UNIFIED, PRACTICAL, AND WHITE-BOX SEISMIC TOMOGRAPHY WITH AUTOMATIC DIFFERENTIATION

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

033

034

038

040

041

043

044

047

051

052

Paper under double-blind review

ABSTRACT

Seismic tomography methods are complex, diverse, and incompatible with each other. Traditional adjoint approaches are case-specific, requiring challenging analytical derivations for each set of parameters, waves, and loss functions. Approximating wave equation propagation with neural networks (NNs) remains impractical, since finite training datasets cannot cover all seismic parameters for the infinite number of possible geologic models. In this paper, we propose a unified seismic tomography framework with automatic differentiation (AD) for gradient computation, avoiding analytical derivations and NN training. Our framework is designed for generalized misfit functionals and wave equations, supporting broader applications than previous AD-based studies. Our method is fully white-box, and AD gradients are proven to be equivalent to adjoint gradients theoretically and numerically. To show its generality, we performed ten cross-scenario tests across domains (time/frequency), waves (acoustic/SH/P-SV/visco-acoustic/visco-elastic), and losses (waveform/travel time/amplitude). We also evaluated our method on the OpenFWI benchmark dataset to compare with NN methods. Practicality was further demonstrated by a checkerboard test in the Nankai subduction zone, which is challenging for NN methods due to the lack of suitable training datasets. Our method avoids laborious derivation and implementation of adjoint methods, with only modest computational overhead $(1.3-1.8 \times \text{slower})$ and $1.3-2.0 \times \text{more}$ memory without mini-batching or checkpointing in our tests), which can be further reduced with these standard optimizations. We open-sourced a PyTorch-based platform with various extensible wave simulations and imaging methods, facilitating further developments. Our work illustrates AD's unifying capability in inverse problems, suggesting broader applications in allied scientific computing fields.

1 Introduction

Figure 1: A general gradient-based seismic tomography pipeline. The seismic tomography method and the corresponding gradient are determined by a specific forward and backward combination.

Exploring the subsurface structure is one of humanity's most fundamental pursuits, as it reveals Earth's composition, enables resource exploration, and helps mitigate hazards (Gao, 2011). Motivated by these needs, full-waveform seismic tomography has emerged to transform seismic recordings into detailed subsurface models (Schuster, 2017; Deng et al., 2022). This approach inverts the

model by minimizing the seismic data-simulation misfit with the computed gradient. Although numerous seismic tomography methods exist, each is defined by customizable forward and backward components in Figure 1.

The gradient, quantitatively revealing the model update direction, is at the core of seismic tomography. For computing the gradient, the adjoint method is commonly adopted (Tromp et al., 2005; Liu & Tromp, 2006; Liu, 2020). The analytical gradient and adjoint equation can be derived via the variational principle (see Figure 2) for a given wave equation with selected forward and backward wave propagation modules.

Figure 2: Comparison between traditional adjoint-based imaging and our AD-driven framework. Automatic computational graphs replace manual gradient derivation.

However, despite its efficiency for specialized tomography methods, the adjoint method significantly limits the scope of applications of seismic tomography. Since a comprehensive regional model requires multiple parameters (e.g., seismic P and S wave velocities, and quality factor Q), constructing it requires switching among different forward modeling strategies. Moreover, backward modeling methods also vary depending on the task and data quality. Because each analytical gradient derivation from the adjoint method is highly complex and case-specific, frequently changing both forward and backward simulation modules multiplies the derivation workload and significantly increases the overall manual burden (see Figure 2). This limitation wastes useful data and further limits the wider application of seismic tomography (Maurer et al., 2010).

Neural networks (NNs) seem promising for unifying seismic tomography since they can directly transform seismic recordings into subsurface images without explicit gradients. Recently, many studies have applied various types of NNs to seismic tomography (Zhu et al., 2022; Wu & Lin, 2019; Zhu et al., 2023; Zhang & Lin, 2020; Jin et al., 2021; Feng et al., 2021; Zeng et al., 2021; Schuster et al., 2024; Desai et al., 2021; Gao et al., 2021; Feng et al., 2024; Feng et al.; Gupta et al., 2024). However, these NNs are trained with specific parameters and structure types (Zhu et al., 2023; Deng et al., 2022), which limits their practical applications. The primary limitation lies in the dataset and model generalizability. Though high-quality, large-scale benchmark datasets exist (Deng et al., 2022; Feng et al., 2023; Li et al., 2024), covering all possible target parameters, wave equations, and possible subsurface structural configurations remains difficult. Constructing such a dataset is like assembling the training data for a universal large language model, but it is particularly challenging for seismic tomography due to the high cost of wave simulations for complex models.

In this work, we propose a unified, practical, and white-box seismic tomography framework based on automatic differentiation (AD). Instead of directly using NNs to approximate a universal inverse operator, we leverage the underlying gradient computation framework for case-by-case tomography to bypass the dataset limitation. Our framework avoids difficult analytical gradient derivations required by adjoint methods and enables supervised inversion for each case. Our main contributions are:

- Compared to previous AD-based methods for limited misfits in the time domain, we achieve comprehensive unification across time/frequency domains, multiple wave types, and diverse misfit functions.
- We theoretically and numerically demonstrate AD's effectiveness by proving that the gradients from AD are equivalent to those from the analytical adjoint method, regardless of the domain, wave equation, or misfit choices.
- We validate our new framework through experiments across ten diverse scenarios, OpenFWI benchmark experiments, and field checkerboard tests in the Nankai subduction zone.
- We present a comprehensive cost analysis showing that AD avoids laborious derivations and implementations, with only modest overhead within practical limits.
- We provide a customizable seismic tomography platform with various forward and imaging methods, decreasing the practical workload and facilitating new method developments.

2 PROBLEM SETUP

Seismic tomography relies on two main forward simulations: time-domain and frequency-domain approaches. Our universal framework considers both methods, and we set up the gradient computing problem separately.

In the time domain, a time-stepping method explicitly discretizes the wave equation. This approach directly simulates wave propagation and is well-suited for capturing time-varying phenomena. The state at time k is computed as

$$\mathbf{h}_k = \mathbf{A}(\boldsymbol{\theta}) \, \mathbf{h}_{k-1} + \mathbf{f}_k, \quad k \ge 1, \tag{1}$$

where \mathbf{h}_k denotes the augmented state vector comprising the current and previous wavefields required. \mathbf{h}_k is compatible with time discretization schemes of arbitrary orders. \mathbf{h}_0 is the initial state, $\mathbf{A}(\boldsymbol{\theta})$ is the propagation operator parameterized by the medium properties $\boldsymbol{\theta}$, and \mathbf{f}_k represents the external source.

To avoid confusion, we define the misfit variable χ and the misfit function J separately. Regardless of the specific misfit function form, the general target gradient is

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \frac{\partial J(\mathbf{h}_1, \dots, \mathbf{h}_N, \mathbf{d}^{obs})}{\partial \boldsymbol{\theta}}.$$
 (2)

In the frequency domain, forward modeling is performed by solving the Helmholtz equation at each frequency. It naturally accounts for frequency-dependent information, making it suitable for attenuation imaging (e.g., visco-acoustic wave equation) (Malinowski et al., 2011). In addition, it allows for independent frequency computations, which enables efficient parallel processing on GPUs. The forward Helmholtz equation at frequency index k is

$$\mathbf{A}_k(\boldsymbol{\theta})\mathbf{u}_k = \mathbf{s}_k,\tag{3}$$

where \mathbf{u}_k denotes the complex-valued wavefield and \mathbf{s}_k is the corresponding source.

When attenuation is considered, the parameters θ are complex. By adopting Wirtinger derivatives for complex numbers, the general target gradient expression is

$$\nabla_{\boldsymbol{\theta}} \chi = \begin{bmatrix} \frac{\partial \chi}{\partial \boldsymbol{\theta}_r} \\ \frac{\partial \chi}{\partial \boldsymbol{\theta}_i} \end{bmatrix} = \begin{bmatrix} \frac{\partial \chi}{\partial \boldsymbol{\theta}} + \frac{\partial \chi}{\partial \boldsymbol{\theta}^*} \\ i \begin{pmatrix} \frac{\partial \chi}{\partial \boldsymbol{\theta}} - \frac{\partial \chi}{\partial \boldsymbol{\theta}^*} \end{pmatrix} \end{bmatrix}, \tag{4}$$

where θ^* denotes complex conjugation and the general misfit is defined as

$$\chi = J(\{\mathbf{u}_k(\boldsymbol{\theta}, \boldsymbol{\theta}^*), \mathbf{u}_k^*(\boldsymbol{\theta}, \boldsymbol{\theta}^*)\}, \mathbf{d}^{obs}). \tag{5}$$

To summarize, our target is to find the gradients in Equation 2 and Equation 4.

3 SEISMIC TOMOGRAPHY VIA AUTOMATIC DIFFERENTIATION

Practical applications of NNs are constrained by universal datasets (Section 1). As a more fundamental technique, AD overcomes these limitations by design. AD leverages the chain rule and computational graphs to compute accurate gradients within computer programs (Baydin et al., 2018;

Paszke et al., 2017). Instead of training NNs on wide-ranging datasets to approximate a universal inverse operator, AD operates on a case-by-case basis, using predefined physical modules and specific observational data to directly invert for the structure. Moreover, AD offers greater interpretability than NNs since each gradient can be explicitly formulated (Section 4).

Applying AD to seismic tomography is a natural and effective approach for the inherent similarities between the two methodologies (Figure 1). In terms of structure, NNs consist of numerous trainable linear parameters and nonlinear activation functions, whereas seismic tomography focuses on inverting parameters defined on a discrete spatial grid (Zhu et al., 2021). Both approaches begin with a forward pass to compute a misfit (*i.e.*, loss in NNs) and then update the parameters based on the resulting gradient.

Recently, AD has been increasingly adopted in seismic tomography. One research direction leverages AD to simplify specialized imaging methods, primarily for time-domain full-waveform inversion (FWI) (Sambridge et al., 2007; Li et al., 2020; Liu et al., 2024; Cao & Liao, 2015; Zhu et al., 2022; Feng et al., 2023; Wang et al., 2024). In contrast, another line (e.g., ADSeismic (Zhu et al., 2021)) employs AD to develop general seismic tools for tasks such as earthquake location and imaging. However, its tomography application, ADSeismic, is restricted to time-domain FWI L_2 , addressing only a single type of misfit in one domain. This limitation arises from two key challenges: (1) generalizing AD to handle arbitrary misfit functions (beyond L_2 norm) is theoretically difficult, and (2) time-domain and frequency-domain simulations require fundamentally different derivations and implementations. We address both challenges in this paper. Detailed comparison with our method is in Appendix A.

Figure 3: Computational graphs with state nodes. The graph for the time domain is inspired by ADSeismic (Zhu et al., 2021).

Similar to AD for NNs, we construct a computational graph to compute the gradients (see Figure 3). Each node stores a state variable (\mathbf{h}_k , \mathbf{u}_k or \mathbf{u}_k^*) and the gradient of the misfit with respect to the node itself. After the forward pass, gradients backpropagate from the misfit through each state variable until reaching the target parameters. Each node computes its local gradient using the chain rule:

$$\frac{\partial \chi}{\partial \mathbf{v}_i} = \sum_{i \in \text{children of } i} \frac{\partial \chi}{\partial \mathbf{v}_j} \frac{\partial \mathbf{v}_j}{\partial \mathbf{v}_i},\tag{6}$$

where \mathbf{v}_i denotes any state variable. This process ultimately yields $\frac{\partial \chi}{\partial \theta}$ and $\nabla_{\theta} \chi$ in Figure 3. These are precisely the target gradients with respect to seismic parameters in Equation 2 and Equation 4.

4 EQUIVALENCE TO THE ADJOINT METHOD

The adjoint method has been proven effective in theory, experiments, and applications (Tromp et al., 2005; Liu & Tromp, 2006; Tape et al., 2009). In this section, we theoretically and numerically demonstrate the equivalence of AD and adjoint gradients to confirm the reliability of our approach.

4.1 THEORETICAL PROOF

Proposition 1. For the general time-domain formulation Equation 1 with misfit in Equation 2, the gradient from the adjoint method equals that from automatic differentiation.

Proof. We now explicitly derive the gradients using both the adjoint method and AD.

Gradient from the Adjoint Method By regarding the forward equations as constraints and the misfit function as the objective, the gradient computation can be converted to a nonlinear programming problem (Zhu et al., 2021). Therefore, we introduce the Lagrangian function

$$L = J + \sum_{i=1}^{N} \lambda_i^T \left(\mathbf{A} \, \mathbf{h}_{i-1} + \mathbf{f}_{i-1} - \mathbf{h}_i \right), \tag{7}$$

where λ_i^T are the Lagrange multipliers or adjoint variables.

Since the forward constraint equations in Equation 1 hold everywhere, adding the derivative of these constraints with respect to θ to the target gradient in Equation 2 leaves it unchanged. Consequently, the gradient expression can be equivalently written as (details in Appendix B.1):

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \frac{\partial \chi}{\partial \boldsymbol{\theta}} + \sum_{i=1}^{N} \frac{\partial \left(\boldsymbol{\lambda}_{i}^{T} \left(\mathbf{A} \mathbf{h}_{i-1} + \mathbf{f}_{i} - \mathbf{h}_{i} \right) \right)}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} - \boldsymbol{\lambda}_{i}^{T} + \boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \right) \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}.$$
(8)

Differentiating L in Equation 7 with respect to h_k gives

$$\frac{\partial L}{\partial \mathbf{h}_k} = \frac{\partial J}{\partial \mathbf{h}_k} - \boldsymbol{\lambda}_k^T + \boldsymbol{\lambda}_{k+1}^T \mathbf{A}. \tag{9}$$

Setting the above derivative to zero (the Karush-Kuhn-Tucker conditions) leads to

$$\boldsymbol{\lambda}_{k}^{T} = \begin{cases} 0, & k = N+1, \\ \boldsymbol{\lambda}_{k+1}^{T} \mathbf{A} + \frac{\partial J}{\partial \mathbf{h}_{k}}, & k \leq N. \end{cases}$$
 (10)

Once the recursive constraints hold, the terms involving $\frac{\partial \mathbf{h}_i}{\partial \boldsymbol{\theta}}$ cancel out in Equation 8, and we obtain

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_{i-1}. \tag{11}$$

Gradient from Automatic Differentiation AD in reverse mode relies on the chain rule (see Figure 3). The gradient of the misfit χ with respect to the model parameters θ is expressed as

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{k=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{k}} \frac{\partial \mathbf{h}_{k}}{\partial \boldsymbol{\theta}} \right). \tag{12}$$

Given Equation 1, the sensitivity $\frac{\partial \mathbf{h}_k}{\partial \boldsymbol{\theta}}$ is computed recursively as (details in Appendix B.2)

$$\frac{\partial \mathbf{h}_k}{\partial \boldsymbol{\theta}} = \sum_{j=1}^k \left(\mathbf{A}^{k-j} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_{j-1} \right). \tag{13}$$

Substituting the above expression into Equation 12 yields (see Appendix B.3)

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{k=1}^{N} \frac{\partial J}{\partial \mathbf{h}_{k}} \left(\sum_{j=1}^{k} \mathbf{A}^{k-j} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{j-1} \right) = \sum_{j=1}^{N} \left(\sum_{k=j}^{N} \frac{\partial J}{\partial \mathbf{h}_{k}} \mathbf{A}^{k-j} \right) \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{j-1}. \tag{14}$$

Next, we define the adjoint variable as

$$\boldsymbol{\lambda}_{j}^{T} \triangleq \sum_{k=j}^{N} \frac{\partial J}{\partial \mathbf{h}_{k}} \, \mathbf{A}^{k-j} = \underbrace{\left(\sum_{k=j+1}^{N} \frac{\partial J}{\partial \mathbf{h}_{k}} \, \mathbf{A}^{k-(j+1)}\right)}_{\boldsymbol{\lambda}_{j+1}^{T}} \mathbf{A} + \frac{\partial J}{\partial \mathbf{h}_{j}} \,. \tag{15}$$

By recognizing that the underbraced term is precisely λ_{j+1}^T , we obtain the following recursive relation:

$$\boldsymbol{\lambda}_{k}^{T} = \begin{cases} 0, & k = N+1, \\ \boldsymbol{\lambda}_{k+1}^{T} \mathbf{A} + \frac{\partial J}{\partial \mathbf{h}_{k}}, & k \leq N. \end{cases}$$
 (16)

Finally, the overall gradient is given by

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{j=1}^{N} \boldsymbol{\lambda}_{j}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_{j-1} \,. \tag{17}$$

Since Equation 11 and Equation 17 yield the same gradient, and the recursive relations for λ^T in Equation 10 and Equation 16 are identical, the two approaches give equivalent gradients.

Proposition 2. For the Helmholtz equation in Equation 3 with a general misfit in Equation 4, the gradient from the adjoint method is identical to that from automatic differentiation.

Proof. For Wirtinger derivatives, the total complex derivatives considering both θ and θ^* are:

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{M} \left(\frac{\partial J}{\partial \mathbf{u}_i} \frac{\partial \mathbf{u}_i}{\partial \boldsymbol{\theta}} + \frac{\partial J}{\partial \mathbf{u}_i^*} \frac{\partial \mathbf{u}_i^*}{\partial \boldsymbol{\theta}} \right), \qquad \frac{\partial \chi}{\partial \boldsymbol{\theta}^*} = \sum_{i=1}^{M} \left(\frac{\partial J}{\partial \mathbf{u}_i} \frac{\partial \mathbf{u}_i}{\partial \boldsymbol{\theta}^*} + \frac{\partial J}{\partial \mathbf{u}_i^*} \frac{\partial \mathbf{u}_i^*}{\partial \boldsymbol{\theta}^*} \right). \tag{18}$$

which yields::

$$\frac{\partial}{\partial \boldsymbol{\theta}} \left(\mathbf{A}_{i} \mathbf{u}_{i} \right) = \frac{\partial \mathbf{s}_{i}}{\partial \boldsymbol{\theta}} \implies \frac{\partial \mathbf{u}_{i}}{\partial \boldsymbol{\theta}} = -\mathbf{A}_{i}^{-1} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i}. \tag{19}$$

Similarly, differentiating with respect to
$$\boldsymbol{\theta}^*$$
 and applying the conjugate relationship, we obtain:
$$\frac{\partial \mathbf{u}_i}{\partial \boldsymbol{\theta}^*} = -\mathbf{A}_i^{-1} \frac{\partial \mathbf{A}_i}{\partial \boldsymbol{\theta}^*} \mathbf{u}_i, \qquad \frac{\partial \mathbf{u}_i^*}{\partial \boldsymbol{\theta}} = -(\mathbf{A}_i^*)^{-1} \frac{\partial \mathbf{A}_i^*}{\partial \boldsymbol{\theta}} \mathbf{u}_i^*, \qquad \frac{\partial \mathbf{u}_i^*}{\partial \boldsymbol{\theta}^*} = -(\mathbf{A}_i^*)^{-1} \frac{\partial \mathbf{A}_i^*}{\partial \boldsymbol{\theta}^*} \mathbf{u}_i^*. \tag{20}$$

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{M} \left(\frac{\partial J}{\partial \mathbf{u}_{i}} \left(-\mathbf{A}_{i}^{-1} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i} \right) + \frac{\partial J}{\partial \mathbf{u}_{i}^{*}} \left(-(\mathbf{A}_{i}^{*})^{-1} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i}^{*} \right) \right),
\frac{\partial \chi}{\partial \boldsymbol{\theta}^{*}} = \sum_{i=1}^{M} \left(\frac{\partial J}{\partial \mathbf{u}_{i}} \left(-\mathbf{A}_{i}^{-1} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i} \right) + \frac{\partial J}{\partial \mathbf{u}_{i}^{*}} \left(-(\mathbf{A}_{i}^{*})^{-1} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i}^{*} \right) \right).$$
(21)

Gradient from the Adjoint Method Similar to the proof in the time domain, we first introduce the Lagrangian function

$$\mathcal{L} = J(\{\mathbf{u}_i(\boldsymbol{\theta}, \boldsymbol{\theta}^*), \mathbf{u}_i^*(\boldsymbol{\theta}, \boldsymbol{\theta}^*)\}, \mathbf{d}^{obs}) + \sum_{i=1}^{M} \boldsymbol{\lambda}_i^{\dagger} (\mathbf{A}_i(\boldsymbol{\theta}) \mathbf{u}_i - \mathbf{s}_i) + \sum_{i=1}^{M} \boldsymbol{\Lambda}_i^T (\mathbf{A}_i^*(\boldsymbol{\theta}) \mathbf{u}_i^* - \mathbf{s}_i^*), (22)$$

where $\lambda_i, \Lambda_i \in \mathbb{C}^N$ are adjoint variables, and λ_i^{\dagger} denotes the conjugate transpose.

Taking Wirtinger derivatives with respect to \mathbf{u}_i gives the adjoint equation:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{u}_{i}} = \frac{\partial J}{\partial \mathbf{u}_{i}} + \boldsymbol{\lambda}_{i}^{\dagger} \mathbf{A}_{i} = 0 \implies \frac{\partial J}{\partial \mathbf{u}_{i}} = -\boldsymbol{\lambda}_{i}^{\dagger} \mathbf{A}_{i} \implies \mathbf{A}_{i}^{\dagger} \boldsymbol{\lambda}_{i} = -\left(\frac{\partial J}{\partial \mathbf{u}_{i}}\right)^{\dagger}.$$
 (23)

Similarly, taking Wirtinger derivatives with respect to \mathbf{u}_i^* yields another adjoint equation:

$$\frac{\partial J}{\partial \mathbf{u}_i^*} = -\mathbf{\Lambda}_i^T \mathbf{A}_i^* \qquad \mathbf{A}_i^T \mathbf{\Lambda}_i^* = -\left(\frac{\partial J}{\partial \mathbf{u}_i^*}\right)^{\dagger}. \tag{24}$$

Substituting adjoint expressions, the derivatives in Equation 18 are

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{M} \left(\boldsymbol{\lambda}_{i}^{\dagger} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i} + \boldsymbol{\Lambda}_{i}^{T} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i}^{*} \right), \qquad \frac{\partial \chi}{\partial \boldsymbol{\theta}^{*}} = \sum_{i=1}^{M} \left(\boldsymbol{\lambda}_{i}^{\dagger} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i} + \boldsymbol{\Lambda}_{i}^{T} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i}^{*} \right). \tag{25}$$

Gradient from Automatic Differentiation To compare with adjoint derivatives in Equation 25, we define the adjoint variables λ_i and Λ_i using the following equations:

$$\mathbf{A}_{i}^{\dagger} \mathbf{\lambda}_{i} = -\left(\frac{\partial J}{\partial \mathbf{u}_{i}}\right)^{\dagger} \Rightarrow \frac{\partial J}{\partial \mathbf{u}_{i}} = -\mathbf{\lambda}_{i}^{\dagger} \mathbf{A}_{i} , \quad \mathbf{A}_{i}^{T} \mathbf{\Lambda}_{i}^{*} = -\left(\frac{\partial J}{\partial \mathbf{u}_{i}^{*}}\right)^{\dagger} \Rightarrow \frac{\partial J}{\partial \mathbf{u}_{i}^{*}} = -\mathbf{\Lambda}_{i}^{T} \mathbf{A}_{i}^{*}. \quad (26)$$

By substituting into the derivatives in Equation 21, both the negative signs and the inverse terms cancel pairwise (e.g., \mathbf{A}_i and \mathbf{A}_i^{-1}). Thus, the final expressions are given by

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{M} \left(\boldsymbol{\lambda}_{i}^{\dagger} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i} + \boldsymbol{\Lambda}_{i}^{T} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}} \mathbf{u}_{i}^{*} \right), \qquad \frac{\partial \chi}{\partial \boldsymbol{\theta}^{*}} = \sum_{i=1}^{M} \left(\boldsymbol{\lambda}_{i}^{\dagger} \frac{\partial \mathbf{A}_{i}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i} + \boldsymbol{\Lambda}_{i}^{T} \frac{\partial \mathbf{A}_{i}^{*}}{\partial \boldsymbol{\theta}^{*}} \mathbf{u}_{i}^{*} \right). \tag{27}$$

Equation 25 and Equation 27 give the same gradient, and the adjoint equations for λ^T and Λ^T in Equation 23 and Equation 26 coincide; therefore, the two approaches yield exactly equivalent gradients.

The above proof is valid for arbitrary choices of the wave equation and the misfit function.

4.2 Numerical Validation

To show the numerical equivalence on a broad range of scenarios, we conducted experiments on anomaly synthetic models, the Marmousi2 model, and the OpenFWI-B family, with acoustic wave in the time domain and Love wave in the frequency domain.

As shown in Appendix C, across all tested scenarios, these metrics indicate numerical equivalence: correlations and SSIM values are very close to 1 (difference $<10^{-4}$), while Difference Norm and Difference Max consistently remain on the order of 10^{-10} , which almost reaches floating-point precision. This strong numerical evidence reinforces the equivalence in theory.

Parameter / MS-SSIM† Time Domain	FWI L_2	Travel Time
Acoustic	v_p / $0.982\pm$ 5.7e-4 (0.115)	v_p / $0.887 \pm 1.4e-3 (0.019)$
SH	v_s / $0.884\pm$ 1.3e-3 (0.012)	v_s / $0.879\pm$ 5.8e-4 (0.007)
P-SV	v_p / $0.896\pm$ 3.5e-3 $(0.029 estriction)$	v_p / 0.877 ±2.1e-4 $(0.010$ $)$
Frequency Domain	$\mathrm{FWI}L_2$	Attenuation
Visco-acoustic Visco-elastic	Q_p / 0.531 \pm 2.5e-4 (0.349 \uparrow) Q_s / 0.656 \pm 8.7e-4 (0.474 \uparrow)	Q_p / 0.583±1.2e-3 (0.401 \uparrow) Q_s / 0.637±5.1e-4 (0.455 \uparrow)

5 EXPERIMENTS

Implementation We implemented ten tomography scenarios shown in Table 1. Our baseline is (1) ADFWI (Liu et al., 2024) for time-domain acoustic and P-SV wave FWI, and (2) a Matlabbased visco-acoustic wave equation solver (Amini & Javaherian, 2011). Wave equations and misfit expressions used are detailed in Appendix D.

Cross-scenario Experiments We validated our unified framework across different scenarios. For time-domain seismic tomography, we employed the classical geometrically complex benchmark Marmousi2 model (Martin et al., 2006). For frequency-domain attenuation imaging, we adopted the Q anomaly model to simulate the Q inversion process following velocity imaging. We introduced

MS-SSIM (Multi-Scale Structural Similarity) as the evaluation metric for its consistency in practical applications (Wang et al., 2003; Min et al., 2023) (the advantages over SSIM are discussed in Appendix G). No training set was used, and the experimental settings are provided in Appendix E.3.

Table 1 and Figure 4 consistently show successful imaging across different scenarios, demonstrating our method's universality. Gradient visualizations are provided in Appendix H.

Figure 4: Result illustrations. **a-c**, Cross-scenario experiments (**a**: models, **b**: frequency-domain results, **c**: time-domain results). **d**, OpenFWI experiments. **e**, Detailed comparisons.

OpenFWI Benchmark Experiments We compared our method with NN methods on the Open-FWI Benchmark Dataset (Deng et al., 2022), particularly OpenFWI-B Family (difficult version). SSIM is adopted following previous tests. The experimental settings are detailed in Appendix E.4.

The inversion visualization in Figure 4 demonstrates that our method provides a clear imaging of the structures across geological types. Figure 4e further shows that our reconstruction of high-frequency details outperforms that of NN methods.

However, in the quantitative results (Appendix Table 15), our method scores higher than NN-based methods on models with rich details (*e.g.*, Style-B) but lower on homogeneous models (*e.g.*, FlatFault-B). This inconsistency mainly arises because SSIM is sensitive to high-frequency artifacts (Appendix G): (1) NN-based results are smoother, which naturally yields higher SSIM values (Figure 4e), and (2) our physics-driven approach, using a fixed 15 Hz source in OpenFWI, captures complex structures but also introduces extra noise in homogeneous regions, which lowers SSIM (Appendix I).

Low SSIM caused by high-frequency noise does not indicate ineffectiveness in practical applications. First, such artifacts are too minor to affect geological interpretation. As validated in Appendix I, high-frequency artifacts cause the resulting SSIM to be even lower than initial SSIM, but subsurface structures remain clear and accurately interpretable. Second, perfectly homogeneous regions, as assumed in the synthetic OpenFWI, rarely exist in real scenarios. Cases rich in structural details, such as Style-B, are closer to real geological settings, where deep learning methods produce smoother results with fewer details.

Our method does not achieve state-of-the-art performance consistently, but as a unified and extensible baseline platform, it shows potential for recovering detailed structures and practical tasks without training sets.

Field Experiments To demonstrate our practical application, we tested our method with a Lovewave checkerboard experiment in the Nankai subduction zone (Nakanishi et al., 2008). No training set was used for this experiment. We added checkerboard perturbations to the field model and inverted them from the original field model (Appendix E.5). Figure 5 and Table 14 (SSIM increases from 0.0537 to 0.8812±7.7e-4) show that our method successfully inverted the perturbations and demonstrate potential for field-scale tasks. Such practical tasks are challenging for NN-based methods due to the lack of suitable datasets.

Figure 5: Field checkerboard experiment. **a** Initial / background model. **b** True model with perturbations. **c** Tomography result. Bottom panels of **b** and **c** are differences from the background model.

6 Cost Analysis

We present a comprehensive cost analysis of the AD method and the adjoint method, summarized in Table 2, covering the entire workflow from analytical derivation to final code execution (details in Appendix J). The results demonstrate that AD avoids laborious derivations and implementations, with only modest computational overhead within practical limits. Employing standard optimization techniques (*e.g.*, mini-batching or checkpointing) can further reduce the overhead.

Table 2: Summary of cost analysis for m wave equations and n misfits.

	Adjoint Method	AD (Ours)
Derivation Implementation	$m \times n$ adjoint sources and wavefields $m \times n$ time-reversal solvers and operators	None None
Memory	1×	$1.3 - 2.0 \times$
Time	1×	$1.3 - 1.8 \times$

7 Conclusion

We present a unified, practical, and white-box seismic tomography framework based on AD, eliminating manual workload while ensuring broad applications to diverse range of misfit functions, wave physics and model parameters. We theoretically and numerically prove that AD-based gradients are equivalent to those from the traditional adjoint method. The generality and practicality of our method are validated across ten diverse scenarios, the OpenFWI dataset and a field checkerboard test in the Nankai subduction zone. Our flexible open-source platform supports direct usage and the development of new methods. Moreover, this work shows that AD is a general and efficient tool for solving scientific inverse problems, which can be extended to more research areas (e.g., computed tomography (Guzzi et al., 2023; Schoonhoven et al., 2024) and computational fluid dynamics (Zubair et al., 2023)). Future work will focus on: (1) extending our framework to 3D problems; (2) exploring hybrid approaches that leverage NNs for smooth initial model construction, thereby reducing the dependence of physics-based methods on the initial guess (Appendix K). Our method can then be applied to recover the fine structural details that NNs alone cannot capture.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. This research contributes to societal well-being by advancing methodologies for natural hazard assessment and fundamental scientific discovery.

To promote responsible stewardship, we offer our framework as a fully transparent, white-box, and open-source platform. This approach ensures reproducibility, encourages verifiable research, and makes advanced scientific tools more accessible.

All experiments were conducted on publicly available benchmark datasets or previously published scientific data, raising no privacy issues. We believe the benefits of this transparent and accessible tool for the scientific community align with the principles of responsible research.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have open-sourced our entire PyTorch-based platform, with the code provided in the supplementary material. The theoretical equivalence between our AD-based method and the traditional adjoint method is proven in Section 4. All experimental settings, including model parameters, source configurations, and computational resources (hardware and software versions), are comprehensively documented in Appendix E and code. The specific wave equations and misfit functions used across our experiments are formally defined in Appendix D.

Furthermore, the supplementary material includes animated visualizations of the forward wave propagation and inversion processes to help in understanding and verification.

USE OF LLM

Please refer to Appendix 7.

REFERENCES

- N Amini and A Javaherian. A matlab-based frequency-domain finite-difference package for solving 2d visco-acoustic wave equation. *Waves in Random and Complex Media*, 21(1):161–183, 2011.
- Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey. *Journal of machine learning research*, 18(153):1–43, 2018.
- Thomas M Brocher. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the seismological Society of America, 95(6):2081–2092, 2005.
 - Danping Cao and Wenyuan Liao. A computational method for full waveform inversion of crosswell seismic data using automatic differentiation. *Computer Physics Communications*, 188:47–58, 2015.
 - Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng, Yinpeng Chen, and Youzuo Lin. Openfwi: Large-scale multi-structural benchmark datasets for full waveform inversion. *Advances in Neural Information Processing Systems*, 35:6007–6020, 2022.
 - Aditya Desai, Zhaozhuo Xu, Menal Gupta, Anu Chandran, Antoine Vial-Aussavy, and Anshumali Shrivastava. Raw nav-merge seismic data to subsurface properties with mlp based multi-modal information unscrambler. *Advances in Neural Information Processing Systems*, 34:8740–8752, 2021.
 - Shihang Feng, Peng Jin, Yinpeng Chen, Xitong Zhang, Zicheng Liu, David Alumbaugh, Michael Commer, and Youzuo Lin. Weakly supervised inversion of multi-physics data for geophysical properties. In *ICML 2022 2nd AI for Science Workshop*.
 - Shihang Feng, Youzuo Lin, and Brendt Wohlberg. Multiscale data-driven seismic full-waveform inversion with field data study. *IEEE transactions on geoscience and remote sensing*, 60:1–14, 2021.
 - Shihang Feng, Hanchen Wang, Chengyuan Deng, Yinan Feng, Yanhua Liu, Min Zhu, Peng Jin, Yinpeng Chen, and Youzuo Lin. E: Multiparameter benchmark datasets for elastic full waveform inversion of geophysical properties. In *NeurIPS*, 2023.
 - Yinan Feng, Yinpeng Chen, Yueh Lee, and Youzuo Lin. On a hidden property in computational imaging. *arXiv preprint arXiv:2410.08498*, 2024.
 - Angela Gao, Jorge Castellanos, Yisong Yue, Zachary Ross, and Katherine Bouman. Deepgem: Generalized expectation-maximization for blind inversion. *Advances in Neural Information Processing Systems*, 34:11592–11603, 2021.
 - Dengliang Gao. Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review. *Geophysics*, 76(2):W1–W13, 2011.
 - Naveen Gupta, Medha Sawhney, Arka Daw, Youzuo Lin, and Anuj Karpatne. A unified framework for forward and inverse problems in subsurface imaging using latent space translations. *arXiv* preprint arXiv:2410.11247, 2024.
 - Francesco Guzzi, Alessandra Gianoncelli, Fulvio Billè, Sergio Carrato, and George Kourousias. Automatic differentiation for inverse problems in x-ray imaging and microscopy. *Life*, 13(3):629, 2023.
 - Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin. Unsupervised learning of full-waveform inversion: Connecting cnn and partial differential equation in a loop. *arXiv* preprint arXiv:2110.07584, 2021.
 - Dongzhuo Li, Kailai Xu, Jerry M Harris, and Eric Darve. Coupled time-lapse full-waveform inversion for subsurface flow problems using intrusive automatic differentiation. *Water Resources Research*, 56(8):e2019WR027032, 2020.

- Shiqian Li, Zhi Li, Zhancun Mu, Shiji Xin, Zhixiang Dai, Kuangdai Leng, Ruihua Zhang, Xiaodong Song, and Yixin Zhu. Globaltomo: A global dataset for physics-ml seismic wavefield modeling and fwi. *arXiv* preprint arXiv:2406.18202, 2024.
 - Feng Liu, Haipeng Li, Guangyuan Zou, and Junlun Li. Automatic differentiation-based full waveform inversion with flexible workflows. *arXiv* preprint arXiv:2412.00486, 2024.
 - Qinya Liu and Jeroen Tromp. Finite-frequency kernels based on adjoint methods. *Bulletin of the Seismological Society of America*, 96(6):2383–2397, 2006.
 - Xin Liu. Finite-frequency sensitivity kernels for seismic noise interferometry based on differential time measurements. *Journal of Geophysical Research: Solid Earth*, 125(4):e2019JB018932, 2020.
 - M Malinowski, S Operto, and Alessandra Ribodetti. High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion. *Geophysical Journal International*, 186(3):1179–1204, 2011.
 - Gary S Martin, Robert Wiley, and Kurt J Marfurt. Marmousi2: An elastic upgrade for marmousi. *The leading edge*, 25(2):156–166, 2006.
 - Hansruedi Maurer, Andrew Curtis, and David E Boerner. Seismic data acquisition: Recent advances in optimized geophysical survey design. *Geophysics*, pp. 1SO–Z116, 2010.
 - Fan Min, Linrong Wang, Shulin Pan, and Guojie Song. D 2 unet: dual decoder u-net for seismic image super-resolution reconstruction. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–13, 2023.
 - Ayako Nakanishi, Shuichi Kodaira, Seiichi Miura, Aki Ito, Takeshi Sato, Jin-Oh Park, Yukari Kido, and Yoshiyuki Kaneda. Detailed structural image around splay-fault branching in the nankai subduction seismogenic zone: Results from a high-density ocean bottom seismic survey. *Journal of Geophysical Research: Solid Earth*, 113(B3), 2008.
 - Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
 - Malcolm Sambridge, Peter Rickwood, Nicholas Rawlinson, and Silvano Sommacal. Automatic differentiation in geophysical inverse problems. *Geophysical Journal International*, 170(1):1–8, 2007.
 - Richard Schoonhoven, Alexander Skorikov, Willem Jan Palenstijn, Daniël M Pelt, Allard A Hendriksen, and K Joost Batenburg. How auto-differentiation can improve ct workflows: classical algorithms in a modern framework. *Optics Express*, 32(6):9019–9041, 2024.
 - Gerard T Schuster. Seismic inversion. Society of Exploration Geophysicists, 2017.
 - Gerard T Schuster, Yuqing Chen, and Shihang Feng. Review of physics-informed machine-learning inversion of geophysical data. *Geophysics*, 89(6):T337–T356, 2024.
 - Carl Tape, Qinya Liu, Alessia Maggi, and Jeroen Tromp. Adjoint tomography of the southern california crust. *Science*, 325(5943):988–992, 2009.
 - Jeroen Tromp, Carl Tape, and Qinya Liu. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. *Geophysical Journal International*, 160(1):195–216, 2005.
 - Hanchen Wang, Yinan Feng, Yinpeng Chen, Jeeun Kang, Yixuan Wu, Young Jin Kim, and Youzuo Lin. Wavediffusion: Exploring full waveform inversion via joint diffusion in the latent space. *arXiv* preprint arXiv:2410.09002, 2024.
 - Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality assessment. In *The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers*, 2003, volume 2, pp. 1398–1402. Ieee, 2003.

- Yue Wu and Youzuo Lin. Inversionnet: An efficient and accurate data-driven full waveform inversion. *IEEE Transactions on Computational Imaging*, 6:419–433, 2019.
- Qili Zeng, Shihang Feng, Brendt Wohlberg, and Youzuo Lin. Inversionnet3d: Efficient and scalable learning for 3-d full-waveform inversion. *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–16, 2021.
- Zhongping Zhang and Youzuo Lin. Data-driven seismic waveform inversion: A study on the robustness and generalization. *IEEE Transactions on Geoscience and Remote sensing*, 58(10): 6900–6913, 2020.
- Min Zhu, Shihang Feng, Youzuo Lin, and Lu Lu. Fourier-deeponet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability, and robustness. *Computer Methods in Applied Mechanics and Engineering*, 416:116300, 2023.
- Weiqiang Zhu, Kailai Xu, Eric Darve, and Gregory C Beroza. A general approach to seismic inversion with automatic differentiation. *Computers & Geosciences*, 151:104751, 2021.
- Weiqiang Zhu, Kailai Xu, Eric Darve, Biondo Biondi, and Gregory C Beroza. Integrating deep neural networks with full-waveform inversion: Reparameterization, regularization, and uncertainty quantification. *Geophysics*, 87(1):R93–R109, 2022.
- Mohammad Zubair, Desh Ranjan, Aaron Walden, Gabriel Nastac, Eric Nielsen, Boris Diskin, Marc Paterno, Samuel Jung, and Joshua Hoke Davis. Efficient gpu implementation of automatic differentiation for computational fluid dynamics. In 2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 377–386. IEEE, 2023.

USE OF LLM

 In the preparation of this manuscript, we utilized LLMs as a general-purpose assistive tool. The use of LLMs was for the following specific tasks:

- Language Polishing: Improving grammar, refining phrasing, and enhancing the overall clarity
 and readability of the text.
- Code Assistance: Debugging code snippets and optimizing parts of the implementation related to our experiments.

A COMPARISON WITH ADSEISMIC

Table 3: Comparison of ADSeismic(Zhu et al., 2021) and our method.

Method	Equivalence Proof	Domain	Wave Types	Misfit	Language
ADSeismic	$\begin{array}{c} {\rm Time\text{-}domain} \\ {\rm Forward} \\ {\rm +} \ L_2 \ {\rm Misfit} \end{array}$	Time	Acoustic, P-SV	L_2	Julia
Ours	Time- & Frequency-domain Forward + General Misfit	Time & Frequency	General Functionals. (Acoustic, SH, P-SV, Visco-acoustic, Visco-elastic, etc.)	General Functionals. $(L_2,$ Travel Time, Attenuation, etc.)	Python (PyTorch)

B DETAILED DERIVATION

B.1 EQUATION 8

$$\frac{\partial \chi}{\partial \boldsymbol{\theta}} = \frac{\partial \chi}{\partial \boldsymbol{\theta}} + \sum_{i=1}^{N} \frac{\partial \left(\boldsymbol{\lambda}_{i}^{T} \left(\mathbf{A} \mathbf{h}_{i-1} + \mathbf{f}_{i} - \mathbf{h}_{i} \right) \right)}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \frac{\partial J}{\partial \mathbf{h}_{i}} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} + \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \left(\mathbf{A} \frac{\partial \mathbf{h}_{i-1}}{\partial \boldsymbol{\theta}} + \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} - \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} \right)$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} \right) + \sum_{i=1}^{N} \left(\boldsymbol{\lambda}_{i}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{i-1}}{\partial \boldsymbol{\theta}} \right)$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} \right) + \sum_{i=1}^{N} \left(\boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} \right) + \boldsymbol{\lambda}_{1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{0}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} + \boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} \right) + \boldsymbol{\lambda}_{1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{0}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} - \boldsymbol{\lambda}_{i}^{T} + \boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \right) \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} - \boldsymbol{\lambda}_{i}^{T} + \boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \right) \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}$$

$$= \sum_{i=1}^{N} \boldsymbol{\lambda}_{i}^{T} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{i-1} + \sum_{i=1}^{N} \left(\frac{\partial J}{\partial \mathbf{h}_{i}} - \boldsymbol{\lambda}_{i}^{T} + \boldsymbol{\lambda}_{i+1}^{T} \mathbf{A} \right) \frac{\partial \mathbf{h}_{i}}{\partial \boldsymbol{\theta}} - \boldsymbol{\lambda}_{N+1}^{T} \mathbf{A} \frac{\partial \mathbf{h}_{N}}{\partial \boldsymbol{\theta}}$$

B.2 EQUATION 13

 For k = 1, the state update becomes

$$\frac{\partial \mathbf{h}_1}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_0, \tag{29}$$

where \mathbf{h}_0 is the initial state.

For k = 2, applying the chain rule to Equation 1 we have

$$\frac{\partial \mathbf{h}_2}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_1 + \mathbf{A} \, \frac{\partial \mathbf{h}_1}{\partial \boldsymbol{\theta}}. \tag{30}$$

Substituting Equation 29 into Equation 30 gives

$$\frac{\partial \mathbf{h}_2}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_1 + \mathbf{A} \, \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_0. \tag{31}$$

For k = 3, we similarly have

$$\frac{\partial \mathbf{h}_3}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_2 + \mathbf{A} \, \frac{\partial \mathbf{h}_2}{\partial \boldsymbol{\theta}}. \tag{32}$$

Substituting Equation 31 into Equation 32 yields

$$\frac{\partial \mathbf{h}_3}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_2 + \mathbf{A} \left(\frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_1 + \mathbf{A} \, \frac{\partial \mathbf{h}_1}{\partial \boldsymbol{\theta}} \right). \tag{33}$$

Recognizing from Equation 29 that $\frac{\partial \mathbf{h}_1}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_0$, we obtain

$$\frac{\partial \mathbf{h}_3}{\partial \boldsymbol{\theta}} = \mathbf{A}^2 \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_0 + \mathbf{A} \, \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_1 + \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \, \mathbf{h}_2. \tag{34}$$

Extending this recursion to a general time step k, we can show that

$$\frac{\partial \mathbf{h}_k}{\partial \boldsymbol{\theta}} = \sum_{j=1}^k \left(\mathbf{A}^{k-j} \frac{\partial \mathbf{A}}{\partial \boldsymbol{\theta}} \mathbf{h}_{j-1} \right). \tag{35}$$

B.3 EQUATION 14

In Equation 14, the summation is taken over the index set

$$S = \{(k, j) \mid 1 \le j \le k \le N\}. \tag{36}$$

Since addition over a finite set is both commutative and associative, we have

$$\sum_{k=1}^{N} \sum_{j=1}^{k} f(k,j) = \sum_{(k,j) \in S} f(k,j) = \sum_{j=1}^{N} \sum_{k=j}^{N} f(k,j).$$
 (37)

C EQUIVALENCE NUMERICAL VALIDATION

Time-domain acoustic wave This section includes results on the anomaly synthetic models (Table 4), the Marmousi2 model (Table 5), and the OpenFWI-B family (Table 6). Gradients are normalized to [-1,1].

Table 4: Anomaly synthetic models (time-domain acoustic wave).

Size	Difference Norm	Difference Max	Correlation	SSIM
30×30	4.8657e-10	4.8061e-10	1.00000	1.00000
300×300	3.3532e-11	2.9799e-11	1.00000	1.00000

Table 5: Marmousi2 model (time-domain acoustic wave).

Dataset	SSIM
Marmousi2	0.99996

Table 6: OpenFWI-B family (time-domain acoustic wave).

Dataset SSIM FlatVel-B 1.00000 ± 0.00000 CurveVel-B 0.99998 ± 0.00002 FlatFault-B 0.99948 ± 0.00044 CurveFault-B 0.99978 ± 0.00028 Style-B 0.99994 ± 0.00004 Kimberlina-CO2 0.99998 ± 0.00006

> Frequency-domain Love wave This section includes results on the anomaly synthetic models (Table 7) and the Q anomaly model (Table 8).

Table 7: Anomaly synthetic models (frequency-domain Love wave).

Size	Difference Norm	Difference Max	Correlation	SSIM
100×100	1.329615e-10	7.730705e-12	1.00000	1.00000
500×500	2.523199e-10	5.456968e-12	1.00000	1.00000

Table 8: Q anomaly model (frequency-domain Love wave).

FORWARD AND BACKWARD MODULES

D.1 WAVE EQUATIONS

D.1.1 TIME DOMAIN

Acoustic Wave

$$\frac{1}{v_p^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = s, \tag{38}$$

 where p is the pressure, v_p is the compressional wave (P wave) speed, and s is the source.

SH Wave

$$\rho \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \left[\mu \nabla u \right] = s, \tag{39}$$

where u denotes the displacement, μ is the shear modulus, and ρ is the density.

P-SV Wave In an isotropic medium, the P-SV system is

$$\frac{\partial \sigma_{xx}}{\partial t} = (\lambda + 2\mu) \frac{\partial v_x}{\partial x} + \lambda \frac{\partial v_z}{\partial z} + s_{xx},
\frac{\partial \sigma_{zz}}{\partial t} = \lambda \frac{\partial v_x}{\partial x} + (\lambda + 2\mu) \frac{\partial v_z}{\partial z} + s_{zz},
\frac{\partial \sigma_{xz}}{\partial t} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) + s_{xz},$$
(40)

with velocity update equations

$$\rho \frac{\partial v_x}{\partial t} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} + f_x,$$

$$\rho \frac{\partial v_z}{\partial t} = \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} + f_z,$$
(41)

where

- σ_{xx} and σ_{zz} are the normal stress components,
- σ_{xz} is the shear stress component,
- v_x and v_z denote the particle velocities in the x and z directions,
- λ and μ are the Lamé parameters (with μ being the shear modulus),
- ρ is the density.

D.1.2 Frequency Domain

Visco-acoustic Wave Attenuation and dispersion make the propagation velocity frequency-dependent and complex. In the constant-Q (KF) model, a logarithmic frequency term and an imaginary component are introduced. Thus, the acoustic (P-wave) Helmholtz equation is expressed as

$$\nabla^2 P + \frac{\omega^2}{v_p(\omega)^2} P = -S,\tag{42}$$

with the complex velocity defined by

$$\frac{1}{v_p(\omega)} = \frac{1}{v_p} + \frac{1}{\pi v_p Q} \ln\left(\frac{\omega_{\text{ref}}}{\omega}\right) + \frac{i}{2 v_p Q}.$$
 (43)

Here, v_p represents the reference compressional wave speed, Q the quality factor, and $\omega_{\rm ref}$ a reference frequency.

Visco-elastic Wave For viscoelastic media, the displacement is denoted by U, and the shear velocity is considered complex and frequency-dependent. The governing SH equation is

$$\nabla^2 U + \frac{\omega^2}{v_{\circ}(\omega)^2} U = -S,\tag{44}$$

with the KF model defining the complex shear velocity as

$$\frac{1}{v_s(\omega)} = \frac{1}{v_s} + \frac{1}{\pi v_s Q} \ln\left(\frac{\omega_{\text{ref}}}{\omega}\right) + \frac{i}{2 v_s Q}.$$
 (45)

D.2 MISFIT FUNCTIONS

D.2.1 TIME DOMAIN

FWI L_2 **Misfit** Let $d_{ij}^{\rm obs}(t)$ and $d_{ij}^{\rm syn}(t)$ denote the observed and synthetic waveforms for the i-th source and j-th receiver at time t. The waveform L_2 -norm misfit is defined as

$$\mathcal{J} = \sum_{i=1}^{N} \sum_{j=1}^{M} \sqrt{\sum_{t=1}^{T} \left| d_{ij}^{\text{obs}}(t) - d_{ij}^{\text{syn}}(t) \right|^2}, \tag{46}$$

where N is the number of sources, M the number of receivers per source, and T the number of time steps per trace.

Travel-time Misfit Let $d_{ij}^{\rm obs}(t)$ and $d_{ij}^{\rm syn}(t)$ denote the observed and synthetic signals for the i-th source and j-th receiver at time index t. Define the cross-correlation function as

$$C_{ij}(k) = \sum_{l=0}^{L-1} d_{ij}^{\text{syn}}(t) d_{ij}^{\text{obs}}(t+k), \tag{47}$$

with $k \in \{0, 1, \dots, 2L - 2\}$ and L representing the length of the time series for a single trace. The travel-time shift τ_{ij} is then defined by

$$\tau_{ij} = \operatorname{argmax} C_{ij}(k), \tag{48}$$

and the overall travel-time misfit is given by

$$\mathcal{J} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} |\tau_{ij}|^2. \tag{49}$$

D.2.2 FREQUENCY DOMAIN

Attenuation Misfit Let $d_{ij}^{\text{obs}}(k)$ and $d_{ij}^{\text{syn}}(k)$ denote the observed and synthetic complex data in the frequency domain for the *i*-th source and *j*-th receiver at the *k*-th frequency, respectively. The attenuation imaging misfit is defined as

$$\mathcal{J} = \sum_{i=1}^{N} \sum_{j=1}^{M} \sqrt{\sum_{k=1}^{K} \left(\log \frac{|d_{ij}^{\text{obs}}(k)|}{|d_{ij}^{\text{syn}}(k)| + \varepsilon} \right)^2}, \tag{50}$$

where N is the number of sources, M the number of receivers per source, K the number of frequency bins, and ε is a small constant $(e.g., 10^{-10})$ for numerical stability.

E Experimental Settings

E.1 COMPUTATIONAL RESOURCES

All the experiments are conducted on a single NVIDIA RTX A5000 GPU with 24 GB. CUDA version is 12.2 and PyTorch version is 2.7.0. The optimizer is Adam.

E.2 GENERAL SETTINGS

The imaging process is terminated either after a fixed number of iterations or once the misfit reaches a specified threshold. During this process, there is no leakage of the true model. The reported result corresponds to the model obtained at the final iteration, rather than selecting the one with the best performance during optimization.

E.3 CROSS-SCENARIO EXPERIMENTS

For time-domain seismic velocity imaging, the initial velocity model is obtained by applying a heavy Gaussian blur to the true model. For frequency-domain attenuation imaging, the initial velocity model is slightly blurred relative to the true model, whereas the initial Q model is heavily blurred.

The free-surface boundary condition is applied to simulate more realistic field conditions. Noise is added to the observed data. Each result is an average of five repetitions under the same settings. Parameters are in Table 9 and Table 10.

Table 9: Time-domain Parameters

Wave	Size	dx	nt	dt	Source
Acoustic	44×100	80m	1500	0.006s	3 Hz
SH	44×100	80m	4000	0.004s	0.5 Hz
P-SV	44×100	80m	1500	0.004s	3 Hz

Table 10: Frequency-domain Parameters

Wave	Size	dx	nf	df	Source
Visco-acoustic Visco-elastic	50×30 50×30	100m 60m		0.20112	0.25-6 Hz 0.25-6 Hz

E.4 OPENFWI BENCHMARK EXPERIMENTS

Table 11: OpenFWI Vel-B, Fault-B and Style-B Family Parameters

Wave	Size	dx	nt	dt	Source
Acoustic	70×70	10m	1000	0.001s	15 Hz

Table 12: OpenFWI Kimberlina-CO₂ Sub-dataset Parameters

Wave	Size	dx	nt	dt	Source
Acoustic	141×401	10m	1250	0.002s	10 Hz

We compare our method with InversionNet(Wu & Lin, 2019), VelocityGAN(Zhang & Lin, 2020), and UPFWI(Jin et al., 2021).

Following the OpenFWI benchmark experiments, we reproduced the identical acoustic wave settings using a 15 Hz source. Our method is directly applied to 36 models downsampled from the Vel-B, Fault-B and Style-B Family test sets and 15 models from the Kimberlina-CO₂ test set without relying on the training dataset.

The initial model is generated by applying a Gaussian blur to the true model. For fair comparisons, the SSIM of each initial model is lower than that of the deep learning method. Our misfit function is FWI global correlation. The final statistical results are computed by averaging the performance metrics over the test set.

The performance of deep-learning methods is from OpenFWI (Deng et al., 2022). UPFWI fails on CurveFault-B dataset (SSIM is 0.3941), so we fill Table 15 blank. For evaluation, we adopted the SSIM metric following benchmark tests.

Table 13: Field Experiment Parameters

dt

0.01s

Source

 $0.2 \, \mathrm{Hz}$

E.5 FIELD EXPERIMENT

Using the empirical relationship from (Brocher, 2005), we converted the Vp model described in (Nakanishi et al., 2008) into a Vs model as a field background model.

In the ambient noise tomography field experiment, the ocean bottom stations simultaneously act as virtual sources. We used MS-SSIM (Multi-Scale Structural Similarity) as our evaluation metric (Wang et al., 2003) following Cross-scenario Experiments.

Noise is added to the observed data. Our misfit function is FWI global correlation. Parameters are in Table 11.

Table 14: Field experiment results. : change relative to the initial model.

1	044
1	045
1	046

SSIM ↑	Initial	Result
Perturbation	0.0537	0.8812±7.7e-4 (0.8275↑)
Model	0.8211	$0.9609 \pm 5.9 \text{e-4} \ (0.1398)$

F OPENFWI-B TESTS

Table 15: OpenFWI benchmark results. : change relative to the initial model.

1	056
1	057
1	058
1	059

SSIM ↑	InversionNet	VelocityGAN	UPFWI	Ours
FlatVel-B	0.9356	0.9556	0.8874	0.5673±1.0e-1 (0.0871)
CurveVel-B	0.6630	0.7111	0.6614	$0.5216\pm 1.4 e-1 \ (0.086 \mid)$
FlatFault-B	0.7323	0.7552	0.6937	$0.6518 \pm 1.0 \text{e-1} \ (0.032 \mid)$
CurveFault-B	0.6137	0.6033	-	$0.5762 \pm 1.0 e-1 \ (0.056 \mid)$
Style-B	0.7667	0.7249	0.6102	0.8093 ±2.3e-2 (0.256 ↑)
Kimberlina-CO ₂	0.9872	0.9716	-	0.9276±2.9e-2 (0.164†)

G SSIM'S VULNERABILITY TO HIGH-FREQUENCY ARTIFACTS

In practical seismic tomography tasks, inverting structures to find anomalies is the central purpose. A metric is needed to evaluate this performance.

SSIM is sensitive to high-frequency artifacts, although such sensitivity does not impact anomaly detection in practical applications.

To demonstrate SSIM's limitation for imaging anomalies under noisy conditions, we generated a series of reconstructions with increasing levels of blur and noise applied to a model containing a known anomaly.

 In Table 7, although the reconstructed anomaly appears highly noisy, it can still be easily identified for geological interpretation. However, Table 6 shows that SSIM decreases rapidly even when the anomaly remains clear and interpretable.

We introduce Multi-Scale Structural Similarity (MS-SSIM) (Wang et al., 2003) as a practical metric for seismic tomography tasks. Evaluating image fidelity at multiple resolutions improves the perceptual quality of images (Min et al., 2023). In our experiments, MS-SSIM reflects the recovery

of geological anomalies, even when blurred or noisy. This aligns with the real-world goal in seismic exploration: robust detection of subsurface features, rather than producing artificially smooth images that lack detail. Table 6 shows that MS-SSIM is a more robust metric under each noise level, which means MS-SSIM better reflects anomaly detection performance in practical seismic tomography with noise.

Figure 6: SSIM and MS-SSIM comparison in anomaly detection under noisy conditions.

Figure 7: Illustrations of noisy imaging of anomaly.

We further evaluated SSIM and MS-SSIM on reconstructions contaminated with high-frequency noise that does not affect the visual clarity of the geological anomaly. As shown in Figure 9, the model remains clearly visible despite the added noise.

However, the single-scale SSIM score drops sharply in Figure 8. In contrast, MS-SSIM stays essentially constant, demonstrating its robustness to irrelevant noise and its alignment with the true preservation of subsurface features.

Figure 8: SSIM and MS-SSIM comparison under noisy conditions.

Figure 9: Illustrations of noisy imaging.

H GRADIENT VISUALIZATION

Figure 10: Gradient visualization of time-domain imaging.

Figure 11: Gradient visualization of frequency-domain Q imaging.

Figure 12: Gradient visualization of the field checkerboard test.

X(km)

I INCONSISTENCY BETWEEN LOW SSIM AND RECOVERED STRUCTURES

In the OpenFWI benchmark experiment, although detailed features can be clearly recovered, the SSIM drops significantly due to high-frequency noise in the uniform regions. High-frequency artifacts affect our SSIM metric.

For example, the black boxes highlight the layer boundaries in Figure 13, but the SSIM largely decreases.

Figure 13: Inconsistency between SSIM and recovered inversion details. For the top figure, the SSIM drops from an initial 0.732 to 0.508 ($0.224 \mid$). Similarly, the SSIM for the bottom figure decreases from an initial 0.608 to 0.529 ($0.079 \mid$).

J COST ANALYSIS

In order to conduct a comprehensive cost analysis that covers as many wave types, loss functions, and domains as possible, we consider two representative cases:

- acoustic wave with L_2 misfit in the time domain
- SH wave with amplitude misfit for attenuation in the frequency domain

J.1 DERIVATION COST

The adjoint method requires challenging analytical derivations for each specific set of parameters, wave types, and loss functions. This process often involves tedious and difficult manual work, especially when extending to complex numerical computations.

However, no analytical derivation is required for our AD method.

J.1.1 ACOUSTIC WAVE WITH L_2 MISFIT IN THE TIME DOMAIN

Adjoint method Adjoint source:

$$f^{\dagger}(\mathbf{x}_r, t) = d_{\text{syn}}(\mathbf{x}_r, t) - d_{\text{obs}}(\mathbf{x}_r, t)$$

Adjoint wavefield:

$$\frac{1}{c^2(\mathbf{x})}\frac{\partial^2 v(\mathbf{x},t)}{\partial t^2} - \nabla^2 v(\mathbf{x},t) = f^\dagger(\mathbf{x},t)$$

Gradient:

$$\frac{\delta J}{\delta c(\mathbf{x})} = \frac{2}{c(\mathbf{x})} \int_0^T v(\mathbf{x}, t) \cdot \left(\nabla^2 u(\mathbf{x}, t) \right) dt$$

AD Method No analytical derivation is required.

J.1.2 SH WAVE WITH AMPLITUDE MISFIT FOR ATTENUATION IN THE FREQUENCY DOMAIN

Adjoint method Forward model:

$$Au = b, \quad v_s^{\text{complex}} = v_s + i \cdot \frac{v_s}{2Q}, \quad \mu^{\text{complex}} = \rho \cdot \left(v_s^{\text{complex}}\right)^2$$

Amplitude Misfit:

$$J = \sum_i \big| \log |d_i^{\text{obs}}| - \log |d_i^{\text{syn}}| \; \big|^2$$

Adjoint wavefield:

$$f^{\mathrm{adj}} = -\operatorname{sign}\!\!\left(\log|d_i^{\mathrm{obs}}| - \log|d_i^{\mathrm{syn}}|\right) \cdot \frac{d_i^{\mathrm{syn}}}{|d_i^{\mathrm{syn}}|^2}, \qquad A^H \lambda = f^{\mathrm{adj}}$$

Gradient:

$$\frac{\partial J}{\partial Q(i,j)} = \operatorname{Re} \left[\lambda^*(i,j) \cdot \left(-\frac{\omega^2}{\left(\mu^{\text{complex}}\right)^2} \right) \cdot \frac{\partial \mu^{\text{complex}}}{\partial Q} \cdot u(i,j) \right]$$

where

$$\frac{\partial \mu^{\rm complex}}{\partial Q} = \rho \cdot 2 v_s^{\rm complex} \cdot \left(-i \, \frac{v_s}{2Q^2} \right)$$

Such adjoint derivations are tedious and error-prone, particularly when complex numbers are involved.

AD Method No analytical derivation is required.

J.2 IMPLEMENTATION COST

 For each forward model and misfit, the adjoint approach requires separate backward solver implementation. Even for the simple L_2 misfit this means coding a dedicated time-reversal solver, while more advanced cases (e.g. amplitude misfit with attenuation) become non-self-adjoint and complex-valued.

With AD, none of this is needed. Gradients are obtained directly by a single line of code: loss.backward(), and are theoretically and numerically exact.

Workload comparison: For m forward models and n misfits,

• Shared workload (easy):

m forward modeling + n misfit implementations

As shared workload, m forward simulation and n misfit implementations are excluded from comparison.

• Workload saved by AD (challenging):

 $m \times n$ adjoint source derivations $+ m \times n$ adjoint implementations

AD thus saves the most challenging part, while supporting arbitrary wave equations and misfits in time and frequency domains.

J.3 TIME AND MEMORY COST

Since deriving the adjoint wavefield with high-precision simulations is very challenging, we use simple simulations for testing here.

J.3.1 ACOUSTIC WAVE WITH L_2 MISFIT (TIME DOMAIN, 10,000 TIME STEPS)

Table 16: Memory cost comparison.

Size	AD	Adjoint	AD / Adjoint
30×30×10000	0.15 GB	0.08 GB	1.88
$100 \times 100 \times 10000$	1.53 GB	0.78 GB	1.96
$300 \times 300 \times 10000$	13.53 GB	6.81 GB	1.99

Table 17: Time cost comparison.

Size	AD	Adjoint	AD / Adjoint
30×30×10000	4.2709 s	2.7517 s	1.55
$100 \times 100 \times 10000$	4.3207 s	2.7518 s	1.57
$300 \times 300 \times 10000$	5.0545 s	2.9544 s	1.71

J.3.2 SH WAVE WITH AMPLITUDE MISFIT FOR ATTENUATION IN THE FREQUENCY DOMAIN

Table 18: Memory cost comparison.

Size	AD	Adjoint	AD / Adjoint
100×100	7.6 MB	6.1 MB	1.25
500×500	196.11 MB	131.99 MB	1.49

Table 19: Time cost comparison.

Size	AD	Adjoint	AD / Adjoint
100×100	1.3454 s	1.0204 s	1.32
500×500	41.4316 s	32.3664 s	1.28

K INITIAL MODEL DEPENDENCY

Our physics-driven method approach requires updating from an initial guess, which can usually be converted using ray-theory inversion or other seismic models.

Here we show the initial model dependencies on the OpenFWI dataset. Despite the observed initial model dependency (the higher the initial SSIM, the higher the resulting SSIM), our method demonstrates robustness to the quality of the initial model. For example, even when starting with a very blurred initial model (SSIM is only 0.4), it can still basically invert the model and capture the details.

In the future we explore incorporating deep learning methods to mitigate the reliance on initial models.

Figure 14: Initial model dependency.