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ABSTRACT

We study the convergence properties of Stein Variational Gradient Descent (SVGD)
algorithm for sampling from a non-normalized probabilistic distribution p∗(x) ∝
exp(−f∗(x)). Compared with Kernelized Stein Discrepancy (KSD) convergence
analyzed in previous literature, KL convergence as a more convincing criterion
can better explain the effectiveness of SVGD in real-world applications. In the
population limit, SVGD performs smoothed gradient descent with kernel integral
operator. Notably, SVGD with smoothing kernels suffers from gradient vanishing
in low-density areas, which makes the error term between smoothed gradient and
the Wasserstein gradient not controllable. In this context, we introduce a reweighted
kernel to amplify the smoothed gradient in low-density areas, which leads to a
bounded error term. When the p∗(x) satisfies log-Sobolev inequality, we develop
the convergence rate for SVGD in KL divergence with the reweighted kernel. Our
analysis points out the defects of conventional smoothing kernels in SVGD and
provides the convergence rate for SVGD in KL divergence.

1 INTRODUCTION

Sampling from non-normalized distributions is a crucial task in statistics. In particular, in Bayesian
inference, Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) are considered two
mainstream lines to handle the intractable integration of posterior distributions. On the one hand,
although methods based on MCMC, e.g., Langevin Monte Carlo (Durmus & Moulines, 2019; Welling
& Teh, 2011) (LMC) and Metropolis-adjusted Langevin algorithm (Xifara et al., 2014) (MALA), are
able to provide approximate target distributions with arbitrarily small error (Wibisono, 2018), the
sample efficiency is low due to the lack of repulsive force between samples (Duncan et al., 2019;
Korba et al., 2020). On the other hand, VI-based sampling methods (Blei et al., 2017; Ranganath
et al., 2014) can improve the sampling efficiency by reformulating inference as an optimization
problem. However, restricting the search space of the optimization problem to some parametric
distributions in VI usually causes a huge gap between its solution and the target distribution p∗.

Inspired by conventional VI, a series of recent works analyze LMC as the optimization problem of
Kullback-Leibler (KL) divergence (Wibisono, 2018; Bernton, 2018; Durmus et al., 2019), i.e.,

argmin
p∈P2(Rd)

Hp∗(p) := DKL(p∥p∗) =
∫

p(x) ln
p(x)

p∗(x)
dx (1)

where P2(Rd) is the set of Radon-Nikodym derivatives of probability measures ν over Lebesgue
measure such that p(x) = dν(x)/dx,

∫
∥x∥2p(x)dx < ∞. LMC is considered as a discrete scheme

of the gradient flow of the relative entropy by driving particles with stochastic and energy-induced
force. Besides, to take the best of both MCMC and VI, Stein Variational Gradient Descent (Liu &
Wang, 2016) (SVGD) was proposed as a non-parametric VI method. It replaces the stochastic force
in LMC with the interaction between particles and approximates the target distribution by a driving
force in Reproducing Kernel Hilbert space (RKHS). It means the gradient flow of SVGD is defined
by the functional derivative projection of Eq. 1 to RKHS. The empirical performance of SVGD
and its variants have been largely demonstrated in various tasks such as learning deep probabilistic
models (Liu & Wang, 2016; Pu et al., 2017), Bayesian inference (Liu & Wang, 2016; Feng et al.,
2017; Detommaso et al., 2018), and reinforcement learning (Liu et al., 2017).
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In addition to rich applications, there is a lot of work on the theoretical analysis of SVGD. For
example, Kernelized Stein Discrepancy (KSD) convergence properties of SVGD under asymptotic
and non-asymptotic settings are investigated by Liu (2017); Lu et al. (2019) and Korba et al. (2020);
Salim et al. (2021; 2022), respectively. However, different from the convergence of KL divergence in
the analysis of LMC (Cheng & Bartlett, 2018; Vempala & Wibisono, 2019), KSD convergence cannot
deduce the effectiveness of SVGD in some real-world applications, e.g., posterior sampling (Welling
& Teh, 2011) and non-convex learning (Raginsky et al., 2017). Then, to provide KL convergence,
some other works (Duncan et al., 2019; Korba et al., 2020) present a linear convergence of SVGD
with Stein log-Sobolev inequality (SLSI) (Duncan et al., 2019). Nonetheless, different from the
clear meaning and criteria of standard log-Sobolev inequality (LSI) in the analysis of LMC (Vempala
& Wibisono, 2019), the establishment of SLSI requires the property of the coupling of designed
smoothing kernels and the target distribution, which can hardly be verified in commonly used
kernels (Duncan et al., 2019). In addition, SLSI in higher dimensions is more challenging to hold.

To fill these gaps, in this paper, we aim to provide the convergence rate of SVGD (in the infinite
particle regime) in terms of KL objective, when p∗ = e−f∗ satisfies standard LSI. Specifically,
we first point out that the SVGD with smoothing kernel, e.g., RBF kernel, suffers from gradient
vanishing in low-density areas due to the extra pt(x) scaling. Then, we denote the importance
of reweighted kernels by dividing pt(x) or p∗(x), where the scaling of smoothed gradients can
be normalized. With the reweighting scaling p

−1/2
∗ (x)p

−1/2
∗ (y) for kernel k(x,y) and regularity

conditions, SLSI in higher dimensions can be nearly established with an additional term controlled
by kernel approximation error. Finally, by choosing a proper reweighted smoothing kernel, the KL
divergence of SVGD dynamics obtains a local linear convergence rate to any neighborhood of p∗(x)
under mild assumptions when the initialization p0(x) is relatively close to p∗(x).

The main contributions of the paper are as follows:

• We introduce reweighted kernels to SVGD which replaces traditional smoothing kernels
and overcomes the gradient vanishing problem in low-density areas.

• We study the KL convergence rate of SVGD algorithm. Under the standard LSI and some
mild assumptions, we show SVGD with a reweighted kernel has a local linear convergence
rate to any neighborhood of p∗(x).

2 PRELIMINARIES

In this section, we first introduce important notations used in the following sections. Then, we explain
how to optimize functionals on Wasserstein space by continuous updates in the infinite particle regime.
After that, we show that the key condition LSI on the target distribution to obtain the KL convergence
rate of LMC. However, the convergence rate of SVGD dynamics is non-trivial with this assumption.

Notations. In following sections, bold letters x,y, z denote vectors in Rd, and B(x, r) means the
open ball centered at x with radius r > 0. For function f : Rd → R, ∇f(·) and ∇2f(·) refer to its
gradient and Hessian matrix respectively. For function f : Rd → Rd, ∇f(·) and ∇ · f(·) present the
Jacobian matrix and divergence. For function with multiple variables, ∇i means the gradient w.r.t
i-th variable. The distributions are assumed to be absolutely continuous with respect to the Lebesgue
measure, which produces density function p. The probability density function of the target posterior
is denoted by p∗. The density at time t is pt. Notation ∥ · ∥ denotes 2-norm for both vectors and
matrix. In Hilbert space H equipped with the inner product ⟨·, ·⟩H, the norm is induced as ∥ · ∥H.
The set P2(X ) is consist of probability measure µ on X with finite second order moment. k̃ denotes
a function smoother, such as exp(−∥x∥2), max{0, 1− ∥x∥}.

2.1 OPTIMIZATION IN THE WASSERSTEIN SPACE

Sampling algorithms can be considered as optimizing some given functionals in the Wasserstein
space as Eq. 1. Generally, they only update particles, which causes the evolution of the particles’
distribution. Such an evolution finally affects the objective functional.

In particular, given initial distribution x0 ∼ p0(x) and function class H, suppose the update of xt is
dxt = ϕt(xt), (2)
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where ϕt : Rd → Rd ∈ H. By the continuity equation, we have the differential equation for pt(x),
dpt(x)

dt
= −∇ · (pt(x)ϕt(x)).

For any suitable functional F w.r.t. pt, its evolution can be presented as
d

dt
F(pt) =

∫
Rd

δF
δp

(pt)∂tptdx =

∫
Rd

∇δF
δp

(pt) · ϕt(x)dpt.

where δF/δp denotes the L2(Rd)-functional derivative (Villani, 2009; Duncan et al., 2019). Assum-
ing that F = Hp∗ , we have
Proposition 2.1. The evolution of KL divergence with Eq. 2 is

dHp∗(pt)

dt
=−

∫
pt(x)ϕt(x)

⊤∇ ln
p∗(x)

pt(x)
dx. (3)

Proposition 2.1 is a direct result of the functional derivative for KL divergence, where δF/δp =
ln p+ 1 + ln p∗ (Chapter 15 of Villani (2009)). By choosing ϕt which decreases KL divergence via
Eq. 3, we can optimize pt to approach p∗.

2.2 LOG-SOBOLEV INEQUALITY

In the Wasserstein space optimization literature, LSI is particularly crucial to obtaining the conver-
gence rate, which is an analogue to Polyak-Lojasiewicz (PL) inequality in Euclidean space. LSI
applies to a wider class of measures than log-concave distributions and can be checked by Bakry-
Emery criterion Bakry & Émery (1985). Specifically, bounded perturbation and Lipschitz mapping
can preserve the establishment of LSI Vempala & Wibisono (2019), where log-concavity would be
failed. For example, subtracting some small Gaussians from a strongly log-concave distribution
will destroy the log-concavity of the original distribution, while it still satisfies LSI as long as the
Gaussians we subtract are small enough. When the target distribution p∗ satisfies µ-LSI, it denotes

Ep∗

[
g2 ln g2

]
− Ep∗

[
g2
]
lnEp∗

[
g2
]
≤ 2

µ
Ep∗

[
∥∇g∥2

]
, (4)

for any differentiable function g ∈ L2(ν). Such an inequality usually provides some connection
between the sufficient descent of functional evolution and its exact values.

Coupling log-Sobolev inequality with Langevin dynamics. In particular, the most popular algo-
rithm, Langevin dynamics Vempala & Wibisono (2019) chooses

ϕt(x) = ∇ ln
p∗(x)

pt(x)
,

dpt(x)

dt
= ∇ ·

(
pt(x)∇ ln

pt(x)

p∗(x)

)
to decrease the KL functional (Eq. 3) which is equivalent to the particles’ update,

dxt = −∇f∗(x)dt+
√
2dBt, (5)

where Bt is standard Brownian motion. The introduction of randomness can also convert ∇ ln pt(x)
to a tractable form and the dynamics becomes

dHp∗(pt)

dt
= −

∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx (6)

where the absolute value of RHS in Eq. 6 is called relative Fisher information. Taking g2 = pt/p∗,
we have

Hp∗(pt) ≤
1

2µ

∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx. (7)

Then LSI provides a lower bound for gradient norm, leading to sufficient descent for KL divergence.
Combining Eq. 7 and Eq. 6, we have

dHp∗(pt)

dt
≤ −2µHp∗(pt), (8)

for some µ > 0. By applying Gronwall’s lemma, Eq. 8 yields Hp∗(pt) ≤ Hp∗(p0) exp(−2µt),
which indicates the linear convergence rate of Langevin dynamics. Nonetheless, coupling LSI with
SVGD is challenging due to the introduction of RKHS.

3



Under review as a conference paper at ICLR 2023

KL divergence descent with asymptotic SVGD. As shown in Lemma 3.2 of Liu & Wang (2016),
the key point of continuous SVGD is to minimize the RHS of Eq. 3 in the unit ball of the RKHS H
as follows

S(pt, p∗) = max
ϕ∈H

∫
pt(x)ϕ(x)

⊤∇ ln
p∗(x)

pt(x)
dx, such that ∥ϕ∥H ≤ 1 (9)

where S(pt, p∗) is called Kernelized Stein’s discrepancy (KSD). Assume that the RKHS is associated
with a kernel k(x,y) : Rd × Rd → R, such that k(x,y) = ⟨Φ(x),Φ(y)⟩H0

, and H is the d-times
Cartesian product space of H0 that contains Frobenius-normalized linear functions from H to Rd,
i.e., ⟨ϕt, ϕt⟩H ≤ 1. Note that Eq. 10 defines a functional gradient in RKHS, which indicates the
steepest KL decreasing direction with a normalized functional vector. Using integration by parts,
Eq. 9 can be rewritten as

ϕt = argmax
ϕ∈H

∫
pt(x)(ϕ(x)

⊤∇ ln p∗(x) +∇ϕ(x))dx, such that ∥ϕ∥H ≤ S(pt, q). (10)

The explicit form for ϕt(x) is presented as follows.

Proposition 2.2. Assume that ϕt satisfies Eq. 10. Then we have

ϕt(x) =

∫
pt(y) [∇ ln p∗(y)k(x,y) +∇1k(y,x)] dy, (11)

where ϕt(x) can be estimated by particle samples from pt.

Proposition 2.2 (as Lemma 3.2 proved in Liu & Wang (2016)) makes Eq. 2 become a practically
tractable algorithm by Monte Carlo estimation of Eq. 11, where particle samples are from pt(y).
Note that Eq. 2 and Eq. 11 naturally lead to the algorithm of SVGD.

Combining Proposition 2.1 and 2.2, the dissipation of the KL divergence along continuous SVGD
can be obtained,

dHp∗(pt)

dt
= −

∫
Rd

∫
Rd

k(x,y)pt(x)pt(y) ·
[
∇ ln

pt(x)

p∗(x)
· ∇ ln

pt(y)

p∗(y)

]
dydx. (12)

When the kernel is strictly positive definite, the RHS of Eq. 12 is negative, leading to the decrease of
KL divergence. Unlike the sufficient descent bounded by the functional value in Eq. 7, LSI cannot
be conducted on the RHS of Eq. 12 due to the kernelization, which also causes the KL convergence
rate to be unknown. Instead, previous works (Liu, 2017; Lu et al., 2019) provided an O(1/t) KSD
convergence as

min
0≤s≤t

S(pt, p∗) ≤
1

t

∫ t

0

S(ps, p∗)ds ≤
Hp∗(p0)

t
. (13)

3 KL CONVERGENCE OF SVGD

In this section, we first show, compared with KSD convergence proved in most previous works on
SVGD Liu (2017); Lu et al. (2019); Korba et al. (2020); Salim et al. (2021; 2022), KL convergence
is more powerful in explaining the practical performance of real-world applications. After that, we
explain Stein log-Sobolev Inequality (SLSI) the necessary condition for analyzing KL convergence
of SVGD can hardly be verified. In order to investigate more reasonable conditions, our assumptions
are proposed and validated empirically in some simple cases. Finally, we provide the main theorem,
i.e., the KL convergence of SVGD under these mild assumptions. Due to the page limit, we left the
comparison with previous works by list in Appendix A.

3.1 SAMPLING TASKS REQUIRE KL CONVERGENCE

Sampling algorithms are widely used in real-world applications for solving corresponding machine
learning problems. Although different tasks usually require different criteria for convergence analysis,
most of these criteria can be deduced by KL convergence.
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In Bayesian learning Welling & Teh (2011), people expect to capture parameter uncertainty via
Markov chain Monte Carlo (MCMC) techniques. Specifically, they prefer to sample the parameter
vector w from a posterior distribution presented as

p(w|z) ∝ p(w)

n∏
i=1

p(zi|w),

where z := {zi}Ni=1 denotes a given dataset. The update of w in (Neal et al., 2011)

∆w =

(
ηt∇ log p(w) + ηt

N∑
i=1

∇ log p(zi|w) +
√

2ηt

∫ 1

0

dBt

)
, (14)

is equivalent to minimizing the KL divergence w.r.t between p(w|z) and p∗(w|z) where

p∗(w|z) = argmin
p′

Hp(w)
∏n

i=1 p(zi|w)(p
′).

It means the convergence of Bayesian learning is directly dependent on KL convergence. Another
important application of sampling algorithms is to minimize the expected excess risk as

E [F (ŵ)]− F ∗ (15)

where F denotes the objective function of the stochastic optimization under the unknown data
distribution P

F (w) = EP [f(w, z)] =

∫
z

f(w, z)P (dz),

and F ∗ denotes infw∈Rd F (w). When F is L-smooth, previous gradient-based MCMC methods
would like to analyze the convergence with the general framework by

E [F (ŵk)]− F ∗ =E [F (ŵk)]− E [F (ŵ∗)] + E [F (ŵ∗)]− F ∗

=

∫
P (n)(dz)

[∫
Rd

F (w)p̃k,z(w)dw −
∫
Rd

F (w)p∗,z(w)dw

]
+ E [F (ŵ∗)]− F ∗

≤
∫

P (n)(dz) [LC ·W2(p̃k,z, p∗,z)]︸ ︷︷ ︸
Training error

+E [F (ŵ∗)]− F ∗

(16)
where the n-tuple (data) z = {z1, z2, . . . , zn} of i.i.d. samples are drawn from P . It means the
minimization of Wasserstein 2 distance between p̃t,z (MCMC samples at time t) and p∗,z(x) ∝
p(w|z) leads to convergence of expected excess risk. The aforementioned results can be directly
deduced by the KL convergence (Raginsky et al., 2017; Xu et al., 2018) with

W2(p̃k,z, p∗,z) ≤ C ·

(√
Hp∗,z (p̃k,z) +

(
Hp∗,z (p̃k,z)

2

)1/4
)
.

Unfortunately, the connection between W2(p̃k,z, p∗,z) and S(p̃k,z, p∗,z) depends on the choice of
RKHS, which is highly specialized and non-general. From a theoretical perspective, when the RKHS
is over-smooth with a sufficient large bandwidth, k(x,y) = σ−d exp(−∥x− y∥2/2σ2) with large
σ, the corresponding kernelized gradient tend to diminish, i.e., limσ→∞ Ept

[k(x,y)∇ ln pt(y)
p∗(y)

] = 0.
That means the KSD can be arbitrarily small with improper RKHS choices. In this condition, the
convergence of KSD does not make much sense about the quality of pt, since it can be simply
controlled by some special RKHS.

3.2 KL CONVERGENCE OF SVGD WITH DIFFERENT ASSUMPTIONS

To investigate KL convergence of SVGD, some previous works (Duncan et al., 2019; Korba et al.,
2020; Salim et al., 2021) introduce the following assumption.
Assumption 1. The probability density p∗ satisfies Stein log-Sobolev inequality (SLSI) with a constant
µ > 0, if for any pt ∈ P2(Rd), it has

Hp∗(pt) ≤
1

2µ
S(pt, p∗). (17)
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We can immediately obtain

Hp∗(pt) ≤
1

2µ

∫
Rd

∫
Rd

k(x,y)pt(x)pt(y) ·
[
∇ ln

pt(x)

p∗(x)
· ∇ ln

pt(y)

p∗(y)

]
dydx, (18)

and a linear KL convergence can be achieved by combining Eq. 12 and Eq. 18 for SVGD (Duncan
et al., 2019; Korba et al., 2020; Salim et al., 2021). However, the verification of this assumption is
highly non-trivial because we cannot test all pt ∈ P2(Rd). Only when the designed RKHS is overly
regular, the RHS of Eq. 18 can be estimated. In the meanwhile, an overly regular kernel, i.e.,∫

p∗(x)∇ ln p∗(x)·∇ ln p∗(x)k(x,x)−2∇ ln p∗(x)·∇1k(x,x)+∇1k(x,x)·∇2k(x,x)dx < ∞,

(19)
will make SLSI fail, which is indicated in (Duncan et al., 2019). Besides, Eq. 19 holds for the
most widely used smoothing kernels, such as Radial basis function (RBF) kernel. The contradiction
between Eq. 18 and Eq. 19 makes the current analysis in KL divergence highly restricted.

In this condition, we expect more reasonable assumptions to investigate KL convergence of SVGD.
Similar to (Arbel et al., 2019), we have additional assumptions on trajectory of pt. Specifically, we
assume the following.

[A1] p∗ satisfies µ-log-Sobolev Inequality (Eq. 4) and f∗ is L-smooth, i.e., for any x,y ∈ Rd,
∥∇f∗(x)−∇f∗(y)∥ ≤ L∥x− y∥.

[A2] ft is L-smooth where pt = e−ft .

[A3] pt is warm: supx∈Rd pt(x)/p∗(x) ≤ β for some constant β ≥ 1.

Assumption [A1] and [A2] are similar to the convexity geometry and L-smoothness in conventional
Euclidean optimization. Assumption [A3] restricts the domain of our proof: the tail of pt should
be lighter than p∗, which is widely used in Langevin dynamics. Compared with SLSI, due to the
decoupling of requirements of the target distribution p∗ and designed kernels k, we can verify these
assumptions in several ways. The establishment of LSI of the target distribution p∗ can be checked by
the criterion mentioned in Section 2.2. For the trajectory assumptions, i.e., [A2] and [A3], we provide
the empirical validation by showing the estimation of density ratio and smoothness of pt in some
simple cases with the growth of t (Fig 1). Then, we have the following theorem.

Theorem 3.1. Suppose Assumption [A1]-[A3] are satisfied, and chi-square Dχ(p0, p∗) ≤ 1/4. For
any ϵ > 0, if we set reweighted kernel k:

k(x,y) = (p∗(x))
−1/2

kσ(x,y) (p∗(y))
−1/2

, kσ(x,y) = k̃σ(x− y) = σ−dk̃(σ−1(x− y)),∫
Rd

∥y∥4 · k̃(y)dy ≤ M, and

∣∣∣∣1− ∫
Rd

kσ(x,x− y)dy

∣∣∣∣ ≤ 1

2
√
2
,

(20)
where

σ = min

(
1,

ϵ

12LM
√
β
·
(
16Cd+

9βCd

2M
+ 6
√
βL+ 3CL+ βCL

)−1
)
, (21)

C =
∫ √

p∗(x)dx , then the KL divergence between pt and p∗ satisfies

Hp∗(pt) ≤ max

(
0,

(
Hp∗(p0)−

64ϵ

µ

))
· exp

(
−µt

16

)
+

64ϵ

µ
. (22)

Remark 1. It should be noted that C < ∞ is proven in Lemma B.1. Although we require the
trajectory of the algorithm to satisfy some assumptions, the actual requirements are much looser. For
example, we allow the coefficients L of smoothness in Assumption [A2] and the maximum density ratio
β in Assumption [A3] to increase with the number of iteration t growth. Even if the rate of growth is
polynomial, O(1/ϵ) convergence rate can still be obtained by decreasing σt in the reweighted kernel
in Eq. 21, which is shown in Remark 3. Assumption [A3] is actually introduced to control Rényi
divergence between pt and p∗ will not be infinity in some region near the target, which can be easily
obtained in Langevin dynamics.
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Figure 1: Illustration of warmness and smoothness evolution, where p0 ∼ N (0, 0.25), p∗ ∼ N (0, 5).

This theorem demonstrates that, by introducing reweighted kernel k(x,y) and controlling the variance
σ of smoothing kernel k̃, SVGD initialized in a local region will provide a linear convergence rate
to any ϵ-neighborhood of the target distribution. To validate this result, we provide experiments
in synthetic data in Appendix D, and illustrate SVGD with reweighted kernels usually achieves a
lower KL divergence compared with traditional SVGD. It should be noticed that commonly used
kernels, e.g., RBF kernel and Bump kernel, are proper k̃. Besides, the linear convergence shows all
the parameters will not deteriorate the convergence of SVGD when σ is small enough.

4 REWEIGHTED KERNEL FOR KL CONVERGENCE

In this section, we mainly explain why we should introduce reweighted kernels in Theorem 3.1.
The intuition can be split into 2 parts: (1) the infeasibility of the usage of LSI due to the kernel
approximation error; (2) the tractable kernel approximation error form with a reweighted kernel.

4.1 KERNEL APPROXIMATION

Intuitively, to measure the error between Wasserstein gradient and its kernelized one, the most direct
idea is to control the error of relative Fisher information and make use of LSI. However, this idea will
encounter some fatal bottlenecks.

The bottleneck of SVGD analysis with Eq. 7 If we directly upper bound the descent of KL
divergence by Eq. 7, we have

dHp∗(pt)

dt
≤−1

2

∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx︸ ︷︷ ︸
sufficient descent

+
1

2

∫
Rd

pt(x)

∥∥∥∥∫ pt(y)k(x,y)∇ ln
p∗(y)

pt(y)
dy −∇ ln

p∗(x)

pt(x)

∥∥∥∥2 dx︸ ︷︷ ︸
kernel approximation error

,

(23)

where the kernel approximation error can hardly be upper bounded due to pt(y) in integration. It
means if we directly plug some smoothing kernels into the iteration of SVGD, kernel approximate
error may dominate RHS of Eq. 23 and cause SVGD to converge to a limit different from the target
distribution with an uncontrollable bias.

Failures of Smoothing Kernels. Smoothing Kernels (kernel smoothers), such as radial basis
function kernel, are widely used in SVGD, due to their universal approximation capability to smooth
functions (Park & Sandberg, 1991; Micchelli et al., 2006). Assume that kσ(x,y) = k̃σ(x− y) =

σ−dk̃(σ−1(x− y)) is a smoothing kernel with parameter σ > 0, where σ is called the bandwidth of
the kernel. The variance σ2 in the smoothing kernel tends to control the smoothness of the estimated
gradient. A large σ makes kernelized gradient well-estimated with finite samples while the kernel
approximation error is large. In the population limit, where randomness from pt(y) is ignored,
the optimal smoothing kernel should be Dirac delta function δx(y), where the kernel bandwidth is
sufficiently small to estimate Wasserstein gradient. For each point x, the kernelized gradient becomes
pt(x)∇ ln p∗(x)

pt(x)
, which means that for those low-density areas pt(x) → 0, the kernelization suffers
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Figure 2: Illustration of gradient vanishing with smoothing kernel. The vector field illustrates
−∇ ln pt(x) for data distribution N (0,diag(1, 0.52))

from gradient vanishing. Such biased Wasserstein gradient estimation in smoothing kernel SVGD
will have an additional pt term, which hampers the sufficient descent of each iteration and even the
convergence rate. This indicates that SVGD is not compatible with smoothing kernels in low-density
parts. Ideally, the kernel should be reweighted by some 1/

√
pt(x)pt(y), which can balance the

vanishing scaling in the current SVGD. However, pt is unknown in general, so this reweighting
cannot provide algorithmic insight to improve SVGD.

To solve this problem, a very intuitive idea is to balance the order of pt, we may require kernel k to
be related to pt through the following proposition.

Proposition 4.1. If we use the kernel k(x,y) = (pt(x))
−1/2

kσ(x,y) (pt(y))
−1/2, by choosing

delta function as the smoothing kernel k0(x,y) = δx(y), kernel approximation error is 0 and SVGD
is equivalent to the Wasserstein gradient flow.

Unfortunately, the reweighting strategy with pt(x) makes the iteration of SVGD (Eq. 11) computa-
tionally intractable as pt(x) and ∇pt(x) are unknown in general. If we consider the local convergence
of SVGD, when pt(x) is approaching p∗(x), we can expect a lower kernel approximation error by
replacing p

−1/2
t in Proposition 4.1 with p

−1/2
∗ (·) as follows

k(x,y) = (p∗(x))
−1/2

kσ(x,y) (p∗(y))
−1/2 (24)

where kσ denotes the smoothing kernel, and it satisfies∫
Rd

∥y∥4 · kσ(x,x− y)dy < ∞ and

∣∣∣∣1− ∫
Rd

kσ(x,x− y)dy

∣∣∣∣ ≤ 1

2
√
2
. (25)

Notice that many popular kernels satisfies Eq. 25, e.g., standard RBF kernel, Bump function (Eq. 26),
etc.

k̃σ(z) =
1

σ
exp

(
− 1

1− ∥z∥2/σ2

)
∥z∥ ∈ B(0, σ). (26)

Therefore, the dynamics of KL divergence in such a reweighted kernel is

dHp∗(pt)

dt
= −

∫
Rd

∫
Rd

kσ(x,y) ·

[
pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
· pt(y)√

p∗(y)
∇ ln

pt(y)

p∗(y)

]
dydx. (27)

Similar to the requirement of a delta function in 4.1, a small σ is preferred in our setting, since our
analysis is based on the population limit of pt(x). Besides, our analysis would indicate the kernel
choice to obtain the convergence.

Compared with utilizing smoothing kernel directly, we may expect a smaller kernel approximation
error by introducing kernels as Eq. 24. We also validate this phenomenon by Figure 2, which has
shown the gradient vanishing phenomenon with the smoothing kernel. Figure 2 (a) is the vector field
of Wasserstein gradient ∇ ln p∗(x)/pt(x), which is a linear function in Gaussian case. However,
when using a smoothing kernel the low-density area in Figure 2 (b) has almost no gradient, which
makes the particle in this area stuck. Our proposed reweighted kernel amplifies the gradient in
low-density areas, the resulting gradient is similar to the Wasserstein gradient.
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4.2 ERROR REWEIGHTING

To achieve a better kernel approximation error with reweighted smoothing kernel Eq. 24, we require a
corresponding local version of log-Sobolev inequality to control the sufficient descent of the evolution
of the KL divergence (Eq. 27).

Local version of log-Sobolev inequality. In this context, the sufficient descent term should be
reformulated to obtain a well-behaved kernel approximation error. The choice of g in Eq. 38 may
convert the kernel approximation error to a tractable form. By choosing g(x) = pt(x)

p∗(x)
, we can find

the upper bound of KL divergence by χ2 version of Rényi information.

Lemma 4.2. Suppose p∗ satisfies the µ-log-Sobolev inequality (LSI) with a constant µ > 0. When
any probability density function pt satisfies Dχ2(pt, p∗) ≤ 1/2, we have

µ

4
Hp∗(pt) ≤

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx. (28)

Lemma 4.2 indicates that the KL divergence is also bounded by the Wasserstein gradient of χ2

divergence. If pt/p∗ is bounded, Eq. 28 provides a tighter upper bound of KL divergence compared
with that in Eq. 7, especially for the tail part. Thus, controlling the error term in this form has more
potential. With such a construction, the decreasing of KL divergence satisfies

d

dt
Hp∗(pt) ≤−1

2

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx︸ ︷︷ ︸
sufficient descent

+
1

2

∫
Rd

∥∥∥∥∥ pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
−
∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

∥∥∥∥∥
2

dx︸ ︷︷ ︸
kernel approximation error

.

(29)

Lemma 4.3. Assume that ln p∗ and ln pt are L-smooth; pt is warm: supx∈Rd pt(x)/p∗(x) ≤ β and

Hp∗(p0) ≤ (2β)−1. Then by choosing σ = min
(
1,O

(
ϵ

β1.5L+βL2

))
, we have

∫
Rd

∥∥∥∥∥ pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
−

∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

∥∥∥∥∥
2

dx ≤ 4ϵ+
1

4

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)

p∗(x)
∇ ln

pt(x)

p∗(x)

∥∥∥∥2

dx,

where kσ satisfies requirements in Eq. 25.

In this condition, we nearly establish the "Stein log-Sobolev Inequality" with arbitrary small ϵ by
combining Eq. 27, Eq. 28, and Eq. 29 as follows

µ

8
Hp∗(pt) ≤

∫
Rd

∫
Rd

kσ(x,y) ·

[
pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
· pt(y)√

p∗(y)
∇ ln

pt(y)

p∗(y)

]
dydx+ 4ϵ. (30)

Therefore, reweighted kernels can be considered as a sufficient condition for establishing local "Stein
log-Sobolev Inequality" near the target distribution p∗.

5 CONCLUSIONS

In this paper, we prove the local linear convergence for SVGD with reweighted kernel in KL
divergence. In particular, our analysis is based on the smoothing kernel for SVGD algorithm and we
point out that the conventional smoothing kernel fails to provide valid gradient scaling in low-density
areas. Thus, we highlight that the reweighting is necessary for smoothing kernels in SVGD algorithm.
With (p∗(x)p∗(y))

−1/2 weighting for k(x,y), we provides the KL convergence rate for SVGD
algorithm locally for log-Sobolev p∗(x). Our analysis provide new insights on the kernel design in
SVGD, especially for gradient amplification in the low-density area.
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A CONVERGENCE RATE COMPARISON IN SECTION 3

The assumptions are listed as follows

[AS1] p∗ satisfies µ-log-Sobolev Inequality (Eq. 4).
[AS2] p∗ satisfies Talagrand 1 Inequality.

[AS3] The Stein log-Sobolev inequality with constant λ, i.e., KL (p∥p∗) ≤ 1
2λD (p∥p∗)2

[AS4] f∗ is L-smooth, i.e., for any x,y ∈ Rd,
∥∇f∗(x)−∇f∗(y)∥ ≤ L∥x− y∥.

[AS5] ft is L-smooth where pt = e−ft .
[AS6] pt is warm: supx∈Rd pt(x)/p∗(x) ≤ β for some constant β ≥ 1.
[AS7] pt SVGD satisfy: ∫

k(x,x)pt(x)dx < ∞. (31)

[AS8] Kernel regularization assumption 1:

sup
x

{
1

2
∥∇ log p∗∥Lip k(x,x) + 2∇xx′

}
< ∞. (32)

[AS9] Kernel regularization assumption 2:
∥k (x, ·)∥H ≤ B and ∥∇xk (x, ·)∥Hd ≤ B (33)

[AS10] Bounded moment assumptions:

sup
t

∫
∥x∥ pt(x)dx < ∞. (34)

We compare our theoretical results with all previous work where Stein discrepancy is abbreviated as
SD.

Table 1: Comparison of convergence rate for sampling algorithms
Algorithm Assumptions Criterion Asymptotic Rate

ULA Vempala & Wibisono (2019) [AS1],[AS4] KL No O(e−t)

SVGD Liu (2017) [AS7] KL Yes N/A
SVGD Liu (2017) [AS4],[AS7],[AS8] SD Yes O(1/t)

SVGD Korba et al. (2020) [AS3],[AS4],[AS7] KL Yes O(e−t)
SVGD Korba et al. (2020) [AS4],[AS7],[AS9],[AS10] SD No O(1/t)

SVGD Salim et al. (2021) [AS4],[AS2],[AS7],[AS9] SD No O(1/t)

Ours [AS1],[AS4],[AS5],[AS6] KL Yes O(e−t)

B IMPORTANT LEMMAS IN SECTION 4

In order to facilitate the lemma in Chapter 4, we first revisit the dynamics of SVGD.
Remark 2. With a slight abuse of notation, pt of SVGD follows the continuity equation:

∂tpt +∇ · (ptϕt) = 0 (35)
in the sense of distribution (rather than almost sure), where

ϕt (x) =

∫
(k (x,y)∇ ln p∗ (y) +∇yk (x,y)) dpt(y). (36)

Notice that Eq. 35 holds in the sense of distribution here means∫
∂tpt(x)v(x)dx =

∫
∇v(x) · ϕt(x)dpt(x) (37)

for all v(x) ∈ C∞
c (Rd).

12
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B.1 PROOF OF PROPOSITION 4.1

Proof. When k(x,y) = (pt(x))
−1/2

kσ(x,y) (pt(y))
−1/2 and k0(x,y) = δx(y), we have

k(x,y) =
δx(y)

(pt(x))
1/2

(pt(y))
1/2

=
δx(y)

pt(y)
.

Thus,

ϕt(x) =

∫
Rd

pt(y)
δx(y)

pt(y)
∇ ln

pt(y)

p∗(y)
dy = ∇ ln

pt(x)

p∗(x)
,

which indicates that ϕt(x) is exactly the Wasserstein gradient and the kernel approximation error is
0.

B.2 PROOF OF LEMMA 4.2

Proof. With LSI, all smooth function g : Rd → R with Ep∗ [g
2] < ∞,

Ep∗

[
g2 ln g2

]
− Ep∗

[
g2
]
lnEp∗

[
g2
]
≤ 2

µ
Ep∗

[
∥∇g∥2

]
. (38)

Suppose g = pt/p∗, we have Ep∗ [g
2] = Dχ2(pt, p∗) + 1 < ∞ and∫

Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)2

dx

−
∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

dx · ln

[∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

dx

]

≤ 2

µ

∫
Rd

p∗(x) ·
∥∥∥∥∇ pt(x)

p∗(x)

∥∥∥∥2 dx =
2

µ

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx.
(39)

With the fact lnx ≤ x− 1 and lnx ≥ 1− 1
x when x ≥ 0, we have

ln

[∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

dx

]
≤
∫
Rd

pt(x) ·
(
pt(x)

p∗(x)
− 1

)
dx

=

∫
Rd

p2t (x)

p∗(x)
·

pt(x)
p∗(x)

− 1

pt(x)
p∗(x)

dx ≤
∫
Rd

p2t (x)

p∗(x)
· ln
(
pt(x)

p∗(x)

)
dx.

(40)

Plugging the previous inequality into LHS of Eq. 39, we have

LHS ≥
∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)2

dx

−
∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

dx ·
∫
Rd

p2t (x)

p∗(x)
· ln
(
pt(x)

p∗(x)

)
dx

=2

∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)
dx−

∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)
dx

−
∫
Rd

p∗(x) ·

((
pt(x)

p∗(x)

)2

− 1

)
dx ·

∫
Rd

p2t (x)

p∗(x)
· ln
(
pt(x)

p∗(x)

)
dx

≥
(
2−Dχ2 (pt, p∗)− 1

)
·
∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)
dx

≥1

2

∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)
dx,

(41)

13



Under review as a conference paper at ICLR 2023

where the last inequality follows from Dχ2(pt, p∗) ≤ 1/2. Besides, we have∫
Rd

p∗(x) ·
(
pt(x)

p∗(x)

)2

ln

(
pt(x)

p∗(x)

)
dx =

∫
Rd

pt(x)

p∗(x)
· pt(x) ln

pt(x)

p∗(x)
dx

=

∫
Rd

(
pt(x)

p∗(x)
− 1

)
· pt(x) ln

pt(x)

p∗(x)
dx+

∫
Rd

pt(x) ln
pt(x)

p∗(x)
dx ≥ Hp∗(pt),

(42)

where the last inequality follows from (x− 1) lnx ≥ 0 for all x ≥ 0. Combining Eq. 39, Eq. 41 and
Eq. 42, we complete the proof, and obtain

µ

4
Hp∗(pt) ≤

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx. (43)

B.3 PROOF OF LEMMA 4.3

Before providing the Kernel Approximation Error (KAE) in Lemma 4.3, we need to introduce some
lemmas.

Lemma B.1. Assume that p(x) is L-smooth and log-Sobolev, then for any α > 0∫
p(x)αdx < ∞

Proof. By Ledoux (1999), when p(x) is log-Sobolev, there exists c > 0 such that∫
p(x)ec∥x∥

2

dx < ∞

then ∫
eln p(x)+c∥x∥2

dx < ∞

Thus, there exists cx > 0, for sufficient large ∥x∥ > cx,

ln p(x) < −c∥x∥2 and

∫
∥x∥>cx

pα(x)dx <

∫
∥x∥>cx

e−αc∥x∥2

dx <

√
2πd

cα

For ∫
∥x∥≤cx

pα(x)dx ≤
∫
∥x∥≤cx

pα(0)eαL∥x∥2

dx < pα(0)C(d, cx, αL)

where C(d, cx, αL) is a constant depend on d, cx, αL.

Lemma B.2. (A Variant of Lemma. 11 in Vempala & Wibisono (2019)) Suppose p(x) = e−f(x),
x ∈ Rd, f is L-smooth and p(x) satisfies∫

Rd

√
p(x)dx ≤ C/2,

then we have

∫ √
p(x) ∥∇f(x)∥2 dx ≤ LCd;

Proof. Since f(x) is L-smooth, we have for any x

∇2f(x) ⪯ LI

14
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Using integration by parts, we have

∫
e−f(x)/2∥∇f(x)∥2dx = 4

∫
e−f(x)/2∥∇f(x)/2∥2dx (44)

= 4

∫
e−f(x)/2∆(f(x)/2)dx (45)

≤ 2Ld

∫
e−f(x)/2dx = LCd (46)

Proof. In the following, we mainly focus on providing the upper bound of Kernel Approximation
Error (KAE), and have

KAE =

∫
Rd

∥∥∥∥∥ pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
−
∫
Rd

kσ(x,x− y)
pt(x− y)√
p∗(x− y)

∇ ln
pt(x− y)√
p∗(x− y)

dy

∥∥∥∥∥
2

dx

≤2

∫
Rd

∥∥∥∥∥
∫
Rd

kσ(x,x− y)

[
pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
− pt(x− y)√

p∗(x− y)
∇ ln

pt(x− y)

p∗(x− y)

]
dy

∥∥∥∥∥
2

dx

+ 2

∫
Rd

(
1−

∫
Rd

kσ(x,x− y)dy

)2
∥∥∥∥∥ pt(x)√

p∗(x)
∇ ln

pt(x)

p∗(x)

∥∥∥∥∥
2

dx.

(47)
where the first equation follows from the change of variable. With the requirement of k, we have

kσ(x,y) = k̃σ(x− y) =
1

σ
k̃

(
(x− y)

σ

)
,

∫
Rd

∥y∥4 · k̃(y)dy ≤ M

and

∣∣∣∣1− ∫
Rd

kσ(x,x− y)dy

∣∣∣∣ ≤ 1

2
√
2
.

(48)

In this condition, suppose y = σz in Eq. 47, xz := x− σz, then we have

KAE ≤4

∫
Rd

∥∥∥∥∥
∫
Rd

k̃(z)

[
pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
− pt(xz)√

p∗(xz)
∇ ln

pt(xz)

p∗(xz)

]
dz

∥∥∥∥∥
2

dx︸ ︷︷ ︸
Term 1

+
1

4

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx.
(49)

For any x ∈ Rd, we have

pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
=

pt(x)√
p∗(x)

(∇f∗(x)−∇ft(x)) where pt(x) = e−ft(x), p∗(x) = e−f∗(x).
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Plugging such an equation into Eq. 49, we have

Term 1 =

∫
Rd

∥∥∥∥∥
∫
Rd

k̃(z)

[(
pt(x)√
p∗(x)

∇f∗(x)−
pt(xz)√
p∗(xz)

∇f∗(xz)

)

−

(
pt(x)√
p∗(x)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(xz)

)]
dz

∥∥∥∥∥
2

dx

≤2

∫
Rd

∥∥∥∥∥
∫
Rd

k̃(z)

(
pt(x)√
p∗(x)

∇f∗(x)−
pt(xz)√
p∗(xz)

∇f∗(xz)

)
dz

∥∥∥∥∥
2

dx

+ 2

∫
Rd

∥∥∥∥∥
∫
Rd

k̃(z)

(
pt(x)√
p∗(x)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(xz)

)
dz

∥∥∥∥∥
2

dx

≤2

∫
Rd

∫
Rd

k̃(z)dz ·
∫
Rd

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

∇f∗(x)−
pt(xz)√
p∗(xz)

∇f∗(xz)

)∥∥∥∥∥
2

dz

 dx

+ 2

∫
Rd

∫
Rd

k̃(z)dz ·
∫
Rd

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(xz)

)∥∥∥∥∥
2

dz

 dx

≤3

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥ pt(x)√
p∗(x)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(xz)

∥∥∥∥∥
2

dzdx︸ ︷︷ ︸
Term 1.1

+ 3

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥ pt(x)√
p∗(x)

∇f∗(x)−
pt(xz)√
p∗(xz)

∇f∗(xz)

∥∥∥∥∥
2

dzdx︸ ︷︷ ︸
Term 1.2

(50)
where the first inequality follows from Minkowski inequality, the second inequality follows from
Cauchy–Schwarz inequality, and the third inequality follows from Eq. 48.

Consider Term 1.1, we have,

Term 1.1 =

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥ pt(x)√
p∗(x)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(x)

+
pt(xz)√
p∗(xz)

∇ft(x)−
pt(xz)√
p∗(xz)

∇ft(xz)

∥∥∥∥∥
2

dzdx

≤2

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇ft(x)

∥∥∥∥∥
2

dzdx

+ 2

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥ pt(xz)√
p∗(xz)

(∇ft(x)−∇ft(xz))

∥∥∥∥∥
2

dzdx

≤2

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇ft(x)

∥∥∥∥∥
2

dzdx

+ 2

∫
Rd

k̃(z)L2σ2 ∥z∥2
∫
Rd

(
pt(xz)√
p∗(xz)

)2

dxdz

≤2

∫
Rd

∫
Rd

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇ft(x)

∥∥∥∥∥
2

dzdx+ 2σ2βL2(M + 1),

(51)
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where the second inequality follows from L-smoothness of pt(x) and the Fubini’s theorem, and the
third inequality follows from pt warm (Assumption 3) and the fact

∫
Rd ∥y∥2 · k̃(y)dy ≤ D in Eq. 48.

In the following, we focus on the first term of RHS of Eq. 51, and have

pt(x)√
p∗(x)

= exp

(
f∗(x)

2
− ft(x)

)
. (52)

For each x ∈ Rd, suppose high dimensional Rd can be divided into two parts:

Bl(x) =

{
z

∣∣∣∣f∗(x)2
− ft(x) ≤

f∗(xz)

2
− ft(xz)

}
,

Bu(x) =

{
z

∣∣∣∣f∗(x)2
− ft(x) ≥

f∗(xz)

2
− ft(xz)

}
.

(53)

For z ∈ Bl(x), we have

pt(xz)√
p∗(xz)

− pt(x)√
p∗(x)

=
pt(xz)√
p∗(xz)

·
(
1− exp

((
f∗(x)

2
− ft(x)

)
−
(
f∗(xz)

2
− ft(xz)

)))
≤ pt(xz)√

p∗(xz)
·
[(

f∗(xz)

2
− ft(xz)

)
−
(
f∗(x)

2
− ft(x)

)]
≤ pt(xz)√

p∗(xz)
·
[
−σ

2
(∇f∗(x)−∇f∗(xz) + f∗(x− σz))

⊤
z + σ∇ft(xz)

⊤z +
3Lσ2

4
∥z∥2

]
≤ pt(xz)√

p∗(xz)
·
[
−σ

2
∇f∗(xz)

⊤z + σ∇ft(xz)
⊤z +

5Lσ2

4
∥z∥2

]
,

(54)
where the first inequality follows from 1− e−x ≤ x for any x ≥ −1, the second and third inequality
follows from L-smoothness of f∗ and ft. Therefore, we have∫

Rd

∫
Bl

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇ft(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bl

k̃(z)

∥∥∥∥∥ pt(xz)√
p∗(xz)

·
[
−σ

2
∇f∗(xz)

⊤z + σ∇ft(xz)
⊤z +

5Lσ2

4
∥z∥2

]
· ∇ft(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bl

k̃(z)

2σ

[
−σ

2
∇f∗(xz)

⊤z + σ∇ft(xz)
⊤z +

5Lσ2

4
∥z∥2

]2√
pt(xz)dzdx

+

∫
Rd

∫
Bl

k̃(z)σ

2
· (pt(xz))

1.5

p∗(xz)
· ∥∇ft(x)−∇ft(xz) +∇ft(xz)∥2 dzdx

≤
∫
Rd

∫
Bl

σ · k̃(z) ∥z∥2
√

pt(xz) ·
(
1

2
∥∇f∗(xz)∥2 +

3

2
∥∇ft(xz)∥2 +

5L2σ2

2
∥z∥2

)
dzdx

+

∫
Rd

∫
Bl

σ · k̃(z) · (pt(xz))
1.5

p∗(xz)
·
(
∥∇ft(xz)∥2 + L2σ2 ∥z∥2

)
dzdx

≤
√
βσ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
p∗(xz) ∥∇f∗(xz)∥2 dxdz

+
3σ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(xz) ∥∇ft(xz)∥2 dxdz +

5L2σ3

2
·
∫
Rd

k̃(z)∥z∥4
∫
Rd

√
pt(xz)dxdz

+ βσ ·
∫
Rd

k̃(z)

∫
Rd

√
pt(xz) ∥∇ft(xz)∥2 dxdz + βL2σ3 ·

∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(xz)dxdz

≤
√
βCdL(M + 1) · σ + 3

√
βCdL(M + 1) · σ +

5

4

√
βCL2M · σ3 + 3β1.5CdL · σ +

1

2
β1.5CL2(M + 1) · σ3.

(55)
It can be noticed that the first inequality follows from Eq. 54, the second and the third inequalities
follow from Cauchy–Schwarz inequality, the fourth inequality follows from the β-warm during
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the update, the fourth inequality follows from the β-warm during the update, Lemma B.2 and the
following fact ∫

Bl

k̃(z)dz ≤
∫
Rd

k̃(z)dz.

Besides, the constant C is provided by Lemma B.1 as∫
Rd

√
p∗(x)dx ≤ C.

For z ∈ Bu(x), we have
pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

=
pt(x)√
p∗(x)

·
(
1− exp

((
f∗(xz)

2
− ft(xz)

)
−
(
f∗(x)

2
− ft(x)

)))
≤ pt(x)√

p∗(x)
·
[(

f∗(x)

2
− ft(x)

)
−
(
f∗(xz)

2
− ft(xz)

)]
≤ pt(x)√

p∗(x)
·
[
σ

2
(∇f∗(xz)−∇f∗(x) +∇f∗(x))

⊤
z − σ∇f⊤

t (x)z +
3Lσ2

4
∥z∥2

]
≤ pt(x)√

p∗(x)
·
[
σ

2
∇f⊤

∗ (x)z − σ∇f⊤
t (x)z +

5Lσ2

4
∥z∥2

]
.

(56)

Similar to Eq. 55, we have∫
Rd

∫
Bu

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇ft(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bu

k̃(z)

∥∥∥∥∥ pt(x)√
p∗(x)

·
[
σ

2
∇f⊤

∗ (x)z − σ∇f⊤
t (x)z +

5Lσ2

4
∥z∥2

]
· ∇ft(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bu

k̃(z)

2σ

[
σ

2
∇f⊤

∗ (x)z − σ∇f⊤
t (x)z +

5Lσ2

4
∥z∥2

]2
·
√
pt(x)dzdx

+

∫
Rd

∫
Bu

k̃(z)σ

2
· (pt(x))

1.5

p∗(x)
· ∥∇ft(x)∥2 dzdx

≤
∫
Rd

∫
Bu

σ · k̃(z) ∥z∥2
√
pt(x) ·

(
1

2
∥∇f∗(x)∥2 +

3

2
∥∇ft(x)∥2 +

5L2σ2

2
∥z∥2

)
dzdx

+

∫
Rd

∫
Bu

k̃(z)σ

2
· (pt(x))

1.5

p∗(x)
· ∥∇ft(x)∥2 dzdx

≤
√
βσ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
p∗(x) ∥∇f∗(x)∥2 dxdz +

3σ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(x) ∥∇ft(x)∥2 dxdz

+
5L2σ3

2
·
∫
Rd

k̃(z)∥z∥4
∫
Rd

√
pt(x)dxdz +

βσ

2
·
∫
Rd

k̃(z)

∫
Rd

√
pt(x) ∥∇ft(x)∥2 dxdz

≤
√
βCdL(M + 1) · σ + 3

√
βCdL(M + 1) · σ +

5

4

√
βCL2M · σ3 +

3

2
β1.5CdL · σ.

(57)

Plugging Eq. 55, Eq. 57 into Eq. 51, we have

Term 1.1 ≤16
√

βCdL(M + 1) · σ + 9β1.5CdL · σ + 2βL2(M + 1) · σ2

+ 5
√
βCL2M · σ3 + β1.5CL2(M + 1) · σ3.

(58)

With the same techniques in Eq. 51, we have

Term 1.2 ≤ 2

∫
Rd

∫
B(0,r)

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇f∗(x)

∥∥∥∥∥
2

dzdx+ 5L2σ2r2. (59)
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Similar to Eq. 55, when z ∈ Bl(x), we have∫
Rd

∫
Bl

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇f∗(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bl

σ · k̃(z) ∥z∥2
√
pt(xz) ·

(
1

2
∥∇f∗(xz)∥2 +

3

2
∥∇ft(xz)∥2 +

5L2σ2

2
∥z∥2

)
dzdx

+

∫
Rd

∫
Bl

σ · k̃(z) · (pt(xz))
1.5

p∗(xz)
·
(
∥∇f∗(xz)∥2 + L2σ2 ∥z∥2

)
dzdx

≤
√
βσ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
p∗(xz) ∥∇f∗(xz)∥2 dxdz

+
3σ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(xz) ∥∇ft(xz)∥2 dxdz +

5L2σ3

2
·
∫
Rd

k̃(z)∥z∥4
∫
Rd

√
pt(xz)dxdz

+ βσ ·
∫
Rd

k̃(z)

∫
Rd

√
pt(xz) ∥∇f∗(xz)∥2 dxdz + βL2σ3 ·

∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(xz)dxdz

≤
√
βCdL(M + 1) · σ + 3

√
βCdL(M + 1) · σ +

5

4

√
βCL2M · σ3 + 3β1.5CdL · σ +

1

2
β1.5CL2(M + 1) · σ3,

(60)
where the last inequality utilizes additional β-warm condition comparing with Eq. 55.

Similar to Eq. 57, when z ∈ Bu(x), we have∫
Rd

∫
Bu

k̃(z)

∥∥∥∥∥
(

pt(x)√
p∗(x)

− pt(xz)√
p∗(xz)

)
∇f∗(x)

∥∥∥∥∥
2

dzdx

≤
∫
Rd

∫
Bu

σ · k̃(z) ∥z∥2
√
pt(x) ·

(
1

2
∥∇f∗(x)∥2 +

3

2
∥∇ft(x)∥2 +

5L2σ2

2
∥z∥2

)
dzdx

+

∫
Rd

∫
Bu

k̃(z)σ

2
· (pt(x))

1.5

p∗(x)
· ∥∇f∗(x)∥2 dzdx

≤
√
βσ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
p∗(x) ∥∇f∗(x)∥2 dxdz +

3σ

2
·
∫
Rd

k̃(z)∥z∥2
∫
Rd

√
pt(x) ∥∇ft(x)∥2 dxdz

+
5L2σ3

2
·
∫
Rd

k̃(z)∥z∥4
∫
Rd

√
pt(x)dxdz +

βσ

2
·
∫
Rd

k̃(z)

∫
Rd

√
pt(x) ∥∇f∗(x)∥2 dxdz

≤
√
βCdL(M + 1) · σ + 3

√
βCdL(M + 1) · σ +

5

4

√
βCL2M · σ3 +

3

2
β1.5CdL · σ.

(61)

Combining Eq. 60, Eq. 61 with Eq. 59, we have

Term 1.2 ≤16
√

βCdL(M + 1) · σ + 9β1.5CdL · σ + 2σ2βL2(M + 1)

+ 5
√

βCL2M · σ3 + β1.5CL2(M + 1) · σ3.
(62)

Without loss of generality, we suppose σ ≤ 1 and M ≥ 1. Plugging Eq. 58 and Eq. 62 into Eq. 50,
we have

Term 1 ≤12LM
√

βσ ·
(
16Cd+

9βCd

2M
+ 6
√
βL+ 3CL+ βCL

)
, (63)

which means if we set

σ = min

(
1,

ϵ

12LM
√
β
·
(
16Cd+

9βCd

2M
+ 6
√
βL+ 3CL+ βCL

)−1
)
, (64)

KAE satisfies

KAE ≤ 4ϵ+
1

4

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx,
and the proof is completed.
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C THE MAIN THEOREM IN SECTION 3

Before providing the main theorem, i.e., Theorem 3.1, we need to introduce some lemmas.
Lemma C.1. Suppose Assumption [A1]–[A3] are satisfied, and p0 is near to the target p∗ satisfying
Dχ(p0, p∗) ≤ 1/4, for any time T = −C ln ϵ where ϵ ≤ (16βC)−2, we have

Dχ(pT , p∗) ≤ 1/2.

Proof. We denote Dχ2(pt, p∗) as chi-square distance between pt and p∗. We have the following
functional derivative

dDχ(pt, p∗)

dt
=

∫
Rd

δDχ(pt, p∗)

δp
(pt)∂tptdx =

∫
Rd

2
pt(x)

p∗(x)
∂tpt(x)dx. (65)

Combining the result with Remark 2, we have

dDχ(pt, p∗)

dt
=−

∫
Rd

2∇ pt(x)

p∗(x)
·
∫
Rd

pt(y)k(x,y) · ∇ ln
pt(y)

p∗(y)
dydx

=−
∫
Rd

2∇ pt(x)

p∗(x)
·
∫
Rd

p∗(y)k(x,y) · ∇
pt(y)

p∗(y)
dydx

(66)

Plugging Eq. 20 to the previous equation, we have

dDχ(pt, p∗)

dt
=− 2

∫
Rd

pt(x)√
p∗(x)

· ∇ pt(x)

p∗(x)
·
∫
Rd

k(x,y)
√
p∗(y) · ∇

pt(y)

p∗(y)
dydx

=− 2

∫
Rd

pt(x)

∥∥∥∥∇ pt(x)

p∗(x)

∥∥∥∥2 dx− 2

∫
Rd

pt(x)√
p∗(x)

· ∇ pt(x)

p∗(x)
·(∫

Rd

k(x,y)
√

p∗(y) · ∇
pt(y)

p∗(y)
−
√

p∗(x) · ∇
pt(x)

p∗(x)

)
dx

≤−
∫
Rd

pt(x)

∥∥∥∥∇ pt(x)

p∗(x)

∥∥∥∥2 dx
+

∫
Rd

pt(x)

p∗(x)

∥∥∥∥∫
Rd

k(x,y)
√
p∗(y) · ∇

pt(y)

p∗(y)
−
√

p∗(x) · ∇
pt(x)

p∗(x)

∥∥∥∥2 dx
≤β ·KAE

(67)

where the last inequality follows from the pt warm assumption. Suppose we control the KAE by
Eq. 64, which means ∂tDχ(pt, p∗) ≤ 4βϵ, and time T = −C ln ϵ which leads pt to the target region,
i.e., KL(pt∥p∗) ≤ ϵ by the linear convergence, when ϵ is small enough, e.g., ϵ ≤ (16βC)−2 and
Dχ(p0, p∗) ≤ 1/4, we have

Dχ(pT , p∗) ≤ Dχ(p0, p∗) + 4βϵT = Dχ(p0, p∗)− 4Cβϵ ln ϵ ≤ Dχ(p0, p∗) + 4Cβ
√
ϵ ≤ 1/2.

Hence, the proof is completed.

With these Lemmas, we provide the main theorem proof in the following.

Proof. Suppose Hp∗(pt) := KL(pt∥p∗) for abbreviation. According to the time derivative of KL
divergence along any flow, we have

d

dt
Hp∗ (pt) =

∫
Rd

δHp∗

δp
(pt) ∂tptdx. (68)

Therefore, along Remark 2, we have

d

dt
Hp∗ (pt) =

∫
Rd

∇ ln
pt(x)

p∗(x)
· ϕt(x)pt(x)dx

=−
∫
Rd

∫
Rd

k(x,y)pt(x)pt(y) ·
[
∇ ln

pt(x)

p∗(x)
· ∇ ln

pt(y)

p∗(y)

]
dydx,

(69)
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which follows from Eq. 36. By taking

k(x,y) = (p∗(x))
−1/2

kσ(x,y) (p∗(y))
−1/2

,

Eq. 69 satisfies

d

dt
Hp∗(pt) =−

∫
Rd

pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
dx ·

∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

=−
∫
Rd

pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
·

[∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

− pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
+

pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)

]
dx

=−
∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx
−
∫
Rd

pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
·

[∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

− pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)

]
dx.

≤− 1

2

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx
+

1

2

∫
Rd

∥∥∥∥∥ pt(x)√
p∗(x)

∇ ln
pt(x)

p∗(x)
−
∫
Rd

kσ(x,y)
pt(y)√
p∗(y)

∇ ln
pt(y)

p∗(y)
dy

∥∥∥∥∥
2

dx︸ ︷︷ ︸
Kernel Approximation Error(KAE)

.

(70)

the decreasing of KL divergence of SVGD at time t satisfies

d

dt
Hp∗(pt) ≤− 1

4

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx+ 4ϵ

≤− µ

16
Hp∗(pt) + 4ϵ,

(71)

where the first inequality follows from Lemma 4.3 and the second one follows from Lemma 4.2.
However, Lemma 4.2 requires a local condition of pt which we proved in Lemma C.1. By applying
Gronwall’s lemma, Eq. 71 implies the desired bound

Hp∗(pt) ≤ max

(
0,

(
Hp∗(p0)−

64ϵ

µ

))
· exp

(
−µt

16

)
+

64ϵ

µ
. (72)

Hence, the proof is completed.

Remark 3. Actually, instead of the constant upper bound of the density ratio provided in Assump-
tion [A3], we allow the upper bound of the density ratio to be upper-bounded as

supx∈Rd pt(x)/p∗(x) ≤ P (t).

where P (t) denotes a polynomial function. Without loss of generality, we suppose P (t) ≤ (t+ 1)q.
In this condition, reweighted SVGD can achieve an O(1/ϵ) when we choose

σt = min
(
1, e−t−1

)
. (73)
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In the following, we will show how this choice affects the kernel approximation error shown in
Lemma 4.3. Similar to Eq. 63, we can obtain the following inequality

Term 1 ≤12LM
√
P (t)σt ·

(
16Cd+

9P (t)Cd

2M
+ 6
√

P (t)L+ 3CL+ P (t)CL

)
≤192LMCd ·

√
P (t)σt + 54LCd · P (t)1.5σt

+ 36L2M ·
√
P (t)σt + 12L2MC · P (t)1.5σt.

(74)

We will easily obtain that

P 1.5(t)σt = (1 + t)1.5q · e−(t+1) ≤ (1 + 1.5q)1.5q · e−1−1.5q

t+ 1
,

and

Term 1 ≤
(
192LMCd+ 54LCd+ 36L2M + 12L2MC

)
· (1 + 1.5q)1.5q · e−1−1.5q · (t+ 1)−1.

For abbreviation, we suppose

C∗ =
(
192LMCd+ 54LCd+ 36L2M + 12L2MC

)
· (1 + 1.5q)1.5q · e−1−1.5q.

Then, Similar to Eq. 71, we have

d

dt
Hp∗(pt) ≤− 1

4

∫
Rd

p∗(x) ·
∥∥∥∥ pt(x)p∗(x)

∇ ln
pt(x)

p∗(x)

∥∥∥∥2 dx+
4C∗

1 + t

≤− µ

16
Hp∗(pt) +

4C∗

1 + t
.

(75)

It means the KL divergence Hp∗(pt) satisfies

Hp∗(pt) ≤ 4C∗ · exp
(
−µ(t+ 1)

16

)
· Ei

(
µ(t+ 1)

16

)
+Hp∗(p0) · exp

(
−µt

16

)
(76)

where Ei is denoted as

Ei(x) = −
∫ ∞

−x

exp(−t)

t
dt.

According to Abramowitz (1972), we have

e−xEi(x) ≤− 1

2
ln(1− 2

x
)

4C∗ · exp
(
−µ(t+ 1)

16

)
· Ei

(
µ(t+ 1)

16

)
≤− 2C∗ ln(1−

32

µ(t+ 1)
) ≤ 64C∗

µ(t+ 1)− 32
,

where the last inequality follows from ln(x) ≥ 1− 1/x. Hence, by requiring RHS of Eq. 76 to be
smaller than ϵ, we have t ≥ 64C∗/(µϵ) + 32/µ.

In the following, we will show that a convergence rate can be obtained by approximating an unknown
normalizing constant of the target distribution p∗ (similar to Theorem 3.1).

Proposition C.2. Suppose Assumption [A1]-[A3] are satisfied, chi-square Dχ(p0, p∗) ≤ 1/4 and
PDF of target distribution p∗(x) can be estimated by p̂∗(x) satisfying

p∗(x) =
e−f∗(x)

C∗
, p̂∗(x) =

e−f∗(x)

Ĉ
where 0 < C∗, Ĉ < ∞.

For any ϵ > 0, if we set reweighted kernel k:

k̂(x,y) = (p̂∗(x))
−1/2

kσ(x,y) (p̂∗(y))
−1/2

, kσ(x,y) = k̃σ(x− y) = σ−dk̃(σ−1(x− y)),∫
Rd

∥y∥4 · k̃(y)dy ≤ M, and

∣∣∣∣1− ∫
Rd

kσ(x,x− y)dy

∣∣∣∣ ≤ 1

2
√
2
,

(77)
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where

σ = min

(
1,

ϵ

12LM
√
β
·
(
16Cd+

9βCd

2M
+ 6
√
βL+ 3CL+ βCL

)−1
)
, (78)

then the KL divergence between pt and p∗ satisfies

Hp∗(pt) ≤ max

(
0,

(
Hp∗(p0)−

64ϵ

µ

))
· exp

(
−µt

16
· Ĉ

C∗

)
+

64ϵ

µ
. (79)

Proof. We suppose the following reweighted kernels

k(x,y) = (p∗(x))
−1/2

kσ(x,y) (p∗(y))
−1/2

k̂(x,y) = (p̂∗(x))
−1/2

kσ(x,y) (p̂∗(y))
−1/2

lead to different update rules which are

ϕt (x) =

∫
(k (x,y)∇ ln p∗ (y) +∇yk (x,y)) dpt(y)

=−
∫

k(x,y) · ∇ ln
pt(y)

p∗(y)
dpt(y)

ϕ̂t (x) =

∫ (
k̂ (x,y)∇ ln p̂∗ (y) +∇yk̂ (x,y)

)
dpt(y)

=

∫ (
k̂ (x,y)∇ ln p∗ (y) +∇yk̂ (x,y)

)
dpt(y)

=−
∫

k̂(x,y) · ∇ ln
pt(y)

p∗(y)
dpt(y)

where the second and the last equations follow from integration by part. Hence, the dynamic of KL
divergence under ϕ̃t becomes

d

dt
Hp∗ (pt) =

∫
Rd

∇ ln
pt(x)

p∗(x)
· ϕ̂t(x)pt(x)dx

=− Ĉ

C∗

∫
Rd

∇ ln
pt(x)

p∗(x)
· ϕt(x)pt(x)dx

≤ Ĉ

C∗
·
(
− µ

16
Hp∗(pt) + 4ϵ

)
(80)

where the equation follows from the definition of k̂, and the inequality follows from Theorem 3.1. By
applying Gronwall’s lemma, Eq. 80 implies the desired bound

Hp∗(pt) ≤ max

(
0,

(
Hp∗(p0)−

64ϵ

µ

))
· exp

(
−µt

16
· Ĉ

C∗

)
+

64ϵ

µ
. (81)

This proposition demonstrates that approximating an unknown normalizing constant will not harm
the linear convergence rate of SVGD with reweighted kernels, and only provides an additional factor
Ĉ/C∗ in total complexity. The very common question is that it seems that the convergence can be
arbitrarily fast when the factor Ĉ/C∗ is large enough. Actually, we should notice this convergence
rate only establishes in asymptotic analysis, which means the discretization error cannot be controlled
without a tiny step size when Ĉ/C∗ is large. That means a large Ĉ/C∗ usually implies a small step
size in practice rather than arbitrarily fast convergence.
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(a) p0 = N ([0, 0], diag(0.25, 0.25)) (b) p0 = N ([0, 0], diag(0.5, 0.5)) (c) p0 = N ([0, 0],diag(1, 1))

Figure 3: Reweighted vs smoothing kernel (1K particles). p∗ = N ([0, 0],diag(5, 1)).
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Figure 4: Reweighted vs smoothing kernel (0.5K particles). p∗ = N ([0, 0],diag(5, 1)).

D EXPERIMENTAL RESULTS

In this section, we conduct the SVGD with reweighted kernels in some synthetic data to validate
our claims, i.e., compared with traditional SVGD, SVGD with reweighted kernels can achieve any
ϵ-neighborhood with a linear convergence. To validate our theoretical results in asymptotic settings,
we choose different particle sizes and show that sampling by SVGD with reweighted kernels can
obtain a lower KL divergence.

To demonstrate the efficiency and stability of SVGD, we provide a numerical illustration for these
two algorithms in Figure 5. It is clear that Langevin dynamics suffer from the introduction of the
stochasticity, which makes the particle highly unstable. Thus, it is necessary to use more particles to
perform the task to guarantee the stability.
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Figure 5: SVGD vs Langevin dynamics.
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