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ABSTRACT

Humans excel at reusing prior knowledge to address new challenges and devel-
oping skills while solving problems. This paradigm becomes increasingly pop-
ular in the development of autonomous agents, as it develops systems that can
self-evolve in response to new challenges like human beings. However, previ-
ous methods suffer from limited training efficiency when expanding new skills
and fail to fully leverage prior knowledge to facilitate new task learning. We
propose Parametric Skill Expansion and Composition (PSEC), a new framework
designed to iteratively evolve the agents’ capabilities and efficiently address new
challenges by maintaining a manageable skill library. This library can progres-
sively integrate skill primitives as plug-and-play Low-Rank Adaptation (LoRA)
modules in parameter-efficient finetuning, facilitating efficient and flexible skill
expansion. This structure also enables the direct skill compositions in parameter
space by merging LoRA modules that encode different skills, leveraging shared
information across skills to effectively program new skills. Based on this, we
propose a context-aware modular to dynamically activate different skills to col-
laboratively handle new tasks. Empowering diverse applications including multi-
objective composition, dynamics shift, and continual policy shift, the results on
D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC
exhibits superior capacity to leverage prior knowledge to efficiently tackle new
challenges, as well as expand its skill libraries to evolve the capabilities.

1 INTRODUCTION

Humans excel at leveraging existing skills and knowledge to efficiently tackle new tasks while con-
tinually evolving their capabilities to rapidly adapt to new tasks. (Driscoll et al., 2024; Courellis
et al., 2024; Eppe et al., 2022; Eichenbaum, 2017). For instance, a child can rapidly learn to recog-
nizing a tiger by integrating prior experiences of recognizing a cat, and subsequently, combines these
knowledge to adapt to recognizing a lion. This fundamental approach to problem-solving highlights
a key aspect of human intelligence that is equally crucial for autonomous agents. However, most
current decision-making algorithms adhere to a tabula rasa paradigm, where they are trained from
scratch without utilizing any prior knowledge or resources (Akkaya et al., 2019; Berner et al., 2019;
Silver et al., 2016), leading to severe sample inefficiency and elevated cost when the agent encoun-
ters new tasks (Agarwal et al., 2022; Peng et al., 2019; Du & Kaelbling, 2024). Therefore, in this
paper, we aim to explore the capability of autonomous agents to leverage and expand upon their
existing knowledge base in novel situations to enhance learning efficiency and adaptability.

While some existing studies, such as continual learning (Liu et al.,, 2024; Gai & Wang, 2024),
compositional policies (Peng et al., 2019; Janner et al., 2022; Ajay et al., 2023), or finetuning-based
methods (Agarwal et al., 2022), aim to replicate this process, they jointly failed to tackle several key
limitations. /) Catastrophic forgetting: these approaches typically lack a fundamental mechanism
to guarantee continuous improvement when acquiring new skills, making the autonomous agents
very susceptible to overfitting on new tasks while forgetting previously learned skills without proper
regularization (Liu et al., 2023c; 2024; Gai & Wang, 2024); 2) Limited efficiency in learning new
tasks: Some methods avoid the catastrophic forgetting problem by adopting a parameter-isolation
approach via encoding new skills in independent new parameters. However, they typically do not
fully utilize prior knowledge from old skills to enhance training in current tasks, lacking an efficient
way to learn new skills in terms of both parameters and training samples (Peng et al., 2019; Zhang
et al., 2023a), leading to tremendous costs as the number of skills progressively grows.
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Figure 1: PSEC framework and its application in diverse scenarios. (a) We maintain a skill library that
contains many skills primitives and can progressively expand by adding new LoRA modules. (b) Then we train
a context-aware compositional network to adaptively compose different elements in the skill library to solve
new tasks. (c) PSEC framework is versatile to diverse applications where reusing prior knowledge is crucial.

We propose Parametric Skill Expansion and Composition (PSEC), a framework that facilitates effi-
cient self-evolution of autonomous agents by maintaining a skill library that progressively integrates
new skills, facilitating rapid adaptation to evolving demands. The key insight is we can efficiently
manage the primitives in this library to tackle new challenges by exploiting the shared information
across different skills within the parameter space. As shown in Figure 1 (a), we adopt the Low-
Rank Adaptation (LoRA) (Hu et al., 2021) approach, which encodes skills as trainable parameters
injected into existing frozen layers. This parameter-isolation approach naturally resolves the catas-
trophic forgetting problem, and significantly reduces computational burden thanks to the low-rank
decomposition structure. This efficient modular design allows for managing skills as plug-and-play
modules, and thus can directly blend different abilities within the parameter space to interpolate
new skills (Clark et al., 2024), as shown in Figure 1 (b). This approach can leverage more shared or
complementary structures across skills for optimal compositions. Based on this insight, we propose
a context-aware modular to adaptively compose skills and each primitive is modeled by diffusion
models to ensure both flexibility and expressiveness in composition. Through endless expansion and
composition, PSEC forms an iterative framework that can continually evolve and efficiently tackle
new challenges, offering one promising pathway for developing human-level autonomous agents.

Empowering diverse settings including multi-objective composition, continue policy shift and dy-
namics shift, PSEC demonstrates its capacity to evolve and effectively solve new tasks by leveraging
prior knowledge, evaluated on the D4RL (Fu et al., 2020), DSRL (Liu et al., 2023a) and DeepMind
Control Suite (Tassa et al., 2018), showcasing significant potential for real-world applications.

2 RELATED WORKS

Tabula Rasa. Tabula rasa learning is one popular paradigm for diverse existing decision-making
applications, such as robotics and games (Silver et al., 2017; Andrychowicz et al., 2020; Berner
et al., 2019; Vinyals et al., 2019). It directly learns policies from scratch without the assistance of
any prior knowledge. However, it suffers from notable drawbacks related to poor sample efficiency
and constraints on the complexity of skills an agent can acquire (Agarwal et al., 2022).

Compositional Policies. Some previous methods try to leverage prior knowledge relying on pre-
trained primitive policies. More specifically, they propose a compositional network in a hierarchical
structure to adaptively compose primitives to form complex behaviors (Peng et al., 2019; Qureshi
et al., 2020; Pertsch et al., 2021; Merel et al., 2019; 2020). However, their expressiveness is limited
by the expressiveness of simple Gaussian primitives. Recently, due to the strong expressiveness of
the diffusion model and its inherent connection with Energy-Based Models (LeCun et al., 2006),
many compositional policies have been approached by diffusion model. Diffusion models learn the
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gradient fields of an implicit energy function, which can be combined at inference time to general-
ize to new complex distribution readily (Janner et al., 2022; Wang et al., 2024a; Du & Kaelbling,
2024; Liu et al., 2022; Luo et al., 2024b). However, these approaches rely on independently trained
policies with fixed combination weights, which lack the flexibility to adapt to complex scenarios.
Moreover, most previous methods can only combine skills after the policy distribution generation
of each skill. Therefore, they fail to fully utilize the shared features of different skills to achieve
optimal compositions. We systematically investigate the advantages of skill composition within
the parameter space, and compose skills in a context-aware manner with each skill modeled as a
diffusion model. This ensures both flexibility and expressiveness in composing complex behaviors.

Continual Learning for Decision Making. Current continual learning methods for decision mak-
ing, including continual reinforcement learning (RL) and imitation learning (IL), primarily focus
on mitigating catastrophic forgetting of prior knowledge when learning new tasks. They can be
roughly classified into three categories: structure-based (Smith et al., 2023; Wang et al., 2024c¢),
regularization-based (Kessler et al., 2020), and rehearsal-based methods (Liu et al., 2024; Peng
et al., 2023). Our study capitalizes on leveraging existing skills to facilitate efficient new task learn-
ing and enables the extension of skill sets. In addition, it naturally solves the catastrophic forgetting
challenge thanks to the parameter isolation induced by the LoRA module (Liu et al., 2023c), directly
bypassing the key challenges of existing continual learning methods.

Finetune-based Methods. Some finetune-based methods aim to accelerate policy learning by lever-
aging prior knowledge. This knowledge may come from pretrained policy or offline data, such as
Offline-to-online RL (Nair et al., 2020; Lee et al., 2022b; Agarwal et al., 2022) and transfer RL (Bar-
reto et al., 2018; Li et al.,, 2019). Some methods maintain a policy library that contains pretrained
policies and adaptively selects one policy from this set to assist policy training (Kim et al., 2024;
Wang et al., 2024b; Barreto et al., 2018). However, they are generally restricted to single-task sce-
narios where all policies serve the same task (Zhang et al., 2023a), or only sequentially activate one
policy in the pretrained sets, which greatly limits the expressiveness of the pretrained primitives (Li
et al., 2019). Our method, on the contrary, can both leverage multi-task knowledge to fulfill the new
task, and can simultaneously activate all skills to compose more complex behaviors.

3 METHODS

We propose PSEC, a generic framework that can efficiently reuse prior knowledge and self-evolve
to address emerging new tasks. Next, we will elaborate on our problem setup and technical details.

3.1 PRELIMINARY

Diffusion Model for Policy Modeling. Recently, diffusion model has become popular for policy
modeling because of its superior expressiveness to model complex distributions (Wang et al., 2023;
Chen et al., 2022; Lu et al., 2023; Zheng et al., 2024). Considering a policy distribution 7(a|s) and
a sample (s, a) drawn from an empirical dataset D of 7(als), the diffusion process (Ho et al., 2020)
progressively introduces Gaussian noise to the sample over 1’ steps, producing a sequence of noisy
samples ag, a1, ..., ar with ag = a following the forward Gaussian kernel:

q(at|la—1) = N(ag; /1 = Bras—1, Be1),  qlailao) = N(as; v/prao, (1 — pp)I), (D

where p; ;== 1 — B¢, pp = ]_Lf/:1 P+, and the noise is controlled by a variance schedule 3y, ..., 8; to
ensure p(ar) = N (0, I). The denoise process aims to recover the sample from p(ar) by learning a
conditional distribution pg(a;—_1|as, s). The policy mg(als) is typically modeled as:

T
mo(als) = plar) [ [ po(ai-1lar, s); po(as—1lar, s) = N(ar—1; polar, t,s), So(ar, £, ), (2)

t=1
where X9 = [;] is set as untrained time-dependent constants and pug(a,t,s) = \/%(at —
\/fjﬁee(at, t,s)) is reparameterized by €y. The trainable parameter 6, modeled by deep networks,

can be optimized via minimizing the following objective by predicting the noise:

2
Liit(0) = Byts,emn(0,1),(s,0)~D |:w(8a a) H6 —€g (\/ﬁita + /1= pee,t, 8) H ] . 3)

where U is uniform distribution over the discrete set {1, ..., T'}. w(s, a) is a flexible weight function
that encodes human preference (Zheng et al., 2024). For example, w(s,a) o« f(A(s,a)),f > 0
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(a) Learning new skills using LoRA modules. (b) Interpolation in LoRA modules.

Figure 2: (a) Each skill is encoded in separate LoRA modules respectively. (b) By adjusting the composing
weights «;, different LoORA modules can merge together to interpolate new skills.

with A(s, a) as the advantage function leads to weighted behavior cloning (BC) in offline reinforce-
ment learning (RL) (Zheng et al., 2024; Kostrikov et al., 2022; Xu et al., 2023), and w(s,a) := 1
degenerates to traditional BC (Chen et al., 2023). After obtaining the approximated g and Xy, we
can substitute them into Eq. (2) to iteratively denoise and obtain actions conditioned on the state.

Problem Setups. We consider a Markov Decision Process with s € S and a € A are state and
action space, P : S x A — A(S) is transition dynamics, and r : S X A — R is reward function.
We assume the state space S and action space A remain unchanged during training, which is a mild
assumption in many relevant works (Peng et al., 2019; Ajay et al., 2023; Nair et al., 2020; Luo et al.,
20242). We consider an agent with 7 as its initial policy and then is progressively tasked with new
tasks 7;,7 = 1,2, ..., with differences in the rewards r or dynamics P, to mirror real-world scenarios
with non-stationary dynamics or new challenges continually emerge (LLuo et al., 2024a). Each task is
provided with several expert demonstrations D/ := {(s,a)} or a mixed-quality dataset with reward
labels D7+ := {(s,a,7;,5")}. So, we can use either offline RL or imitation learning (IL) to adapt
to the new challenges. Inspired by previous works (Peng et al., 2019; Barreto et al., 2018; Zhang
et al., 2023a), we maintain a policy library II to store the policies associated with different tasks
and aim to utilize the prior knowledge to enable efficient policy learning and gradually expand it to
incorporate new abilities across training.

H:{ﬂ'o,ﬂ'l,ﬂ'g,ﬂ'g,...}. (4)

We aim to explore 1) Efficient Expansion: How to manage the skill library II to learn new skills
in an efficient and manageable way, and 2) Efficient Composition: How to fully utilize the prior
knowledge from primitives in the skill set II to tackle the emerging challenges.

3.2 EFFICIENT POLICY EXPANSION VIA LOW RANK ADAPTATION

For the first objective, previous methods typically train each primitive from scratch in a tabula rasa
paradigm (Peng et al., 2019; Janner et al., 2022; Lu et al., 2023), failed to leverage the prior knowl-
edge in II to efficiently obtain a good skill primitive. This presents significant issues in terms of
computational efficiency when the number of skills grows. To mitigate these challenges, we turn
to Parameter-Efficient Fine-Tuning (PEFT) (Ding et al., 2023), which has proven highly effective
in various natural language processing and computer vision applications. One of the most popular
PEFT implementations is LoRA (Hu et al., 2022). It injects trainable low-rank decomposed matrices
into the pretrained layer to avoid overfitting with limited adaptation data and significantly reduces
computational and memory burden. Inspired by this, we try to employ LoRA to efficiently learn
new skills given solely limited data for the target skill.

Policy Expansion via Low-Rank Adaptation. We consider a pretrained policy 7y and denote
Wy € RéinXdout ag jts associated weight matrix. Directly finetuning Wy to adapt to new skills might
be extremely inefficient (Liu et al., 2023c¢), instead, we introduce a tune-able LoRA module AW
upon Wy, i.e., Wo+ AW = Wy+ BA to do the adaptation and keep W), frozen, where B € RdinXn
A € R™"%dowt and n < min(dip, dout ). Specifically, the input feature of the linear layer is denoted
as hip € R%n_ and the output feature of the linear layer is hoy € Rdeut | the final output of a LoRA
augmented layer can be calculated through the following forward process:

hout = (WO + aA W)hin = (WO + aBA)hin = WOhin + O4B14hina 5
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where « is a weight to balance the pre-trained model and LoRA modules. This operation naturally
prevents catastrophic forgetting in a parameter isolation approach, and the low-rank decomposi-
tion structure of A and B significantly reduces the computational burden. Benefiting from this
lightweight characteristic, we can manage numerous LoORA modules {AW; = B;A;li € 1,2, ..., k}
to encode different skill primitives 7;, respectively, as shown in Figure 2a. This flexible approach
allows us to easily integrate new skills based on existing knowledge, while also facilitating library
management by removing suboptimal primitives and retaining the effective ones. More importantly,
by adjusting the value of «, it holds the potential to interpolate the pretrained skill in W and other
primitives in AW; (Clark et al., 2024) to generate novel skills, as shown in Eq. (6) and Figure 2b.

k k
W=Wo+ Y iAW, =Wo+ Y a;BiA; (6)

i=1 i=1

where «; is the weight to interpolate pre-trained weights and LoRA modules. This interpolation
property has been explored in fields like text-to-image generation (Clark et al., 2024) and language
modeling (Zhang et al., 2023b), but its application in decision-making scenarios remains highly un-
derexplored, despite LoRA has proven efficacy in skill acquisition (Liu et al., 2023c). Next, we will
elaborate on how to effectively combine LoRA modules to adapt to decision-making applications.

3.3 CONTEXT-AWARE COMPOSITION IN PARAMETER SPACE

Effectively combining skills encoded as different LoORA modules to solve new tasks is crucial. Pre-
vious methods (Du & Kaelbling, 2024; Ajay et al., 2023; Janner et al., 2022) typically rely on fixed
combinations of skills, resulting in limited compositional flexibility. This approach may be accept-
able in static domains like language models, but it falls short in decision-making applications where
dynamic skill composition is crucial. For example, in autonomous driving, the ability to dynamically
prioritize skills of obstacle avoidance in potential collision scenarios, or acceleration when speeds
are suboptimal, is essential. Naively adopting a fixed set of «; like previous approaches (Du & Kael-
bling, 2024; Ajay et al., 2023; Janner et al., 2022; Clark et al., 2024), however, cannot adequately
support such flexible deployment of skills based on real-time environmental demands.

Context-aware Composition. We propose a simple yet effective context-aware composition
method that adaptively leverages pretrained knowledge to optimally address the encountering tasks
according to the agent’s current context. Specifically, we introduce a context-aware modular
a(s;0) € R* with o as its i-th dimension. The composition method can be expressed by Eq. (7):

k k
W(0) =Wo+ Y ai(s;0)AW; = Wo + Y _ ai(s; 0) BiAs. 7

i=1 i=1

Here, a(s;#) adaptively adjusts output weights based on the agent’s current situation s with the
parameter 6 optimized via minimizing the diffusion loss in Eq. (3). Note that the trainable parameter
0 lies solely in the composition network «p with the pretrained weights W, and all LoRA modules
AW, being kept frozen, thus 6 can be efficiently trained in terms of both samples and parameters.

Parameter-level v.s. Action-level Composition. Careful readers may notice that our context-aware
composition is similar to previous works that adaptively compose Gaussian primitive skills to create
complex behaviors (Peng et al., 2019; Qureshi et al., 2020), such as the one shown in Eq. (8) (Peng
et al., 2019):

k
m(als) = 75 T mlal)™ 2. mials) = A (u(s).24(9)). ®

where «a(s; 0) is optimized to combine the policy distributions 7;,7 = 0, ..., k to collaboratively
build a new policy distribution 7 to solve the new task.

However, these two methods differ fundamentally in their stages of composition, mirroring the ad-
vantages of early fusion over late fusion across various domains (Gadzicki et al., 2020; Wang et al.,
2024d). PSEC employs a parameter-level composition, where different skills are seamlessly in-
tegrated within the parameter space. By contrast, Eq. (8) represents an action-level composition
that explicitly combines the output distributions of various skills. In comparison, parameter-level
composition will be more efficient, as it can leverage more shared or complementary information
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Figure 3: Comparison between parameter-, noise-, and action-level composition. Parameter-level composition
offers more flexibility to leverage the shared or complementary structure across skills to compose new skills.
Noise- and action-level composition, however, is too late to benefit from this information.
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Figure 4: t-SNE projections of samples from different skills in parameter, noise, and action space. The
parameter space exhibits a good structure for skill composition, where skills share common knowledge while
retaining their unique features to avoid confusion. Noise and action spaces are either too noisy to clearly
distinguish between skills or fail to capture the shared structure across them. See Appendix C.4 for details.

between different skills to enhance compositionality and overall performance before generating the
final policy distribution (Shazeer et al., 2016; Wang et al., 2024c). Conversely, action-level compo-
sition only merges skills after the action generation, which is too late to effectively leverage features
across skills for optimal composition. Besides, previous action-level methods typically employ sim-
ple Gaussian primitives to construct their skill library, significantly limiting its expressiveness.

Parameter-level v.s. Noise-level Composition. Some approaches use diffusion models for policy
modeling and exhibit remarkable compositionality by identifying its connections to Energy-Based
Models (Du & Kaelbling, 2024; Wang et al., 2024a; Janner et al., 2022; Ajay et al., 2023; Lu et al.,
2023). Specifically, the noise predicted by diffusion models can be regarded as the gradient field
of some energy functions. It thus can be directly merged to form new skills during sampling in a
noise-level composition, as shown in Eq. (9). This is equivalent to doing a logical operation on the

energy functions to form complex behaviors (Du et al., 2023; Liu et al., 2022; LeCun et al., 2006).

k
E(Gtvta S) = Zaiei(atatvs)' (9)
=0

Here, ¢; represents the predicted noise derived from various skills, while ¢ is the aggregated noise re-
sulting from their composition. Utilizing € for denoising in Eq. (2) allows for the generation of a joint
distribution of skills, thereby facilitating the effective composition of these diverse capabilities (Ajay
et al., 2023; 2024; Janner et al., 2022). However, these methods employ fixed weights «; for policy
composition, limiting their flexibility and adaptability in dynamical scenarios where real-time ad-
justment on the compositional weights is required. In our paper, PSEC not only employs diffusion
models to enhance the expressiveness of primitives, but also adaptively adjusts the context-aware
compositional weights to enhance compositional flexibility. Additionally, this noise-level composi-
tion also tends to be less effective than parameter-level composition, as the latter integrates different
skills at an earlier stage, leading to improved performance, as shown in Figure 3.
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Table 1: Normalized DSRL (Liu et al., 2023a) benchmark results. Costs below 1 indicates safety. 1: the
higher the better. |: the lower the better. Results are averaged over 20 evaluation episodes and 4 seeds. Bold:
Safe agents with costs below 1. Blue: Safe agents achieving the highest reward.

BC CDT CPQ COptiDICE FISOR ASEC NSEC PSEC
Task reward T cost] reward? cost| reward? «cost] reward? cost| reward? «cost] reward? cost| rewardf «cost] reward?] cost|
easysparse 0.32 4.73 0.05 0.10 -0.06 0.24 0.94 18.21 0.38 0.53 0.95 58 0.55 0.08 0.55 0.02
easymean 0.22 2.68 0.27 0.24 -0.06 0.24 0.74 14.81 0.38 0.25 0.63 0.75 0.39 0.54 0.37 0.00
easydense 0.20 1.70 0.43 2.31 -0.06 0.29 0.60 11.27 0.36 0.25 0.85 5.28 0.76 1.45 0.51 0.01
mediumsparse 0.53 1.74 0.26 2.20 -0.08 0.18 0.64 7.26 0.42 0.22 0.93 2.52 0.60 0.08 0.76 0.03
mediummean 0.66 2.94 0.28 2.13 -0.08 0.28 0.73 835 0.39 0.08 0.74 1.00 0.82 2.87 0.61 0.01
mediumdense 0.65 3.79 0.29 0.77 -0.08 0.20 0.91 9.52 0.49 0.44 0.81 0.52 0.76 0.27 0.66 0.02
hardsparse 0.28 1.98 0.17 0.47 -0.04 0.28 0.34 7.34 0.30 0.01 0.30 0.41 0.34 1.21 0.34 0.04
hardmean 0.34 3.76 0.28 3.32 -0.05 0.24 0.36 7.51 0.26 0.09 0.46 1.05 0.38 0.32 0.39 0.07
harddense 0.40 5.57 0.24 1.49 -0.04 0.24 0.42 8.11 0.30 0.34 0.36 0.82 0.19 0.03 0.34 0.07
MetaDrive < <
0.40 321 0.25 1.45 -0.06 0.24 0.63 10.26 0.36 0.25 0.67 2.02 0.53 0.76 0.50 0.03
Average
AntRun 0.73 11.73 0.70 1.88 0.00 0.00 0.62 3.64 0.45 0.03 0.74 4.97 0.79 6.81 0.59 0.33
BallRun 0.67 11.38 0.32 0.45 0.85 13.67 0.55 11.32 0.18 0.00 0.35 4.35 0.58 7.46 0.15 0.95
CarRun 0.96 1.88 0.99 1.10 1.06 10.49 0.92 0.00 0.73 0.14 0.93 0.39 0.93 0.66 0.83 0.00
DroneRun 0.55 5.21 0.58 0.30 0.02 7.95 0.72 13.77 0.30 0.55 0.57 229 0.62 7.3 0.47 0.87
AntCircle 0.65 19.45 0.48 7.44 0.00 0.00 0.18 13.41 0.20 0.00 0.46 5.55 0.36 2.08 0.20 0.00
BallCircle 0.72 10.02 0.68 2.10 0.40 4.37 0.70 9.06 0.34 0.00 0.54 1.58 0.58 2.08 0.34 0.22
CarCircle 0.65 11.16 0.71 2.19 0.49 4.48 0.44 7.73 0.40 0.11 0.41 2.86 0.40 2.62 0.36 0.20
DroneCircle 0.82 13.78 0.55 1.29 -0.27 1.29 0.24 2.19 0.48 0.00 0.65 3.60 0.71 4.93 0.33 0.07
BulletGym - - . <
0.72 10.58 0.63 2.09 0.32 5.28 0.55 7.64 0.39 0.10 0.58 3.20 0.62 4.24 0.41 0.33
Average

Empirical Observations. To support the advantages of parameter-level composition over other
levels of composition, we employ t-SNE (Van der Maaten & Hinton, 2008) to project the output
features of LoORA modules into a 2D space, alongside the noise and generated actions of various
skills. Figure 4 illustrates that in the parameter space, different skills not only share common knowl-
edge, but also retain their unique features to avoid confusion. In contrast, noise and action spaces
are either too noisy to clearly distinguish between skills or fail to capture the shared structure across
them, making the compositions in noise and action space less effective than the parameter space.

4 EXPERIMENTS

PSEC enjoys remarkable versatility across various scenarios since many problems can be resolved
by reusing pre-trained policies and gradually evolving its capabilities during training. Thus, we
present a comprehensive evaluation across diverse scenarios, including multi-objective composition,
policy learning under policy shifts and dynamics shifts, to answer the following questions:

* Can the context-aware modular effectively compose different skills?
* Can our parameter-level composition outperform noise- and action-level compositions?
 Can the introduction of LoORA modules enhance training and sample efficiency?

Can PSEC framework iteratively evolve after incorporating more skills?

4.1 MULTI-OBJECTIVE COMPOSITION

In many real-world applications, a complex task can be decomposed into simpler objectives, where
collaboratively combining these atomic skills can tackle the complex task. In this setting, we aim
to evaluate the advantages of parameter-level composition over other levels of composition in Fig-
ure 3, and the effectiveness of the context-aware modular. We consider one practical multi-objective
composition scenario within the safe offline RL. domain (Zheng et al., 2024). This setting requires
solving a constrained MDP (Altman, 2021) to tackle a complex trilogy objective: avoiding distribu-
tional shift, maximizing rewards, and meanwhile minimizing costs. These objectives can conflict,
thus requiring a nuanced composition to optimize performance effectively (Zheng et al., 2024).

Setup. We evaluate on a popular safe offline RL benchmark, DSRL (Liu et al., 2023a). We set
w(s,a) = 1 in Eq. (3) to train our initial policy 7 as a behavior policy. Then, we set w(s,a) =
exp(Af(s,a)) and w(s,a) = exp(—Aj (s,a)) with A%(s,a) and A} (s, a) are the optimal reward
and feasible value function learned by expectile regression (Zheng et al., 2024) to train m; and 7o
that separately consider reward and safety performance respectively. During composition, we adopt
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Figure 5: Output weights of context-aware modular evaluated on the MetaDrive-easymean task. The network
dynamically adjusts the weights to handle real-time demands: It prioritizes safety policies when the vehicle
approaches obstacles or navigates a turn while avoiding boundary lines. When no obstacles are present and the
task is simply driving straight, it shifts focus toward maximizing rewards and maintain some safety insurance.

a few filtered near-expert demonstrations that jointly consider the trilogy objective, which is too
limited to imitate good policies. However, we can adopt these data to train a context-aware modular
a(s; ) in Eq. (7) to adaptively compose 7 1,2 to handle the conflicts in an efficient way.

Baselines. To demonstrate the effectiveness of the composition in parameter space, we compare two
other composition methods: noise-level and action-level composition. We denote them as NESC and
ASEC respectively, where we control the only differences to PSEC being the composition stage as
shown in Figure 3 to ensure a fair comparison. We also compare recent state-of-the-art (SOTA) safe
offline RL methods including FISOR (Zheng et al., 2024), CDT (Liu et al., 2023b), COptiDICE (Lee
etal., 2022a), CPQ (Xu et al., 2022) and BC. These traditional safe offline RL methods typically use
human-tuned trade-offs to balance the trilogy objective, which is equivalent to using fixed compo-
sition weights compared to PSEC. All policies are trained on the full DSRL dataset to ensure a fair
comparison (see Appendix C.1 for details).

Main Results. Table 1 shows that PSEC achieves a good balance between high returns and satisfac-
tory safety performance, and simultaneously mitigates distributional shift across all tasks, enjoying
highly competitive performance. In contrast, NSEC and ASEC exhibit skewed learning behaviors,
where both of them fail to discover an effective composition to ensure both good safety performance
and high returns, resulting in relatively poor safety outcomes despite high rewards. PSEC also
outperforms all traditional safe offline RL baselines, demonstrating the necessity of context-aware
composition over fixed composition when the task requires intricate balance between different el-
ements. To further support this, we visualize the outputs of our context-aware modular «(s;8) to
illustrate its adaptive capabilities. Figure 5 demonstrates that the network dynamically adjusts the
weightings to combine different skills, enabling a collaborative response to real-time environmental
changes. This adaptive behavior highlights the importance of dynamically adjusting the composi-
tional weights rather than relying on a fixed combination of different skills to jointly solve a new
task like previous methods (Ajay et al., 2023; Zheng et al., 2024; Janner et al., 2022).

4.2 CONTINUE POLICY SHIFT SETTING

We evaluate another practical scenario where the agent is progressively tasked with new tasks. We
aim to continuously expand the skill libraries to test if the capabilities of agents to learn new skills
can be gradually enhanced as prior knowledge grows and test the efficiency of LoRA.

Setup. We conduct experiments on the DeepMind Control Suite (DMC) (Tassa et al., 2018) envi-
ronments, where an agent is progressively required to stand, walk, and run. We investigate whether
PSEC can leverage the standing skill to rapidly learn to walk, and then effectively combine standing
and walking skills to adapt to running. For this purpose, we pretrain 7y to learn the basic standing
skill by setting w(s,a) := 1 in Eq. (3) trained on a expert dataset D/°. Subsequently, we provide
small expert datasets D/t for walk and D/2 for run, while maintaining w(s, a) := 1 to adapt to 7y
and mo. After training 71, we integrate it into the skill library I to assist o training alongside 7.
See Appendix C.2 for detailed experimental setups.

Baselines. /) We compare NSEC and ASEC to further demonstrate the superiority of parameter-
over noise- and action-level composition. 2) We evaluate training from scratch (denoted as Scratch),
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Figure 6: Comparisons on sample and training efficiency and the effectiveness of context-aware modular. S,
W, R denote stand, walk and run, respectively. Each value is averaged over 10 episodes and 5 seeds.

or replacing LoORA modules with multiplayer perceptions (MLP) to demonstrate the efficiency of
compositions and LoRA module. 3) We evaluate different PSEC variants without context-aware
modular (denoted as w/o CA) to further highlight the crucial role of dynamically combining skills.

Continue Evolution. Table 2 shows that PSEC ef-

fectively leverages prior knowledge to facilitate effi- Taple 2: Results in policy shift setting. S,
cient policy learning given solely limited data. Notably, W, R denote stand, walk and run. 10 trajec-
S+W—R outperforms S—R, demonstrating that the tories are provided for W and R tasks
learning capability of PSEC gradually evolves as the

skill library grows. In contrast, training from scratch or S=W S—R S+W—R
replacing the LoRA modules with MLP fails to learn Scratch 58.9 255 255
new skills given limited data, highlighting the effec- ASEC 65.7 24.3 30.8
: i : o NSEC 3209 385 39.4
tiveness of both utilizing prior knowledge and thg intro PSEC (MLP) 4241 1435 {045
duction of LoRA to efficiently adapt to new skills and PSEC 688 21 247

self-evolution. Moreover, note that even PSEC (MLP)
outperforms NSEC and ASEC, further highlighting the
advantages of parameter-level compositions.

Training and sample efficiency. To demonstrate the training and sample efficiency of PSEC, we
conduct extensive evaluations across varying numbers of trajectories and different methods. Fig-
ure 6(a) shows that PSEC achieves superior sample efficiency across different training sample sizes,
particularly when data is scarce (e.g., only 10 trajectories). Figure 6(b) shows that PSEC can quickly
attain excellent performance even without composition, highlighting the effectiveness of the LoRA
modules. Hence, we train less then 50k gradient steps for almost all tasks, while previous methods
typically require millions of gradient steps and data to obtain reasonable results.

Context-aware Composition v.s. Fixed Composition. We carefully tune the fixed composition
(w/o CA) of different skills during composition. However, Figure 6(c) shows that the context-
aware modular can consistently outperform the fixed ones across different levels of compositions.
This demonstrates the advantages of context-aware composition network to fully leverage the prior
knowledge in the skill library to enable efficient policy adaptations.

4.3 DYNAMICS SHIFT SETTING

We evaluate PSEC in another practical setting to further validate its versatility, where the dynamics
‘P shift to encompass diverse scenarios such as cross-embodiment (O’ Neill et al., 2024), sim-to-real
transfer (Tobin et al., 2017), and policy learning in non-stationary environments (Xue et al., 2024).

Setup. We evaluate on the D4ARL environments (Fu et al., 2020) , where we modify the dynam-
ics and morphology of locomotive robots to reflect the dynamics changes. Specifically, we first
pretrain 7o using a dataset D0 collected from a modified dynamics P, and then equip it with a
new small dataset D" collected under the original D4RL dynamics P;. Friction, Thigh Size and
Gravity denote Py modifies the friction condition, the thigh size of cheetah/walker, and the gravity
respectively. Based on the new small dataset DX, we set w(s,a) = exp(AZ(s,a)) with A%(s,a)
as the advantage function trained by expectile regression on Dt (Kostrikov et al., 2022) to obtain a
new policy 71 and then optimize the context-aware composition network c(s; #) to combine 7 ; to
collaboratively work under dynamics P;. See Appendix C.3 for details.

Baselines. One branch of baselines consists in training 7r; from scratch on the small dataset D,
which may face data scarcity challenges, including BC, offline RL methods like CQL (Kumar et al.,
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Figure 7: Results in the dynamics shift setting over 10 episodes and 5 seeds. -m, -mr and -me refer to D7*
sampling from medium, medium-replay and medium-expert V2 data in D4RL (Fu et al., 2020), respectively.

2020), IQL (Kostrikov et al., 2022), MOPO (Yu et al., 2020c). In addition, we evaluate some gen-
eralizable offline RL methods including DOGE (L et al., 2023) and TSRL (Cheng et al., 2023) that
are superior in the small sample regimes. Additionally, we evaluate the policy trained on the com-
bination of D and D™, referred to as Joint train, to show the advantages of the PSEC framework
over a brute-force method of combining all data to address dynamic gaps.

Main Results. Figure 7 demonstrates that PSEC effectively utilizes transferable knowledge from
the pretrained policy 7 to enhance performance under changed dynamics. In contrast, traditional
offline RL methods perform poorly with limited data in new dynamic settings. Moreover, PSEC
surpasses specialized sample-efficient offline RL methods like TSRL and DOGE, showcasing its
superior ability to leverage prior knowledge for increased training efficiency.

4.4 ABLATION STUDY

We primarily ablate on different LoRA ranks n to as- S - W with different LoRA ranks
sess the robustness of our methods. Figure 8 demon- 700

strates that under varied LoRA n ranks, PSEC con-

sistently outperforms the MLP variant across various @ 600

LoRA ranks, demonstrating the superior robustness of (§ 500

LoRA modules. Among the different rank settings, we

observe that n = 8 yields the best results, thus is opted 400

as the default choice for all experiments in our paper. 4 8 16 32 64
We hypothesize using rank larger than 8 degenerates is ) Rank

due to the training data being quite limited (e.g. only Figure 8: Ablations on LoRA ranks.

10 demonstrations).

5 CONCLUSION

We propose PSEC, a framework that handles different skills as plug-and-play LoRA modules within
an expandable skill library. This flexible approach enables the agents to reuse prior knowledge
for efficient new skill acquisition and to progressively evolve in response to new challenges like
humans. By exploiting the interpolation property of LoORA, we propose a context-aware composi-
tional network that adaptively activates and blends different skills directly in the parameter space by
merging the corresponding LoRA modules. This parameter-level composition enables the exploita-
tion of more shared and complementary information across different skills, allowing for optimal
compositions that collaboratively generate complex behaviors in dynamical environments. PSEC
demonstrates exceptional effectiveness across diverse practical applications, such as multi-objective
composition, continual policy shift and dynamic shift settings, making it highly versatile for real-
world scenarios where knowledge reuse and monotonic policy improvements are crucial. One limi-
tation is the pretrained policy 7y may encompass diverse distributions to ensure good LoRA tuning.
However, this can be mitigated by utilizing the broad out-of-domain dataset to enhance distribution
coverage. More discussions on limitations and future works can be found in Appendix A.
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A LIMITATIONS AND FUTURE WORKS

In this section, we provide detailed discussions about the limitations and their potential solutions.

* Assumption on the expressiveness of the pretrain policy. The main limitation of PSEC
is the assumption that the pre-trained my covers a diverse distribution, which allows for
efficient fine-tuning using small add-on LoRA modules. If this assumption does not hold,
learning new skills through parameter-efficient fine-tuning may prove challenging, as sig-
nificantly more parameters might be required to acquire new skills.

Potential solutions: Note that this assumption is mild in relevant papers that utilize LoRA
to learn new skills (Hu et al., 2021; Liu et al., 2023c). To tackle this problem, one straight-
forward solution is to increase the value of LoRA ranks to increase the learning capabilities
of the newly introduced modules. Another simple solution is to leverage the cheap and
abundant out-of-domain data to enhance the distribution coverage of the pretrained 7y to
enable efficient LORA adaptations.

* Redundant skill expansion. In this paper, PSEC includes policies for all tasks in the skill
library across its lifelong time. Although we adopt LoRA to reduce computational burden
and memory usage, maintaining an extensive library of skill primitives may still lead to
substantial computational costs.

Potential solutions: Note that not all skills should be incorporated into the skill library,
particularly those that are redundant and can be synthesized from other primitives. An
interesting direction for future research is to develop an evaluation metric to assess the
interconnections between different skills, such as the skill diversity (Pertsch et al., 2021;
Eysenbach et al.), to only include essential, non-composable atomic primitives. Such a
strategy could significantly reduce the management costs associated with maintaining the
skill library.

¢ Hyperparameter-tuning: Another limitation is PSEC introduces another LoRA modules
to learn new skills, which can introduce additional hyperparameters required to be tuned.

Potential solutions: This limitation is widely existed in relevant works that try to reuse prior
knowledge to learn new skills (Liu et al., 2023c; Clark et al., 2024; Wang et al., 2024c; Peng
et al., 2019; Barreto et al., 2018), since almost all papers require additional parameters or
regularization to adapt to the new skills. In this paper, we have ablated the robustness of
PSEC against varied LoRA ranks, and demonstrate consistent superiority over the naive
MLP modules in Figure 8, highlighting the robustness of PSEC for hyperparameter tuning.

» Simple context-aware compositional modular: We employ a simple context-aware mod-
ular «(s; 0) to dynamically combine different primitives. This operation is simple and may
not fully leverage the shared structure across skills for the target task.

Potential Solutions: However, in our paper, we have demonstrated the superior advantages
of this simple context-aware modular, as shown in Figure 6¢. One interesting future direc-
tion is to adopt a more advanced model architecture, training objective, or more flexible
gating approach to optimize the modular.

B DISCUSSIONS ON MORE RELATED WORKS

MOoE in decision making. The recent SDP (Wang et al., 2024c) is particularly relevant to our
work. Specifically, SDP employs Mixture of Experts (MoE) (Shazeer et al., 2016) to encode skills
as flexible combinations of forward path gated by distinct routers, allowing for efficient adaptation
to new tasks by fine-tuning newly introduced expert tokens and task-specific routers. However, SDP
necessitates that the pretrained policy 7y be modeled with MoE layers, which imposes additional
requirements on the model architecture. In contrast, our approach does not impose any constraints on
the structure of the pretrained network and allows for the direct incorporation of new skills as plug-
and-play LoRA modules. Moreover, when we identify a skill that is underperforming, we can easily
modify the skill library by simply removing its plug-and-play LoRA modules. In contrast, using
MoE limits this flexibility in managing different skills, making it challenging to mitigate the side
effects caused by suboptimal skills. Therefore, PSEC offers a more flexible approach to managing
the skill library, making it more feasible to scale up and incorporate a larger number of skills.
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LoRA in decision making. Other relevant works such as TAIL (Liu et al., 2023c), LoRA-
DT (Huang et al., 2024) and L2M (Schmied et al., 2024) also employ LoRA to encode skills.
However, they solely investigate the parameter-isolation property of LoRA to prevent catastrophic
forgetting, while overlooking the potential to merge different LoRA modules to interpolate new
skills. Moreover, TAIL only studies the IL domain, L2M and LoRA-DT only study the RL domain,
while PSEC both explore the effectiveness in RL and IL settings.

LoRA for composition in other domains. (Ponti et al., 2023; Clark et al., 2024; Huang et al.,
2023; Zhong et al., 2024; Prabhakar et al., 2024) use LoRA for multi-task learning but using a fixed
combination of LoRA modules, focusing on static settings like language model or image generation,
thus limiting its expressiveness of the pretrained LoRA modules and flexibility of composition. In
contrast, PSEC combines different LoRA via a context-aware modular, maximizing the expressive-
ness of pretrained skills to flexibly compose new skills, which is crucial for decision making since
the real-time adjustment is required to handle the dynamical problems as shown in Figure 5.
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Figure 9: Tllustrative comparisons between PSEC and other modularized multitask learning frameworks when
deployed to continual learning settings.

Modularized skills for multitask learning. Multitask learning methods attempt to leverage the
complementary benefits and commonalities across different tasks to enhance the cross-task gener-
alization and capabilities (Wang et al., 2024c; Yang et al., 2020; Sun et al., 2022; 2023; Ruder,
2017). To achieve effective skill sharing, two primitive paradigms are introduced, including Hard
Parameter Sharing and Soft Parameter Sharing (Ruder, 2017), as shown in Figure 9. All these
methods demonstrate a modularized structure, where separate parameters are required to solve dif-
ferent tasks. Not only enjoying the benefits of multitask learning, this modularized design allows
for efficient adaptation to new tasks by exploiting the shareable knowledge stored in different mod-
ules (Happel & Murre, 1994; SHARKEY, 1996; Auda & Kamel, 1998; 1999; Sodhani et al., 2022;
Andreas et al., 2016; Alet et al., 2018; Ponti et al., 2023; Clark et al., 2024; Huang et al., 2023;
Zhong et al., 2024; Prabhakar et al., 2024).

Hard parameter sharing approaches (Caruana, 1993; Sun et al., 2022; 2023; Baxter, 1997; Ledn
et al.,, 2021) aim to learn a shared feature that is strong and generalizable enough to capture the
commonalities across all different tasks. This is achieved by developing a multi-head style struc-
ture, where different heads solve different tasks and all heads share some common layers (Sun et al.,
2022; 2023; Leon et al., 2021; Bakker & Heskes, 2003). In this structure, zero-shot generalization
to new tasks becomes possible if the shared layers can capture some generic features, following the
spirits of meta learning (Finn et al., 2017; Gordon et al., 2019; Naik & Mammone, 1992). PSEC can
be regarded as one specific type of hard parameter sharing method since different LoORA modules
exploit a shared my. However, note that each LoRA module in PSEC is sequentially and indepen-
dently optimized, thus making it easier to capture the task-specific features and avoid the potential
gradient conflicts across different skills (Yu et al., 2020a; Liu et al., 2021). Previous methods, how-
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ever, may introduce some gradient conflicts across different tasks that impede policy learning (Sun
etal,, 2022; Yang et al., 2020; Caruana, 1997), or suffer from collapsing to an entropic state and fail
to encode task-specific features (Ponti et al., 2023).

Soft parameter sharing approaches (Yang et al., 2020; Wang et al., 2024c; Liu et al., 2024; Duong
et al,, 2015; Yang & Hospedales, 2016; Ruder, 2017) are similar to the hard ones, with the differ-
ences primarily in the shared features. Instead of directly employing shared layers (Bakker & Hes-
kes, 2003; Caruana, 1993; Sun et al., 2022; Leon et al., 2021), soft parameter sharing approaches
adopt regularizations to enforce a “shared” feature across tasks, such as minimizing the L2 distance
or cosine similarity across the features for different tasks (Duong et al., 2015; Yang & Hospedales,
2016; Ruder, 2017), adopting flexible structures like MoE layers (Shazeer et al., 2016; Yuksel et al.,
2012; Wang et al., 2024c¢), soft modular (Yang et al., 2020), or resorting moving average across
different features (Liu et al., 2024; Lawson & Qureshi, 2024). These methods enjoy more flexibility
than hard parameter sharing but may suffer from potential instability caused by improper regular-
izations and outlier tasks. For instance, Liu et al. (2024); Lawson & Qureshi (2024) may undergo
performance degradation without appropriate averaging weights if they are trying to combine a sub-
optimal skill learned on limited data.

Modularized skills for continual learning and compositions. More critically, the modularized
design naturally facilitates continual evolvement by absorbing new skills in new modules in a
parameter-isolation manner (Sodhani et al., 2022). This is one key advantage of modularized skills
over traditional continual learning approaches since methods like EWC (Kirkpatrick et al., 2017),
Rehearsal (Rolnick et al., 2019), Functional Regularization (Pan et al., 2020) often exhibit some
catastrophic forgetting. The modularization method, however, can address this problem fundamen-
tally by learning new parameters without disrupting pretrained ones. Along this line, numerous
works also adopt modularized structure in a hard or soft manner as we discussed earlier (Ring,
1994; Pape et al., 2011; Huang et al., 2023; Andreas et al., 2016; Alet et al., 2018; Clark et al., 2024;
Zhong et al., 2024; Prabhakar et al., 2024; Liu et al., 2024) like PSEC. However, PSEC differs fun-
damentally in three key axes, including how to obtain different modules, how to compose modules,
and where to compose modules.

* How to obtain different modules? Many previous methods typically assume a fixed set
of modules during pretraining and jointly train all modules at once following a multitask
learning paradigm (Ring, 1994; Pape et al., 2011; Schwarz et al., 2018; Ponti et al., 2023;
Alet et al., 2018). Although this joint training approach enjoys the potential to exploit
more shared features across tasks. The learned modules may fail to capture task-specific
features, becoming general-purpose features and collapsing to highly entropic status, if the
data distribution is very diverse and many outlier tasks exist (Ruder, 2017; Ponti et al.,
2023). In contrast, PSEC independently trains each LoRA by exploiting a shared, frozen,
and general-purpose 7y, avoiding lots of conflicts across different tasks and avoiding the
risks of collapsing (Yu et al., 2020a; Sun et al., 2022). We conduct empirical evaluations in
our rebuttal to demonstrate this.

* How to compose modules? PSEC can iteratively expand its skill library to include more
skills and then combine them to form complex ones, which is one common advantage of all
modularized approaches. So, previous works can also iteratively expand their modules to
encode new skills and then compose the pretrained ones to tackle new tasks, such as (Ring,
1994; Morrow & Khosla, 1997; Pape et al., 2011; Ponti et al., 2023; Alet et al., 2018; Huang
et al.,, 2023; LeCun et al.,, 2006; Liu et al., 2022; Du et al., 2023). However, most previous
works typically resort to a simple fixed combination of different modules, such as manually
tuned weights (Liu et al., 2022; Du et al., 2023), thus significantly limiting the flexibility to
handle decision-making scenarios where real-time composition adjustment is required to
satisfy the dynamic demands. For instance, 2" = C0 + C} + C2 + ... + C" skills could
be composed of n different (non-redundant) skills by using binary compositional weight
(0 for deactivate and 1 for activate). So, naively adopting a fixed combination of different
skills can be very suboptimal. In contrast, PSEC introduces a context-aware composition
to dynamically combine different skills, greatly enhancing the expressiveness of the skill
libraries by interpolating or extrapolating across different skills.

* Where to compose modules? Another key problem that should be investigated is where to
compose different modules. Directly in the original output space (noise space (Ren et al.,
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2024; Zhang et al., 2023b) or action space (Peng et al., 2019; Qureshi et al., 2020; LeCun
et al., 2006) or the parameter space (Huang et al., 2023; Prabhakar et al., 2024; Pape et al.,
2011; Zhong et al., 2024). PSEC systematically investigates the advantages of skill compo-
sitions in parameter space over the noise space and action space, offering clear guidance for
future research to expand and compose skills in parameter spaces rather than noise/action
spaces. Also, intuitively, Figure 9 shows that PSEC holds the potential to exploit more
complementary features or commonalities across tasks than naive hard parameter sharing
or soft parameter sharing. Specifically, PSEC can fully leverage information across tasks to
facilitate new task learning by employing the compositional network to combine all avail-
able parameters. Hard/Soft parameter sharing, however, must rely on a well-performed
shared feature produced by the shared layers while discarding all other heads (Liu et al.,
2024; Lawson & Qureshi, 2024).

Some works use logical options for skill composition (Araki et al., 2021) but require significant
human effort for skill management, limiting scalability. Additionally, Araki et al. (2021) focuses
on efficient pretraining, not on fast adaptation/continual improvement. In contrast, PSEC targets the
later setups and minimizes human effort by incorporating new skills as LoRA modules, which are
then combined through auto-learned compositional networks.

C EXPERIMENTAL SETUPS

C.1 MULTI-OBJECTIVE COMPOSITION

Training details of PSEC. In this setting, we have four networks required to train: the behavior
policy o, the safety policy m; that minimizes the cost, the reward policy 72 that maximizes the re-
turn, and the context-aware modular «/(s; 0) € R2. For each task, we first pretrain 7y parameterized
by Wy as behavior policy by minimizing the following objective on the full DSRL dataset D (Liu
et al., 2023a) to ensure a diverse pretrained distribution coverage:

2
Lo (Wo) = Eitd,emn(0,1),(s,0)~D {Hﬁ — €W, (\/ﬁ»ta + V1= pe,t, 3) H ] . (10)

Then, we equip the agent with the same dataset D but provide feasible label h and reward labels 7,
forming the dataset D" = {(s,a, h,s')} and D"{(s,a,r,s’)}. Then we train 7; and 7 based on
these datasets by optimizing their newly introduced LoRA modules AW; and AW, via minimizing
the following objectives in Eq. (11-12):

€ — ew, (\/,ia+ V- piet, S)HZ] Can

L, (AW1) = Epits emn (0,1),(5,0)~ D" {wh(s»a)

2
£7r2 (AWQ) = IEtNZ/l,er\z./\f(O,I),(s,a)N’DT |:’LUT(S,CL) H€ — €W, <\/Ea + v 1—pe,t, 8) H :| , (12)

where the weights of LoRA augmented layer are W, = Wy + 16AW; and Wy = Wy + 16AW,
as defined in Eq. (5). w"(s,a) := exp(—A}(s,a)) and w" (s, a) := exp(AZ(s,a)) are the weight-
ing function derived from the optimal feasible value function A} (s,a) = Q7.(s,a) — V;*(s) and
reward value function A%(s,a) = Q}(s,a) — V,*(s, a), optimized via expectile regression follow-
ing (Kostrikov et al., 2022; Zheng et al., 2024), where Q3 (s,a) and V;*(s) can be obtained via
minimizing Eq. (13-14), Q% (s, a) and V;*(s) can be obtained via minimizing Eq. (15-16):

Ly, = E(sa)~pr [Liey (Qn(s,a) = Vi(s))], (13)
L£qu = Eoawpyen | (1= 7)h(s) + ymax{h(s), Va(s)}) = Quis.0)®] . (14)
Ly, = Egsayopr [L7(Qr(s,0) = Vo(s))], (15)
L0, = Bfu e [(r+AVels') = Quls,a))?] (16)
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where L™ (u) = |7 — I(u < 0)| v? and L7, (u) = |7 — I(u > 0)|u? with 7 € (0.5, 1). By doing so,
m1 and o become one safety policy that avoids unsafe outcomes and one reward policy that tries to

maximize the cumulative returns, respectively.

Then, we train our context-aware modular network a(s;#) to combine 7y 1,2 to collaboratively
tackle the safe offline RL problem. We filter the Top-30 trajectories with the highest rewards and
costs below 5 from the dataset D to form a small near-expert dataset D* that obtains a good balance
among distributional shift, reward maximization and safety constraint. Then, we train «(s;6) by
minimizing the following imitation learning loss based on the D*:

2
L(0) = Eiits e (0,1),(5,0)~D { €—€ew (\/Ea +/1 - ﬁtﬁﬂf,S) H } , (17)

where W = W, + 25:1 a;(s; ) AW; as defined in Eq. (7).

We train 7y for 1M gradient steps with a batch size of 2048 to ensure a good performance of .
Then, we only train 7y and 7o for 50K gradient steps, for the efficiency of LoRA modules. For
a(s;6), we only train it for 1K gradient steps since all decomposed policies including 7 1 2 are
ready to be composed, which can significantly reduce the computational burden leveraging these
pretrained policies. Summarized hyperparameters can be found in Table 4.

Baselines. For FISOR (Zheng et al., 2024), CDT (Liu et al., 2023b), COptiDICE (Lee et al., 2022a),
CPQ (Xu et al., 2022) and BC, we adopt the results from FISOR (Zheng et al., 2024). For NSEC
and ASEC results, we only change the compositional stages, and meanwhile keep all other training
details the same to ensure a fair comparison. Specifically, the context-aware modular for NSEC is
trained via the following reparameterization method instead of the one in Eq. (12):

2
ENSEC = €0 + Z%’(S; )€, (18)

i=1

where € 1 2 is generated from networks with layers of Wy, W1 = Wy + 16AW; and Wy = Wy +
16 AW, respectively. We can see that the composition in Eq. (18) between skills happens in the
noise space, and thus we denote it as NSEC (noise skill expansion and composition).

For ASEC, we directly compose the generated actions of different policies:

2
AASEC = Qo + Z a;(s;0)a; (19)

=1

where ag 1 2 are the actions generated from the denoising process in Eq. (2) using the predicted noise
€0,1,2 generated by networks with layers of Wy, W1 = Wy + 16AW; and Wy = Wy + 16AW,,
respectively. The composition happens in action space, and thus we denote it as ASEC (action skill
expansion and composition).

C.2 CONTINUAL PoOLICY SHIFT

To evaluate PSEC’s ability to continually evolving its capabilities when tackling new challenges,
we conduct experiments on DeepMind Control Suite (DMC) (Tassa et al., 2018), where a walker
agent is progressively required to stand, walk, and run, as shown in Figure 11. We use three expert
datasets including walker-stand D70, walker-walk D/*, and walker-run D2, released by Bai et al.
(2024) for the policy learning. Specifically, D7°, D7t and D] contains 1000, 10 and 10 trajectories,
respectively. D7 and D/? contain only a handful of data because we aim to test if the agent can
leverage the knowledge from the standing skill to efficiently adapt to new tasks. We first pretrain 7
on the large DZ—O to obtain the basic standing policy via minimizing the following behavior cloning
loss:

2
ETK'O (WO) = EtNZ/{,eNN'(O,IL(s,a)erZO I:He — €W, (\/Ea + V 1- preE, t, 5) H :| . (20)
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Stand— Walk (S— W) task. Then, we can integrate the walking skill 7r; into the skill library II by
optimizing the following objective:

2
£7r1 (Awl) = EtNL{,ewN(O,I),(s,a)NDZl |:H€ — €W, (\/Ea + V 1- ﬁt€7ta 8) H :| ) (21)

where W7 = Wy + 16AW];. Then, we train a context-aware modular awalk(s; 01) € R to combine
7o and 71 to jointly tackle the walking task:

2
L£001) =By i con(0.1),(s.0) D71 [He ~ EWaan (\/EG + V1= peest, 8) H } ; (22)

where Wy = Wo + awalk(s; 61)AW;. In this setting, we hope the final policy parameterized
by Wiaik can outperform the naive policy that is trained from scratch on the small data D;rl to
demonstrate the significance of utilizing the prior knowledge in 7y for efficient task adaptation.

Stand— Run (S—R) task. Here, the adaptation for the running policy 72 is similar. We can replace
Wy in Eq. (21) with Wy = Wy + 16AW5 and Dzl as D;FZ to train mo parameterized by AWs.
Additionally, we replace Wi1i in Eq. (22) as Wiy = Wo + @™ (s;02) AW, and Dt as D2 to
train o' (s; f3) to combine 7y and 75 to generate the running skill.

Stand+Walk—Run (S+W—R) task. After obtaining g, 71, and 79, the composition for the run-
ning skill becomes very simple. We can replace W,k in Eq. (22) as W = W) —5—2?21 a;(s;0)AW;
to train a(s; §) € R? to combine 7 1 2 to generate the running skill. In this setup, we aim to prove
that utilizing the library that contains 7 ; o (S+W—R) can outperform 7 2 (S—R) to show the
learning capability of PSEC can gradually grow after incorporating more skill primitives.

We train my for 1M gradient steps with a batch size of 1024 to ensure a good performance of 7.
Then, we only train 7; and 75 for 10K gradient steps with 10 trajectories thanks to the efficiency
of LoRA. For a™®¥(s: ), o™ (s;6), a(s; #), we only train them for 1K gradient steps since the
decomposed policies including 7, 1,2 in the skill library are ready to be composed, which can sig-
nificantly reduce the computational burden leveraging these pretrained policies. The summarized
hyperparameters can be found in Table 5.

Baselines. We compare PSEC with other composition methods NSEC and ASEC, the Scratch
method, and the variant PSEC (MLP). NSEC and ASEC train the context-aware modular repre-
sented by Eq. (18) and Eq. (19), respectively. Scratch method means training a policy from scratch
by IDQL (Hansen-Estruch et al., 2023), since we build our model based on the IDQL method.
PSEC (MLP) replaces the LoRA matrices with the MLP network in PSEC.

Experimental setups for Figure 6. For Figure 6(a), we evaluate the sample efficiency of PSEC
framework. Specifically, we evaluate on the S— W task with different data quantities of the W
dataset DZl, including 10, 30, 50, and 100 trajectories, trained with 10K, 30K, 50K, and 100K

training steps, respectively. We compare PSEC with other baselines to demonstrate the sample
efficiency of parameter-level composition over other composition methods.

For Figure 6(b), we visualize the training curves of PSEC, PSEC (MLP) and Scratch for the S—W
task trained solely on Eq. (21) without the composition in Eq. (22) to demonstrate the efficiency of
LoRA modules over the naive MLPs and the efficiency to leverage pretrain policies. In this setting,
DZl contains 10 trajectories and we train each method for 10K training steps.

For Figure 6(c), w/o CA represents the compositional weight « is tuned by humans, rather than
auto-generated by our context-aware modular ag. We compare PSEC, NSEC, ASEC with their
corresponding w/o CA variants to further demonstrate the importance of dynamical compositions.

We conduct similar experiments on the S—R task and the results are presented in Figure 12. Note
that the running skill is more difficult. PSEC shows marked superiority on this challenging setting.
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Figure 10: Results in the policy shift setting. Each value is averaged over 10 episodes and 5 seeds.
Walk

Figure 11: Continual evolution on DeepMind Control Suite for Continual policy shift.
C.3 DYNAMIC SHIFT

To further validate the versatility of PSEC, we conduct experiments in a practical and common
setting: dynamic shift. We conduct experiments on the D4RL benchmark, where we modify the
dynamics and morphology of locomotive robots to reflect the dynamics changes. Our goal is to
leverage the policies based on the source datasets DF° and a small amount of the target datasets
DP1 to adapt to the target task quickly. Specifically, the datasets DZ° contain 20K transitions with
3 types of dynamic modifications on Py: 1) Friction: the friction coefficient of the robot is modi-
fied; 2) Gravity: the gravity acceleration in the simulation environment is changed. 3) Thigh: the
thigh is enlarged to double its original size to produce a morphology gap on the embodiment. The
target datasets D are sampled from the D4RL benchmark with un-modified dynamics Py, includ-
ing 6 types: halcheetah-medium-v2, halfcheetah-medium-replay-v2, halfcheetah-medium-expert-
v2, walker2d-medium-v2, walker2d-medium-replay-v2, walker2d-medium-expert-v2, as shown in
Figure 13. Each dataset type of DX contains solely 10K transitions, which are too limited to train
good policies directly on the target dynamics P; from scratch.

We first pretrain 7o with dataset D7 for 20k training steps by behavior cloning via minimizing the
following objectives:

Lr,(Wo) =E

€ — €W, (\/ﬁTG + ME,L s) HQ} . (23)

Then, we try to use the limited P; to adapt 7y to the target domain . PSEC uses LoRA to train a new
policy 7 with the pretrained source policy g by minimizing the following objectives:

tld ,e~N(0,1),(s,a)~D2 0 [

Lo (AW)) =E

2
€ — ew, (\/Ea+ 1fﬁt6,t,s)H } 24)

-
tld,e~N(0,1),(s,a)~Di L {w (s,a)

where W7, = Wy + 16AW;. Finally, PSEC uses the context-aware modular «(s; ) to integrate
policy 7o, 71 using the target dataset D2 to transfer to the target dynamics P;. The context-aware
modular «/(s; #) is trained for only 1k training steps by minimizing the following objectives:

2
L(0) = Byt en(0,1),(5,0)~D71 U‘e W (‘/ﬁ»ta tVI=pet, 5) H } ’ (25)
where W = Wy + a(s; ) AW as defined in Eq. (7).
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Figure 12: Comparisons on sample and training efficiency and the effectiveness of context-aware modular. S,
R denote stand, run, respectively. Each value is averaged over 10 episodes and 5 seeds.
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Figure 13: The illustration of the source and target domains for the dynamic shift setting.

We train my for 1M gradient steps with a batch size of 1024 to ensure a good performance of 7.
Then, we only train 71 for 20k gradient steps, for the efficiency of LoRA modules. For a(s;6),
we only train it for 1K gradients steps since all decomposed policies including 7 ; are ready to be
composed, which can efficiently adapt to the target domain leveraging the pretrained source policies.
Summarized hyperparameters can be found in Table 6.

Baselines. We compare PSEC with other methods in dynamic shift settings, including behavioral
cloning (BC), offline RL approaches like CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022),
and model-based methods such as MOPO (Yu et al., 2020c). Additionally, we evaluate more gen-
eralizable offline RL methods, specifically DOGE (Li et al., 2023) and TSRL (Cheng et al., 2023),
which have demonstrated superiority in small sample regimes. The baseline results for comparison
are sourced from the TSRL paper (Cheng et al., 2023), which reports state-of-the-art performance in
these regimes. Furthermore, we assess policies trained on combinations of the offline datasets D%°
and Dfl under various dynamics settings, referred to as Joint train (Gravity), Joint train (Friction),
and Joint train (Thigh). These combinations involve training with one source dataset under dy-
namic shifts (e.g., changes in gravity, friction, or thigh size) and target datasets such as halfcheetah-
medium-v2, halfcheetah-medium-replay-v2, halfcheetah-medium-expert-v2, walker2d-medium-v2,
walker2d-medium-replay-v2, and walker2d-medium-expert-v2. In order to maintain fairness, the
joint train method is trained in the same way as PSEC is trained on the source datasets. The results
and training curves of PSEC across these settings are presented in Table 3 and Figure 16, respec-
tively. These comparisons showcase the effectiveness of PSEC under dynamic shifts and small
sample conditions.

C.4 T1-SNE EXPERIMENTAL SETUPS FOR FIGURE 4

To provide empirical support of the advantages of parameter-level composition over other levels of
composition, we visualize the t-SNE (Van der Maaten & Hinton, 2008) projection of data samples
in different spaces. Specifically, for each dataset D70, D71, D72 in the continual policy shift setting
in Section C.2, we randomly sample 512 data samples (s, a), which forms three types of data that
encode the standing, walking and running skill, respectively. In the action space, we directly utilize
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t-SNE projection to map these sampled data into a 2-dimentional space in Figure 4 (c). For the noise
space, we add 1 step of noise on the sampled actions following the forward diffusion process in
Eq. (1) and get the tuple (s, a1) for different skills. Then, we generate the noise based on this noisy
tuples and visualize their t-SNE projections in Figure 4 (b). In parameter-space, we feed the noisy
tuples (s, a1) into the trained networks and get the output features of the middle LoRA augmented
layers. Then, we project these features using t-SNE in Figure 4 (a).

D MORE EXPERIMENTAL RESULTS
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Figure 14: Outputs weights of the context-aware modular on DeepMind Control

D.1 THE EFFECTIVENESS OF THE CONTEXT-AWARE MODULAR

Context-aware modular for the continual policy shift. To further explore the effectiveness of
the context-aware module, we employ it to analyze the trajectories generated by policies composed
using fixed compositional weights. Specifically, for the S—R task in Section C.2, the fixed com-
position method denote Wy, = Wy + aAWs, which uses a fixed o = 16 to compose 7 and
mo. Figure 14 (a) shows that naively using fixed compositional weights might accidentally stuck in
some local suboptimal behavior such as standing still or falling down. We can clearly observe that
our context-aware modular provides corresponding responses to correct these undesired behaviors.
Therefore, it is necessary to adjust the weights of different strategies to fit the current states. Fig-
ure 14 (b) presents the trajectories generated by PSEC. It clearly demonstrates that by utilizing the
context-aware modular, the agent can make subtle adjustments between skills and stably run across
the entire episodes.

D.2 THE PARAMETER EFFICIENCY OF PSEC

Parameter efficiency. To evaluate the parameter efficiency of PSEC, we compare its parameter
count and performance on various tasks against both the Scratch method and PSEC (MLP). The
parameter count for PSEC includes the LoRA parameters and context-aware parameters specific to
the walker-walk or walker-run tasks. The Scratch method represents training the policy from scratch
with standard MLP. PSEC (MLP), which substitutes the LoRA weights with a standard MLP and
retains the context-aware modular, has a higher parameter count than the Scratch method. The
parameter counts are illustrated in Figure 15. In terms of performance, the results from the Deep-
Mind Control Suite (DMC) tasks, as shown in Figures 6 (b) and 12 (b), indicate that PSEC achieves
significantly better performance despite having only 7.58% of the parameters used in the Scratch
method. This performance advantage over both the Scratch method and PSEC (MLP) demonstrates
that PSEC possesses strong parameter efficiency, effectively leveraging a smaller number of param-
eters for superior task performance. In this way, PSEC can leverage and expand upon its existing
knowledge base in novel situations to enhance learning efficiency and adaptability.
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Figure 15: Comparison of Model Parameters: The parameter count for PSEC is approximately 7.58% of
Scratch, demonstrating a significantly smaller model size while maintaining strong parameter efficiency, effec-
tively leveraging a smaller number of parameters for superior task performance..

Table 3: Results in the dynamics shift setting over 10 episodes and 5 seeds. -m, -mr and -me refer to
DP1 sampling from medium, medium-replay and medium-expert V2 data in D4RL (Fu et al., 2020),

respectively.

Metric Halfcheetah-m Halfcheetah-mr Halfcheetah-me Walker2d-m Walker2d-mr Walker2d-me
BC 264 +73 143+78 19.1+£94 158+141 144+19 217482
MOPO -1.1 £ 4.1 11.7 £5.2 -1.1+14 31+47 33+£27 0.1 £0.3
CQL 354 4+3.8 8.1+94 265+ 10.8 18.8+18.8 8542.19 19.1 144
QL 299 +0.2 2277+ 64 10.5 + 8.8 225+38 107119 265+8.6
DOGE 42.6 + 3.4 234+ 3.6 267+ 6.6 451+102 135+£84 353+4.1
TSRL 38.4 + 3.1 28.1 +£3.5 399+ 21.1 49.7+10.6 26.0£11.3 464 +13.2
Joint train(Gravity) 2.0 + 1.4 6.8 +3.9 6.8 +54 3944+34 157477 335+105
Joint train(Friction) 15.8 1.0 149+ 1.2 165+ 1.1 83+£1.1 7.6 +0.8 74405
Joint train(Thigh) 9.54+5.3 9.8 8.5 6.4+1.3 506 +88 63+£30 549+14.8
Dynamic shift

PSEC(Gravity) 40.8 = 0.9 202+ 1.1 424+£1.0 572+45 268+52 71.8+8.0
PSEC(Friction) 40.1 £1.2 31.1+1.3 421+£1.0 61775 209+46 75.0+12.1
Body shift

PSEC(Thigh) 414 £+ 03 323+14 439 +25 6496 +45 255+45 714+143
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Figure 16: Results of performance conducted on dynamic shift and body shift tasks. The lines and
shaded areas indicate the averages and standard deviations calculated over 5 random seeds.
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Table 4: Hyperparameters for multi-objective composition tasks.

Hyper-parameters Value
Normalized state True
Target update rate le-3
Expectile 7 0.9
shared Discount v 0.99
hyperparameters Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise 1" 5
hidden dim 256
hidden layers 2
o activation function ReLU
Mini-batch size 2048
Optimizer Adam (Kingma & Ba, 2014)
Training steps le6
Q7 (s, a) hidden dim 256
Q7(s,a) hidden layers 2
Qr (s, a) activation function ReLU
V,* (s) hidden dim 256
V*( ) hidden layers 2
T V,* (s) activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps Sed
Qh(s a) hidden dim 256
Q7 (s, a) hidden layers 2
Q7 (s, a) activation function ReLU
Vi (s) hidden dim 256
Vi (s) hidden layers 2
) Vi (s) Activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps Se4
hidden dim 256
hidden layers 2
a(s;0) activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps 1e3
LoRA rank n 8

29



Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters for continual policy shift.

Hyper-parameters Value
Normalized state True
Target update rate le-3
Expectile 7 0.9
shared Discount v 0.99
hyperparameters Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise T’ 5
hidden dim 256
hidden layers 2
) activation function ReLLU
Mini-batch size 1024
Optimizer Adam
Training steps le6
hidden dim 256
hidden layers 2
T Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps led
Actor hidden dim 256
Actor hidden layers 2
T2 Actor Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps led
hidden dim 256
hidden layers 2
a(s;0) activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps le3
LoRA rank n 8
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Table 6: Hyperparameters for dynamic shift.

\ Hyper-parameters \ Value
Normalized state True
Target update rate le-3
Expectile 7 0.9
shared Discount v 0.99
hyperparameters Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise T’ 5
hidden dim 256
hidden layers 2
o activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps le6
Q@7 (s, a) hidden dim 256
Q7 (s, a) hidden layers 2
Q7 (s, a) activation function ReLU
V,(s) hidden dim 256
V.’ (s) hidden layers 2
m V,* (s) activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 2e4
hidden dim 256
hidden layers 2
a(s;0) activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps le3
LoRA rank n 8
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E MORE EXPERIMENTAL DETAILS

E.1 DESCRIPTION OF TASKS

We conduct experiments on 9 MetaDrive tasks and 8 Bullet-Safety-Gym tasks in the DSRL bench-
mark (Liu et al., 2023a). The visualization of the environments is shown in Figure 17. The tasks
aim to learn policy from different level datasets such that the policy satisfies a safety constraint
(normalized cost < 1) and achieves higher rewards.

MetaDrive. It leverages the Panda3D game engine to simulate realistic driving scenarios. The
tasks are categorized as {Road}{Vehicle}, where “Road” encompasses three levels of difficulty
for self-driving cars: easy, medium, and hard, while “Vehicle” represents four levels of surrounding
traffic density: sparse, mean, and dense. In MetaDrive’s autonomous driving tasks, costs are incurred
from three safety-critical scenarios: (i) collision, (ii) out of road, and (iii) over-speed.

Bullet-Safety-Gym. The environments are built on the PyBullet physics simulator. They feature
four types of agents: Ball, Car, Drone, and Ant, alongside two task types: Circle and Run. Tasks are
designated as {Agent }{Task}, combining the agent and the corresponding task type.

(a) MetaDrive (b) Bullet-Safety-Gym

Figure 17: Visualization of the simulation environments and representative tasks of MetaDrive and Bullet-
Safety-Gym. The figure is credited to Liu et al. (2023a).

E.2 ILLUSTRATION OF THE RECORDED DATA

To get a more intuitive look at the recorded data, we calculate the total reward and total cost for
each trajectory in the datasets. These values are then plotted on a two-dimensional plane, where
the x-axis corresponds to the total cost and the y-axis to the total reward. The results are shown in
Figure 18 in the Appendix E of the paper. The plot highlights the dataset’s diversity, particularly
in how it captures a range of trajectory behaviors. The reward frontiers relative to cost illuminate
the task’s complexity, as the shape of these frontiers can significantly influence the challenges faced
by offline learners. Trajectories offering high rewards but incurring high costs pose an alluring
yet risky opportunity, often testing the balance between optimizing performance and maintaining
safety constraints. This duality underscores the importance of robust algorithms that can navigate
the trade-off effectively.

E.3 ADVANTAGE OF THE BENCHMARK

By generating diverse datasets across many environments with systematically varied complexities,
the DSRL benchmark creates a rich and representative evaluation suite. This diversity ensures that
our method is tested under a wide range of conditions, capturing different task structures, safety con-
straints, and levels of stochasticity. Meanwhile, the DSRL benchmark includes multiple objectives,
making it well-suited for testing the flexibility and efficiency of our method in handling new tasks.
Providing diverse datasets across varying difficulty levels and incorporating multiple optimization
goals enables a comprehensive evaluation of our method’s adaptability and performance across a
broad spectrum of scenarios.
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Figure 18: Illustration of the cost-reward plot for datasets from MetaDrive and Bullet-Safety-Gym.
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F MORE EXPERIMENTS ON META-WORLD

To evaluate the effectiveness of PSEC on more complex experiments, we conduct experiments on
Meta-World benchmark (Yu et al., 2020b), which consists of 50 diverse tasks for robotic manipu-
lation, such as grasping, manipulating objects, opening/closing a window, pushing buttons, lock-
ing/unlocking a door, and throwing a basketball. We compare PSEC with the strong baseline
L2M (Schmied et al., 2024). Next, we will elaborate on the three experiment settings in our pa-

per.
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Figure 19: Visualization of the simulation environments and representative tasks of Meta-World.

F.1 CONTINUAL LEARNING SETTING

Following Continual world (Wolczyk et al., 2021) and L2M (Schmied et al., 2024), we split the
50 tasks into 40 pre-training tasks and 10 fine-tuning unseen tasks (CW10). The training datasets
are the same as the datasets collected by L2M. We train 10K steps per task in CW10, which is
only 10% training steps of L2M, with a batch size of 1024. After every 10K update steps, we
switch to the next task in the sequence. Then we evaluate it on all tasks in the task sequence. The
results are shown in Table 7 and Table 8. We compare the performance of PSEC with L2M and
other strong baselines. Thanks to the efficiency of skill composition in parameter space, PSEC can
substantially outperform all L2M variants in a large margin, demonstrating that PSEC can achieve
better performance on complex tasks.

Table 7: Success rates of different methods. Table 8: Performance of PSEC on different tasks.
Tasks | PSEC
Methods | Success Rate peg-unplug-side-v2 0.87
window-close-v2 0.88
L2M 0.65 shelf-place-v2 0.85
L2M-oracle 0.77
LOP-Pv2 0.40 push-v2 0.89
v : handle-press-side-v2 0.95
L2P-PreT 0.34 .
stick-pull-v2 0.74
L2P-PT 0.23
EWC 017 push-back-v2 0.85
) faucet-close-v2 0.92
1%515 o 8-;(7) push-wall-v2 0.86
(Ours) : hammer-v2 091
Mean | 0.87
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Table 9: Performance comparison on 18 pretrained tasks.

Tasks Scratch ASEC NSEC | PSEC
peg-insert-side-v2 0.50 0.87 0.88 0.90
peg-unplug-side-v2 0.35 0.61 0.78 0.86
button-press-topdown-v2 0.71 0.88 0.88 0.89
push-back-v2 0.26 0.61 0.76 0.88
window-close-v2 0.65 0.84 0.84 0.88
door-open-v2 0.74 0.85 0.86 0.86
handle-press-v2 0.67 0.96 0.97 0.97
plate-slide-side-v2 0.27 0.23 0.53 0.74
handle-pull-side-v2 0.76 0.94 0.94 0.95
window-open-v2 0.87 0.75 0.88 0.89
door-close-v2 0.90 0.89 0.89 0.91
reach-v2 0.89 0.95 0.95 0.95
push-v2 0.15 0.58 0.81 0.92
stick-push-v2 0.44 0.54 0.17 0.79
drawer-close-v2 0.97 0.97 0.97 0.97
plate-slide-back-v2 0.90 0.94 0.94 0.95
coffee-button-v2 0.91 0.94 0.94 0.95
hand-insert-v2 0.30 0.68 0.63 0.89
Mean 0.62 0.78 0.81 \ 0.90

F.2 UNSEEN TASKS SETTING

To further evaluate the efficiency of PSEC on more challenging tasks, we pretrain on fewer (18) tasks
and evaluate it on more (12) unseen tasks than the first setting. Firstly, we pretrain and finetune 18
tasks to obtain 18 LoRA modules. The performance on the 18 pretrained tasks is reported in Table 9.
We compare the performance of PSEC with Scratch, ASEC and NSEC methods. The results show
that PSEC can achieve enhanced skill learning even when the pretrained model is combined with
one LoRA for each task if the skill is composed in parameter space. Then, we evaluate PSEC with
the obtained 18 LoRA modules on the unseen tasks. For the unseen tasks, we conduct two types of
experiments: few-shot setting and zero-shot setting.

Few-shot. We perform few-shot learning by training the context-aware modular for 1k steps using
only 10% of the total available data for unseen tasks. This setup simulates scenarios with limited data
on new tasks. The results, summarized in Table 10, demonstrate that PSEC achieves a high success
rate on unseen tasks. This indicates that PSEC can effectively adapt to new tasks, showcasing its
capability for rapid transfer learning and efficient adaptation in data-scarce environments.

Zero-shot. No data from the unseen tasks is used to train the context-aware modular. Instead,
the modular is trained for 2k steps using datasets from 18 pre-trained tasks. It is then evaluated
directly on 12 unseen tasks, utilizing 4 seeds and 10 episodes per task. The results are shown in
Table 11. Interestingly, even without access to unseen task data during training, PSEC demonstrates
strong performance on several tasks. Notably, PSEC substantially outperforms NSEC and ASEC on
this zero-shot transfer setting, highlighting the advantages of skill compositions in parameter spaces
over noise and action spaces. Overall, the results demonstrate PSEC’s ability to effectively utilize
knowledge from previously learned skills to achieve strong zero-shot transfer.

G MORE VISUALIZATION OF ADVANTAGES OF PSEC OVER NSEC AND
ASEC

To test whether the newly learned skills effectively utilize the shared knowledge of previous skills,
we evaluate the running policy obtained through context-aware modular combined with standing
and walking skills on three rewards: stand, walk, and run. If the running skill can still get a rel-
atively high stand or walk reward, this represents the final combined running skill retaining these
previous skills. We compare PSEC with other composition methods ASEC and NSEC. For each
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Table 10: Few-shot performance comparison on 12 unseen tasks.

Tasks ASEC NSEC | PSEC
plate-slide-v2 0.14 0.66 0.89
handle-press-side-v2 0.73 0.65 0.92
button-press-wall-v2 0.09 0.03 0.72
button-press-topdown-wall-v2 0.87 0.88 0.89
push-wall-v2 0.57 0.68 0.88
reach-wall-v2 0.41 0.36 0.90
faucet-close-v2 0.41 0.49 0.90
button-press-v2 0.02 0.14 0.23
plate-slide-back-side-v2 0.17 0.19 0.92
handle-pull-v2 0.15 0.21 0.93
faucet-open-v2 0.14 0.16 0.89
stick-pull-v2 0.00 0.00 0.32

Table 11: Zero-shot performance comparison on 12 unseen tasks.

Tasks ASEC NSEC | PSEC
plate-slide-v2 0.03 0.00 0.15
handle-press-side-v2 0.50 0.60 0.62
button-press-wall-v2 0.00 0.00 0.40
button-press-topdown-wall-v2 0.85 0.87 0.89
push-wall-v2 0.53 0.53 0.71
reach-wall-v2 0.34 0.05 0.90
faucet-close-v2 0.00 0.00 0.16
button-press-v2 0.00 0.00 0.15
plate-slide-back-side-v2 0.00 0.00 0.00
handle-pull-v2 0.00 0.00 0.00
faucet-open-v2 0.00 0.00 0.77
stick-pull-v2 0.00 0.00 0.00

method, we rollout 10K steps and record the three rewards. The summarized rewards can be found
in Figure 20. The results show that PSEC achieves high rewards across all tasks, whereas NSEC
and ASEC cannot, demonstrating that the PSEC’s running skill retains behaviors from walking and
standing and suggesting superior skill sharing of PSEC compared to NSEC and ASEC.
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Figure 20: We evaluate the final running policies of PSEC, NSEC and ASEC with the “stand,” “walk,” and
“run” rewards with 10 episodes and 3 random seeds. Then we plot the reward distribution by kernel density
estimation (KDE). Each curve represents the probability density of rewards obtained for a specific reward. The
results show that PSEC achieves high rewards across all tasks, whereas NSEC and ASEC cannot, demonstrating
that the PSEC’s running skill retains behaviors from walking and standing and suggesting superior skill sharing
of PSEC compared to NSEC and ASEC.
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