMAT, requiring models261

to perform deductive reasoning.262

• LogiQA2.0 (Liu et al., 2023): Contains logi-263

cal reasoning problems from the Chinese Civil264

Service Examination, including natural lan-265

guage inference (NLI) and machine reading266

comprehension (MRC) tasks.267

• ART (Bhagavatula et al., 2019): Focuses on268

abductive reasoning, challenging models to269

select the most plausible explanation (hypoth-270

esis) given a pair of observations.271

3.1.4 Knowledge-Intensive Reasoning272

We consider the MMLU (Hendrycks et al., 2020b)273

benchmark as the standard for knowledge-intensive274

reasoning, encompassing a broad range of exam275

questions from 57 subjects across STEM, social276

sciences, humanities, and more.277

3.2 Perturbation Categories278

We consider each reasoning dataset’s validation or279

test sets as our source samples, upon which we280

perform various perturbations. Specifically, we cat-281

egorize these perturbations into three major types:282

lexical, syntactic, and semantic. Our perturbations283

are designed to induce incorrect responses from284

the LLM while preserving the essence of the origi-285

nal content, ensuring that the ground truth answer286

remains unchanged despite the perturbations. Ex-287

amples of RUPBench can be found in Appendix A.288

3.2.1 Lexical Perturbation289

Lexical perturbations involve modifying individual290

words within the text to evaluate the model’s ro-291

bustness to variations. We consider three specific292

types of lexical perturbations: homophones, typos,293

and leetspeak, due to their ability to simulate com-294

mon real-world challenges like phonetic confusion,295

typographical errors, and informal language.296

• Homophones: This involves replacing words 297

with their homophones, i.e., words that sound 298

the same but have different meanings and 299

spellings. For instance, “meet” might be re- 300

placed with “meat”. Using the CMU Pro- 301

nouncing Dictionary, we identify homophones 302

for each word in a sentence and randomly se- 303

lect replacements. 304

• Typos: This introduces random spelling errors 305

into the text. Methods include swapping adja- 306

cent characters, inserting random characters, 307

deleting characters, or replacing characters 308

with random ones. For example, “example” 309

might become “exmaple” or “ex@ample”. 310

• Leetspeak (Wei et al., 2024): This is a system 311

of modified spellings used primarily on the 312

Internet. This perturbation translates text into 313

leetspeak by replacing letters with numbers 314

or symbols that resemble them. For exam- 315

ple, “write” might become “WR1735”. Each 316

character is mapped to a set of possible re- 317

placements, and one is randomly chosen. 318

3.2.2 Syntactic Perturbation 319

Syntactic perturbations involve modifying the struc- 320

ture of sentences to evaluate the model’s under- 321

standing of grammar and sentence construction. 322

We consider three specific types of syntactic per- 323

turbations: It-cleft, Wh-cleft, and compound vari- 324

ations. These perturbations are selected for their 325

ability to challenge the model’s syntactic parsing 326

capabilities and emphasize different aspects of sen- 327

tence structure and focus. 328

• It-cleft: This restructures sentences using the 329

It-cleft construction, which highlights a spe- 330

cific part of the sentence by placing it after 331

“It was”. For example, “The dog chased the 332

cat” becomes “It was the dog that chased the 333

cat”. This method involves using the spaCy 334

library (Honnibal and Montani, 2017) to iden- 335

tify the subject, verb, and object in a sentence 336

and rephrasing it to fit the It-cleft structure. 337

• Wh-cleft: This restructures sentences using 338

the Wh-cleft construction, which highlights a 339

specific part of the sentence with Wh-words 340

like “what”, “who”, “where”, etc. For exam- 341

ple, “The dog chased the cat” becomes “What 342

the dog chased was the cat”. Similar to the 343

It-cleft method, we use the spaCy library to 344
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Table 1: Summary statistics of RUPBench. The benchmark is constructed using the validation or test sets from
15 source reasoning datasets, depending on availability and the presence of ground truth labels. ‘Pert.’ refers to
perturbed, indicating the total number of samples after applying nine types of general perturbations to each original
validation/test sample, with the original sample count shown in parentheses. For datasets like TRAM and ETHICS,
which include multiple subtasks beyond commonsense reasoning, we extract the relevant samples for our analysis.

Dataset Domain Answer Type # Train Samples # Pert. Val/Test Samples
(Source) (RUPBench)

Commonsense Reasoning

CommonsenseQA General 5-Way MC 9,741 10,989 (1,221)
TRAM Temporal 3-Way MC N/A 29,610 (3,290)
PIQA Physical 2-Way MC 16,113 16,542 (1,838)
QASC Science 8-Way MC 8,134 8,334 (926)
Social IQA Social 3-Way MC 33,410 17,586 (1,954)
Cosmos QA Contextual 4-Way MC 25,262 26,865 (2,985)
NumerSense Numerical Number 10,444 1,800 (200)
RiddleSense Riddle 5-Way MC 3,510 9,189 (1,021)
ETHICS Moral 2-Way MC 13,910 35,676 (3,964)

Arithmetic Reasoning

GSM8K Grade School Math Number 7,473 11,871 (1,319)
AQuA-RAT Algebra 5-Way MC 97,467 4,572 (508)

Logical Reasoning

ReClor Deductive 4-Way MC 4,638 4,500 (500)
LogiQA2.0 Deductive 2/4-Way MC 44,098 47,880 (5,320)
ART Abductive 2-Way MC 169,654 13,788 (1,532

Knowledge-Intensive Reasoning

MMLU Multi-discipline 4-Way MC N/A 126,378 (14,042)

identify key elements and rephrase them to fit345

the Wh-cleft structure.346

• Compound Variations: This perturbation347

creates complex sentence structures by incor-348

porating subordinating conjunctions, quanti-349

fiers, and modifying punctuation. For exam-350

ple, a simple sentence can be made more in-351

tricate with conjunctions like “although” and352

quantifiers like “several”. We use the NLTK li-353

brary (Bird et al., 2009) to tokenize sentences,354

identify parts of speech, and insert suitable355

conjunctions and quantifiers. Punctuation is356

then adjusted to form compound sentences.357

3.2.3 Semantic Perturbation358

Semantic perturbations modify the meaning or con-359

text of the text to evaluate the model’s understand-360

ing of deeper linguistic aspects. We consider three361

specific types of semantic perturbations: Red her-362

rings, CheckList (Ribeiro et al., 2020) items, and363

StressTest (Naik et al., 2018) statements. These364

perturbations assess the model’s ability to maintain 365

logical consistency and focus on relevant informa- 366

tion despite the presence of distracting, irrelevant, 367

or misleading content. 368

• Red Herrings (RHs): This introduces con- 369

textually plausible but irrelevant information 370

designed to distract the model, aiming to chal- 371

lenge its focus on relevant parts of the text 372

without altering the final answer. We use GPT- 373

4o to generate these RHs, leveraging the effi- 374

ciency and consistency of LLMs compared 375

to human generation. We prompt GPT-4o 376

with: “Given the statement: {context}, gen- 377

erate a single Red Herring either before, after, 378

or within the original text to challenge the 379

LLMs while keeping the original text and final 380

answer intact”. 381

• CheckList: This perturbation involves incor- 382

porating URLs, social media handles, or other 383

irrelevant elements into the text. For exam- 384
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ple, embedding “@newswire” or “http://dw.385

com” within a sentence assesses the model’s386

capability to manage such elements in context387

without being misled by their presence. We388

generate 100 random URLs and handles, with389

a subset selected to be inserted arbitrarily into390

various parts of each sample’s context.391

• StressTest: This introduces logically redun-392

dant or repetitive phrases such as “and true393

is true”, “and false is not true”, or “if one is394

equal to one”. These phrases are inserted at395

random positions within the original text. The396

aim is to challenge models to maintain logical397

consistency and manage semantic redundancy.398

3.3 Expert Review399

After collecting the raw perturbed dataset, we con-400

duct a human study involving ten human experts401

with at least an undergraduate degree to review the402

generated perturbations of each data sample, partic-403

ularly the RHs, ensuring their quality and reliabil-404

ity. The experts evaluate whether the perturbations405

significantly alter the context or introduce errors406

that could mislead the models. If a perturbation is407

deemed unreadable, the experts rewrite it to align408

with the specific type. Their feedback is crucial for409

maintaining the original meaning of the text while410

effectively challenging the models. Any perturba-411

tions deemed implausible or overly disruptive are412

revised based on their insights. A perturbed data413

sample is considered acceptable without further414

changes if it receives approval from at least 60% of415

the experts (i.e., six out of ten).416

4 Experiments417

In this section, we describe the experimental setup,418

report overall performance, analyze robustness419

from different perspectives, and perform error anal-420

ysis to identify common errors in LLMs under orig-421

inal and perturbed texts.422

4.1 Experimental Setup423

We evaluate several leading LLMs for RUPBench424

on original and perturbed samples, including GPT-425

4o (gpt 4o, 2024), Llama3-8B-Instruct, Llama3-426

70B-Instruct (AI@Meta, 2024), Phi-3-mini-128k-427

Instruct, Phi-3-medium-128k-Instruct (Abdin et al.,428

2024), Gemma-2B-Instruct, and Gemma-7B-429

Instruct (Team et al., 2024). GPT-4o is accessed430

through the OpenAI API, while the other models431

are loaded from Hugging Face. For generating432

model responses, we use greedy decoding (tem- 433

perature = 0). Due to API cost constraints, we 434

randomly sample 300 instances per dataset (except 435

NumerSense), each with 10 variations (one raw 436

and nine perturbed). For MMLU, we sample 50 437

instances per subject. We utilize 5-shot Chain-of- 438

Thought prompting (Kojima et al., 2022) for arith- 439

metic reasoning datasets, while applying 5-shot 440

standard prompting for the other datasets. 441

For evaluation metrics, we report the original per- 442

formance using accuracy, suitable for the multiple- 443

choice nature of most tasks. Additionally, follow- 444

ing (Zhu et al., 2023), we report the Performance 445

Drop Rate (PDR) to measure the relative perfor- 446

mance decline after adversarial perturbations. A 447

negative PDR indicates instances where perturba- 448

tions can unexpectedly improve performance. 449

4.2 Results and Analysis 450

We compare the performance of multiple LLMs 451

across all datasets, followed by a robustness analy- 452

sis considering perturbation types, task types, and 453

models. Finally, we conduct an error analysis to 454

identify LLM weaknesses under perturbations. 455

4.2.1 Main Results 456

We present the overall performance of various mod- 457

els on RUPBench reasoning datasets, comparing 458

original and perturbed samples. GPT-4o demon- 459

strates the highest accuracy with an average of 460

83.9% and the lowest average PDR of 10.0%, indi- 461

cating its strong robustness to adversarial perturba- 462

tions. Among the open-source LLMs, Llama3-70B 463

performs exceptionally well with a relatively low 464

PDR of 11.5%. In contrast, the smallest model, 465

Gemma-2B, shows the lowest average accuracy of 466

42.7% and the highest PDR of 21.2%, highlighting 467

its susceptibility to perturbations. 468

In terms of datasets, CommonsenseQA presents 469

notable variability. Gemma-2B achieves only 470

45.6% accuracy with a substantial PDR of 28.5%, 471

whereas GPT-4o reaches 83.9% accuracy with a 472

significantly lower PDR of 5.5%. This trend is 473

consistent across most datasets, where larger mod- 474

els generally perform better and exhibit greater 475

robustness. For instance, in the GSM8K dataset, 476

GPT-4o achieves 94.1% accuracy with a PDR of 477

22.5%, compared to Gemma-2B’s 16.4% accuracy 478

and 49.8% PDR. 479

Interestingly, models demonstrate varied re- 480

sponses to specific perturbations. The arithmetic 481

reasoning datasets GSM8K and AQuA-RAT show 482

6
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Table 2: Model performance on RUPBench, including raw and perturbed datasets. The results are averaged over
three runs. The numbers outside parentheses represent the accuracy (%) on the original data, while the numbers
within parentheses indicate the average PDR (%) across nine perturbations.

Dataset Gemma Phi-3-mini Gemma Llama3 Phi-3-medium Llama3 GPT-4o
2B 3.8B 7B 8B 14B 70B >175B

CommonsenseQA 45.6 (28.5) 75.8 (24.7) 66.0 (24.1) 73.5 (11.3) 80.3 (18.4) 80.7 (12.4) 83.9 (5.5)
TRAM 53.6 (20.2) 79.4 (9.5) 67.3 (21.1) 78.8 (6.1) 81.3 (10.6) 82.8 (8.5) 87.8 (7.8)
PIQA 50.1 (1.1) 79.5 (0.6) 73.3 (0.3) 81.3 (1.2) 83.7 (0.9) 82.1 (0.7) 91.2 (0.5)
QASC 61.4 (39.0) 77.3 (18.4) 67.1 (35.4) 75.9 (17.3) 75.3 (20.7) 79.6 (16.9) 92.6 (14.5)
Social IQA 53.1 (8.7) 70.3 (3.5) 62.1 (5.3) 70.4 (5.5) 73.8 (6.2) 74.1 (8.3) 80.7 (8.8)
Cosmos QA 52.4 (2.2) 72.7 (5.6) 64.0 (0.9) 81.2 (3.6) 82.9 (4.2) 86.1 (6.5) 88.6 (3.6)
NumerSense 37.8 (86.3) 66.4 (93.9) 62.5 (53.3) 64.8 (15.8) 68.2 (84.3) 69.5 (18.9) 83.2 (20.8)
RiddleSense 37.1 (24.9) 58.5 (22.2) 50.8 (20.9) 64.1 (17.3) 63.3 (20.3) 70.7 (18.4) 89.3 (16.7)
ETHICS 40.8 (13.3) 56.0 (7.7) 61.7 (10.3) 78.1 (12.3) 69.2 (6.8) 82.3 (11.8) 94.7 (7.8)

GSM8K 16.4 (49.8) 70.3 (22.2) 45.6 (40.5) 76.7 (18.2) 81.2 (26.7) 85.9 (20.3) 94.1 (22.5)
AQuA-RAT 19.6 (-0.3) 26.1 (6.2) 30.1 (-2.0) 38.7 (17.6) 32.8 (9.8) 41.5 (19.2) 48.2 (12.3)

ReClor 32.1 (10.4) 62.0 (8.4) 41.9 (9.3) 63.1 (9.0) 67.9 (13.2) 69.5 (12.5) 77.2 (8.9)
LogiQA2.0 42.8 (6.3) 55.9 (5.9) 51.4 (3.7) 55.7 (5.5) 58.3 (5.7) 60.4 (7.0) 72.8 (6.6)
ART 57.3 (9.4) 78.3 (8.8) 68.8 (2.2) 73.6 (1.1) 79.8 (10.3) 80.2 (1.8) 87.1 (3.7)

MMLU 40.5 (18.9) 63.8 (6.3) 62.5 (15.2) 67.3 (7.7) 76.8 (7.2) 80.2 (9.3) 87.6 (9.7)

Average 42.7 (21.2) 66.1 (16.3) 58.3 (16.0) 69.5 (10.0) 71.6 (16.3) 75.0 (11.5) 83.9 (10.0)

mixed results, with AQuA-RAT experiencing neg-483

ative PDRs for some models, such as -0.3% for484

Gemma-2B and -2.0% for Gemma-7B, suggesting485

that certain perturbations might inadvertently aid486

performance in these tasks.487

Overall, while the largest models like GPT-4o488

exhibit robust performance with minimal PDRs,489

smaller models like Gemma-2B and Phi-3-mini-490

3.8B struggle significantly more in challenging491

datasets like NumerSense and GSM8K. This un-492

derscores the necessity for further advancements in493

model robustness and the importance of evaluating494

models on diverse and complex reasoning tasks.495

4.2.2 Robustness Analysis496

We investigate robustness across nine perturbation497

types within three major categories (lexical, syntac-498

tic, and semantic) and the relationship between the499

robustness of reasoning data types and models.500

Perturbation Categories Figure 2 displays the501

normalized PDR (measure for robustness) for nine502

perturbation types, averaged across datasets and503

models. Lexical perturbations, particularly Leet-504

speak (16.3%) and typos (13.6%) result in high505

PDRs, likely due to the models’ reliance on precise506

word forms and spelling to understand context and507

meaning, making them highly sensitive to such vari-508

ations. Syntactic perturbations, especially It-cleft509

(15.5%) and Wh-cleft (15.1%) constructions, also510

cause significant performance drops. Models may 511

struggle with non-standard sentence structures that 512

deviate from the syntactic patterns they are trained 513

on, potentially confusing their parsing mechanisms 514

and affecting comprehension. Finally, semantic 515

perturbations like Red Herrings (10.2%) exhibit no- 516

table PDRs, indicating that introducing irrelevant 517

information can distract and mislead the models. 518
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Figure 2: Normalized PDR (%) of nine perturbation
types, averaged across datasets and models. Normaliza-
tion scales each perturbation’s impact.

Data Categories and Models We further examine 519

the impact of data categories and models on robust- 520

ness through average PDR, as shown in Figure 3. 521

The results demonstrate that the small-size LLM 522

Gemma-2B is more susceptible to perturbations 523

compared to the other LLMs. As model size in- 524

7



Commonsense Arithmetic Logical Knowledge-Intensive0

5

10

15

20

25
Av

er
ag

e 
PD

R 
(%

)
Gemma-2B
Phi-3-mini
Gemma-7B
Llama3-8B

Phi-3-medium
Llama3-70B
GPT-4o

Figure 3: Average PDR (%) by dataset categories and models. Each bar represents the average PDR for a specific
model across different dataset categories. Commonsense reasoning and arithmetic reasoning are generally more
susceptible to perturbations. Additionally, larger models tend to be more robust to perturbations.

creases, there is a general trend towards improved525

robustness, indicated by a decrease in PDR. Com-526

monsense and arithmetic reasoning tasks are more527

affected by perturbations, as evidenced by their528

higher PDRs. This can be attributed to these tasks’529

reliance on specific contextual knowledge and pre-530

cise calculations, which are more easily disrupted.531

Conversely, logical and knowledge-intensive rea-532

soning tasks exhibit lower PDRs, likely due to their533

structured nature and extensive training data, mak-534

ing them more resilient to perturbations.535

4.2.3 Error Analysis536

We provide a detailed examination of the errors537

encountered by LLMs. Through manual inspec-538

tion of incorrect predictions under perturbations,539

we find that in commonsense reasoning, errors of-540

ten involve context misinterpretation (32.7%) and541

literal interpretation (28.2%), exacerbated by per-542

turbations that introduce ambiguities or misleading543

details. In arithmetic reasoning, the most common544

mistakes are calculation errors (35.9%) and misun-545

derstandings of word problems (28.4%), amplified546

by perturbations that alter problem wording. Logi-547

cal reasoning errors typically include faulty deduc-548

tions (30.7%) and inconsistent reasoning (27.0%),549

often due to syntactic perturbations that disrupt550

the logical flow. In knowledge-intensive reasoning,551

the primary issues are knowledge gaps (40.3%)552

and concept confusion (26.9%), with semantic per-553

turbations introducing irrelevant or contradictory554

information that challenges the model’s knowledge555

base. This analysis highlights specific challenges556

posed by different perturbation types, emphasizing557

the need for targeted strategies to enhance LLM 558

robustness. More details on each error type and 559

their proportions under different reasoning tasks 560

can be found in Appendix B. 561

5 Discussion 562

Investigating robustness is essential for ensuring 563

the reliable use of LLMs. In this work, we intro- 564

duce RUPBench, a comprehensive benchmark that 565

incorporates 15 reasoning datasets with nine gen- 566

eral perturbations, covering lexical, syntactic, and 567

semantic challenges for evaluating LLM robust- 568

ness. Our study reveals significant variability in 569

the robustness of different LLMs across various 570

reasoning tasks. Generally, larger models tend to 571

be less susceptible to perturbations. Additionally, 572

LLMs are more vulnerable to lexical and syntac- 573

tic perturbations. They exhibit varying levels of 574

resilience across different types of reasoning tasks, 575

highlighting the influence of data nature on model 576

robustness. Finally, we identify error patterns that 577

help understand the inherent weaknesses in LLMs 578

and provide direction for targeted improvements. 579

For future work, we will incorporate more chal- 580

lenging and diverse perturbation types to simu- 581

late real-world adversarial inputs. Additionally, 582

integrating domain-specific datasets and perturba- 583

tions can provide deeper insights into model per- 584

formance in specialized fields such as healthcare, 585

legal, and finance. Finally, we will continuously 586

update RUPBench with emerging datasets and per- 587

turbations to ensure rigorous LLM robustness eval- 588

uation for the community. 589
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6 Limitations590

We acknowledge several limitations in our study.591

First, our evaluation is performed on a subset of592

data samples, which may not fully capture the com-593

prehensive robustness of LLMs. Second, although594

our benchmark includes diverse datasets, perturba-595

tions, and models, it is impractical to encompass596

all possible LLMs, datasets, and adversarial per-597

turbations due to computational constraints. Third,598

we do not explore sufficient prompting methods,599

which can be crucial for assessing LLMs’ the gen-600

eral and robustness performance. Lastly, our use of601

textual questions may not entirely reflect the robust-602

ness capabilities of LLMs, as real-world scenarios603

often involve multimodal cues such as images and604

videos. Future research could extend similar evalu-605

ation pipelines to multimodal LLMs to provide a606

more comprehensive assessment.607
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A RUPBench Examples918

We present RUPBench examples with nine per-919

turbation types, covering lexical, syntactic, and920

semantic-level changes, in Table 3.921

B Error Types922

Table 4 illustrates the major error types in LLMs923

for different reasoning tasks under perturbations.924

For commonsense reasoning tasks, errors often925

include context misinterpretation (32.7%), where926

the model fails to grasp the overall context, leading927

to incorrect conclusions. For example, given the928

statement “John went to the bank to deposit his pay-929

check”, the model might incorrectly assume “bank”930

refers to the side of a river rather than a financial931

institution. Literalism (28.2%) is another common932

error, where the model interprets idiomatic or fig-933

urative language literally, resulting in incorrect re-934

sponses. An example is misinterpreting “kick the935

bucket” as physically kicking a bucket instead of936

understanding it as an idiom for dying. Addition-937

ally, reliance on surface patterns (23.8%) occurs938

when the model focuses on superficial text features939

rather than underlying meanings, such as recog-940

nizing “dog" and “bark" but failing to understand941

that “bark” refers to the sound made by a dog. Ig-942

nored details (15.3%) represent instances where the943

model overlooks crucial information, significantly944

impacting the answer. For instance, it might miss945

the importance of “only” in “She only eats vegeta-946

bles” leading to incorrect dietary assumptions.947

In arithmetic reasoning, calculation mistakes948

(35.9%) are the most frequent errors, where the949

model makes errors in mathematical computations,950

such as adding 5 + 7 and incorrectly arriving at951

11. Word misunderstandings (28.4%) occur when952

the model misinterprets the problem’s wording,953

leading to incorrect problem-solving steps. For954

example, it might misinterpret “double” in “dou-955

ble the number” as simply repeating the number956

rather than multiplying it by two. Errors in logical957

steps (25.8%) involve incorrect or missing steps958

in the solution process, such as skipping a step in959

a multi-step algebra problem. Unit errors (9.9%)960

arise when the model confuses or mishandles units961

of measurement, such as mixing up centimeters962

and inches, affecting the accuracy of the solution.963

For logical reasoning tasks, faulty deduction964

(30.7%) is a common error, where the model draws965

incorrect conclusions from the given premises due966

to flawed reasoning. For instance, given “All hu-967

mans are mortal. Socrates is a human”, the model 968

might incorrectly conclude that “Socrates is not 969

mortal”. Inconsistency (27.0%) occurs when the 970

model’s reasoning is not logically coherent, such 971

as providing contradictory answers to similar ques- 972

tions. Wrong assumptions (23.9%) involve the 973

model making incorrect initial assumptions that 974

lead to errors in the logical process, like assum- 975

ing all birds can fly when solving a problem about 976

penguins. Connective misuse (18.4%) refers to 977

incorrect use of logical connectors, such as mis- 978

interpreting “if” and “only if”, which disrupts the 979

logical flow of the argument. 980

In knowledge-intensive reasoning, the primary 981

issue is knowledge gaps (40.3%), where the model 982

lacks the necessary background information to an- 983

swer correctly, indicating limitations in the model’s 984

training data. For instance, it might not know that 985

“Einstein developed the theory of relativity". Con- 986

cept confusion (26.9%) involves the model mixing 987

up related but distinct concepts, leading to incorrect 988

answers, such as confusing “mitosis” and “meiosis” 989

in a biology question. Fact errors (21.3%) occur 990

when the model recalls or generates incorrect fac- 991

tual information, like stating that “Albert Einstein 992

won the Nobel Prize in Chemistry for his discovery 993

of the photoelectric effect”. Data misuse (11.5%) 994

happens when the model incorrectly applies rele- 995

vant data, leading to erroneous conclusions, such as 996

using outdated statistics to answer a current events 997

question, highlighting challenges in the model’s 998

data integration capabilities. 999

C Datasheet 1000

We provide the datasheet for RUPBench follow- 1001

ing (Gebru et al., 2021). 1002

OVERVIEW 1003

Motivation and Intended Uses. 1004

1. What are the intended purposes for this bench- 1005

mark? 1006

The intended purposes of RUPBench are to system- 1007

atically evaluate the robustness of large language 1008

models (LLMs) across a diverse set of reasoning 1009

tasks and to provide insights into their performance 1010

under various types of textual perturbations. By 1011

offering a comprehensive benchmark, RUPBench 1012

aims to help researchers and practitioners identify 1013

and address specific weaknesses in LLMs, thereby 1014

enhancing their reliability and effectiveness in real- 1015

world applications. 1016
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Table 3: Examples of RUPBench for each perturbation type. OS (Original Sentence) and PS (Perturbed Sentence)
are presented, with major changes highlighted in red and blue.

Data Perturbation Sample

CommonsenseQA Homophone
OS: Where do apples form on an apple tree?
PS: Where deux apple’s form on an appel tree?

PIQA Typo
OS: How to finish wood table after pictures have been glued on.
PS: How tV funish womod table after pictures have beedn gOlued on.

Social IQA Leetspeak

OS: Robin had been away for two weeks on his honeymoon.
Cameron picked him up on his return home.
PS: Robin had been away for two weeks 0/ his honeymoon.
Cameron |D!<|<â‚¬|) him up ()/ his return home.

TRAM It-cleft

OS: Several tenants blame other neighbors as perpetrators
of the rift, however. How long has there been a rift between neighbors?
PS: It was several tenants who blame other neighbors as perpetrators
of the rift, however. How long has there been a rift between neighbors?

ART Wh-cleft
OS: Anna was making a world atlas. Then she colored in her atlas.
PS: What Anna was doing was making a world atlas.
What she did next was color in her atlas.

RiddleSense
Compound
Variation

OS: What is always slow to come, but never actually happens?
PS: If What is always slow to come , , but never actually happens ?

GSM8K Red Herrings

OS: James delivers 600 newspapers in a day. He delivers 198 newspapers
to District A, some to District B and 209 newspapers to District C.
How many newspapers does he deliver to District B?
PS: James, who wakes up at 5 am every morning, delivers 600 newspapers in a day.
He delivers 198 newspapers to District A, some to District B,
and 209 newspapers to District C. On Sundays, he also delivers a special magazine
to each house. How many newspapers does he deliver to District B?

NumerSense CheckList

OS: boeing and lockheed are <mask> aeronautics companies.
PS: $https://github.com$ $http://huffpost.com$ boeing
$https://medium.com/writer$ $http://huffpost.com$ and
$tech_updates$ lockheed are <mask> aeronautics companies.

QASC StressTest

OS: Breaking complex chemicals into simple ones in humans occur in what location?
PS: Breaking complex chemicals into simple ones in humans occur in what location?
and false is not true and fire is hot and the sky is blue
if gravity pulls objects down if one is equal to one.

2. Was it designed to address a specific task or fill1017

a particular gap in research or application?1018

Yes, RUPBench was specifically designed to fill a1019

gap in the evaluation of LLMs’ robustness. While1020

existing benchmarks often focus on restricted tasks1021

or types of perturbations, RUPBench provides a1022

more holistic framework that encompasses a wide1023

range of reasoning tasks (commonsense, arithmetic,1024

logical, and knowledge-intensive) and three major1025

categories of textual perturbations (lexical, syntac-1026

tic, and semantic). This allows for a more nuanced1027

understanding of how LLMs perform under various1028

adversarial conditions, addressing the need for a1029

rigorous and multifaceted robustness evaluation.1030

Limitations and Inappropriate Uses.1031

3. Are there any specific tasks or applications for1032

which this benchmark should not be used?1033

RUPBench is specifically designed to evaluate the1034

robustness of LLMs in reasoning tasks under var-1035

ious textual perturbations. It is not suitable for 1036

tasks such as natural language generation, summa- 1037

rization, or translation. Additionally, it is not de- 1038

signed for evaluating LLMs in highly specialized or 1039

domain-specific applications outside the scope of 1040

the included datasets, such as biomedical text anal- 1041

ysis or highly technical legal document processing, 1042

unless those fields are represented in the included 1043

datasets and perturbations. The benchmark is also 1044

not intended for use in evaluating non-textual data 1045

or multimodal tasks that combine text with other 1046

data types, such as images or audio. 1047

DETAILS 1048

Composition. 1049

4. What do the instances that comprise the bench- 1050

mark represent? 1051

The instances in RUPBench represent various rea- 1052

soning tasks, specifically designed to test the ro- 1053

bustness of LLMs. Each instance includes a 1054

reasoning question or problem from one of the 1055
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Table 4: Distribution of major error types in LLMs by
reasoning tasks under perturbations. Con. Misinter.
refers to context misinterpretation, and Misunder. refers
to misunderstanding.

Task Error Types Proportion (%)

Commonsense

Con. Misinter. 32.7
Literalism 28.2
Surface Patterns 23.8
Ignored Details 15.3

Arithmetic

Calculation Mistakes 35.9
Word Misunder. 28.4
Logical Steps 25.8
Unit Errors 9.9

Logical

Faulty Deduction 30.7
Inconsistency 27.0
Wrong Assumptions 23.9
Connective Misuse 18.4

Knowledge-
Intensive

Knowledge Gaps 40.3
Concept Confusion 26.9
Fact Errors 21.3
Data Misuse 11.5

four major categories: commonsense (Common-1056

senseQA, TRAM, PIQA, QASC, Social IQA, Cos-1057

mos QA, NumerSense, RiddleSense, ETHICS),1058

arithmetic (GSM8K, AQuA-RAT), logical (Re-1059

Clor, LogiQA2.0, ART), and knowledge-intensive1060

(MMLU) reasoning. These instances are fur-1061

ther subjected to nine types of textual perturba-1062

tions, covering lexical (homophones, typos, Leets-1063

peak), syntactic (It-cleft, Wh-cleft, compound vari-1064

ation), and semantic levels (red herrings, Check-1065

List, StressTest), to simulate real-world input vari-1066

ations and assess how well LLMs handle such ad-1067

versarial conditions.1068

5. How many instances are there in total (of each1069

type, if appropriate)?1070

RUPBench consists of a total of 365,580 instances1071

(excluding the original instances). This includes1072

15 original datasets, each subjected to nine dif-1073

ferent types of perturbations. Specifically, the1074

number of perturbed samples for each dataset is1075

as follows: CommonsenseQA (10,989), TRAM1076

(29,610), PIQA (16,542), QASC (8,334), Social1077

IQA (17,586), Cosmos QA (26,865), NumerSense1078

(1,800), RiddleSense (9,189), ETHICS (36,676),1079

GSM8K (11,871), AQuA-RAT (4,572), ReClor1080

(4,500), LogiQA2.0 (47,800), ART (13,788), and1081

MMLU (126,378).1082

6. Does the benchmark contain all possible in-1083

stances or is it a sample (not necessarily random)1084

of instances from a larger set?1085

The benchmark contains a curated selection of1086

instances from the available reasoning datasets, 1087

specifically from the validation or test sets. 1088

7. Is there a label or target associated with each 1089

instance? 1090

Yes, each instance in the benchmark has an associ- 1091

ated label or target. These labels represent the cor- 1092

rect answers or expected outputs for the reasoning 1093

tasks, which are used to evaluate the performance 1094

and robustness of the LLMs. 1095

8. Is the benchmark self-contained, or does it link 1096

to or otherwise rely on external resources (e.g., 1097

websites, tweets, other datasets)? 1098

RUPBench is built upon existing datasets but is 1099

self-contained. It includes perturbed versions of in- 1100

stances from various established reasoning datasets. 1101

While the original datasets are sourced from exter- 1102

nal resources, RUPBench itself provides all neces- 1103

sary data for robustness evaluation without requir- 1104

ing access to the external sources. Users do not 1105

need to access the original datasets separately, as 1106

all relevant instances and their perturbations are 1107

included within RUPBench. 1108

9. Does the benchmark contain data that might be 1109

considered sensitive in any way? 1110

The benchmark does not contain any sensitive data. 1111

Data Quality. 1112

10. Is there any missing information in the bench- 1113

mark? 1114

Everything is included. No data is missing. 1115

11. What errors, sources of noise, or redundancies 1116

are important for benchmark users to be aware of? 1117

Benchmark users should be aware of potential 1118

sources of noise and errors, such as inconsisten- 1119

cies in how perturbations are applied to different in- 1120

stances, which may affect model performance eval- 1121

uation. Some perturbations may introduce subtle 1122

ambiguities or irrelevant information that could dis- 1123

proportionately impact certain types of reasoning 1124

tasks, leading to variability in results. Additionally, 1125

redundancies might arise if multiple perturbations 1126

affect the same aspect of an instance, potentially 1127

skewing the analysis. It’s also important to con- 1128

sider that manual inspection and correction of per- 1129

turbations, while thorough, may still leave room for 1130

subjective interpretations, which could introduce a 1131

level of bias into the benchmark. 1132

12. How was the data validated/verified? 1133

The data in RUPBench was validated and verified 1134

through a multi-step process. First, each source 1135

dataset underwent a thorough review through sam- 1136
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pling instances to ensure quality. Perturbations1137

were then generated and applied to these instances1138

following standardized procedures to maintain con-1139

sistency across the benchmark.1140

To ensure the quality and reliability of the per-1141

turbed data, a human study was conducted involv-1142

ing ten experts with at least an undergraduate de-1143

gree. These experts reviewed the generated per-1144

turbations to verify that they maintained human1145

readability while introducing the intended adver-1146

sarial variations. If a perturbation was deemed1147

unreadable or significantly altered the context, the1148

experts would rewrite it to align with the specific1149

perturbation type.1150

Finally, any identified errors or inconsistencies1151

were corrected based on expert feedback, and a1152

consensus approach was used to ensure that at least1153

60% of experts approved each perturbed instance.1154

Pre-Processing, Cleaning, and Labeling.1155

13. What pre-processing, cleaning, and/or labeling1156

was done on this benchmark?1157

Original datasets underwent human reviews for1158

quality checks. Nine types of textual perturba-1159

tions were systematically applied to each dataset,1160

covering lexical, syntactic, and semantic levels.1161

These perturbations were designed to simulate real-1162

world input variations and test the robustness of the1163

models. In particular, for the arithmetic reasoning1164

datasets GSM8K and AQuA-RAT, no numerical1165

alterations were made to keep the final answers1166

unchanged. Finally, the perturbed samples were1167

reviewed by a panel of ten experts to ensure the1168

perturbations maintained readability and did not1169

introduce significant context alterations. Experts1170

corrected any perturbations that were unreadable1171

or inappropriate.1172

14. Provide a link to the code used to pre-1173

process/clean/label the data, if available.1174

The code for data pre-processing is available on the1175

official GitHub page.1176

15. If there are any recommended data splits (e.g.,1177

training, validation, testing), please explain.1178

RUPBench is designed primarily for the evaluation1179

of LLM robustness and does not include predefined1180

splits for training, validation, or testing. Instead,1181

it provides a comprehensive set of perturbed in-1182

stances intended for testing the performance of1183

already trained models. Users are encouraged to1184

use the entire dataset for evaluation purposes. If1185

specific splits are required for custom analyses or1186

experiments, users can create their own training, 1187

validation, and testing splits as appropriate for their 1188

specific needs. Alternatively, users can use the 1189

training set of the source dataset, if available, and 1190

validate the test samples in RUPBench. 1191

ADDITIONAL DETAILS ON
DISTRIBUTION AND MAINTENANCE

1192

Distribution. 1193

16. Will the benchmark be distributed to third par- 1194

ties outside of the entity (e.g., company, institution, 1195

organization) on behalf of which the dataset was 1196

created? 1197

Yes, the benchmark will be publicly available on 1198

the Internet. 1199

17. How will the benchmark be distributed (e.g., 1200

tarball on website, API, GitHub)? 1201

The benchmark is distributed via the official 1202

GitHub page. 1203

18. When will the benchmark be distributed? 1204

The benchmark will be released in June 2024. 1205

Maintenance. 1206

19. Who will be supporting/hosting/maintaining 1207

the benchmark? 1208

The first author of the RUPBench paper will sup- 1209

port and maintain the benchmark. 1210

20. Will the benchmark be updated (e.g., to cor- 1211

rect labeling errors, add new instances, delete in- 1212

stances)? 1213

Updates to test sets and error corrections will be 1214

shared on the official GitHub page. 1215

21. Will older versions of the benchmark continue 1216

to be supported/hosted/maintained? 1217

Given any updates to the benchmark, older versions 1218

will be retained for consistency. 1219

22. If others want to extend/augment/build 1220

on/contribute to the benchmark, is there a mecha- 1221

nism for them to do so? 1222

Anyone interested in incorporating fixes or exten- 1223

sions should reach out to the original authors of 1224

RUPBench. 1225
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