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Abstract

Although transfer learning is considered to be a milestone in deep reinforcement1

learning, the mechanisms behind it are still poorly understood. In particular,2

predicting if knowledge can be transferred between two given tasks is still an3

unresolved problem. In this work, we explore the use of network distillation as a4

feature extraction method to better understand the context in which transfer can5

occur. Notably, we show that distillation does not prevent knowledge transfer,6

including when transferring from multiple tasks to a new one, and we compare7

these results with transfer without prior distillation. We focus our work on the8

Atari benchmark due to the variability between different games, but also to their9

similarities in terms of visual features.10

1 Introduction11

In spite of the rapid progress made in Deep Reinforcement Learning in the last decade, and although12

state-of-the-art algorithms are more and more efficient, many fundamental issues still have not been13

solved and remain major limitations in current approaches. In particular, existing algorithms train14

networks from scratch on each new task, which is very computationally costly. This issue motivated15

the development of transfer learning [Pratt et al., 1991, Taylor and Stone, 2009], the study of how to16

transfer and reuse knowledge from a neural network to another in order to accelerate learning and17

benefit from previously acquired abilities. Various methods for transfer have been proposed over the18

years, from simple ones such as fine-tuning, to more complex ones such as using distillation in a19

multi-task setting [Rusu et al., 2016a].20

Although primarily developed for network compression [Bucilua et al., 2006], distillation is a21

technique that aims at copying the behavior of a teacher neural network into a student one by22

ensuring the two represent the same function. It has been successfully used to compress multiple23

teachers in a single student, thus achieving multi-task learning [Hinton et al., 2015]. We argue24

that distillation in a multi-task context, which we refer to as network consolidation, is useful for25

knowledge transfer and can help understand the underlying mechanisms behind transfer. More26

specifically, we compare different methods to achieve consolidation on multiple tasks in an efficient27

manner and discuss the importance of key details in the algorithmic design. We then study the effect28

of the final performance of the consolidated network and show that transfer can occur even when29

the consolidation process does not reach convergence. Finally, we argue that consolidation does not30

prevent transfer in general and therefore can be used to parallelize transfer mechanisms.31

In order to study these claims, we propose a set of experiments based on the use of the AMN algorithm32

[Parisotto et al., 2016] to alternate between training and consolidation phases. Our approach is33

motivated by current neurobiological theories about how knowledge transfer and lifelong learning34

work in the mammalian brain, such as the Complementary Learning Systems theory [McClelland35

et al., 1995, CLS]. CLS states that memorization is based on two distinct parts of the brain: the36
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hippocampus, responsible for short-term adaptation and rapid learning, and the neocortex, which37

assimilates this knowledge slowly and retains it on a long-term basis. We try to emulate this by38

dividing learning into two phases.39

We present an overview of the state-of-the-art regarding transfer learning in Section 2 before de-40

scribing our experimental setup in Section 3. Then Section 4 discusses the effect of using the AMN41

algorithm for consolidation on networks’ performance while Section 5 focuses on knowledge transfer.42

Finally, we try to better understand the different mechanisms behind transfer in Section 6.43

2 Background and Related Work44

To achieve transfer learning, one of the most explored method has been the use of distillation, as45

proposed by Rusu et al. [2016a] and since extended multiple times. For instance, Parisotto et al. [2016]46

and Jung et al. [2016] add an incentive to also copy the features in order to guide the training process,47

while Teh et al. [2017] build a central network encoding common behaviors to share knowledge48

between tasks.49

One major challenge in RL today is lifelong learning, i.e. how to solve different tasks sequentially50

while avoiding catastrophic forgetting. Different approaches exist to tackle this problem that Parisi51

et al. [2019] propose to divide in to three categories. One possibility is to periodically modify the52

network architecture when facing new tasks in order to enhance its representative power [Yoon et al.,53

2018, Rusu et al., 2016b, Fernando et al., 2017]. Another approach is to use regularization to preserve54

previously acquired knowledge [Li and Hoiem, 2018, Kirkpatrick et al., 2017, Zenke et al., 2017].55

Finally, the lifelong problem can be reduced to a multi-task learning setup by using a rehearsal56

strategy, memorizing every task encountered [Lopez-Paz and Ranzato, 2017, Rebuffi et al., 2017,57

Kaiser et al., 2020, Ha and Schmidhuber, 2018, Shin et al., 2017]. These three main categories are58

not mutually exclusive, and many of these algorithms make use of different techniques that belong to59

two categories.60

The idea of alternating between an active phase of learning and a passive phase of imitation as inspired61

by the CLS has also been explored before. In particular, Berseth et al. [2018] introduce the PLAID62

algorithm that progressively grows a central network using distillation on newly encountered tasks.63

Similarly, Schwarz et al. [2018] successively compress different expert networks in a knowledge base64

that is then reused by new experts via lateral layer-wise connections as introduced by Rusu et al.65

[2016b].66

Instead of learning to solve multiple tasks, another possibility is to learn how to be efficient at learning:67

this is the meta-learning approach. One intuitive way to achieve that is by using a meta-algorithm to68

output a set of neural network weights which are then used as initialization for solving new tasks69

[Finn et al., 2017, Nichol et al., 2018]. On the other hand, Beaulieu et al. [2020] propose the use of a70

second network whose role is to deactivate part of a classical neural network. By analogy with the71

human brain, this network is called the neuromodulatory network as it is responsible for activating or72

deactivating part of the main network depending on the current task to solve. Finally, He et al. [2020]73

propose a framework for meta-algorithms which divides them into a “What” part whose objective is74

to identify the current running task from context data, and a “How” part responsible for producing a75

set of parameters for a neural network that will be able to solve this task.76

3 Actor-Mimic Networks for consolidation in Lifelong Learning77

In order to study the consolidation process and its interaction with knowledge transfer, we explore78

the use of the Actor-Mimic (Network) algorithm [Parisotto et al., 2016, AMN] that acts as a policy79

distillation algorithm with an additional incentive to imitate the teacher’s features. In classical policy80

distillation, as proposed by Rusu et al. [2016a], the distilled network — also called student network81

— learns to reproduce the output of multiple expert networks (policy regression objective) using82

supervised learning. In addition, the AMN algorithm adds another feature regression objective that83

regularizes the features of the student network (defined as the outputs of the second-to-last layer)84

towards the features of the experts. Intuitively, the policy regression objective teaches the student85

how it should act while this feature regression objective teaches the result of the expert’s “thinking86

process” that indicates why it should act that way.87
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The AMN algorithm makes it possible to consolidate several expert networks at the same time while88

extracting features containing the same information as the experts’. As the target tasks can be quite89

different especially on a low-level point of view (e.g. color palette), these extracted features should90

be quite high-level and thus hopefully generalizable. We use this property to propose a new training91

protocol composed of two main phases that emulate the day-night cycles: an active learning phase in92

which neural networks — that we call “expert networks” — are trained individually on a set of tasks,93

and a passive learning phase in which the knowledge acquired by all these experts is consolidated into94

a central common Actor-Mimic Network responsible for maintaining knowledge in the long term.95

During the active phase, each expert network is trained on its corresponding task using a classical96

Reinforcement Learning algorithm; in our case we used Rainbow [Hessel et al., 2018]. These phases97

are interrupted early on before performance reaches state-of-the-art levels, as the objective is to extract98

general features that will encourage the next experts to avoid focusing on task-specific pixel-level99

characteristics. The passive phase consists in consolidating an AMN from these experts. Training100

using distillation is more sample efficient than usual RL methods [Rusu et al., 2016a], therefore101

the AMN only needs a fraction of the number of time steps of the active phase to exhibit the same102

performance as the experts. The next active phase is then started by initializing the new expert with103

the AMN weights, a process we describe further and discuss in Section 4.2, before repeating this104

procedure several times.105

We evaluate this protocol on the Atari benchmark [Bellemare et al., 2013, Machado et al., 2018], and106

more precisely on the games Breakout, Carnival, Pong, SpaceInvaders and VideoPinball, selected107

for their diversity and their balanced difficulty. Although the choice of these specific games may108

limit our analysis, we find this benchmark interesting in that some of these games can appear to109

human players as similar (e.g. hit a ball moving in straight lines with a paddle) but are different110

from a visual perspective. We follow the choices of Castro et al. [2018] to report the performance of111

the experts during training by averaging the return on every completed episode during iterations of112

50000 time steps. We describe the AMN performance in terms of percentage of the teachers’ final113

performance. For visibility reasons, on each experiment we only report the results on three games as114

it usually encompass every interesting behavior we discuss, but all the remaining graphs can be found115

in Appendix B. All experimental details can be found in Appendix A.116

4 Improving performance via consolidation117

Even with the AMN algorithm to perform the consolidation phase, many questions still remain about118

how to perform the whole training process. In particular, we discuss here different possible methods119

to carry out the passive phase (Section 4.1) and knowledge transfer between a passive and an active120

phase (Section 4.2).121

4.1 On the passive consolidation phase122

Although the AMN algorithm makes it possible to consolidate several expert networks during the123

same training phase, different methods exist to train a single network to imitate the output of several124

different expert networks simultaneously. An intuitive approach to that problem is simply to minimize125

a single loss that is the sum of the AMN losses for each expert network. In that setting, one gradient126

descent step will try to minimize each individual loss at the same time, ensuring the simultaneity.127

However, this approach has a drawback: two tasks could theoretically result in opposite gradient128

directions that would cancel one another, preventing the consolidated network to improve on any129

of these tasks. This issue is studied in more details by Yu et al. [2020] who show that this situation130

can occur frequently under the right circumstances. In our case though, this issue did not occur and131

the use of a single composite loss gave satisfying results. Figure 1 compares the performance when132

optimizing a single composite loss and when optimizing the separate losses when switching tasks at133

the end of each episode.134

Instead of training the student network on each task simultaneously, another possibility is to alternate135

between them and optimize the different losses sequentially. This approach solves the issue of losses136

of different orders of magnitude, as we use the Adam optimizer which modifies the gradients to be on137

the same scale as the learning rate; consequently no task can be favoured by the optimization process.138

However, this method also introduces a new critical hyperparameter: the frequency with which to139
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Figure 1: Performance of an AMN network consolidated on 5 experts when minimizing the composite
loss vs each individual loss sequentially and measured in percentage of the experts final score. Each
experiment is repeated 3 times; the shaded area corresponds to one standard deviation around the
mean.
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Figure 2: Performance of the AMN network measured in percentage of the experts’ final score. The
gradient descent process switches between tasks every 1, 100, 5000 steps or every episode.

switch from one task to the next. One possibility is to switch after each episode on any task, although140

one main drawback in that case is that episodes can greatly vary in length between tasks and even141

within tasks (between early phase and late phase of training), thus the learning process can become142

very imbalanced. Figure 2 compares four different values for this hyperparameter: a high frequency143

switch (every time step), a medium frequency (every 100 time steps), a low frequency (every 5000144

steps) and switching every episode.145

The experiments show that switching every time step prevented any learning of the AMN, and the146

resulting policy did not appear to be a good initialization point for the next active phases, suggesting147

that no interesting features were extracted during training. For both medium and low frequency148

switching, the results were quite dependent on the given tasks: for certain games, the network could149

not replicate the experts performance after the passive phase, whereas for others it was quickly able150

to reach the same score. Finally, despite the imbalance of number of steps per episode, it appears151

that switching only at the end of full episodes results in better performance on every task. These152

results show that switching too often between tasks prevents the optimization process convergence,153

suggesting that contrary to when using the composite loss, here the different gradients might cancel154

each other out.155

4.2 Transfer from passive phase to active phase156

Once the passive phase is finished, the AMN has the same performance as the experts of the previous157

active phase. Our objective is now to transfer knowledge from this AMN to new experts on the next158

active phase, and one obvious technique to achieve that is just by using the weights of the AMN as159

an initialization for the experts. In the case where the AMN has a larger number of outputs than an160

expert, we simply mask the supplementary weights and copy only the fitting subpart of the network.161

To study the contribution of the passive phase, we evaluate transfer from an AMN consolidated on 5162

games to an expert that resumes training on one of these 5 games using the AMN as initialization.163

Figure 3 compares the average returns per episode between the expert network trained on the first164

active phase (so initialized randomly) and the one trained on the second active phase (initialized with165
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Figure 3: Average return per episode for an expert initialized randomly (active phase 1) or from an
AMN after a passive phase (active phase 2)

0 10 20 30 40 50 60
Iterations

0

10

20

30

40

50

60

A
ve

ra
ge

re
tu

rn
s

pe
re

pi
so

de

Breakout
Active phase 1
Active phase 2
Active phase 3

(a)

0 10 20 30 40 50 60
Iterations

0

200

400

600

800

SpaceInvaders

(b)

0.00 0.05 0.10 0.15 0.20
Absolute value of the weights

0

500

1000

1500

2000

2500

N
um

be
ro

fw
ei

gh
ts

Weights to φAMN

Weights to φi

(c)

Figure 4: Graphs 4a and 4b show the average return per episode for experts trained during different
active phases. Graph 4c highlights the weight distribution between an expert output layer and its
feature layer (φi) or the AMN feature layer (φAMN ) in the case of an expert trained on Pong.

the AMN weights). This experiment shows that the transfer has a significant jumpstart effect as the166

second expert networks all start above the initial value of a random policy. This is not surprising as167

the AMN is close to the performance of the initial expert at the end of the passive phase, and the168

weight copy preserves the policy so the new expert starts with at least that knowledge. However, the169

long term effect of this initial boost in performance is largely dependent on the task tackled, and170

sometimes it disappears quickly (Breakout) or keeps a certain advantage during the whole training171

(VideoPinball).172

One issue with copying the AMN weights is that if two tasks are very different from one another, the173

features extracted on one task can be detrimental to the other, leading to negative transfer. Instead of174

forcing the feature initialization, a more complex approach is to make the features accessible by the175

expert via a lateral connection from the AMN feature layer to the expert output layer. That way, if176

the previously learned features are useful for tackling new tasks, they are easily accessible for the177

network and can accelerate the training process, but the expert can also develop entirely new features178

specifically crafted for the new task.179

Although this approach seems more flexible than the simple duplicate of the AMN weights, in our180

case it didn’t yield positive results. Figure 4 shows the evolution of the average return per episode for181

experts trained during successive active phases: surprisingly the training is not faster in the expert182

with the lateral connections. This can mean that the features are not interesting — but the AMN is183

also able to play the different games so this hypothesis doesn’t hold — or that the expert network184

is just not using these features. We verify this hypothesis by analysing the value of the weights185

between the output layer and the randomly initialized φi or the AMN features φAMN , and we plot186

the histogram of their absolute values in figure 4c. It shows that every weight linking to the AMN187

features has a very low magnitude, confirming that the expert doesn’t use previous features at all188

compared to the new features developed during the active phase. These results suggest that freezing189

the AMN layers is too constraining for the network to actually reuse this knowledge, and in the end190

adding a lateral connection was not effective at transferring information.191
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Figure 5: Performance of experts initialized from an AMN trained on varying numbers of games
during the passive phase. The baseline curve corresponds to an expert initialized randomly.
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Figure 6: Performance of an expert trained on Breakout and initialized from an AMN trained on
different subsets of games (left), or during a different number of iterations (right)

5 Consolidation for Transfer Learning and Domain Generalization192

In the previous section, we analyzed the effects of consolidation when each active phase trains on the193

same set of games in order to compare training with and without extracted features. Our objective194

was twofold: first, show that the AMN algorithm is able to extract general features useful for several195

tasks at the same time, and secondly prove that starting training with access to these features can help196

improve the optimization process in any way. In this section, we now train each active phase on a197

completely new set of tasks to measure the generalizability and transferability of these features.198

5.1 Consolidation towards new unseen tasks199

The main purpose of extracting general features in the lifelong learning context is to be able to200

reuse them in diverse contexts in order to avoid learning from scratch each time. To evaluate the201

transferability of the knowledge acquired by the AMN during the passive phases, we modified our202

experiments so that the first and second active phases don’t share any game. First of all, we measured203

the effect of varying the number of games to consolidate on during the first passive phase to verify if204

consolidating on more games could lead to more general features. Figure 5 compares the performance205

of the second active phase on different games when initialized by an AMN consolidated on subsets of206

1, 2, 3 or 4 different Atari games. Most games exhibit a very small jumpstart effect in the beginning207

of the training, compared to an agent trained without consolidation, but the number of games tackled208

during the first active phase doesn’t seem to have any impact on the performance of the new experts.209

The only exception is Breakout on which the effect of consolidation scales almost linearly depending210

on the number of games, which would tend to show that first, the expert can benefit from the learned211

features and that second, these features are more useful when they are extracted from multiple games.212

However, the transfer effect appears to be more dependent on the games chosen for the consolidation213

step than on the number of games. In the case of Breakout, only the presence of VideoPinball in the214
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Figure 7: Performance of experts on Assault (left) and Breakout (right) initialized from an AMN
trained on different sets of games during the passive phase. The baseline corresponds to an expert
initialized randomly.

set of basis games have a significant effect on the newly trained experts. Figure 6 (left) compares215

three agents trained on VideoPinball alone, with one or with three additional games, and in each case216

the Breakout expert reaches the same score with very little variation, except a slight jumpstart that217

quickly disappears.218

Once again, this shows that transfer is independent of how similar the games seem to be from a human219

point of view: a common feature between the two games is that in each case, the gameplay revolves220

around hitting a ball at the bottom of the screen, but the means of hitting the ball are very different as221

the player manipulates a pad in Breakout and flippers in VideoPinball. The game physics and the222

color palette (except the black background) are also quite distinct. In all cases, Figure 6 proves that223

something is definitely transferred between these two specific games despite the dissimilarities.224

In all these experiments, the feature extraction process does not seem to require the convergence of225

the AMN. In the previous section, the final performance at the end of the passive phase was directly226

reusable by the new expert so the observed jumpstart effect scaled monotonously in relation to it.227

However, when transferring to new tasks, the policy has very low chances of being transferable as is,228

therefore the AMN final score is not as important as the features it managed to extract. To measure the229

importance of the AMN results, we drastically shorten the passive phases to only 5 iterations instead230

of 15 (Figure 6, right). In that limited amount of time, the AMN is only able to reach 75% of the231

VideoPinball expert performance, while it otherwise reaches around 105%. Still, in this configuration232

this drop in performance was not transmitted to the expert training on Breakout, as can be seen on233

Figure 6 (right). We reproduced this experiment on different pairs of games, and in each case the234

final score of the AMN plays a limited role in the success of knowledge transfer, reinforcing the idea235

that the improvement comes from a feature transfer rather than from a policy transfer.236

5.2 Consolidation does not prevent transfer237

During our research, we noticed a property of the consolidation step that appeared to be verified on238

each experiment: although increasing the number of games used during the passive phase doesn’t239

necessarily lead to better performance, it also doesn’t degrade it. For instance, when transferring240

from VideoPinball to Breakout, training the AMN on several additional games doesn’t have any241

impact on the learning curve. We made the hypothesis that the consolidation process induces the242

same improvement as the game which would have had the strongest impact if transferred alone (i.e.243

with a passive phase trained only on it). This hypothesis could provide an easy method to quickly244

find which games can benefit from transfer from other games by using a binary search.245

Finally, we explored whether there can be interference between games during the consolidation of246

an AMN. Figure 7 shows that SpaceInvaders has a positive impact on Assault and VideoPinball on247

Breakout, however consolidating an AMN on both of the source games does not make it a good248

initialization point for either of the target games. These experiments show that although consolidation249
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Figure 8: Performance of experts initialized by copying the weights of the first n layers of another
expert trained on VideoPinball. The baseline corresponds to an expert initialized randomly.

does not prevent transfer in the majority of the cases, there still exists some situations in which it can250

have a direct negative impact on the experts’ performance.251

6 Transfer without consolidation252

In order to measure the real impact of the consolidation phase, we also evaluated direct transfer253

without consolidation. In this setting, an expert network is trained on a source task and then used as254

an initialization point for a new expert trained on a different target task. To better grasp the underlying255

mechanisms, we studied direct transfer from VideoPinball to other Atari games. As in the previous256

experiments, we dealt with different action sizes by masking or extending the output layer.257

In order to better understand the importance of each individual layer in the transfer process, we258

compared the performance obtained when only certain layers were transferred (Figure 8). All our259

networks use the same architecture of three convolutional layers followed by two fully connected260

layers. Interestingly, the results are quite varied depending on the target task: first of all, on Carnival,261

transferring one, two or three layers is equivalent to not transferring anything, whereas transferring262

the first four or five layers surprisingly deteriorates the very early training. This result indicates that263

the agent is actually hindered by the previous policy, which could hint that transferring knowledge264

between these two games is difficult. On the contrary, transferring any number of convolutional265

layers to Breakout doesn’t have any effect on the performance, while transferring the features (first266

four layers) or the policy (all layers) prevents the agent from plateauing and greatly improves the267

asymptotic performance. One interpretation is that in this situation, the network needs the complete268

extracted features to avoid local minima, but the visual features are not enough alone and the agent269

is not able to retrieve enough information from them. Finally, for SpaceInvaders, only the two first270

convolutional layers impact positively the agent’s performance while the other layers have negative271

effects. This leads us to conjecture that only low-level visual features like edge detection are reusable272

in this case, and knowledge that is too specific only reduces the network plasticity. These experiments273

show that the concept of knowledge transfer can greatly differ depending on the tasks to solve, and274

these differences can explain the variability we observed in our results.275

7 Conclusion276

In this work, instead of an involved theoretical analysis, we propose an empirical phenomenological277

discussion of the practical aspects of neural consolidation for knowledge transfer in neural networks,278

which we believe brings a new light on the matter for the community, as well as open questions279

and perspectives. We found that it is difficult to set up the right conditions to observe a consistently280

positive impact on the performance, especially since the mechanisms behind transfer are still not clear.281

In the end, it would seem that meeting the necessary conditions to transfer and improve training is282

very dependent on the environment chosen and on several hyperparameters. Still, a potential method283

to deepen our understanding of the core mechanisms behind transfer would be to further analyse the284

few cases where the effect is really significant, and consolidation can be an interesting tool in this285

regard as it allows for comparison of different ways of transferring knowledge.286
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Appendices408

A Experimental Details409

We reimplemented the AMN algorithm and the different modifications we made by building on410

the Dopamine framework [Castro et al., 2018]. Notably, we reuse the same network architecture411

comprised of three convolutional layers followed by two fully connected layers. More specifically,412

the architecture we use is 8x8x4x32-4 → 4x4x32x64-2 → 3x3x64x64-1 → 512 fully-connected413

units→ outputs, where we note convolutional layers as WxHxCxN-S, with W and H the width and414

height of the convolution kernel, C the number of channels, N the number of filter maps and S the415

convolution stride. All layers except the action outputs are followed with a rectifier non-linearity.416

We use the same hyperparameters as in the original paper [Parisotto et al., 2016], notably the scaling417

parameters in the feature loss and the masking process to adapt the size of the outputs to every Atari418

games. During the passive phase, we keep a Prioritized Replay Buffer [Schaul et al., 2015] per game419

to train the AMN, which are filled by interacting with the environments following the AMN actions.420

To ensure exploration, we use an ε-greedy policy both for the experts and the AMNs, with ε starting421

from 1 and annealing progressively to 0.1.422

The code can be found on an anonymous github at https://anonymous.4open.science/r/423

ConsolidationForTransferInRL.424
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B Complete results and graphs425

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80
Pe

rc
en

ta
ge

of
ex

pe
rt

pe
rfo

rm
an

ce

Breakout
Alternating losses
Composite loss

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80

100

Carnival

426

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80

100

Pong

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80

SpaceInvaders

427

0 2 4 6 8 10 12 14
Iterations

0

20

40

60

80

100

120

VideoPinball

428

Figure 9: Performance of an AMN network consolidated on 5 experts and measured in percentage of
the experts final score when minimizing the composite loss against when minimizing each individual
loss sequentially. Each experiment is repeated 3 times, the shaded area corresponds to the standard
deviation around the mean.429
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Figure 10: Performance of the AMN network measured in percentage of the experts’ final score. The
gradient descent process switches between tasks every 1, 100, 5000 steps or every episode.433
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Figure 11: Average return per episode for an expert initialized randomly (active phase 1) or from an
AMN after a passive phase (active phase 2)437
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Figure 12: Average return per episode for experts trained during different active phases.440
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Figure 13: Performance of experts initialized from an AMN trained on varying numbers of games
during the passive phase. The baseline curve corresponds to an expert initialized randomly.444
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Figure 14: Performance of experts initialized by copying the weights of the first n layers of another
expert trained on VideoPinball. The baseline corresponds to an expert initialized randomly.447
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