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ABSTRACT

Seismic tomography methods are complex, diverse, and incompatible with each
other. Traditional adjoint approaches are case-specific, requiring challenging ana-
lytical derivations for each set of parameters, waves, and loss functions. Approxi-
mating wave equation propagation with neural networks (NNs) remains impracti-
cal, since finite training datasets cannot cover all seismic parameters for the infi-
nite number of possible geologic models. In this paper, we propose a unified seis-
mic tomography framework with automatic differentiation (AD) for gradient com-
putation, avoiding analytical derivations and NN training. Our framework is de-
signed for generalized misfit functionals and wave equations, supporting broader
applications than previous AD-based studies. Our method is fully white-box, and
AD gradients are proven to be equivalent to adjoint gradients theoretically and nu-
merically. To show its generality, we performed ten cross-scenario tests across do-
mains (time/frequency), waves (acoustic/SH/P-SV/visco-acoustic/visco-elastic),
and losses (waveform/travel time/amplitude). We also evaluated our method on
the OpenFWI benchmark dataset to compare with NN methods. Practicality was
further demonstrated by a checkerboard test in the Nankai subduction zone, which
is challenging for NN methods due to the lack of suitable training datasets. Our
method avoids laborious derivation and implementation of adjoint methods, with
only modest computational overhead (1.3—1.8x slower and 1.3-2.0x more mem-
ory without mini-batching or checkpointing in our tests), which can be further
reduced with these standard optimizations. We open-sourced a PyTorch-based
platform with various extensible wave simulations and imaging methods, facil-

itating further developments. @uENVOTKEShOWSIHANAPNSICNNEIEyIANCCIND

1 INTRODUCTION
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Figure 1: A general gradient-based seismic tomography pipeline. The seismic tomography method
and the corresponding gradient are determined by a specific forward and backward combination.

Exploring the subsurface structure is one of humanity’s most fundamental pursuits, as it reveals
Earth’s composition, enables resource exploration, and helps mitigate hazards 2011). Moti-
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vated by these needs, full-waveform seismic tomography has emerged to transform seismic record-

ings into detailed subsurface models (Schuster,2017;Deng et al.} 2022). Ghismpproachuinversie

Although numerous seis-
mic tomography methods exist, each is defined by customizable forward and backward components
in Figure [T}

The gradient, quantitatively revealing the model update direction, is at the core of seismic tomog-
raphy. For computing the gradient, the adjoint method is commonly adopted (Tromp et al., 2005}
Liu & Tromp} 2006; [2020)). The analytical gradient and adjoint equation can be derived via the
variational principle (see Figure |2)) for a given wave equation with selected forward and backward
wave propagation modules.
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Figure 2: Comparison between traditional adjoint-based imaging and our AD-driven framework.
Automatic computational graphs replace manual gradient derivation.

However, despite its efficiency for specialized tomography methods, the adjoint method significantly
limits the scope of applications of seismic tomography. Since a comprehensive regional model re-
quires multiple parameters (e.g., seismic P and S wave velocities, and quality factor (Q), constructing
it requires switching among different forward modeling strategies. Moreover, backward modeling
methods also vary depending on the task and data quality. Because each analytical gradient deriva-
tion from the adjoint method is highly complex and case-specific, frequently changing both forward
and backward simulation modules multiplies the derivation workload and significantly increases the
overall manual burden (see Figure[2). This limitation wastes useful data and further limits the wider

application of seismic tomography (Maurer et al., 2010).

NN-based AD-based (ours)

Data Requirements o Observed data ) Observf:c.i data

Prohibitively large dataset for practical use A rough initial model
Anomaly Recovery Over-smoothed results High-frequency reconstruction
Physical Consistency Soft loss constraint Physics-driven

Not guaranteed Always guaranteed

Interpretability Black-box or grey-box models Completely white-box
Practicality Limited High

Neural networks (NNs) seem promising for unifying seismic tomography since they can directly
transform seismic recordings into subsurface images without explicit gradients. Recently, many
studies have applied various types of NNs to seismic tomography (Zhu et al., 2022; Wu & Lin|

2019; [Zhu et al, 2023} [Zhang & Lin| [2020}, [Jin et al 2021}, [Feng et al., 2021} [Zeng et al., 2021}
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Schuster et al.,[2024} Desai et al., 2021} [Gao et al, 2021}, [Feng et al.,[2024}; [Feng et al.; [Gupta et al.

2024). However, these NNs are trained with specific parameters and structure types (Zhu et al.
2023} Deng et al., 2022), which limits their practical applications. The primary limitation lies in
the dataset and model generalizability. Though high-quality, large-scale benchmark datasets exist
(Deng et al 2022} [Feng et all, 2023} [Li et al [2024)), covering all possible target parameters, wave
equations, and possible subsurface structural configurations remains difficult. Constructing such a
dataset is like assembling the training data for a universal large language model, but it is particularly
challenging for seismic tomography due to the high cost of wave simulations for complex models.

In this work, we propose a unified, practical, and white-box seismic tomography framework based
on automatic differentiation (AD). Instead of using NNs to approximate a universal inverse operator,
we leverage the underlying gradient computation framework for case-by-case tomography to bypass
the dataset limitation. Our framework avoids difficult analytical gradient derivations required by
adjoint methods and enables supervised inversion for each case. Our main contributions are:

* Compared to previous AD-based methods for limited misfits in the time domain, we achieve
comprehensive unification across time/frequency domains, multiple wave types, and diverse misfit
functions.

* We theoretically and numerically demonstrate AD’s effectiveness by proving that the gradients
from AD are equivalent to those from the analytical adjoint method, regardless of the domain,
wave equation, or misfit choices.

* We validate our new framework through experiments across ten diverse scenarios, OpenFWI
benchmark experiments, and field checkerboard tests in the Nankai subduction zone.

* We present a comprehensive cost analysis showing that AD avoids laborious derivations and im-
plementations, with only modest overhead within practical limits.

* We provide a customizable seismic tomography platform with various forward and imaging meth-
ods, decreasing the practical workload and facilitating new method developments.

2 PROBLEM SETUP

Seismic tomography relies on two main forward simulations: time-domain and frequency-domain
approaches. Our universal framework considers both methods, and we set up the gradient computing
problem separately.

In the time domain, a time-stepping method explicitly discretizes the wave equation. This approach
directly simulates wave propagation and is well-suited for capturing time-varying phenomena. The
state at time k is computed as

hy, =A@)hy_1 +f, k>1, (1)

To avoid confusion, reHeieEemisiavaRablespandcmisinfneHomNseparaelyd R ccardless
of the specific misfit function form, the general target gradient is
ox _ 0J(hy,... hy,d°)
06 00 '
In the frequency domain, forward modeling is performed by solving the Helmholtz equation at each
frequency. It naturally accounts for frequency-dependent information, making it suitable for atten-
uation imaging (e.g., visco-acoustic wave equation) (Malinowski et al 2011). Since the solution
of the Helmholtz equation represents a steady state, the frequency-domain formulation is inherently
stable and does not require any time-domain stability conditions. In addition, it allows for indepen-
dent frequency computations, which enables efficient parallel processing on GPUs. The forward
Helmholtz equation at@iicqucHeyRndexmms
Ay (O)uy = sy, 3)
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When attenuation is considered, @iciparametersidiareicomplex® By adopting Wirtinger derivatives
for complex numbers, the general target gradient expression is

0x 9x 4 Ox

Vox = [%‘;] = L o o 1 : )
00; 06 00+

x = J({ur(6,0%),u;(6,0)},d°). (5)

To summarize, our target is to find the gradients in Equation [2]and Equation 4]

3 RELATED WORK

Practical applications of NNs are constrained by universal datasets (Section [I). As a more fun-
damental technique, AD overcomes these limitations by design. AD leverages the chain rule and
computational graphs to compute accurate gradients within computer programs (Baydin et al.,[2018};
Paszke et al.,[2017). Instead of training NNs on wide-ranging datasets to approximate a universal in-
verse operator, AD operates on a case-by-case basis, using predefined physical modules and specific
observational data to directly invert for the structure. Moreover, AD offers greater interpretability
than NN since each gradient can be explicitly formulated (Section [5).

Applying AD to seismic tomography is a natural and effective approach for the inherent similarities
between the two methodologies (Figure[I). In terms of structure, NNs consist of numerous train-
able linear parameters and nonlinear activation functions, whereas seismic tomography focuses on

inverting parameters defined on a discrete spatial grid (Zhu et al.,[2021). Both approaches begin
with a forward pass to compute a misfit (i.e., loss in NNs) and then update the parameters based

on the resulting gradient. Physical wave systems can be trained as an analog recurrent neural net-

Recently, AD has been increasingly adopted in seismic tomography. One research direction lever-
ages AD to simplify specialized imaging methods, primarily for time-domain full-waveform in-

version (FWI) (Sambridge et al., 2007} [Li et al 2020} [Liu et al. 2024} [Cao & Liao, 2015}
et al, 2022} [Feng et al., 2023; [Wang et al, 2024). In contrast, another line (e.g., ADSeismic (Zhu

et al., 2021))) employs AD to develop general seismic tools for tasks such as earthquake location
and imaging. However, its tomography application, ADSeismic, is restricted to time-domain FWI
Lo, addressing only a single type of misfit in one domain. This limitation arises from two key chal-
lenges: (1) generalizing AD to handle arbitrary misfit functions (beyond Lo norm) is theoretically
difficult, and (2) time-domain and frequency-domain simulations require fundamentally different
derivations and implementations. We address both challenges in this paper. Detailed comparison
with our method is in Appendix [A]

4  SEISMIC TOMOGRAPHY VIA AUTOMATIC DIFFERENTIATION

Similar to AD for NNs, we construct a computational graph to compute the gradients (see Figure[3).

iself. After the forward pass, gradients backpropagate from the misfit through each state variable
until reaching the target parameters. Each node computes its local gradient using the chain rule:
8vi o 8Vj 8vi’

(6)

Jj Echildren of 4

These
are precisely the target gradients with respect to seismic parameters in Equation H and Equation [4]

5 EQUIVALENCE TO THE ADJOINT METHOD

The adjoint method has been proven effective in theory, experiments, and applications (Tromp
et al, 20035} [Liu & Trompl, 2006} [Tape et al.,2009). In this section, we theoretically and numerically
demonstrate the equivalence of AD and adjoint gradients to confirm the reliability of our approach.
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Figure 3: Computational graphs with state nodes. The graph for the time domain is inspired by

ADSeismic (Zhu et al., 2021).

5.1 THEORETICAL PROOF

Proposition 1. For the general time-domain formulation Equation [I|with misfit in Equation 2] the
gradient from the adjoint method equals that from automatic differentiation.

Proof. We now explicitly derive the gradients using both the adjoint method and AD.

Gradient from the Adjoint Method By regarding the forward equations as constraints and the
misfit function as the objective, the gradient computation can be converted to a nonlinear program-

ming problem (Zhu et al.|[2021). Therefore, we introduce the Lagrangian function
N
L=J+ 3 AT(Ahiy+ i —hi), )
i=1

Since the forward constraint equations in Equatlonmhold everywhere, adding the derivative of these
constraints with respect to 6 to the target gradient in Equat10n|2| leaves it unchanged. Consequently,
the gradient expression can be equivalently written as (details in Appendix [B-T):

ax _ox Za(AT(Ah”H h,))

00 00 < 00
i=1
N L 0A N rog oh; ohy ®
T
= - ——h,_ — A——.
;)‘1 96 1+;<(’*)hi T ALA ) 96~ A
Differentiating L in Equation [7] with respect to hy, gives
oL oJ
= AT AT AL
8hk 8hk + k+1 (9)
Setting the above derivative to zero (the Karush—Kuhn—Tucker conditions) leads to
0, k=N +1,
Ak = o.J (10)
Ag+1 A + aillk, k S N
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Once the recursive constraints hold, the terms involving %lg" cancel out in Equation and we obtain

oA
T
Z ST (b

Gradient from Automatic Differentiation AD in reverse mode relies on the chain rule (see Fig-
ure[3). The gradient of the misfit x with respect to the model parameters 6 is expressed as

ox 0J 0Ohy
= 12
25 (25, a2
Given Equation I the sensitivity < ah’“ is computed recursively as (details in Appendix b
k
ohy, b OA
—_— A_ ] h .
R G ®
Substituting the above expression into Equation 2] yields (see Appendix
0A ) 0A
AFI——h; | = AR —h; ;. 14
Zahk z:: 06 Z Zahk o0 7! (1
Next, we define the ad]omt variable as
N
; 0J , 8J
)\T a Ak*] - ARG | A 4 22
Z ohy, Z Ohy, + Oh; (15)
k=j+1
AT

By recognizing that the underbraced term is precisely )‘]T+1’ we obtain the following recursive rela-
tion:

0, k=N +1,

A = o7 (16)
AL A+ TR k<N.
Finally, the overall gradient is given by
8A
T

17
Z A 5 b an

Since Equation [11{ and Equation [17]yield the same gradient, and the recursive relations for A” in
Equation [I0]and Equation [I6]are identical, the two approaches give equivalent gradients.

Proposition 2. For the Helmholtz equation in Equation |3|with a general misfit in Equation {} the
gradient from the adjoint method is identical to that from automatic differentiation.

Proof. For Wirtinger derivatives, the total complex derivatives considering both 8 and 6* are:

X ~N[0Jou 9] oul X N [0J 0w, OJ oul
O _ : _N (97 L) as
00 Zl (aui 90 " our 90 ) T Zl ou, 96 | ou’ 06 (18)

According to the Product Rule of Wirtinger derivatives, differentiate both sides with respect to 6,
which yields:

0 0s; Ou; 8A
— (A Lo = AT 19
0 A =35 = e T (1
Similarly, differentiating with respect to 8* and applying the conjugate relationship, we obtain:
Ou; 0A,; ou’ 0A’ ou; 1 OAY
v A 1 . i *\—1 (A — A* L uk. 20
00" gg- " gg — ADTgg s ggr = (AN Ggrui Q0
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Substituting the expressions into the derivatives in Equation [I8] we get

X ~=(0J _,OA, 0.J L OAT
96 ’; (8ui (Ai 90 %) tow \TWAD)T Hg ) )
M

ox 0T (L 0A: ) 0J [ .. _ 0A;
39*_2(311,»( A am“’)*&q( (A7) 30*“i>)'

i=1

Gradient from the Adjoint Method Similar to the proof in the time domain, we first introduce
the Lagrangian function

M M
L=J({ui(6,6%),u;(0,0)},d") + > Al (Ai(0)u; —s;) + AT (A;(O)u] —s]), (22)
1=1 i=1

where A;, A; € CV are adjoint variables, and )\ZT- denotes the conjugate transpose.

Taking Wirtinger derivatives with respect to u; gives the adjoint equation:

oL oJ oJ oJ N\t
= ATA; = — ATA; = AlN = f( ) . 23
aui aui + ? 0= aui 7 = 7 aui ( )
Similarly, taking Wirtinger derivatives with respect to u; yields another adjoint equation:
01 rae aTae (TN
ou; —A; Aj AiA; = <8uf) . (24)
Substituting adjoint expressions, the derivatives in Equation [I8]are
M M
8x t 8AZ T OA} 8x 1 6AZ T OA}
A Al i+ A AN s S Al i+ A iwr). @5
96 ;(160“+ i g i 06+ ; i g N T A g W (25)

Gradient from Automatic Differentiation To compare with adjoint derivatives in Equation
we define the adjoint variables \; and A; using the following equations:

as\" s AN

AN = — = =-ATA,, ATAI=— (=) = == =-ATA:.  (26)
¢ Oou; ou; ' ou; ou;

By substituting into the derivatives in Equation [21] both the negative signs and the inverse terms

cancel pairwise (e.g., A; and A 1). Thus, the final expressions are given by

) M OA, OA* ) M OA, OA*
a% :Z(Aj g i+ AL 80111:), a(;i :Z<>\jaa*ui+A?89;uj). @7)
=1 i=1

Equation [25| and Equation [27| give the same gradient, and the adjoint equations for A7 and AT
in Equation [23| and Equation |26 coincide; therefore, the two approaches yield exactly equivalent
gradients.

The above proof is valid for arbitrary choices of the wave equation and the misfit function.

5.2 NUMERICAL VALIDATION

To show the numerical equivalence on a broad range of scenarios, we conducted experiments on
anomaly synthetic models, the Marmousi2 model, and the OpenFWI-B family, with acoustic wave
in the time domain and Love wave in the frequency domain.

As shown in Appendix |C] across all tested scenarios, these metrics indicate numerical equivalence:
correlations and SSIM values are very close to 1 (difference <10~%), while Difference Norm and
Difference Max consistently remain on the order of 10719, which almost reaches floating-point
precision. This strong numerical evidence reinforces the equivalence in theory.

6 EXPERIMENTS

Implementation We implemented ten tomography scenarios shown in Table[2] Our baseline code
is from (1) ADFWI (Liu et al.l 2024) for time-domain acoustic and P-SV wave FWI, and (2) a
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Table 2: Cross-scenario results. [|: change relative to the initial model.

Parameter / MS-SSIM 1

Time Domain FWI L, Travel Time
Acoustic vp 10.982+57¢-4 (0.1157) vp 1 0.887+1.4e-3 (0.0197)
SH vg [ 0.884+1.3¢-3 (0.012]) vg [ 0.87945.8¢-4 (0.007])
P-SV vp 1 0.896+3.5¢-3 (0.0297) vp 1 0.877+2.1e-4 (0.0107)
Frequency Domain FWI L, Attenuation
Visco-acoustic Qp 1 0.531+2.5¢4 (0.349]) Qp 1 0.583+1.2¢3 (0.4017)
Visco-elastic Qs 1 0.656487¢-4 (0.474]) Qs /0.637+5.1e-4 (0.4557)

Matlab-based visco-acoustic wave equation solver
and misfit expressions used are detailed in Appendix

Cross-scenario Experiments

Amini & Javaherian| 2011). Wave equations

‘We validated our unified framework across different scenarios. For

time-domain seismic tomography, we employed the classical geometrically complex benchmark
Marmousi2 model (Martin et al.,[2006). For frequency-domain attenuation imaging, we adopted the
Q anomaly model to simulate the Q inversion process following velocity imaging. We introduced

MS-SSIM (Multi-Scale Structural Similarity) as the

evaluation metric for its consistency in practi-

cal applications (Wang et al, 2003} [Min et al., [2023)) (the advantages over SSIM are discussed in

Appendix [F)). No training set was used, and the experimental settings are provided in Appendix [E-3]

Table 2] Figure [4] and Table 23] consistently show successful imaging across different scenarios,
demonstrating our method’s universality. Gradient visualizations are provided in Appendix [H]
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OpenFWI Benchmark Experiments

The metric of the initial model is set to be worse than the non-outlier

results of the NN-based methods for a fair comparison. The experimental settings are detailed in

Appendix [E4]

i

Our method does not achieve state-of-the-art performance consistently, but as a unified and practical
baseline platform, it shows potential for recovering detailed structures without training sets.

Table 3: OpenFW1 benchmark results.
SSIM*t BigFWI-B BigFWI-M BigFWI-L InversionNet VelocityGAN UPFWI  Ours (init.)
FlatVel-B 0.9658 0.9729 0.9756 0.9356 0.9556 0.8874  0.5673 (0.6978)
CurveVel-B 0.7808 0.8053 0.8134 0.6630 0.7111 0.6614  0.5216 (0.6207)
FlatFault-B 0.8027 0.8137 0.8033 0.7323 0.7552 0.6937  0.6518 (0.6622)
CurveFault-B 0.6781 0.6896 0.6790 0.6137 0.6033 - 0.5762 (0.5772)
Style-B 0.7567 0.7600 0.7429 0.7667 0.7249 0.6102  0.8093 (0.5552)
Kimberlina-CO» - - - 0.9872 0.9716 - 0.9489 (0.7945)

Table 4: OpenFW1 benchmark results.
MAE| BigFWI-B BigFWI-M BigFWI-L InversionNet VelocityGAN UPFWI  Ours (init.)
FlatVel-B 0.0233 0.0193 0.0173 0.0304 0.0328 0.0677  0.0395 (0.0402)
CurveVel-B 0.0933 0.0816 0.0772 0.1448 0.1428 0.1777  0.0813 (0.0958)
FlatFault-B 0.0710 0.0636 0.0644 0.0965 0.0946 0.1416  0.0544 (0.0689)
CurveFault-B 0.1245 0.1161 0.1169 0.1705 0.1583 0.3452  0.1034 (0.1313)
Style-B 0.0553 0.0538 0.0563 0.0557 0.0649 0.1702  0.0399 (0.0757)
Kimberlina-CO - - - 0.0061 0.0119 - 0.0103 (0.0193)

Table 5: OpenFW1 benchmark results.
RMSE] BigFWI-B BigFWI-M BigFWI-L InversionNet VelocityGAN UPFWI  Ours (init.)
FlatVel-B 0.0696 0.0621 0.0584 0.0680 0.0787 0.1493  0.0718 (0.0879)
CurveVel-B 0.2154 0.2006 0.1947 03111 0.2611 0.3179  0.2073 (0.2251)
FlatFault-B 0.1321 0.1259 0.1269 0.1636 0.1553 0.2220 0.1283 (0.1398)
CurveFault-B 0.2027 0.1954 0.1960 0.2507 0.2336 0.5010  0.1918 (0.2050)
Style-B 0.0876 0.0867 0.0908 0.0860 0.0979 0.2609  0.0406 (0.0921)
Kimberlina-CO - - - 0.0374 0.0387 - 0.0195 (0.0403)
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Field Experiments To demonstrate our practical application, we tested our method with a Love-
wave checkerboard experiment in the Nankai subduction zone (Nakanishi et al.,|2008). No training
set was used for this experiment. We added checkerboard perturbations to the field model and in-
verted them from the original field model (Appendix [E33). Figure [5]and Table [I8] (SSIM increases
from 0.0537 to 0.8812+47.7e-4) show that our method successfully inverted the perturbations and
demonstrate potential for field-scale tasks. Such practical tasks are challenging for NN-based meth-
ods due to the lack of suitable datasets.

/7,

-~ s
N NSt reccrscasarmcocoaasy
LA LT CY Y LA Ll PP vy 5

Figure 5: Field checkerboard experiment. a Initial / background model. b True model with pertur-
bations. ¢ Tomography result. Bottom panels of b and ¢ are differences from the background model.

7 COST ANALYSIS

We present a comprehensive cost analysis of the AD method and the adjoint method, summarized
in Table[6] covering the entire workflow from analytical derivation to final code execution (details
in Appendix [[). The results demonstrate that AD avoids laborious derivations and implementations,
with only modest computational overhead within practical limits. Employing standard optimization
techniques (e.g., mini-batching or checkpointing) can further reduce the overhead.

Table 6: Summary of cost analysis for m wave equations and n misfits.

Adjoint Method AD (Ours)
Derivation m X n adjoint sources and wavefields None
Implementation m X m time-reversal solvers and operators None
Memory 1x 1.3-2.0x
Time 1x 1.3-1.8x

8 CONCLUSION

We present a unified, practical, and white-box seismic tomography framework based on AD, elim-
inating manual workload while ensuring broad applications to diverse range of misfit functions,
wave physics and model parameters. We theoretically and numerically prove that AD-based gra-
dients are equivalent to those from the traditional adjoint method. The generality and practicality
of our method are validated across ten diverse scenarios, the OpenFWI dataset and a field checker-
board test in the Nankai subduction zone. Our flexible open-source platform supports direct usage
and the development of new methods. Moreover, this work shows that AD is a general and effi-
cient tool for solving scientific inverse problems, which can be extended to more research areas (
e.g., computed tomography (Guzzi et al., 2023} Schoonhoven et al.| 2024)) and computational fluid
dynamics (Zubair et al., 2023)). Future work will focus on: (1) extending our framework to 3D
problems; (2) exploring hybrid approaches that leverage NNs for smooth initial model construction,
thereby reducing the dependence of physics-based methods on the initial guess (Appendix [J). Our
method can then be applied to recover the fine structural details that NNs alone cannot capture.

10
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ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. This research contributes to societal
well-being by advancing methodologies for natural hazard assessment and fundamental scientific
discovery.

To promote responsible stewardship, we offer our framework as a fully transparent, white-box, and
open-source platform. This approach ensures reproducibility, encourages verifiable research, and
makes advanced scientific tools more accessible.

All experiments were conducted on publicly available benchmark datasets or previously published
scientific data, raising no privacy issues. We believe the benefits of this transparent and accessible
tool for the scientific community align with the principles of responsible research.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have open-sourced our entire PyTorch-based platform, with the code
provided in the supplementary material. The theoretical equivalence between our AD-based method
and the traditional adjoint method is proven in Section[5] All experimental settings, including model
parameters, source configurations, and computational resources (hardware and software versions),
are comprehensively documented in Appendix [E|and code. The specific wave equations and misfit
functions used across our experiments are formally defined in Appendix

Furthermore, the supplementary material includes animated visualizations of the forward wave prop-
agation and inversion processes to help in understanding and verification.

USE OF LLM

Please refer to Appendix [§]

11
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USE oF LLM

In the preparation of this manuscript, we utilized LLMs as a general-purpose assistive tool. The use

of LLMs was for the following specific tasks:

* Language Polishing: Improving grammar, refining phrasing, and enhancing the overall clarity

and readability of the text.

* Code Assistance: Debugging code snippets and optimizing parts of the implementation related

to our experiments.

A COMPARISON WITH ADSEISMIC

Table 7: Comparison of ADSeismic(Zhu et al.,2021) and our method.

Equivalence . Wave .
Method q Proof Domain Types Misfit Language
Time-domain Acoustic
ADSeismic Forward Time P.SV ’ Lo Julia
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General General
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B.2 EQUATION[IJ]|

For k = 1, the state update becomes

where hg is the initial state.

For k = 2, applying the chain rule to Equation I] we have

ohy 0A Oh;
— =—h+A—. 30
90 90 " og G0
Substituting Equation [29]into Equation [30| gives
ohy  0A 0A
— =—h; + A — h,. 1
90 o0 T 99 Gl
For k = 3, we similarly have
ohs OA Ohy
— =—hy+A—. 2
20 — 96 > og 69
Substituting Equation [31]into Equation [32] yields
ohs O0A 0A Oh,
— =—h+A|(—Mh +A— ). 33
00 — 00 27 (ae L ao> (33)
Recognizing from Equationthat % = ‘98—1; h, we obtain
ohy  ,0A 0A 0A
Extending this recursion to a general time step k, we can show that
k
— = A" 7 —h; ). 35
96 ; ( 06 1) (35)

B.3 EQUATION([T4]

In Equation[T4] the summation is taken over the index set
S={(k,j)|1<j<k<N} (36)

Since addition over a finite set is both commutative and associative, we have

N k N N
S fhi) = > flhd) =YD flk5). (37)

k=1j=1 (k,5)€S j=1k=j

C EQUIVALENCE NUMERICAL VALIDATION

Time-domain acoustic wave This section includes results on the anomaly synthetic models (Ta-
ble [§), the Marmousi2 model (Table [9), and the OpenFWI-B family (Table [T0). Gradients are
normalized to [—1, 1].
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Table 8: Anomaly synthetic models (time-domain acoustic wave).

Size Difference Norm Difference Max Correlation SSIM
30x30 4.8657e-10 4.8061e-10 1.00000 1.00000
300%x300 3.3532e-11 2.9799¢-11 1.00000 1.00000

Table 9: Marmousi2 model (time-domain acoustic wave).

Dataset SSIM
Marmousi2 0.99996

Table 10: OpenFWI-B family (time-domain acoustic wave).

Dataset SSIM

FlatVel-B 1.00000 =+ 0.00000
CurveVel-B 0.99998 + 0.00002
FlatFault-B 0.99948 + 0.00044
CurveFault-B 0.99978 4+ 0.00028
Style-B 0.99994 4+ 0.00004

Kimberlina-CO2  0.99998 + 0.00006

Frequency-domain Love wave This section includes results on the anomaly synthetic models
(Table[TT)) and the Q anomaly model (Table[12).

Table 11: Anomaly synthetic models (frequency-domain Love wave).

Size Difference Norm Difference Max Correlation SSIM

100100 1.329615e-10 7.730705e-12 1.00000 1.00000
500x500 2.523199¢-10 5.456968e-12 1.00000 1.00000

Table 12: Q anomaly model (frequency-domain Love wave).

Dataset SSIM
Q anomaly 1.00000

D.1 WAVE EQUATIONS
D.1.1 TIME DOMAIN

Acoustic Wave
= =5~ V=35, (38)
where p is the pressure, v, is the compressional wave (P wave) speed, and s is the source.

SH Wave

— -V {uVu} =3, 39)
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where u denotes the displacement, p is the shear modulus, and p is the density.

P-SV Wave In an isotropic medium, the P-SV system is

Ovg ov,

0040

ot
0o, v,

Ov,
ot —)\%+()\+2M)E+SZZ,

00 (% n Ov,
ot~ M\o: T ar

) + Sz,

with velocity update equations
Ov, 004y O0g,
Pt = oz 0z
ov, 0oy, 00,

pat = oz + 0z + /e

+ fa

where

* 0., and 0, are the normal stress components,

* 0., is the shear stress component,

* v, and v, denote the particle velocities in the x and z directions,

e )\ and p are the Lamé parameters (with p being the shear modulus),

* pis the density.

(40)

(41)

D.1.2 FREQUENCY DOMAIN

Visco-acoustic Wave Attenuation and dispersion make the propagation velocity frequency-
dependent and complex. In the constant-@) (KF) model, a logarithmic frequency term and an imagi-
nary component are introduced. Thus, the acoustic (P-wave) Helmholtz equation is expressed as

w?

P+ ——P=—
v +vp(w)2 S,
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with the complex velocity defined by
1 1 1 Wref i
B I S ( © ) . 43
vp(w) Up+7T’UpQ e +2va “43)

Here, v, represents the reference compressional wave speed, () the quality factor, and w.f a refer-
ence frequency.

Visco-elastic Wave For viscoelastic media, the displacement is denoted by U, and the shear ve-
locity is considered complex and frequency-dependent. The governing SH equation is

2

VU + — U = -8, (44)
vs(w)?
with the KF model defining the complex shear velocity as
1 1 1 Wref 0
== In (<) : 45
vs(w) vy TUsQ o +2USQ (“43)

D.2 MISFIT FUNCTIONS

D.2.1 TIME DOMAIN

FWI L Misfit Let d9;*(t) and d;7"(t) denote the observed and synthetic waveforms for the i-th
source and j-th receiver at time ¢. The waveform Ls-norm misfit is defined as

TYYY

i=1 j=1 \ t=1

2
agps(t) — di3" (1) (46)

ij

where NV is the number of sources, M the number of receivers per source, and 7" the number of time
steps per trace.
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Travel-time Misfit Let d;P*(t) and d;}" (t) denote the observed and synthetic signals for the i-th
source and j-th receiver at time index ¢. Deﬁne the cross-correlation function as

L—-1
Ciglk) = a3ty (¢+ k), (“7)
=0

with & € {0,1,...,2L — 2} and L representing the length of the time series for a single trace. The
travel-time shift 7;; is then defined by

7;; = argmax Cy;(k), (48)
and the overall travel-time misfit is given by

1 N M 9
71Xl @

i=1 j=1
D.2.2 FREQUENCY DOMAIN
Attenuation Misfit Let dgij(k;) and d;;" (k) denote the observed and synthetic complex data in

the frequency domain for the i-th source and j-th receiver at the k-th frequency, respectively. The
attenuation imaging misfit is defined as

J = ZZ Z logi‘dm( Y (50)
|3 (k)| +¢ )

=1 j=1

where N is the number of sources, M the number of receivers per source, K the number of frequency
bins, and ¢ is a small constant (e.g., 10~19) for numerical stability.

E EXPERIMENTAL SETTINGS

E.1 COMPUTATIONAL RESOURCES

All the experiments are conducted on a single NVIDIA RTX A5000 GPU with 24 GB. CUDA
version is 12.2 and PyTorch version is 2.7.0. The optimizer is Adam.

E.2 GENERAL SETTINGS

The imaging process is terminated either after a fixed number of iterations or once the misfit reaches
a specified threshold. During this process, there is no leakage of the true model. The reported result
corresponds to the model obtained at the final iteration, rather than selecting the one with the best
performance during optimization.

E.3 CROSS-SCENARIO EXPERIMENTS

For time-domain seismic velocity imaging, the initial velocity model is obtained by applying a heavy
Gaussian blur to the true model. The Gaussian noise parameter is set to 3 for Marmousi2 and 10
for the Q-anomaly model. For frequency-domain attenuation imaging, the initial velocity model is
slightly blurred relative to the true model, whereas the initial Q model is heavily blurred.

The free-surface boundary condition is applied to simulate more realistic field conditions. Noise is
added to the observed data. Each result is an average of five repetitions under the same settings.
Parameters are in Table [13]and Table 14
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Table 13: Time-domain Parameters

Wave Size dx nt dt Source
Acoustic 44x100 80m 1500 0.006s 3Hz
SH 44%x100 80m 4000 0.004s 0.5Hz

P-SV 44x100 80m 1500 0.004s 3 Hz

Table 14: Frequency-domain Parameters

Wave Size dx nf df Source

Visco-acoustic 50x30 100m 24 0.25hz 0.25-6 Hz
Visco-elastic 50x30 60m 24 0.25hz 0.25-6 Hz

E.4 OPENFWI BENCHMARK EXPERIMENTS

Table 15: OpenFWI Vel-B, Fault-B and Style-B Family Parameters

Wave Size dx nt dt Source
Acoustic 70x70 10m 1000 0.001s 15Hz

Table 16: OpenFWI Kimberlina-CO5 Sub-dataset Parameters

Wave Size dx nt dt Source
Acoustic  141x401 10m 1250 0.002s 10Hz

We compare our method with InversionNet(Wu & Lin| [2019)), VelocityGAN(Zhang & Lin, 2020),
and UPFWI(Jin et al.| 2021).

Following the OpenFWI benchmark experiments, we reproduced the identical acoustic wave settings
using a 15 Hz source. Our method is directly applied to 36 models downsampled from the Vel-B,
Fault-B and Style-B Family test sets and 15 models from the Kimberlina-COs test set without relying
on the training dataset.

The initial model is generated by applying a Gaussian blur to the true model. Our misfit function
is FWI global correlation. The final statistical results are computed by averaging the performance
metrics over the test set.

The performance of deep-learning methods is from OpenFWI (Deng et al.| 2022). UPFWI fails on
CurveFault-B dataset (SSIM is 0.3941), so we fill it blank. For evaluation, we adopted the SSIM
metric following benchmark tests.

Table 17: Field Experiment Parameters

Wave Size dx nt dt Source
SH 51x656 200m 8000 0.01s 0.2Hz

E.5 FIELD EXPERIMENT

Using the empirical relationship from (Brocher, 2005)), we converted the Vp model described in
(Nakanishi et al., [2008)) into a Vs model as a field background model.
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In the ambient noise tomography field experiment, the ocean bottom stations simultaneously act
as virtual sources. We used MS-SSIM (Multi-Scale Structural Similarity) as our evaluation met-
ric (Wang et al., [2003) following Cross-scenario Experiments.

Noise is added to the observed data. Our misfit function is FWI global correlation. Parameters are
in Table

Table 18: Field experiment results. [|: change relative to the initial model.

SSIM 1 Initial Result
Perturbation 0.0537 0.8812+7.7¢-4 (0.82751)
Model 0.8211 0.9609+5.9¢-4 (0.1398])

F SSIM’S VULNERABILITY TO HIGH-FREQUENCY ARTIFACTS

In practical seismic tomography tasks, inverting structures to find anomalies is the central purpose.
A metric is needed to evaluate this performance.

SSIM is sensitive to high-frequency artifacts, although such sensitivity does not impact anomaly
detection in practical applications.

To demonstrate SSIM’s limitation for imaging anomalies under noisy conditions, we generated a
series of reconstructions with increasing levels of blur and noise applied to a model containing a
known anomaly.

In Table[7] although the reconstructed anomaly appears highly noisy, it can still be easily identified
for geological interpretation. However, Table [] shows that SSIM decreases rapidly even when the
anomaly remains clear and interpretable.

We introduce Multi-Scale Structural Similarity (MS-SSIM) (Wang et al., 2003)) as a practical metric
for seismic tomography tasks. Evaluating image fidelity at multiple resolutions improves the per-
ceptual quality of images (Min et al., 2023). In our experiments, MS-SSIM reflects the recovery
of geological anomalies, even when blurred or noisy. This aligns with the real-world goal in seis-
mic exploration: robust detection of subsurface features, rather than producing artificially smooth
images that lack detail. Table [6] shows that MS-SSIM is a more robust metric under each noise
level, which means MS-SSIM better reflects anomaly detection performance in practical seismic
tomography with noise.

SSIM vs MS-SSIM under Blurred & Noisy Anomaly
1.00 4

Similarity

o

©

N
N

4 —@— SSIM
MS-SSIM

o
©
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Anomaly Blur & Noise

Figure 6: SSIM and MS-SSIM comparison in anomaly detection under noisy conditions.
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Ground-truth model Reconstructed 0=4.00

Figure 7: Illustrations of noisy imaging of anomaly.

We further evaluated SSIM and MS-SSIM on reconstructions contaminated with high-frequency
noise that does not affect the visual clarity of the geological anomaly. As shown in Figure[9] the
model remains clearly visible despite the added noise.

However, the single-scale SSIM score drops sharply in Figure[§] In contrast, MS-SSIM stays es-
sentially constant, demonstrating its robustness to irrelevant noise and its alignment with the true
preservation of subsurface features.

Robustness to Noise: SSIM vs MS-SSIM

1.000 A
0.998
0.996
0.994
0.992 -
0.990 A
0.988 A
0.986 1 —@— SSIM
—#— MS-SSIM

0.984 -

Similarity

0 1 2 3 a 5 6
Noise Standard Deviation o

Figure 8: SSIM and MS-SSIM comparison under noisy conditions.

Original velocity model Noisy model (0=6.00)

Figure 9: Illustrations of noisy imaging.
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SSIM and MS-SSIM vs. Blur Level

SSIM
—8— MS-SSIM

MAE and RMSE vs. Blur Level

0.20 A
—e— MAE
—o— RMSE

0 5 10 15 20 25 30 35 40
Gaussian blur o

Blur 6=0.0 Blur 0=40.0

Less Noise

Less Anomalies

SSIM Bes! AE Bes RMSE Best MS-SSIM Best
0=40.0, SSIM= 0 9671 o=4, 1 MAE= 0 0095 0=2.8, RMSE=0.0206 0=4.1, MS-SSIM=0.9634

The experimental results (Figure[T0|and Figure[TT)) indicate that SSIM tends to select the model with
the strongest blur — the one in which both high-frequency noise and high-frequency anomalies are
removed. That is, when a method can detect anomalies but also introduces some high-frequency
noise (such as our method), SSIM tends to produce a low value, thereby misjudging the method.
This is highly non-robust and impractical, as seismic imaging without anomaly details fails. This
behavior is non-robust and impractical, as seismic imaging without detailed information fails.

In contrast, the other metrics (MS-SSIM, MAE, and RMSE) choose models that retain
high-frequency anomalies, demonstrating greater robustness to high-frequency noise.
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G INCONSISTENCY BETWEEN LOW SSIM AND RECOVERED STRUCTURES

In the OpenFWI benchmark experiment, although detailed features can be clearly recovered, the
SSIM drops significantly due to high-frequency noise in the uniform regions. High-frequency arti-
facts affect our SSIM metric.

For example, the black boxes highlight the layer boundaries in Figure [T2] but the SSIM largely
decreases.

Initial

Figure 12: Inconsistency between SSIM and recovered inversion details. For the top figure, the
SSIM drops from an initial 0.732 to 0.508 (0.224]). Similarly, the SSIM for the bottom figure
decreases from an initial 0.608 to 0.529 (0.079 |) .

H GRADIENT VISUALIZATION

Time Domain
True Model Acoustic

Ll ] T -
- | ==

Figure 13: Gradient visualization of time-domain imaging.
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Figure 14: Gradient visualization of frequency-domain Q imaging.
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Figure 15: Gradient visualization of the field checkerboard test.

I CoOST ANALYSIS

In order to conduct a comprehensive cost analysis that covers as many wave types, loss functions,
and domains as possible, we consider two representative cases:

¢ acoustic wave with Lo misfit in the time domain

* SH wave with amplitude misfit for attenuation in the frequency domain

1.1 DERIVATION COST

The adjoint method requires challenging analytical derivations for each specific set of parameters,
wave types, and loss functions. This process often involves tedious and difficult manual work,
especially when extending to complex numerical computations.

However, no analytical derivation is required for our AD method.
I.1.1 ACOUSTIC WAVE WITH Lo MISFIT IN THE TIME DOMAIN

Adjoint method Adjoint source:
er (Xra t) = dsyn (Xm t) - dobs(xr7 t)

Adjoint wavefield:
1 0%v(x,t) 9 t
CQ(X) T -V U(th) - f (Xa t)
Gradient:
6J 2

T
= ) v(x,t) - (Vu(x
6c<x>c<x>/o (e, 8) - (Vulx, 1) dt

AD Method No analytical derivation is required.
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1.1.2 SH WAVE WITH AMPLITUDE MISFIT FOR ATTENUATION IN THE FREQUENCY DOMAIN

Adjoint method Forward model:

v 2
complex - S complex complex
Au=b, v =y i = O = . (PSP

S 2Q S
Amplitude Misfit:
Syn 2
J =" |log|d™| —log |d}"] |
Adjoint wavefield:
< " .
= — sign(log |d%| — log |d:.y"|) . W’ AN\ = fpadi
Gradient:
oJ UJ2 alucomplex
——— =Re )\*i,j'<— ) uz,j
8@(1,3) ( ) (’LL(:Omplex)2 8Q ( )
where
aucomplex Ve
—0p-2 ({omplex . (_- S )
oQ ~h "2

Such adjoint derivations are tedious and error-prone, particularly when complex numbers are in-
volved.

AD Method No analytical derivation is required.

1.2 IMPLEMENTATION COST

For each forward model and misfit, the adjoint approach requires separate backward solver imple-
mentation . Even for the simple L, misfit this means coding a dedicated time-reversal solver, while
more advanced cases (e.g. amplitude misfit with attenuation) become non-self-adjoint and complex-
valued.

With AD, none of this is needed. Gradients are obtained directly by a single line of code:
loss.backward (), and are theoretically and numerically exact.

Workload comparison: For m forward models and n misfits,
» Shared workload (easy):
m forward modeling + n misfit implementations

As shared workload, m forward simulation and n misfit implementations are excluded from com-
parison.

* Workload saved by AD (challenging):

m X n adjoint source derivations + m x n adjoint implementations

AD thus saves the most challenging part, while supporting arbitrary wave equations and misfits in
time and frequency domains.

1.3 TIME AND MEMORY COST

Since deriving the adjoint wavefield with high-precision simulations is very challenging, we use
simple simulations for testing here.
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1.3.1 ACOUSTIC WAVE WITH Lo MISFIT (TIME DOMAIN, 10,000 TIME STEPS)

Table 19: Memory cost comparison .

Size AD Adjoint AD/ Adjoint
30x30x 10000 0.15GB  0.08 GB 1.88
100x100x10000 1.53GB 0.78 GB 1.96
300x300x10000 13.53GB 6.81 GB 1.99

Table 20: Time cost comparison .

Size AD Adjoint AD / Adjoint
30x30x 10000 42709s 27517 s 1.55
100x100x 10000 4.3207s 2.7518 s 1.57
300x300x 10000 5.0545s 29544 s 1.71

1.3.2 SH WAVE WITH AMPLITUDE MISFIT FOR ATTENUATION IN THE FREQUENCY DOMAIN

Table 21: Memory cost comparison.

Size AD Adjoint AD / Adjoint
100x 100 7.6 MB 6.1 MB 1.25
500x500 196.11 MB 131.99 MB 1.49

Table 22: Time cost comparison .

Size AD Adjoint AD/ Adjoint
100100  1.3454 s 1.0204 s 1.32
500x500 41.4316s 32.3664 s 1.28

J INITIAL MODEL DEPENDENCY

Our physics-driven method approach requires updating from an initial guess, which can usually be
converted using ray-theory inversion or other seismic models.

Here we show the initial model dependencies on the OpenFWI dataset. Despite the observed initial
model dependency (the higher the initial SSIM, the higher the resulting SSIM), our method demon-
strates robustness to the quality of the initial model. For example, even when starting with a very
blurred initial model (SSIM is only 0.4), it can still basically invert the model and capture the details.

In the future we explore incorporating deep learning methods to mitigate the reliance on initial
models.
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Figure 16: Initial model dependency.

Time Domain FWI Lo Travel Time

Acoustic 0.0401/0.0047 /0.0688 0.0701/0.0117 /0.1084
SH 0.0642 /0.0095/0.0972  0.0645 /0.0095 / 0.0975
P-SV 0.0723/0.0117/0.1080 0.0736/0.0148 /0.1155
Frequency Domain FWI Lo Attenuation

Visco-acoustic 0.1034/0.0511/0.2260 0.1154/0.0647 / 0.2444
Visco-elastic 0.0927/0.0224/0.1495 0.0971/0.0219/0.1481

I
'if|I|

Noise level 0% 01% 03% 05% 0.7% 1%

SNR (dB) - 3027 20.71 16.29 1337  10.27
SSIM 0.7820 0.7322 0.6567 0.6086 0.6000 0.5966
MAE 0.0314 0.0358 0.0428 0.0458 0.0474 0.0460
RMSE 0.0443 0.0509 0.0571 0.0609 0.0630 0.0614

Missing (%) 0% 1% 4% 10% 20% 50% 70% 90 %

SSIM
MAE
RMSE

0.7820 0.7793 0.7808 0.7779 0.7806 0.7754 0.7551 0.6692
0.0314 0.0315 0.0314 0.0316 0.0317 0.0324 0.0330 0.0421
0.0443 0.0448 0.0445 0.0446 0.0441 0.0453 0.0461 0.0562
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