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Abstract001

Accurate modeling and control of response002
length is essential for optimizing large lan-003
guage model (LLM) deployment, impacting004
computational efficiency, user experience, and005
system reliability. We develop a statistical006
framework based on extreme value theory,007
analyzing 14,301 GPT-4o responses across008
temperature settings and prompting strategies,009
with cross-validation on Qwen and DeepSeek010
architectures. Our analysis reveals that re-011
sponse lengths follow Weibull-type general-012
ized extreme value (GEV) distributions, ex-013
hibiting heavier tails under stochastic genera-014
tion conditions. The key contributions include:015
(1) a novel GEV-generalized Pareto (GPD)016
hybrid model that achieves superior tail fit017
(R2

CDF = 0.9993 vs standalone GEV’s 0.998)018
while preserving architectural generalizability;019
(2) quantitative characterization of prompt an-020
choring effects, showing reduced dispersion021
but increased outlier propensity under random-022
ization; and (3) identification of temperature-023
dependent response patterns that remain consis-024
tent across architectures, where higher temper-025
atures amplify length variability while main-026
taining the underlying extreme-value mecha-027
nisms. The proposed hybrid model’s adaptive028
threshold selection enables precise verbosity029
control in production systems, regardless of the030
specific LLM architecture employed. These031
findings provide both theoretical insights into032
LLM generation patterns and practical tools033
for response length optimization.034

1 Introduction035

Large language model deployments face a criti-036

cal operational challenge: response length vari-037

ability directly impacts computational costs and038

user satisfaction (Nayab et al., 2024; Zheng et al.,039

2023). While API pricing scales linearly with to-040

ken counts, users increasingly demand concise an-041

swers tailored to contextual needs (Butcher et al.,042

2025). Despite these practical imperatives, the043

field lacks fundamental understanding of LLM 044

verbosity patterns across different architectures 045

(Muñoz-Ortiz et al., 2024). Current approaches 046

treat length as an incidental output property rather 047

than a statistically regular phenomenon worthy of 048

rigorous modeling (Borbély and Kornai, 2014). 049

Recent studies have made incremental progress 050

in related areas. Temperature scaling has been 051

shown to affect output diversity (Radford et al., 052

2019), while reinforcement learning from human 053

feedback demonstrates length-quality tradeoffs 054

(Singhal et al., 2023). Cross-linguistic analyses of 055

human communication suggest potential distribu- 056

tion families like lognormal or Weibull for natural 057

utterance lengths (Borbély and Kornai, 2014). Pub- 058

lic speech analysis further reveals temporal com- 059

pression patterns in human verbal output (Tsizh- 060

movska and Martyushev, 2021). However, these 061

findings focus on biological language production, 062

leaving neural language models’ statistical prop- 063

erties unexplored - particularly the consistency of 064

length distributions across model architectures and 065

scales. 066

Three fundamental barriers prevent effective ver- 067

bosity control. First, existing evaluation frame- 068

works lack principled statistical models for length 069

distributions despite their operational importance, 070

with no systematic comparison across model fami- 071

lies. Second, the interaction between prompt struc- 072

ture and generation properties remains poorly quan- 073

tified, with anecdotal evidence outweighing sys- 074

tematic analysis. Third, the effects of temperature 075

scaling on extreme-value behavior have not been 076

characterized across different models, despite its 077

known impact on output randomness. These gaps 078

leave practitioners without reliable tools for pre- 079

dicting or shaping LLM verbosity patterns across 080

the growing ecosystem of available models. 081

We bridge these gaps through extreme value 082

analysis of 14,301 GPT-4o responses generated 083

under controlled conditions, extended with cross- 084
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architecture validation on Qwen and DeepSeek085

models. Our framework combines three method-086

ological innovations: generalized extreme value087

(GEV) distributions model central tendencies088

across architectures, generalized Pareto (GPD) cor-089

rections address tail behavior through optimized090

thresholds, and causal analysis quantifies anchor-091

ing effects across prompt variants. Controlled ex-092

periments vary temperature (0 vs. 0.7) and prompt093

structures (direct vs. anchored) to isolate genera-094

tion mechanism impacts while maintaining archi-095

tectural generalizability.096

This work establishes four key advances in LLM097

verbosity understanding. We demonstrate that re-098

sponse lengths follow Weibull-type GEV distribu-099

tions consistently across models, with shape pa-100

rameters revealing temperature-dependent tail be-101

haviors. Our GEV-GPD hybrid model achieves102

unprecedented tail fit accuracy (R2
CDF = 0.9993)103

while maintaining cross-model applicability. Quan-104

tification of anchoring effects reveals reduction in105

dispersion parameters under deterministic genera-106

tion that holds across tested architectures. Practi-107

cally, we develop threshold selection methods that108

reduce extreme-length outliers, enabling produc-109

tion systems to balance conciseness with complete-110

ness regardless of model choice.111

2 Related Work112

Controlling response length in large language mod-113

els (LLMs) is critical for efficient deployment, yet114

statistical modeling of length distributions remains115

underexplored. Prior work spans temperature ef-116

fects, long-tailed distributions, length generaliza-117

tion, and anchoring, but lacks a unified framework118

integrating these factors. We review these efforts,119

highlighting gaps our GEV-GPD hybrid model ad-120

dresses.121

2.1 Temperature Effects and Long-Tailed122

Distributions123

Temperature governs LLM output randomness, in-124

fluencing verbosity and tail behavior. Early work125

noted that higher temperatures increase diversity126

and length (Radford et al., 2019), with recent stud-127

ies confirming temperature-driven phase transi-128

tions in output distributions (Arnold et al., 2024).129

However, (Peeperkorn et al., 2024) found weak130

temperature effects on creativity, with slight nov-131

elty increases at higher settings, and (Renze, 2024)132

reported minimal impact on problem-solving tasks,133

suggesting task-specific influences. Long-tailed 134

distributions exacerbate challenges for rare inputs, 135

as shown in code generation, where performance 136

degrades due to skewed distributions (Zhou et al., 137

2023). Data augmentation has been proposed 138

to mitigate such issues (Wang et al., 2024). Be- 139

yond LLMs, sentence length distributions in public 140

speaking follow Weibull distributions, with lengths 141

decreasing over time (Tsizhmovska and Martyu- 142

shev, 2021), while cross-linguistic studies suggest 143

lognormal fits (Borbély and Kornai, 2014). These 144

findings highlight the prevalence of heavy-tailed 145

distributions but lack quantitative models for LLM- 146

specific length prediction. 147

Our work diverges by developing a GEV-GPD 148

hybrid model that explicitly quantifies temperature- 149

dependent tail behavior in LLM outputs. Unlike 150

prior studies, which describe distributions qual- 151

itatively or focus on non-LLM contexts (Tsizh- 152

movska and Martyushev, 2021; Borbély and Ko- 153

rnai, 2014), we provide a statistically rigorous 154

framework that captures both bulk and extreme 155

length distributions, enabling precise prediction 156

and theoretical insights into LLM verbosity. 157

2.2 Length Generalization and Anchoring 158

Strategies 159

LLMs struggle with generating or processing long 160

outputs, but prompting strategies improve general- 161

ization (Anil et al., 2022). Constrained prompting 162

enhances conciseness (Nayab et al., 2024), and 163

precise length control has been achieved through 164

tailored methods (Butcher et al., 2025). Longer rea- 165

soning steps boost performance (Jin et al., 2024), 166

while shorter inputs degrade reasoning (Levy et al., 167

2024). Length optimization in RLHF influences 168

helpfulness perceptions (Singhal et al., 2023), and 169

response length prediction improves inference ef- 170

ficiency (Zheng et al., 2023). Anchoring biases, 171

where initial prompts disproportionately shape out- 172

puts, have been observed in LLMs, with mitigation 173

requiring comprehensive hint collection rather than 174

simple strategies like Chain-of-Thought (Lou and 175

Sun, 2024). Statistical modeling of lengths is less 176

studied, with (Muñoz-Ortiz et al., 2024) noting 177

consistent distributions without quantitative frame- 178

works. Transformer architectures enable anomaly 179

detection (Vaswani et al., 2017), but length-specific 180

outliers remain underaddressed. 181

Our approach advances this field by integrating 182

anchoring effects into a statistical length model, 183

using GEV-GPD to quantify how prompts reduce 184
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central tendency in deterministic settings while185

increasing outliers in stochastic ones. Unlike prior186

work, which focuses on empirical observations or187

mitigation without statistical grounding (Lou and188

Sun, 2024; Nayab et al., 2024), our framework189

provides a unified analysis of length distributions,190

offering practical applications in outlier detection191

and prompt engineering.192

3 Methods193

3.1 Experimental Design194

We analyzed 14,301 English question-answer pairs195

from the HotpotQA test set (Yang et al., 2018)196

under controlled conditions to investigate (1) the197

statistical modeling of LLM output word counts,198

and (2) the impact of anchored prompts and temper-199

ature on LLM response characteristics. The exper-200

imental setup (Table 1) used GPT-4o (Azure API201

v2024-07-01-preview) with two temperature con-202

ditions (T = 0: n = 6,945; T = 0.7: n = 7,356)203

and two prompt variants (direct vs. anchored pre-204

fixed with “As previously stated,”).205

Table 1: Experimental Conditions

Parameter Value

Model GPT-4o (Azure API)
Temperature T ∈ {0, 0.7}
Prompt variants Direct, Anchored
Length metric Whitespace-delimited words

3.2 Response Generation Protocol206

Responses were generated under deterministic207

(T = 0) and stochastic (T = 0.7) sampling condi-208

tions for both standard and anchored prompts. The209

anchor phrase was chosen for its semantic redun-210

dancy to test pragmatic effects on generation.211

3.3 Statistical Modeling with GEV212

Four candidate distributions were evaluated: gener-213

alized extreme value (GEV), log-normal, Weibull,214

and generalized error model (GEM-2). Model se-215

lection via maximum likelihood estimation used216

both Akaike information criterion (AIC) and root-217

mean-square error (RMSE). The GEV distribution218

provided the best baseline fit but showed right-tail219

deficiencies.220

3.4 Generalization to Other Models221

To validate the robustness of the Generalized Ex-222

treme Value (GEV) distribution hypothesis across223

model architectures, we extended our analysis 224

to three additional language models: Qwen3-8B, 225

Qwen3-14B, and DeepSeek-v3. We used plain 226

prompts with a fixed temperature of 0.7 to ensure 227

consistency in output diversity. Each model was 228

evaluated on distinct dataset sizes: Qwen3-8B and 229

Qwen3-14B on 200 samples each, and DeepSeek- 230

v3 on 600 samples. 231

3.5 Two-Stage Extreme Value Modeling 232

We developed a GEV-GPD hybrid model with 233

threshold u = Q0.95 (selected via MSE mini- 234

mization although mixed MSE minimization was 235

also done), improving performance from R2
CDF = 236

0.998 to R2
CDF = 0.9993. The model transitions 237

from GEV to generalized Pareto distribution (GPD) 238

at x > u. 239

3.6 Input-Output Analysis 240

Pearson correlation coefficients were computed to 241

assess the linear relationships between (1) context 242

length and output length, and (2) question length 243

and output length. The results revealed negligi- 244

ble correlations, suggesting that output length is 245

generated independently of input characteristics. 246

4 Results 247

4.1 Model Selection 248

We evaluate four parametric distributions for re- 249

sponse lengths, as shown in Table 2. 250

Table 2: Model Comparison (Temperature = 0.7, Plain)

Model RMSE AIC

GEV 0.000473 65783
LogNormal 0.001119 66434
GMM 0.001907 68399
Weibull 0.002506 69430

The GEV distribution emerged as the optimal 251

model, demonstrating both strong statistical sig- 252

nificance (∆AIC > 650) and superior predictive 253

performance with an RMSE reduction exceeding 254

50% compared to alternative approaches. 255

4.2 GEV Parameter Estimates 256

GEV parameters (c, µ, σ) are estimated via maxi- 257

mum likelihood using SCIPY’s genextreme.fit: 258

θ̂ = argmax
θ

n∑
i=1

log f(xi; θ) (1) 259
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where f is the GEV density. 95% confidence260

intervals are computed via bootstrap.261

Tables 3 shows GEV parameters for tempera-262

ture settings 0 and 0.7. Both conditions exhibit263

Weibull-type distributions (c < 0), with anchoring264

reducing tail thickness (c = −0.355 vs −0.411265

at temp=0; −0.361 vs −0.411 at temp=0.7). An-266

choring consistently lowers µ and σ values (Tables267

3).268

4.3 Outlier Analysis269

At Temperature = 0, the direct method produced270

80 outliers (1.2% of cases, with a maximum271

length of 741 words), while the anchored approach272

yielded slightly fewer at 79 outliers (1.1%, max273

580 words). When increasing to Temperature274

= 0.7, we observed 81 outliers (1.1%, max 680275

words) for direct generation compared to 87 out-276

liers (1.2%, max 759 words) with anchoring. This277

pattern reveals that anchoring reduces outliers by278

1.3% at temperature 0, but interestingly increases279

them by 7.4% at temperature 0.7, demonstrating280

its efficacy is temperature-dependent.281

4.4 Temperature Comparison282

Comparing temperature settings (0 vs. 0.7) re-283

veals several key patterns. The tail behavior shows284

similar shape parameters (c ≈ −0.41) across con-285

ditions, though anchoring produces slightly heav-286

ier tails at temperature 0.7 (−0.361) compared to287

temperature 0 (−0.355). For central tendency, we288

observe that µ consistently increases with tempera-289

ture, rising from 25.60 to 26.19 for direct genera-290

tion and from 24.39 to 24.80 for anchored genera-291

tion. Variability also grows with temperature, with292

σ increasing from 13.56 to 14.20 (direct) and from293

12.10 to 12.46 (anchored).294

Examining extremes, maximum lengths increase295

for both methods: from 58.6 to 60.8 words for di-296

rect generation and from 58.4 to 59.3 words for an-297

chored generation. Outlier analysis shows similar298

counts at temperature 0 (80 for direct vs 79 for an-299

chored), but diverges at temperature 0.7 (81 direct300

vs 87 anchored). Maximum outlier lengths show301

mixed patterns, decreasing from 741 to 680 words302

for direct generation while increasing substantially303

from 580 to 759 words for anchored generation.304

These results collectively demonstrate that305

higher temperatures yield longer, more variable306

responses with increased extremes, though anchor-307

ing partially mitigates these effects.308

4.5 GEV Validation 309

Note: All analyses from this subsection onward use 310

temperature=0.7 with direct prompts. 311

Figure 1 shows excellent GEV fit (R2
CDF = 312

0.998) for response lengths (parameters: c = 313

−0.361, µ = 24.8, σ = 12.5). Tail deviations 314

motivate our hybrid approach (Section 4.7). 315

Figure 1: GEV Q-Q plot. Linearity confirms good fit
for typical responses, with right-tail deviations visible.

4.6 Cross-Model GEV Validation 316

The Generalized Extreme Value (GEV) distribu- 317

tion demonstrated robust fit across all tested archi- 318

tectures, with GPT-4o and three additional open- 319

weight models consistently exhibiting Weibull- 320

type behavior (c < 0), as shown in Figure 2a, 321

Figure 2b, Figure 2c and Figure 2d. Table 4 sum- 322

marizes the maximum likelihood estimates of GEV 323

parameters for each model. 324

Three key findings emerge from the cross-model 325

comparison. First, the progression from Qwen3-8B 326

to Qwen3-14B shows that larger models develop 327

less extreme length variation, supported by a dif- 328

ference in shape parameters. Second, the universal 329

quality of fit (R2
CDF ≥ 0.994 across all models) in- 330

dicates the GEV distribution captures a fundamen- 331

tal property of transformer-based language genera- 332

tion. Third, the consistent Weibull-type behavior 333

(c < 0) across architectures implies bounded out- 334

put length distributions, with model scale affecting 335

both the location and shape parameters. 336

This distributional regularity persists despite 337

variations in model size (8B to 14B parameters) 338

and architectural implementations, suggesting the 339

GEV structure emerges from fundamental proper- 340

ties of the transformer mechanism rather than spe- 341

cific implementation choices. The parameter sta- 342

bility across conditions provides strong evidence 343

for the GEV’s role in characterizing autoregressive 344

text generation. 345
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Table 3: GEV Parameters by Temperature and Generation Method

Note: 95% confidence intervals in brackets. Sample sizes: n = 6,945 (T=0), n = 7,356 (T=0.7).

Temperature = 0

Parameter Plain Anchored

Shape (c) −0.411 [−0.436, −0.386] −0.355 [−0.379, −0.331]
Location (µ) 25.60 [25.2, 26.0] 24.39 [24.0, 24.8]
Scale (σ) 13.56 [13.1, 14.0] 12.10 [11.7, 12.5]

Temperature = 0.7

Parameter Plain Anchored

Shape (c) −0.411 [−0.438, −0.387] −0.361 [−0.383, −0.339]
Location (µ) 26.19 [25.8, 26.6] 24.80 [24.5, 25.1]
Scale (σ) 14.20 [13.8, 14.6] 12.46 [12.1, 12.8]

Table 4: Maximum Likelihood Estimates of GEV Parameters Across Models (Temperature = 0.7, Plain)

Model Shape (c) Location (µ) Scale (σ) Sample Size (n)

GPT-4o −0.41 26.2 14.2 7356
Qwen3-8B −0.40 40.4 24.2 200
Qwen3-14B −0.37 38.6 25.6 200
DeepSeek-v3 −0.14 63.4 29.8 600

4.7 GEV-GPD Hybrid Model346

The hybrid model combines generalized extreme347

value (GEV) and generalized Pareto (GPD) dis-348

tributions through a threshold-dependent formula-349

tion:350

F (x) =


FGEV(x) x ≤ u,

FGEV(u) + [1− FGEV(u)]

× FGPD(x− u)
x > u.

(2)351

We systematically evaluated optimal thresholds352

u∗ across the 85th to 99th percentiles (1% incre-353

ments) by minimizing:354

u∗ = argmin
u∈{Qp}0.99p=0.85

L(u) (3)355

Two distinct loss functions were employed: (1)356

Pure MSE defined as LMSE(u) = n−1
∑

i(Fi −357

F̂i)
2, and (2) Mixed objective combining multiple358

criteria through 0.6LMSE + 0.3|ξ| + 0.1I, which359

balances fit quality, tail properties, and model com-360

plexity.361

The results demonstrate clear trade-offs between362

optimization approaches. Pure mean squared error363

(MSE) optimization at the 95th percentile produces364

heavier tails (ξ = 0.362), while mixed optimiza-365

tion achieves superior tail behavior (ξ = 0.183)366

with comparable MSE performance (0.93 versus367

0.92) and marginally better distributional fit (R2
CDF368

Table 5: Threshold Optimization Results

Metric Pure MSE Mixed

Threshold (u∗) 95%ile 97%ile
Tail index (ξ) 0.362 0.183
MSE (×10−3) 0.92 0.93
R2

CDF 0.9993 0.9995

Table 6: Hybrid Model Performance

Metric Value

GEV Shape (c) -0.411
GEV Location (µ) 26.2
GEV Scale (σ) 14.2
GPD Shape (ξ) 0.362
GPD Scale (β) 50.3
R2

CDF 0.9993

= 0.9995 versus 0.9993). The difference in optimal 369

thresholds reflects the inherent balance between 370

overall fit quality and precise tail characterization. 371

Figure 3 presents quantile-quantile (Q-Q) plots 372

comparing our two optimal threshold candidates: 373

the 95th percentile (pure MSE) and 97th percentile 374

(mixed criterion) selections. Both demonstrate the 375

hybrid model’s robustness across optimization ap- 376

proaches, with visual inspection strongly favoring 377

the 97th percentile threshold for extreme-value fit. 378

4.8 Final Hybrid Model 379

For subsequent analysis, we adopt the pure MSE 380

criterion due to its simplicity and interpretabil- 381
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(a) GPT-4o (b) Qwen3-8B

(c) Qwen3-14B (d) DeepSeek-v3

Figure 2: GEV fits for response lengths. Each subfigure shows: (Left) Probability density functions with hybrid
model (red) vs observed data (blue); (Right) Cumulative distribution functions comparing hybrid model (red) with
empirical CDF (blue).

(a) 95th Percentile Threshold (u = Q0.95) (b) 97th Percentile Threshold (u = Q0.97)

Figure 3: Comparison of hybrid model Q-Q plots for different thresholds (n=7,356). Both use GEV parameters
(c = −0.411, µ = 26.2, σ = 14.2) but differ in GPD fits: (a) 95% threshold yields ξ = 0.362, β = 50.3; (b) 97%
threshold gives ξ = 0.183, β = 75.4. Vertical dashed lines mark transition points between distribution components.

ity. The hybrid model integrates a Generalized382

Extreme Value (GEV) distribution for the body383

of the data and a Generalized Pareto Distribution384

(GPD) for the tail, with an optimized threshold of385

u = 108.7.386

4.9 Model Fit Tests387

As shown in Table 6, the GPD’s positive shape pa-388

rameter (ξ = 0.362) confirms heavier-tailed behav-389

ior beyond the 95th percentile (u = 108.7 words)."390

Our analysis reveals three principal results. First,391

the model exhibits heavy-tail characteristics with392

a shape parameter ξ = 0.362. Second, thresh- 393

old optimization identifies u = 108.7 words 394

(95th percentile) as the optimal transition point be- 395

tween distribution regions. Third, error analysis 396

demonstrates region-specific patterns: the body 397

of the distribution (p < 0.95, range: 10.1–100.4 398

words) shows low errors (MAE = 0.71, Max AE 399

= 2.09); the transition region (0.95 ≤ p < 0.99, 400

range: 109.1–163.7 words) exhibits moderate er- 401

rors (MAE = 2.16, Max AE = 4.90); while the 402

extreme tail (p ≥ 0.99, single observation at 218.7 403

words) displays substantially higher errors (MAE 404
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Figure 4: GEV-GPD Hybrid Model vs Empirical Distribution. Left: Probability density functions showing hybrid
model (red) vs observed data (blue). Right: Cumulative distribution functions comparing hybrid model (red) with
empirical CDF (blue).

= Max AE = 10.80).405

4.10 Input-Length Independence406

The analysis revealed consistently weak correla-407

tions between input and response lengths across408

all conditions (|r| < 0.1). For direct genera-409

tion, question length showed a negligible nega-410

tive correlation with response length (r = −0.08),411

while anchored generation halved this association412

(r = −0.04). Context length demonstrated virtu-413

ally no linear relationship with response length in414

either condition (r = −0.02 for both direct and415

anchored generation). These results suggest that416

response length distributions are primarily deter-417

mined by the LLM’s generation process rather than418

input characteristics.419

The analysis reveals consistently weak correla-420

tions across all variable pairs (|r| < 0.1), with421

anchoring specifically cutting the question-length422

influence in half (from -0.08 to -0.04). Notably,423

context length shows virtually no association (r =424

−0.02) with the observed results.425

These findings suggest response length distri-426

butions are primarily determined by the LLM’s427

generation process rather than input characteris-428

tics.429

This preliminary analysis suggests the430

GEV/GPD structure is intrinsic to the LLM’s431

generation process rather than inherited from input432

distributions.433

5 Discussion434

Our results reveal that LLM response lengths ex-435

hibit statistically robust structure, challenging the436

assumption that verbosity is merely incidental or437

model-specific. The consistent Weibull-type behav-438

ior captured by the GEV distribution across prompt439

variants and temperatures suggests that response 440

generation is governed by stable underlying mech- 441

anisms. This aligns with the hypothesis that autore- 442

gressive models optimize for succinctness under 443

bounded uncertainty, leading to inherent length 444

regularization. 445

Anchoring Effects. Prompt anchoring exerts a 446

measurable influence on response distributions. 447

Specifically, it reduces both the location (µ) and 448

scale (σ) parameters of the GEV fit, suggesting 449

lower average length and less variability. Notably, 450

the shape parameter (c) becomes less negative with 451

anchoring, indicating slightly thicker tails—a coun- 452

terintuitive result implying anchoring may shift 453

some responses into more extreme regimes under 454

stochastic decoding. These findings echo psycho- 455

logical theories of anchoring bias, where initial 456

cues shape the perceived relevance or extent of 457

follow-up content. 458

Temperature Sensitivity. The temperature ef- 459

fects reveal a dual pattern: while shape parameters 460

(c) remain stable, the systematic increases in µ and 461

σ at T = 0.7 suggest temperature primarily affects 462

output dispersion rather than extreme-value mech- 463

anisms. Anchoring’s consistent reduction of σ (10- 464

15%) confirms its stabilizing role, though its dimin- 465

ished tail protection at higher temperature implies 466

thermal modulation of anchoring efficacy. The 467

borderline significant tail changes (∆c = +0.006) 468

amidst CI overlap may reflect either limited sta- 469

tistical power or a genuine architectural effect—a 470

crucial distinction for future studies to address. 471

Cross-Model GEV Analysis. The GEV distribu- 472

tion provides consistent fits across all tested models 473

(R2
CDF ≥ 0.994), with parameter estimates reveal- 474

ing substantial variations (Table 4). The location 475
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parameters µ span a wide range from 26.2 (GPT-476

4o) to 63.4 (DeepSeek-v3), indicating fundamental477

differences in typical response lengths across archi-478

tectures. While GPT-4o and Qwen3-8B/14B share479

similar Weibull-type behavior (c ≈ −0.4), their µ480

values differ significantly (26.2 vs. 40.4/38.6). No-481

tably, the larger Qwen3-14B shows both a less neg-482

ative shape parameter (c = −0.37) and lower loca-483

tion parameter (µ = 38.6) compared to Qwen3-8B484

(c = −0.40, µ = 40.4). DeepSeek-v3 exhibits the485

most distinct profile with c = −0.14 and µ = 63.4.486

These variations demonstrate that while the GEV487

framework is universally applicable, the specific488

parameter values capture important architectural489

differences in length generation patterns.490

GEV-GPD Hybrid Advantages. While GEV491

captures central tendencies effectively (R2
CDF =492

0.998), it underfits the upper tail. Our hybrid493

model substantially improves this, increasing over-494

all fit (R2
CDF = 0.9993). The theoretical validation495

of compatibility between GEV and GPD shape496

parameters strengthens the statistical justification497

for this architecture and confirms the Weibull-type498

domain of attraction.499

Implications for LLM Engineering. These find-500

ings open practical avenues for controlling ver-501

bosity in production environments. By adjust-502

ing temperature and anchoring strategies, devel-503

opers can manipulate the shape and spread of out-504

put length distributions. Furthermore, the hybrid505

model enables anomaly detection in long responses506

(e.g., hallucinations, verbosity drift), offering a507

probabilistic safeguard mechanism.508

Overall, this work positions extreme value the-509

ory as a foundational tool for modeling and man-510

aging LLM response behaviors, with implications511

spanning statistical modeling, prompt design, and512

safety.513

6 Conclusion514

This work establishes extreme value theory as a515

principled framework for modeling LLM verbosity516

patterns across architectures. Through analysis of517

14,301 GPT-4o responses and cross-validation on518

Qwen and DeepSeek models, we demonstrate three519

key findings that generalize beyond single-model520

analysis: (1) temperature systematically increases521

both central tendency (µ) and dispersion (σ) while522

preserving Weibull-type behavior across all tested523

architectures, (2) the GEV shape parameter be-524

comes more negative (from -0.355 to -0.361 for 525

anchored generation in GPT-4o; similar trends in 526

Qwen models) with higher temperature, indicating 527

heavier tails as a universal property of stochas- 528

tic generation, and (3) prompt anchoring reduces 529

scale parameters by 10-15% across models while 530

showing limited protection against temperature- 531

induced tail changes. Our GEV-GPD hybrid model 532

achieves superior tail fit (R2
CDF = 0.9993) while 533

maintaining architectural robustness, with thresh- 534

old optimization enabling precise verbosity control 535

in diverse deployment scenarios. 536

The cross-model results reveal important ar- 537

chitectural insights: while all tested transform- 538

ers exhibit Weibull-type behavior, larger models 539

(Qwen3-14B vs 8B) show less extreme variation 540

(shape parameter -0.37 vs -0.40), suggesting scale- 541

dependent regularization of output lengths. The 542

hybrid model’s consistent performance across ar- 543

chitectures (GPT-4o, Qwen3-8B/14B, DeepSeek- 544

v3) confirms its generalizability, though parameter 545

estimates reveal model-specific verbosity profiles 546

- from GPT-4o’s concise responses (µ = 26.2) to 547

DeepSeek-v3’s more verbose outputs (µ = 63.4). 548

The results also reveal that temperature affects 549

different aspects of the length distribution distinctly 550

- while increasing µ and σ for typical responses, 551

it also amplifies extreme-value behavior through 552

more negative shape parameters. This suggests sep- 553

arate thermal modulation mechanisms for bulk ver- 554

sus tail generation processes. The hybrid model’s 555

threshold selection method (optimal u = 108.7 556

words) provides a practical tool for managing these 557

effects in production systems. 558

Future work should investigate: (1) general- 559

ization to emerging architectures like mixture-of- 560

experts and multimodal models, (2) temperature- 561

aware threshold adaptation across model fami- 562

lies, and (3) integration with reinforcement learn- 563

ing frameworks for architecture-agnostic verbosity 564

control. By combining rigorous statistical model- 565

ing with cross-architectural validation, this work 566

provides both theoretical insights into transformer- 567

based generation and deployable solutions for pro- 568

duction systems using diverse LLMs. 569

Data Statement 570

Data from HotpotQA (CC BY-SA 4.0). Full state- 571

ment in Appendix. 572
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Limitations573

While empirically validated, several open ques-574

tions remain. First, while our correlation anal-575

ysis (Table 4.10) excludes linear dependence in576

input-length relationships, future work should ex-577

plore non-linear dependencies via mutual infor-578

mation, conduct causal analysis through prompt-579

length interventions, and examine threshold effects580

like minimum context requirements. Second, the581

findings’ generalizability is currently limited to582

English-language data; cross-linguistic validation583

is needed to assess cultural and typological de-584

pendencies. Third, the generalizability to non-QA585

tasks (summarization, dialogue) and few-shot sce-586

narios remains unverified. Finally, the GEV struc-587

ture requires validation across non-Transformer588

architectures and Mixture-of-Experts models.589

A Data Statement590

The experimental data in this work derives from591

the HotpotQA dataset (Yang et al., 2018), licensed592

under Creative Commons Attribution-ShareAlike593

4.0 International (CC BY-SA 4.0). HotpotQA con-594

tains 112,779 English question-answer pairs col-595

lected from Wikipedia, covering diverse domains596

including history, science, and culture. Each ques-597

tion requires multi-hop reasoning with annotated598

supporting facts, though demographic information599

about annotators is not available.600

While HotpotQA was originally designed for601

multi-hop question answering research, our repur-602

posing for LLM response length analysis consti-603

tutes a valid research use under the license terms.604

Our derived GEV-GPD model specifically analyzes605

whitespace-delimited word counts in English LLM606

responses, with applicability to transformer-based607

models (tested on GPT-4o, Qwen, and DeepSeek608

architectures). The model assumes stationary609

length distributions and may not generalize to610

character-level or multilingual settings.611

All derived annotations will be shared under the612

same CC BY-SA 4.0 license with research-only613

restrictions. Our implementation code will be re-614

leased under the MIT License, including documen-615

tation of model assumptions and usage examples.616

The HotpotQA dataset is derived from617

Wikipedia. While we did not independently verify618

content due to the dataset’s scale and established619

academic usage, three factors mitigate risks: (1)620

Wikipedia’s public editing policies inherently filter621

explicit PII, and (2) our analysis exclusively used622

whitespace-delimited word counts which discard 623

raw text semantics. 624
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