

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MULTI-GRAPH META-TRANSFORMER (MGMT)

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-graph learning is crucial for extracting meaningful signals from collections of heterogeneous graphs. However, effectively integrating information across graphs with differing topologies, scales, and semantics, often in the absence of shared node identities, remains a significant challenge. We present the Multi-Graph Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for cross-graph learning. MGMT first applies Graph Transformer encoders to each graph, mapping structure and attributes into a shared latent space. It then selects task-relevant supernodes via attention and builds a meta-graph that connects functionally aligned supernodes across graphs using similarity in the latent space. Additional Graph Transformer layers on this meta-graph enable joint reasoning over intra- and inter-graph structure. The meta-graph provides built-in interpretability: supernodes and superedges highlight influential substructures and cross-graph alignments. Evaluating MGMT on both synthetic datasets and real-world neuroscience applications, we show that MGMT consistently outperforms existing state-of-the-art models in graph-level prediction tasks while offering interpretable representations that facilitate scientific discoveries. Our work establishes MGMT as a unified framework for structured multi-graph learning, advancing representation techniques in domains where graph-based data plays a central role.

1 INTRODUCTION

Graphs are fundamental data structures in many domains including neuroscience (Shahbaba et al., 2022; Zhou et al., 2024), social networks (Fan et al., 2019; Zhang et al., 2022) and molecular biology (Wieder et al., 2020; Xu et al., 2022; Li et al., 2022). While powerful models like Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2016; Yu et al., 2023) and the more recent Graph Transformers (GTs) (Wu et al., 2021; Kreuzer et al., 2021; Rampášek et al., 2022; Kim et al., 2022) excel at learning from single graphs, many real-world problems require integrating information across multiple heterogeneous graphs, [where the heterogeneity may stem from differences in modalities, views, or population characteristics](#). For instance, neuroscience experiments studying brain dynamics often generate graphs from multiple subjects, each with distinct connectivities and node sets (Shahbaba et al., 2022). Enhancing prediction performance or extracting common neural patterns in such settings requires a framework capable of effectively integrating information across structurally heterogeneous graphs. [Nonetheless, the question of how to optimally adapt powerful architectures such as the GT to the multi-graph integration problem remains an active area of research, particularly with heterogeneous structures, unaligned node sets, and a need for fine-grained cross-graph reasoning](#), conditions that arise in many scientific domains.

Recent work on multi-graph learning partially addresses this challenge by either operating on a single unified heterogeneous graph with aligned nodes (He et al., 2025; Zhang et al., 2019; Zheng et al., 2022) or by learning graph-level embeddings from multiple modality-specific graphs and combining them via shared contexts, adaptive weights, or correlation-based objectives (Hayat et al., 2022; Xu et al., 2024; Xing et al., 2024; D’Souza et al., 2023; Nakhli et al., 2023; Fu et al.). However, these methods model cross-graph interactions only through pooled graph embeddings or shared tokens, without explicit fine-grained message passing between structurally similar subgraphs across unaligned graphs, which limits interpretability and makes it challenging to identify which substructures across graphs interact and contribute to the model’s predictions.

To address these limitations, we propose the *Multi-Graph Meta-Transformer* (MGMT), a flexible framework for integrating information across collections of heterogeneous graphs. Under the umbrella

054 term “multi-graph,” our unified approach accommodates common scenarios, including: **multimodal**
 055 (graphs from different measurement channels), **multi-view** (different structural views of the same
 056 data), and **multi-subject** (graphs from heterogeneous subjects in the same experiment). MGMT first
 057 processes each input graph using a graph-transformer encoder and aggregates intermediate layer
 058 outputs through a depth-aware mixing scheme. This yields node embeddings that adaptively integrate
 059 information across multiple receptive-field sizes. The framework is backbone-agnostic and can be
 060 implemented with either localized or global GT layers, depending on the task and computational
 061 budget. It then selects a small set of informative *supernodes* from each graph using attention scores
 062 and constructs an explicit meta-graph over these task-relevant substructures, preserving within-graph
 063 connectivity while selectively introducing cross-graph (inter-graph) edges between functionally
 064 aligned regions. Additional Transformer layers on the resulting meta-graph perform fine-grained
 065 cross-graph message passing and generate the final prediction.

066 This design directly addresses the key limitations of existing multi-graph approaches. Instead of
 067 representing each graph solely through global graph-level or context-level embeddings at fusion
 068 time, MGMT preserves structure at the node and subgraph levels and performs fusion by attending
 069 over an explicit meta-graph of supernodes, encoding both intra-graph and inter-graph structure.
 070 More specifically, supernodes summarize local patterns within each graph, while superedges align
 071 substructures across graphs and capture their interactions. The resulting meta-graph also provides
 072 insights into task-relevant subgraphs and their relationships, which can help with interpreting the
 073 results. Taken together, MGMT utilizes depth-aware, structure-preserving GT encoders within each
 074 graph, identifies supernodes, and uses them to build an explicit meta-graph that supports cross-graph
 075 message passing and provides a principled and scalable approach to aggregating information across a
 076 collection of heterogeneous graphs with unaligned node sets.

077 Our main contributions are as follows: (1) For heterogeneous graphs (multimodal, multi-view,
 078 or multi-subject), we formalize a data-fusion framework, MGMT, which provides a backbone-
 079 agnostic, depth-aware, and structure-preserving architecture with interpretable outputs through an
 080 explicitly constructed meta-graph over attention-selected supernodes; (2) we provide theoretical
 081 results demonstrating that MGMT’s depth-aware aggregation can recover general L -hop neighborhood
 082 mixing and characterize conditions under which the induced meta-graph function class offers strictly
 083 improved approximation capacity relative to late-fusion strategies that operate only on pooled graph
 084 embeddings; (3) using synthetic benchmarks and real-world applications, we show that MGMT
 085 outperforms state-of-the-art multimodal and graph-based methods, including recent multi-graph and
 086 transformer architectures; and (4) we demonstrate that MGMT can detect meaningful neurobiological
 087 patterns, thereby offering insights for scientific investigations, particularly for understanding neural
 088 mechanisms underlying memory and factors contributing to Alzheimer’s disease.

089 2 RELATED WORK

090 **Graph Representation Learning.** GNN is the cornerstone of modern graph machine learning,
 091 which learns node embeddings via local message passing (Scarselli et al., 2008; Kipf & Welling,
 092 2016; Velickovic et al., 2017). Attention-based models such as GAT (Velickovic et al., 2017) learn
 093 neighbor-specific attention weights instead of using fixed aggregation rules, allowing them to prioritize
 094 more informative neighbors. Nevertheless, because they still aggregate information only from
 095 local neighborhoods, their ability to distinguish graph structures remains fundamentally limited by the
 096 expressive power of the 1-Weisfeiler–Lehman (1-WL) test. More recent GT architectures with struc-
 097 tured self-attention have outperformed message-passing GNNs on a variety of benchmarks (Dwivedi
 098 & Bresson, 2020; Vaswani, 2017). Global-attention models such as EGT (Hussain et al., 2022) replace
 099 or complement convolution with fully-connected self-attention augmented with structural encodings,
 100 thereby extending expressivity. Sparse and structure-aware GTs, including Exphormer (Shirzad et al.,
 101 2023) and GRIT (Ma et al., 2023), introduce scalable attention patterns and graph inductive biases
 102 that retain or approximate the expressivity of dense Transformers while reducing computational cost.
 103 Hierarchical and distance-structured GT variants, such as HDSE (Luo et al., 2024), further refine
 104 how multi-scale structural information is injected into attention. All these existing methods, however,
 105 lack a principled and interpretable mechanism for fusing multiple heterogeneous graphs, which are
 106 common in many scientific applications. MGMT addresses this gap by providing a flexible and
 107 general framework; in Appendix A12, we additionally implement MGMT with several of these GT
 108 backbones and compare their performance in both single-graph and multi-graph settings.

108 **Heterogeneous Unified-Graph Representation Learning.** A related line of research is multimodal
 109 or heterogeneous graph learning, which may appear similar to our multi-graph fusion task but is
 110 fundamentally different, as it operates on a single unified graph that integrates diverse data types. For
 111 example, frameworks like UniGraph2 (He et al., 2025) and HetGNN (Zhang et al., 2019) assume a
 112 single graph where nodes possess multiple feature types from different modalities, such as text or
 113 images. The common approach is to collapse multiple data sources into one large graph. Other works
 114 like MMGL (Zheng et al., 2022) construct a single population-level graph where nodes represent
 115 subjects, and features from all modalities are concatenated before graph construction. While effective
 116 for their intended purpose, they are not applicable to the more challenging problem of fusing a
 117 collection of graphs with distinct, unaligned node sets, which is the focus of our work.

118 **General-Purpose Multimodal Fusion.** Models such as MultiMoDN (Swamy et al., 2023), Flex-
 119 Care (Xu et al., 2024), MedFuse (Hayat et al., 2022), and Meta-Transformer (MT) (Ma et al., 2022)
 120 aim to integrate multiple modalities, including graphs or images. In principle, these frameworks
 121 could be applied to multi-graph fusion by treating each graph as a separate modality. Typically,
 122 they use modality-specific encoders to transform each input into a single latent vector. For a graph,
 123 this amounts to collapsing its entire topological structure into one embedding. These vectors are
 124 then fused, for example via concatenation, for downstream tasks. **While highly effective in many**
 125 **multimodal settings, such vector-level fusion largely ignores graph topology and subgraph-level**
 126 **relationships across multiple graphs, which limits interpretability.**

127 **Multi-graph learning.** Another class of models focuses on settings where each entity is associated
 128 with multiple graphs. Recent multi-graph models such as AMIGO (Nakhli et al., 2023), EMO-
 129 GCN (Xing et al., 2024), and MaxCorrMGNN (D’Souza et al., 2023) take multiple graph-structured
 130 inputs but ultimately fuse information only at the level of pooled graph embeddings or shared context
 131 tokens, so cross-graph interaction is mediated through global representations instead of local structural
 132 alignment. MGLAM (Fu et al.), on the other hand, treats each entity as a bag of graphs and learns
 133 permutation-invariant bag-level predictors via kernel-based graph representations and multi-graph
 134 pooling, providing a principled baseline for the multi-graph-to-label setting considered in this work.
 135 However, all of these models still perform fusion at the graph/bag level, as opposed to using explicit
 136 node-level cross-graph message passing. This limits their ability to explain how specific nodes or
 137 substructures interact across graphs and how particular cross-graph patterns influence predictions.

138 Beyond the above per-entity multi-graph models, another class of multi-graph and multi-view GTs,
 139 such as MGT and MVGT/MVGTrans (Cui et al., 2024; Zhou et al., 2025), assumes multiple edge
 140 views over a shared node set but is not directly applicable to heterogeneous graph collections
 141 with disjoint node sets across modalities or subjects. An alternative approach involves learning
 142 consensus graphs or dataset-level representations rather than per-entity meta-graphs. This includes
 143 AMGL (Nie et al., 2016), GraphFM and GraphAlign (Lachi et al., 2024; Hou et al., 2024), which
 144 aggregate information across graphs at the population level, while graph-of-graphs models such as
 145 SamGoG (Wang et al., 2025) propagate information solely at the graph-instance level. In contrast to
 146 both graph-level fusion and population-level aggregation, MGMT constructs a meta-graph whose
 147 nodes are attention-selected supernodes drawn from all graphs of an entity, preserving intra-graph
 148 connectivity while enabling fine-grained, node-level cross-graph message passing. This approach
 149 leads to more interpretable results, as it reveals how different graphs interact to drive final prediction.

150 3 METHODOLOGY

151 In this section, we present MGMT, detailing its prediction pipeline based on GT encoders and
 152 meta-graph construction, followed by describing how to interpret MGMT by identifying significant
 153 nodes and edges in Section 3.2. An overview of the entire framework is provided in Fig. 1.

154 3.1 MULTI-GRAPH META-TRANSFORMER (MGMT)

155 MGMT fuses multi-graph data using several steps, as described below.

156 3.1.1 GRAPH-SPECIFIC TRANSFORMER ENCODERS

157 For each instance, we observe a collection of n graphs. For $i = 1, \dots, n$, we denote the graph as
 158 $\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i)$ with node set \mathcal{V}_i of size $N_i = |\mathcal{V}_i|$, and edge set \mathcal{E}_i . Each graph \mathcal{G}_i is characterized by

162 a node feature matrix $\mathbf{X}_i \in \mathbb{R}^{N_i \times d}$ and an adjacency matrix $\mathbf{A}_i \in \{0, 1\}^{N_i \times N_i}$. Graphs per each
 163 instance may differ in size and structure (for presentation purposes only, we assume feature size
 164 is d across all graphs), yet the collection $\{\mathcal{G}_1, \dots, \mathcal{G}_n\}$ share a common label $Y \in \mathcal{Y}$. The task is
 165 graph-level classification of the shared label Y using evidence aggregated across graphs. Throughout
 166 this paper, we use bold uppercase letters (e.g., \mathbf{X}) for matrices and bold lowercase letter (e.g., \mathbf{x}) for
 167 vectors, and $[n]$ denoting the set $\{1, \dots, n\}$.

168 We formalize the core graph-specific Transformer mechanics used in MGMT, building upon the
 169 localized graph-aware attention principles detailed in Appendix A1. For each $i \in [n]$, the graph \mathcal{G}_i
 170 with node features $\mathbf{X}_i \in \mathbb{R}^{N_i \times d}$ undergoes L GT layers with multi-head self-attention. Starting with
 171 $\mathbf{H}_i^{(0)} = \mathbf{X}_i$ as initial features, we define the extended neighborhood $\bar{\mathcal{N}}(u) = \mathcal{N}(u) \cup \{u\}$ to ensure
 172 nodes attend to themselves during message passing.

173 For layer $\ell \in [L]$, attention head $m \in [M]$, and edge $(u, v) \in \mathcal{E}_i \cup \{(u, u)\}$, we compute:

$$\begin{aligned} \mathbf{Q}_{i,u}^{(\ell,m)} &= \mathbf{W}_{Q,i}^{(\ell,m)} \mathbf{H}_{i,u}^{(\ell-1)} + \mathbf{b}_{Q,i}^{(\ell,m)}, & \alpha_{i,uv}^{(\ell,m)} &= \frac{\exp\left(\mathbf{Q}_{i,u}^{(\ell,m)\top} \mathbf{K}_{i,v}^{(\ell,m)} / \sqrt{d'}\right)}{\sum_{v' \in \bar{\mathcal{N}}(u)} \exp\left(\mathbf{Q}_{i,u}^{(\ell,m)\top} \mathbf{K}_{i,v'}^{(\ell,m)} / \sqrt{d'}\right)}, \\ \mathbf{K}_{i,v}^{(\ell,m)} &= \mathbf{W}_{K,i}^{(\ell,m)} \mathbf{H}_{i,v}^{(\ell-1)} + \mathbf{b}_{K,i}^{(\ell,m)}, \\ \mathbf{V}_{i,v}^{(\ell,m)} &= \mathbf{W}_{V,i}^{(\ell,m)} \mathbf{H}_{i,v}^{(\ell-1)} + \mathbf{b}_{V,i}^{(\ell,m)}, & \mathbf{Z}_{i,u}^{(\ell,m)} &= \sum_{v \in \bar{\mathcal{N}}(u)} \alpha_{i,uv}^{(\ell,m)} \mathbf{V}_{i,v}^{(\ell,m)}, \end{aligned} \quad (1)$$

181 where $\mathbf{H}_{i,u}^{(\ell-1)} \in \mathbb{R}^d$ is the feature of node u at layer $\ell-1$, $d' = d/M$ denotes the per-head dimension.
 182 Projection matrices $\mathbf{W}_{Q,i}^{(\ell,m)}, \mathbf{W}_{K,i}^{(\ell,m)}, \mathbf{W}_{V,i}^{(\ell,m)} \in \mathbb{R}^{d' \times d}$ and biases $\mathbf{b}_{Q,i}^{(\ell,m)}, \mathbf{b}_{K,i}^{(\ell,m)}, \mathbf{b}_{V,i}^{(\ell,m)} \in \mathbb{R}^{d'}$ are
 183 learnable parameters. The query vector $\mathbf{Q}_{i,u}^{(\ell,m)}$ represents information node u seeks from neighbors,
 184 key vector $\mathbf{K}_{i,v}^{(\ell,m)}$ encodes neighbor v 's relevance, and value vector $\mathbf{V}_{i,v}^{(\ell,m)}$ contains content to be
 185 aggregated. Attention score $\alpha_{i,uv}^{(\ell,m)}$ determines how much node u attends to node v .

186 The outputs of all heads are concatenated (\parallel denotes the concatenation) and transformed via:

$$\mathbf{Z}_{i,u}^{(\ell)} = \parallel_{m \in [M]} \left[\mathbf{Z}_{i,u}^{(\ell,1)}, \dots, \mathbf{Z}_{i,u}^{(\ell,M)} \right] \mathbf{W}_{O,i}^{(\ell)} + \mathbf{b}_{O,i}^{(\ell)},$$

187 where $\mathbf{W}_{O,i}^{(\ell)} \in \mathbb{R}^{d \times d}$, $\mathbf{b}_{O,i}^{(\ell)} \in \mathbb{R}^d$. Stacking these vectors across all nodes yields $\mathbf{Z}_i^{(\ell)} \in \mathbb{R}^{N_i \times d}$.

188 $\mathbf{Z}_i^{(\ell)}$ is processed by an FFN with activation, then combined via residual and LayerNorm to yield:

$$\mathbf{H}_i^{(\ell)} = \text{LayerNorm}(\mathbf{Z}_i^{(\ell)} + \sigma(\text{FFN}(\mathbf{Z}_i^{(\ell)}))) \quad (2)$$

189 After L layers, we obtain final output and attentions by dynamically aggregating across all depths:

$$\begin{aligned} \mathbf{H}_i &= \sum_{\ell \in [L]} \Gamma_i^{(\ell)} \mathbf{H}_i^{(\ell)} \in \mathbb{R}^{N_i \times d}, \\ \mathbf{\alpha}_i &= \left\{ \alpha_{i,uv} = \sum_{\ell \in [L]} \Gamma_i^{(\ell)} \left(\frac{1}{M} \sum_{m \in [M]} \alpha_{i,uv}^{(\ell,m)} \right) \right\}_{(u,v) \in \mathcal{E}_i \cup \{(u,u)\}}, \end{aligned} \quad (3)$$

190 $\{\Gamma_i^{(\ell)}\}_{\ell=1}^n$ are confidence scores measuring quality of each Transformer layer (Section A2 for details).

205 3.1.2 SUPERNODE EXTRACTION

206 To identify the most informative nodes in each graph i , we extract *supernodes* based on the learned
 207 attention scores $\mathbf{\alpha}_i$ in equation 3. Given a predefined threshold τ , we form the set of supernodes as

$$\mathcal{S}_i = \left\{ u \in \mathcal{V}_i \mid \sum_{(u,v) \in \mathcal{E}_i} \alpha_{i,uv} \geq \tau \right\}. \quad (4)$$

212 Intuitively, $\sum_{(u,v) \in \mathcal{E}_i} \alpha_{i,uv}$ quantifies the total attention distributed by node u to its neighbors.

213 We then induce a subgraph over these nodes:

$$\mathcal{G}'_i = (\mathcal{S}_i, \mathcal{E}'_i), \mathcal{E}'_i = \{(u, v) \in \mathcal{E}_i \mid u, v \in \mathcal{S}_i\} \quad (5)$$

We conduct a sensitivity study in Section A10 to examine how choices of τ influence performance. Our analysis reveals that τ controls a trade-off: a higher τ creates a sparser meta-graph, which risks information loss, while a lower τ retains more nodes, risking overfitting. By guiding the selection of τ via cross-validation, we identified a robust range of values that yields stable performance.

3.1.3 META-GRAPH CONSTRUCTION

To model both intra- and cross-graph interactions, we construct an instance-level meta-graph $\mathcal{G}_M = (\mathcal{S}_M, \mathcal{E}_M)$, where $\mathcal{S}_M = \bigcup_{i=1}^n \mathcal{S}_i$ contains all graph-level supernodes. Each $u \in \mathcal{S}_i$ is associated with a latent embedding $\mathbf{H}_{i,u} \in \mathbb{R}^d$ as defined in equation 3. The edge set \mathcal{E}_M of the meta-graph includes two components. First, we retain all intra-graph edges from the pruned graphs $\mathcal{G}'_i = (\mathcal{S}_i, \mathcal{E}'_i)$, preserving graph-specific relationships. Second, we introduce inter-graph edges between cross-graph supernodes using their feature similarity. For any node pair (u, v) with $u \in \mathcal{S}_i, v \in \mathcal{S}_j$, and $i \neq j$, we compute the cosine similarity:

$$e_{uv} = \frac{\mathbf{H}_u^\top \mathbf{H}_v}{\|\mathbf{H}_u\| \|\mathbf{H}_v\|} \quad (6)$$

If the similarity score e_{uv} exceeds a predefined threshold γ , the edge (u, v) is added to \mathcal{E}_M .

The resulting adjacency matrix $\mathbf{A}_M \in \mathbb{R}^{|\mathcal{S}_M| \times |\mathcal{S}_M|}$ encodes both intra- and inter-graph relationships among supernodes. We connect supernodes across graphs only when their latent embeddings are similar, mirroring observations that learning or selecting edges to reduce Dirichlet energy improves downstream accuracy Chen et al. (2020); see Section A5 for the formal smoothness justification. Appendix A10 shows accuracy is non-monotone in γ , reflecting the trade-off between dense connectivity and sparsity. Appendix A11 shows comparable performance with cosine, Pearson, Euclidean, and dot-product similarities, indicating robustness to the similarity choice. [In Appendix A13, we replace the validation-tuned thresholds \$\tau\$ and \$\gamma\$ with dynamic, distribution-based quantile thresholds and show that this data-driven variant achieves comparable accuracy with the best validation-tuned threshold configuration on all datasets, indicating that MGMT is robust to threshold selection and does not hinge on delicate manual tuning.](#)

3.1.4 FEATURE LEARNING AND PREDICTION

After constructing \mathcal{G}_M , we apply additional GT layers to the stacked supernode embeddings $\mathbf{H}_M^{(0)} \in \mathbb{R}^{|\mathcal{S}_M| \times d}$. Multi-head self-attention and feedforward updates are applied to capture global contextual dependencies, resulting in updated supernode embeddings $\mathbf{H}_M \in \mathbb{R}^{|\mathcal{S}_M| \times d}$. For classification, we apply permutation-invariant pooling followed by a fully connected network: $\hat{y} = f(\text{Pool}(\mathbf{H}_M))$. $\text{Pool}(\cdot)$ is pooling/aggregation operator, and $f(\cdot)$ maps pooled vector to class probabilities $\hat{y} \in \mathbb{R}^{|\mathcal{Y}|}$.

3.2 INTERPRETATION OF MGMT

The identified meta-graph is analyzed via **Node-level analysis**, highlighting influential nodes and their contributions, and **Edge-level analysis**, uncovering critical relationships among these nodes. This framework enhances interpretability, as illustrated in neuroscience application results in Section 5.3.

4 THEORETICAL PROPERTIES

In this section, we establish MGMT’s theoretical foundations through: (1) *intra-graph analysis*, demonstrating superior feature representation within individual graphs; and (2) *inter-graph analysis*, showing enhanced predictive power through meta-graph construction. Complete proofs are provided in Section A3, with additional theoretical results in Section A4.

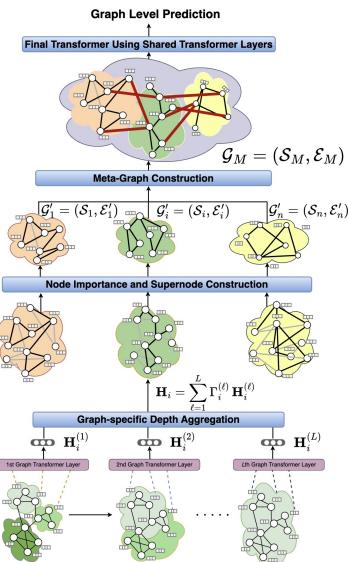


Figure 1: Architecture of Multi-Graph Meta-Transformer (MGMT). Depth-Aware GT layers process individual graphs, extracting supernodes to form a meta-graph. Additional GT layers model both intra- and inter-graph interactions.

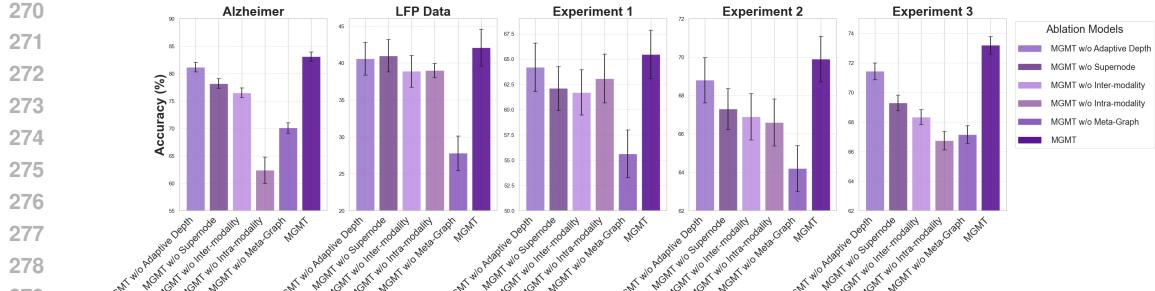


Figure 2: Ablations on five datasets. Dropping adaptive depth, supernode selection, or inter-modality edges lowers accuracy, confirming each component’s importance for cross-graph learning.

4.1 INTRA-GRAPH ANALYSIS

We analyze the depth-aware mixing strategy in equation 3 which enables MGMT to aggregate information across different depths of message passing. First, we establish some formal definitions.

Let $\mathcal{M}(\mathbf{A}) \in \mathbb{R}^{N \times N}$ be a message-passing operator (e.g., augmented adjacency matrix, $\mathcal{M}(\mathbf{A}) = \mathbf{A} + \mathbf{I}$). Given $\mathcal{M}(\mathbf{A})$ and an activation function σ , denote the 1-hop feature aggregation as

$$\mathcal{U}(\mathbf{X}; \mathcal{M}(\mathbf{A}), \sigma) := \sigma(\mathcal{M}(\mathbf{A})\mathbf{X}),$$

and the ℓ -hop aggregation is the ℓ -fold composition of \mathcal{U} , namely,

$$\mathcal{U}^\ell(\mathbf{X}; \mathcal{M}(\mathbf{A}), \sigma) := \underbrace{\sigma(\mathcal{M}(\mathbf{A}) \cdots \sigma(\mathcal{M}(\mathbf{A})\mathbf{X}))}_{\ell \text{ times}}.$$

Building on these, we introduce **L -hop mixing**, characterizing a model’s ability to represent multi-depth information. While originally studied for Graph Convolutional Networks with graph Laplacians (Abu-El-Haija et al., 2019), we extend this concept to general message passing operators.

Definition 4.1 (L -hop mixing with general message passing). *Given $\mathcal{M}(\cdot)$, a model is capable of representing L -hop mixing if for any $\eta_1, \dots, \eta_L \in \mathbb{R}$, there exists a setting of its parameter and an injective (one-to-one) mapping $f(\cdot)$, such that the output of the model is equivalent as*

$$f\left(\sum_{\ell=1}^L \eta_\ell \cdot \mathcal{U}^\ell(\mathbf{X}; \mathcal{M}(\mathbf{A}), \sigma)\right), \quad (7)$$

for any adjacency matrix \mathbf{A} , activation function σ , and node features \mathbf{X} .

Remark 4.2. If $\mathcal{M}(\mathbf{A}) = \mathbf{D}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}$, where \mathbf{D} is the diagonal degree matrix with $D_{ii} = \sum_{j=1}^N A_{ij} + 1$, Definition 4.1 recovers the L -hop mixing with Graph Laplacian in the GCN literature (Abu-El-Haija et al., 2019; Zhou et al., 2024).

First theorem demonstrates that MGMT’s depth-aware GTs represent L -hop mixing for each graph.

Theorem 4.3. *With message passing operator $\mathcal{M}(\mathbf{A}) = \text{softmax}(\mathbf{A} + \mathbf{I})$, where softmax is applied row-wise. MGMT’s depth-aware GTs in equation 1-equation 3 can represent L -hop mixing.*

The proof appears in Section A3. Notably, we also demonstrate in Section A4.1 that vanilla Graph Transformers **cannot** learn L -hop neighborhood mixing. We further clarify the relationship between **L -hop mixing and Weisfeiler-Leman expressivity** in Section A4.3, showing that these characterize distinct but complementary aspects of model power.

4.2 INTER-GRAPH ANALYSIS

This section analyzes how MGMT’s meta-graph construction boosts prediction power compared to late fusion approaches (Zhang et al., 2023).

Recall from Section 3.1.3, the meta-graph $\mathcal{G}_M = (\mathcal{S}_M, \mathcal{E}_M)$ combines supernodes $\mathcal{S}_M = \bigcup_{i=1}^n \mathcal{S}_i$. Its initial embedding $\mathbf{H}_M^{(0)} \in \mathbb{R}^{|\mathcal{S}_M| \times d}$ stacks supernode embeddings where $\forall u \in \mathcal{S}_i, \mathbf{H}_{M,u}^{(0)} = \mathbf{H}_{i,u}$.

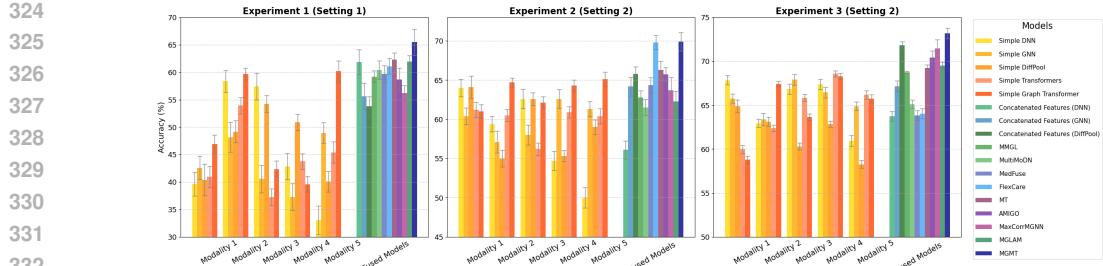


Figure 3: Average test accuracy and standard error bars (computed over 50 repetitions) on three synthetic datasets. In all experiments, each sample consists of five synthetic graphs, which we refer to as Modalities 1–5. Experiment 1 (Setting 1) uses 100 samples, with 5 nodes per graph, all of which are informative. Experiments 2 and 3 (Setting 2) both involve structured noise: Experiment 2 uses 100 samples and Experiment 3 uses 2,000 samples; in both, each graph has 50 nodes, of which 40 are informative. Across all configurations, the proposed MGMT model achieves the best performance.

MGMT applies additional L_{GT} Graph Transformer layers followed by a global pooling to obtain the final graph-level embedding. Lastly, we apply L_{MLP} MLP layers for class probabilities. Assume without loss of generality that $L_{GT} = 1$ and $L_{MLP} = 2$, the function class of MGMT given $\mathbf{H}_M^{(0)}$ is

$$\mathcal{F}_M = \left\{ f : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \mathbf{W}_{MLP}^{(2)} \sigma \left(\mathbf{W}_{MLP}^{(1)} \text{Pool}(\text{GT}(\mathbf{H}_M^{(0)})) \right) \right\}, \quad (8)$$

where $\text{GT}(\cdot) : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{S}_M| \times d}$ is the Graph Transformer, $\text{Pool}(\cdot) : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{h'}$ is a graph pooling, and $\mathbf{W}_{MLP}^{(1)} \in \mathbb{R}^{h' \times h''}$, $\mathbf{W}_{MLP}^{(2)} \in \mathbb{R}^{|\mathcal{Y}| \times h''}$ are MLP weight matrices, with $h', h'' \in \mathbb{N}^+$. All subsequent analysis could be easily extended to any number of L_{MLP} and L_{GT} .

The late fusion strategy that employs weighted averaging of class probabilities from graph-specific models can be represented as

$$\mathcal{F}_{late} = \left\{ f : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \sum_{i=1}^n w_i \cdot \mathbf{W}_{MLP,i}^{(2)} \sigma \left(\mathbf{W}_{MLP,i}^{(1)} \text{Pool}_{\mathcal{S}_i}(\mathbf{H}_M^{(0)}) \right) \right\},$$

where $\{\mathbf{W}_{MLP,i}^{(\ell)}\}_{i \in [n]}$ is the set of graph-specific MLP parameter, and the set of late fusion weights is $\{w_i \in \mathbb{R}\}_{i \in [n]}$ such that $\sum_{i=1}^n w_i = 1$. Given the joint distribution of a feature-label pair $(\mathbf{X}, Y) \sim \mathcal{P}$ and a loss function \mathcal{L} , denote the generalization error of a function f as

$$R(f; \mathcal{P}, \mathcal{L}) := \mathbb{E}_{(\mathbf{X}, Y) \sim \mathcal{P}} [\mathcal{L}(f(\mathbf{X}), Y)]$$

Following Shalev-Shwartz & Ben-David (2014), we define the **approximation error** of a function class \mathcal{F} as the minimum generalization error achievable by a function in \mathcal{F} , namely,

$$\epsilon(\mathcal{F}; \mathcal{P}, \mathcal{L}) := \inf_{f \in \mathcal{F}} R(f; \mathcal{P}, \mathcal{L}). \quad (9)$$

Assume latent representations of the meta graph follow $(\mathbf{H}_M^{(0)}, Y) \sim \mathcal{P}_M$. The next theorem shows MGMT is a more powerful graph fusion framework compared to late fusion in the sense that it achieves a smaller approximation error.

Theorem 4.4. Denote approximation error of MGMT on the meta-graph as $\epsilon(\mathcal{F}_M; \mathcal{P}_M, \mathcal{L})$, and the approximation error of late fusion of graph-specific classifiers $\epsilon(\mathcal{F}_{late}; \mathcal{P}_M, \mathcal{L})$, then

$$\epsilon(\mathcal{F}_M; \mathcal{P}_M, \mathcal{L}) \leq \epsilon(\mathcal{F}_{late}; \mathcal{P}_M, \mathcal{L}). \text{ See Section A4 for the proof.}$$

5 NUMERICAL EXPERIMENTS

We evaluate the effectiveness of MGMT on three synthetic datasets in Section 5.2 and two real-world neuroscience applications in Section 5.3 (memory experiment and Alzheimer’s disease detection). The synthetic and Alzheimer’s datasets are multi-modal, whereas the memory experiment is multi-subject (graphs from different animals treated as distinct modalities).

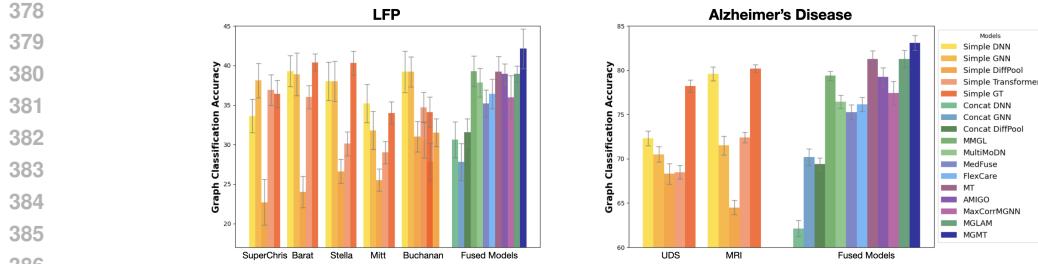


Figure 4: Test accuracies of baseline models on the LFP and Alzheimer’s disease datasets. Each bar represents the average test accuracy across 5 folds, along with the corresponding standard error. In both applications, MGMT consistently outperforms all other models.

Baseline comparisons. We compare against **four families of baselines**: (1) *single-source models* (i.e., trained on each source) such as DNNs (LeCun et al., 2015), GNNs, DiffPool (Ying et al., 2018), Transformers, and Graph Transformers (**GAT backbone**); (2) *early fusion models*: Concatenated Features using DNN/GNN/DiffPool feature extractors (Ngiam et al., 2011; Baltrušaitis et al., 2018; Lau et al., 2019); (3) general-purpose multimodal fusion frameworks such as MMGL (Zheng et al., 2022), MultiMoDN (Swamy et al., 2023), FlexCare (Xu et al., 2024), MedFuse (Hayat et al., 2022), and Meta-Transformer (Ma et al., 2022), and (4) recent multi-graph learning methods tailored to the multi-graph-to-label setting, including AMIGO (Nakhli et al., 2023), MaxCorrMGNN (D’Souza et al., 2023), and MGLAM (Fu et al.), which operate on multiple graphs per entity via shared contexts, correlation-based objectives, or bag-of-graphs pooling (see Appendix A6 for implementation details).

Ablation studies. We quantify the contribution of each component by (1) removing adaptive depth selection (i.e., using the final Transformer layer); (2) removing supernode selection (i.e., including all nodes in the meta-graph); (3) removing inter-graph edges; (4) removing intra-graph edges; and (5) disabling both the meta-graph and adaptive depth (i.e., late fusion of fixed-depth Transformer outputs). Results are presented in Tables A2, A3 and Figures 3, 4, 2.

5.1 EXPERIMENTAL SETUP

Architecture and training. Across datasets, MGMT uses TransformerConv layers with global max or mean pooling to form graph-level embeddings. Models are trained on 80% of the data, with 10% for validation and 10% for testing, using Adam and early stopping on validation loss. For real datasets, we use 5-fold cross-validation. Hyperparameters, including number of layers, dropout, learning rate, epochs, and node-importance thresholds, are tuned with Optuna (100 trials), selecting the best configuration by validation performance. For simulation studies, we run 50 independent trials and report mean test accuracy with standard errors.

Runtime and scalability. Appendix A9 provides component-wise time complexity, empirical runtime profiling (average per-epoch and stage-wise breakdowns), and controlled scalability experiments over graph size, number of graphs per sample count, sample size, and feature dimensionality, showing practical efficiency and predictable scaling comparable to Transformer-based graph architectures.

5.2 SYNTHETIC EXPERIMENTS

We simulate five graphs per sample under varying feature mechanisms, number of nodes, sample size, and noise. Each node has a p -dimensional feature; a subset of nodes is *informative* (their features influence the graph-level binary target), and the rest are *non-informative* noise. We create an intermediate binary label for each modality, then aggregate them into an entity-level label by applying a threshold to a weighted sum of these modality-specific labels. **Experiment 1** (Setting 1; Appendix A8): informative-node features are drawn from modality-specific multivariate Gaussians; labels use a linear thresholding rule; $n = 100$. **Experiment 2** (Setting 2; Appendix A8): features for informative nodes are generated using a Gaussian Process to induce temporal structure across features; labels use a nonlinear function (sinusoidal and quadratic); $n = 100$. **Experiment 3**: follows the same setting as Experiment 2 but increases the graph size and sample size. Each graph has 50 nodes, with 40 designated as important. The sample size is increased to 2,000, allowing us to assess MGMT’s performance at scale under complex, multimodal conditions.



Figure 5: (a) **Neural recordings from CA1 during a sequence memory task.** Rats performed a self-paced odor sequence task, judging each odor in a five-item sequence (A–E) as “in sequence” (InSeq) or “out of sequence” (OutSeq) while odors were delivered through a single port. (b) **Cross-animal supernode and edge frequency map from MGMT.** Each dashed box corresponds to one rat; node size and color indicate supernode selection frequency, and line color reflects edge occurrence frequency. High-frequency supernodes and edges cluster in distal CA1 (right side), with cross-rat superedges primarily linking distal regions across animals. Mitt exhibits weaker connectivity.

Across all experiments, MGMT outperforms baseline models (Fig. 3). Ablations show accuracy drops when removing adaptive depth, or inter-graph edges, and degrade most when both meta-graph and adaptive depth are disabled, supporting importance of hierarchical reasoning (Table A3 and Fig. 2).

5.3 NEUROSCIENCE APPLICATIONS

5.3.1 LOCAL FIELD POTENTIAL (LFP) ACTIVITY IN A SEQUENTIAL MEMORY TASK

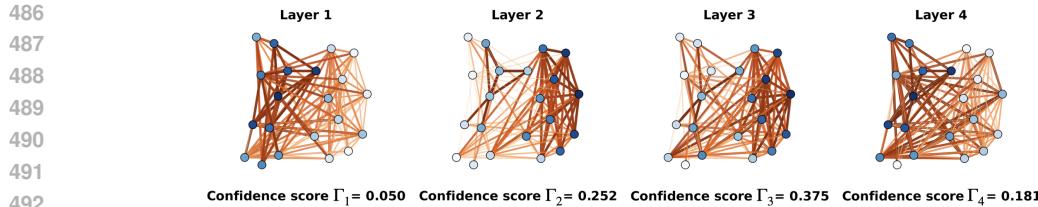
We apply MGMT to a challenging problem: predicting the stimulus presented on a given trial using LFP activity from hippocampus (Fig. 5). In this experiment, 5 subjects (rats named SuperChris, Barat, Stella, Mitt, and Buchanan) received repeated presentations of a sequence of stimuli (odors A, B, C, D, or E) at a single odor port and were required to identify whether each stimulus was presented in correct or incorrect sequence position to receive reward. Neural LFP activity was recorded from the dorsal CA1 subregion of the hippocampus as they performed the task (Allen et al., 2016; Shahbaba et al., 2022). Treating each rat as a distinct graph, MGMT borrows power across subjects and fuses subject-specific representations to decode stimulus identity on each trial from LFP.

Each trial is associated with one shared stimulus label (A,B,C,D or E). We construct a separate graph for each rat per trial using its own electrode-level LFP signals. Nodes represent electrodes (vary in number and identity across subjects), and edges capture intra-subject correlations. We then link “supernodes” across rats when their latent embeddings are similar under MGMT’s localized attention. Superedges are aligning comparable brain dynamics across animals, effectively “borrowing statistical strength” across rats to reduce noise and stabilize the trial-level representation used for decoding. This is not meant to just simply connect various brain regions across rats, rather alignment of their brain dynamics to strengthen the overall signals by properly borrowing power across rats.

As shown in Table A2, MGMT achieves the highest accuracy (**42.13% \pm 2.52**) predicting which odor (A–E) was presented on each trial using the LFP dataset, outperforming all baseline and fusion models. **The best competing method, MMGL, reaches 39.28%, with other recent approaches such as MGLAM (38.93%), AMIGO (38.92%), MT (39.20%), MultiMoDN (37.82%), and FlexCare (36.42%) trailing behind.** Traditional concatenation-based approaches like DNN and GNN yield substantially lower performance, highlighting the difficulty of this cross-rat decoding task. To our knowledge, these results provide the first direct evidence that the stimulus presented on a given trial can be accurately predicted based on hippocampal LFP activity alone, which highlights the potential of graph data integration approaches in general and the potential of the MGMT model specifically.

Ablation results (Fig. 2) confirm that each architectural component contributes meaningfully to MGMT’s performance, with the full model achieving the highest accuracy across all datasets.

Results of interpretation component. From a neuroscience perspective, first, we found that informative electrodes clustered on the right side of the electrode array (Fig. 5b). Specifically, highest-frequency supernodes and strongest within-subject connections were consistently concentrated on the right side, and pattern was consistent across subjects. This specific clustering makes sense given that the two electrode arrays targeted different segments of CA1 region: electrodes on the right targeted the distal segment, electrodes on the left the proximal region. The distal segment, where most informative electrodes are located, is more strongly associated with non-spatial inputs (e.g., odors in our case)



493 **Figure 6: Layer-wise attention patterns for the LFP data (SuperChris).** Each panel shows the
494 same subject-level LFP connectivity graph, along with the learned depth-confidence scores Γ_ℓ for
495 each Transformer layer ℓ , as well as the corresponding edge-level attention scores and node-wise
496 summed attention weights (with warmer colors indicating higher attention or summed weights).

497 and the proximal segment with visuospatial inputs. Such clustering of informative electrodes in
498 distal CA1 is also consistent with previous work focusing on a different type of non-spatial trial
499 classification (InSeq vs OutSeq (Zhou et al., 2024)). Second, there were interesting variations in the
500 pattern of informative edges across subjects. Although they showed a similar pattern of informative
501 nodes, some subjects showed weaker relationships in edges. For example, subject Mitt showed fewer
502 strong within-subject edges and lower-frequency superedges. In summary, the interpretation module
503 highlights subject-level connectivity differences as the key LFP factors driving performance.

504 **Depth-aware layers and CA1 circuitry.** The depth-aware component provides a complementary
505 view of these patterns. For each rat, we compute layer-wise depth-confidence scores γ_ℓ and visualize,
506 on the subject-level LFP connectivity graph, the corresponding edge attention and node-summed
507 attention weights. Fig. 6 shows the layers for SuperChris. Layers with the largest Γ_ℓ values focus
508 attention on edges linking distal CA1 electrodes, and nodes in this region receive the highest summed
509 attention. In contrast, low-confidence layers distribute attention more diffusely. Thus, the model
510 up-weights layers whose connectivity patterns highlight the distal CA1 subnetwork identified as
511 behaviorally informative in Fig. 5, indicating that depth-aware aggregation selectively amplifies
512 meaningful hippocampal circuitry rather than simply averaging multi-layer embeddings.

514 5.3.2 ALZHEIMER’S DISEASE DETECTION

515 As an example of broader biomedical applications, we used MGMT for Alzheimer’s disease (AD)
516 detection using the data obtained from the National Alzheimer’s Coordinating Center (NACC), which
517 standardizes data collected across 46 Alzheimer’s Disease Research Centers (ADRCs) in the United
518 States (Beekly et al., 2004; Weintraub et al., 2009). The cohort comprises 1,237 subjects (61.5% HC
519 and 38.5% MCI/AD) with both clinical assessments from the Uniform Data Set (UDS) and structural
520 MRI available. Our goal is to separate subjects with mild cognitive impairment (MCI) or dementia
521 due to Alzheimer’s disease from healthy controls (HC).

522 Following our terminology, this setting is *multi-modal* since each subject is measured via distinct data
523 sources (e.g., MRI vs. clinical assessments) that inhabit different feature spaces and sensing processes.
524 As shown in Fig. 4, the MGMT model consistently outperformed both single-source and baseline
525 fusion models. Moreover, ablations in Fig. 2 show that intra-graph structure and the meta-graph
526 are critical: removing intra-graph edges collapses performance (62.4% vs. 83.1%), removing the
527 meta-graph lowers accuracy to 70.1%, while dropping inter-graph edges (76.5%), supernode selection
528 (78.2%), or adaptive depth (81.2%) yields progressively smaller but consistent declines.

531 6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

532 We proposed MGMT, a multi-graph learning framework that integrates graph-specific GT encoders
533 with a meta-graph constructed over learned supernodes and superedges, supported by an adaptive
534 depth-aware mechanism for aggregating hierarchical representations. Using both synthetic and real
535 datasets, we showed that MGMT improves accuracy and interpretability over state-of-the-art fusion
536 methods. The framework could be further extended to support node classification and link prediction,
537 incorporate causal masking and counterfactual attribution for genuinely causal importance estimates
538 (see Appendix A14), and improve computational efficiency (see Appendix A15).

540 REFERENCES
541

542 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina
543 Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
544 chitectures via sparsified neighborhood mixing. In *The Thirty-sixth International Conference*
545 *on Machine Learning (ICML)*, 2019. URL <http://proceedings.mlr.press/v97/abu-el-haija19a/abu-el-haija19a.pdf>.

546

547 Timothy A Allen, Daniel M Salz, Sam McKenzie, and Norbert J Fortin. Nonspatial sequence coding
548 in ca1 neurons. *Journal of Neuroscience*, 36(5):1547–1563, 2016.

549

550 Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
551 A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):
552 423–443, 2018.

553 Duane L. Beekly, Erin M. Ramos, Gerald van Belle, Woodrow Deitrich, Amber D. Clark, Mary E.
554 Jacka, and Walter A. Kukull. The National Alzheimer’s Coordinating Center (NACC) Database:
555 an Alzheimer disease database. *Alzheimer Disease and Associated Disorders*, 18(4):270–277,
556 December 2004. ISSN 0893-0341.

557

558 Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
559 Better and robust node embeddings. *Advances in neural information processing systems*, 33:
560 19314–19326, 2020.

561 Yanjie Cui, Xiaohong Liu, Jing Liang, and Yamin Fu. Mvgt: A multi-view graph transformer based
562 on spatial relations for eeg emotion recognition. *arXiv preprint arXiv:2407.03131*, 2024.

563

564 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
565 *arXiv preprint arXiv:2012.09699*, 2020.

566

567 Niharika S D’Souza, Hongzhi Wang, Andrea Giovannini, Antonio Foncubierta-Rodriguez, Kristen L
568 Beck, Orest Boyko, and Tanveer Syeda-Mahmood. Maxcorrmgnn: A multi-graph neural network
569 framework for generalized multimodal fusion of medical data for outcome prediction. In *Workshop*
570 *on Machine Learning for Multimodal Healthcare Data*, pp. 141–154. Springer, 2023.

571

572 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
573 networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.

574

575 Donglai Fu, Tiantian Lu, and Junyang Wang. Multi-graph learning with adaptive graph-bag mapping.
576 Available at SSRN 5100893.

577

578 Zhimeng Guo, Zongyu Wu, Teng Xiao, Charu Aggarwal, Hui Liu, and Suhang Wang. Counterfactual
579 learning on graphs: A survey. *Machine Intelligence Research*, 22(1):17–59, 2025.

580

581 Nasir Hayat, Krzysztof J Geras, and Farah E Shamout. Medfuse: Multi-modal fusion with clinical
582 time-series data and chest x-ray images. In *Machine Learning for Healthcare Conference*, pp.
583 479–503. PMLR, 2022.

584

585 Yufei He, Yuan Sui, Xiaoxin He, Yue Liu, Yifei Sun, and Bryan Hooi. Unigraph2: Learning a unified
586 embedding space to bind multimodal graphs. In *Proceedings of the ACM on Web Conference 2025*,
587 pp. 1759–1770, 2025.

588

589 Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, and Yuxiao Dong. Graphalign: Pretraining one
590 graph neural network on multiple graphs via feature alignment. *arXiv preprint arXiv:2406.02953*,
591 2024.

592

593 Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
594 a replacement for graph convolution. In *Proceedings of the 28th ACM SIGKDD Conference on*
595 *Knowledge Discovery and Data Mining*, pp. 655–665, 2022.

596

597 Stefanie Jegelka. Theory of graph neural networks: Representation and learning, 2022. URL
598 <https://arxiv.org/abs/2204.07697>.

594 Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
 595 learning-convolutional networks. In *Proceedings of the IEEE/CVF conference on computer vision*
 596 and pattern recognition, pp. 11313–11320, 2019.

597 Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
 598 Hong. Pure transformers are powerful graph learners. *Advances in Neural Information Processing*
 599 *Systems*, 35:14582–14595, 2022.

600 601 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 602 *arXiv preprint arXiv:1609.02907*, 2016.

603 604 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 605 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing*
 606 *Systems*, 34:21618–21629, 2021.

607 608 Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
 609 multi-graph pretraining. *arXiv preprint arXiv:2407.11907*, 2024.

610 611 Billy Pik Lik Lau, Sumudu Hasala Marakkalage, Yuren Zhou, Naveed Ul Hassan, Chau Yuen, Meng
 612 Zhang, and U-Xuan Tan. A survey of data fusion in smart city applications. *Information Fusion*,
 613 52:357–374, 2019.

614 615 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 616 2015.

617 618 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 619 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 620 volume 32, 2018.

621 622 Zhixun Li, Dingshuo Chen, Qiang Liu, and Shu Wu. The devil is in the conflict: Disentangled
 623 information graph neural networks for fraud detection. In *2022 IEEE International Conference on*
 624 *Data Mining (ICDM)*, pp. 1059–1064. IEEE, 2022.

625 626 Yuankai Luo, Hongkang Li, Lei Shi, and Xiao-Ming Wu. Enhancing graph transformers with
 627 hierarchical distance structural encoding. *Advances in Neural Information Processing Systems*, 37:
 628 57150–57182, 2024.

629 630 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
 631 Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
 632 *International Conference on Machine Learning*, pp. 23321–23337. PMLR, 2023.

633 634 Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal transformers
 635 robust to missing modality? In *Proceedings of the IEEE/CVF conference on computer vision and*
 636 *pattern recognition*, pp. 18177–18186, 2022.

637 638 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
 639 Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
 640 In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First*
 641 *Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on*
 642 *Educational Advances in Artificial Intelligence*, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.
 643 ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014602. URL <https://doi.org/10.1609/aaai.v33i01.33014602>.

644 645 Ramin Nakhli, Puria Azadi Moghadam, Haoyang Mi, Hossein Farahani, Alexander Baras, Blake
 646 Gilks, and Ali Bashashati. Sparse multi-modal graph transformer with shared-context processing
 647 for representation learning of giga-pixel images. In *Proceedings of the IEEE/CVF Conference on*
 648 *Computer Vision and Pattern Recognition*, pp. 11547–11557, 2023.

649 650 Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y Ng, et al. Multi-
 651 modal deep learning. In *ICML*, volume 11, pp. 689–696, 2011.

652 653 Feiping Nie, Jing Li, Xuelong Li, et al. Parameter-free auto-weighted multiple graph learning: A
 654 framework for multiview clustering and semi-supervised classification. In *IJCAI*, volume 9, pp.
 655 1881–1887, 2016.

648 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 649 classification. *arXiv preprint arXiv:1905.10947*, 2019.

650

651 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 652 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural*
 653 *Information Processing Systems*, 35:14501–14515, 2022.

654 Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
 655 Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
 656 graphs with missing node features. In *Learning on graphs conference*, pp. 11–1. PMLR, 2022.

657

658 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 659 graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

660 Babak Shahbaba, Lingge Li, Forest Agostinelli, Mansi Saraf, Keiland W Cooper, Derenik Haghver-
 661 dian, Gabriel A Elias, Pierre Baldi, and Norbert J Fortin. Hippocampal ensembles represent
 662 sequential relationships among an extended sequence of nonspatial events. *Nature communica-
 663 tions*, 13(1):787, 2022.

664

665 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to
 666 Algorithms*. Cambridge University Press, USA, 2014. ISBN 1107057132.

667

668 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
 669 prediction: Unified message passing model for semi-supervised classification. *arXiv preprint
 arXiv:2009.03509*, 2020.

670

671 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 672 Exphormer: Sparse transformers for graphs. In *International Conference on Machine Learning*,
 673 pp. 31613–31632. PMLR, 2023.

674

675 David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
 676 The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
 677 networks and other irregular domains. *IEEE signal processing magazine*, 30(3):83–98, 2013.

678

679 Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal attention
 680 for interpretable and generalizable graph classification. In *Proceedings of the 28th ACM SIGKDD
 conference on knowledge discovery and data mining*, pp. 1696–1705, 2022.

681

682 Vinitra Swamy, Malika Satayeva, Jibril Frej, Thierry Bossy, Thijs Vogels, Martin Jaggi, Tanja Käser,
 683 and Mary-Anne Hartley. Multimodn—multimodal, multi-task, interpretable modular networks.
 684 *Advances in neural information processing systems*, 36:28115–28138, 2023.

685

686 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

687

688 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
 689 et al. Graph attention networks. *stat*, 1050(20):10–48550, 2017.

690

691 Shangyou Wang, Zezhong Ding, and Xike Xie. Samgog: A sampling-based graph-of-graphs
 692 framework for imbalanced graph classification. *arXiv preprint arXiv:2507.13741*, 2025.

693

694 Sandra Weintraub, David P. Salmon, N. Mercaldo, Steven Ferris, Neill R. Graff-Radford, Helena Chui,
 695 Jeffrey L. Cummings, Charles, Decarli, Norman L. Foster, Douglas R. Galasko, Elaine R. Peskind,
 Woodrow Dietrich, Duane L. Beekly, Walter A. Kukull, C. John, and Morris. The Alzheimer’s
 Disease Centers’ Uniform Data Set (UDS): The Neuropsychological Test Battery. *Alzheimer
 Disease and Associated Disorders*, 23(2):91–101, 2009.

696

697 Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
 698 Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural
 699 networks. *Drug Discovery Today: Technologies*, 37:1–12, 2020.

700

701 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
 702 plifying graph convolutional networks. In *International conference on machine learning*, pp.
 6861–6871. Pmlr, 2019.

702 Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
 703 Representing long-range context for graph neural networks with global attention. *Advances in*
 704 *Neural Information Processing Systems*, 34:13266–13279, 2021.

705 Tao Xing, Yutao Dou, Xianliang Chen, Jiansong Zhou, Xiaolan Xie, and Shaoliang Peng. An adaptive
 706 multi-graph neural network with multimodal feature fusion learning for mdd detection. *Scientific*
 707 *Reports*, 14(1):28400, 2024.

708 Muha Xu, Zhenfeng Zhu, Youru Li, Shuai Zheng, Yawei Zhao, Kunlun He, and Yao Zhao. Flexcare:
 709 Leveraging cross-task synergy for flexible multimodal healthcare prediction. In *Proceedings of the*
 710 *30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3610–3620, 2024.

711 Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang Wang. Evidence-aware fake news detection
 712 with graph neural networks. In *Proceedings of the ACM web conference 2022*, pp. 2501–2510,
 713 2022.

714 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 715 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural*
 716 *information processing systems*, 34:28877–28888, 2021.

717 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
 718 archical graph representation learning with differentiable pooling. *Advances in neural information*
 719 *processing systems*, 31, 2018.

720 Xingtong Yu, Zemin Liu, Yuan Fang, and Ximeng Zhang. Learning to count isomorphisms with
 721 graph neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
 722 pp. 4845–4853, 2023.

723 Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous
 724 graph neural network. In *Proceedings of the 25th ACM SIGKDD international conference on*
 725 *knowledge discovery & data mining*, pp. 793–803, 2019.

726 Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. Robust self-supervised structural graph
 727 neural network for social network prediction. In *Proceedings of the ACM Web Conference 2022*,
 728 pp. 1352–1361, 2022.

729 Yanteng Zhang, Xiaohai He, Yi Hao Chan, Qizhi Teng, and Jagath C. Rajapakse. Multi-
 730 modal graph neural network for early diagnosis of alzheimer’s disease from smri and pet
 731 scans. *Computers in Biology and Medicine*, 164:107328, 2023. ISSN 0010-4825. doi:
 732 <https://doi.org/10.1016/j.combiomed.2023.107328>. URL <https://www.sciencedirect.com/science/article/pii/S001048252300793X>.

733 Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, and Xu Sun. Sparse transformer:
 734 Concentrated attention through explicit selection. 2019.

735 Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yuchen Yang, and Yao Zhao.
 736 Multi-modal graph learning for disease prediction. *IEEE Transactions on Medical Imaging*, 41(9):
 737 2207–2216, 2022.

738 Chuangchuang Zhou, Yifan Wu, Wouter Sterkens, Patrick Vandewalle, Jianwei Zhang, and Jef R
 739 Peeters. Multi-view graph transformer for waste of electric and electronic equipment classification
 740 and retrieval. *Resources, Conservation and Recycling*, 215:108112, 2025.

741 Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
 742 with local and global consistency. *Advances in neural information processing systems*, 16, 2003.

743 Wenzhuo Zhou, Annie Qu, Keiland W Cooper, Norbert Fortin, and Babak Shahbaba. A model-
 744 agnostic graph neural network for integrating local and global information. *Journal of the American*
 745 *Statistical Association*, pp. 1–14, 2024.

746 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 747 homophily in graph neural networks: Current limitations and effective designs. *Advances in neural*
 748 *information processing systems*, 33:7793–7804, 2020.

756 Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
757 fields and harmonic functions. In *Proceedings of the 20th International conference on Machine*
758 *learning (ICML-03)*, pp. 912–919, 2003.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A1 GRAPH TRANSFORMER WITH LOCALIZED GRAPH-AWARE ATTENTION
811

812 The standard Transformer architecture employs a global self-attention mechanism in which every
813 token attends to all others. This is computationally inefficient and often inappropriate in the context
814 of graph-structured data, where meaningful interactions are localized to a node's immediate neighbor-
815 hood. To bridge this gap, we adopt the localized graph-aware attention formulation proposed by Shi
816 et al. (2020), which restricts attention to a node's 1-hop neighbors.

817 To preserve self-information, we extend the neighborhood to include the node itself. Specifically, we
818 define $\bar{\mathcal{N}}(u) = \mathcal{N}(u) \cup \{u\}$, ensuring each node can incorporate its own features during attention-
819 based message passing.

820 Let $\mathbf{H}^{(\ell-1)} = \{\mathbf{H}_1^{(\ell-1)}, \dots, \mathbf{H}_N^{(\ell-1)}\}$ denote the set of node features from the previous layer. Each
821 node u aggregates information from its extended neighborhood $v \in \bar{\mathcal{N}}(u)$ using the following
822 multi-head self-attention mechanism.

823 For each attention head $m = 1, \dots, M$ and layer $\ell = 1, \dots, L$:

824 1. **Linear Projections (queries, keys, values):**

825
$$\mathbf{Q}_u^{(\ell,m)} = \mathbf{W}_Q^{(\ell,m)} \mathbf{h}_u^{(\ell-1)} + \mathbf{b}_Q^{(\ell,m)}, \quad (\text{A10})$$

826
$$\mathbf{K}_v^{(\ell,m)} = \mathbf{W}_K^{(\ell,m)} \mathbf{h}_v^{(\ell-1)} + \mathbf{b}_K^{(\ell,m)}, \quad (\text{A11})$$

827
$$\mathbf{V}_v^{(\ell,m)} = \mathbf{W}_V^{(\ell,m)} \mathbf{h}_v^{(\ell-1)} + \mathbf{b}_V^{(\ell,m)}. \quad (\text{A12})$$

828 The learnable matrices $\mathbf{W}_Q^{(\ell,m)}$, $\mathbf{W}_K^{(\ell,m)}$, and $\mathbf{W}_V^{(\ell,m)}$ are referred to as the *Query*, *Key*, and *Value*
829 projection matrices, respectively. These matrices project each node's feature vector into three distinct
830 spaces:

- 831 • The **Query** vector $\mathbf{Q}_u^{(\ell,m)}$ represents the type of information that node u seeks from its neighbors.
- 832 • The **Key** vector $\mathbf{K}_v^{(\ell,m)}$ encodes what information neighbor node v can provide.
- 833 • The **Value** vector $\mathbf{V}_v^{(\ell,m)}$ contains the actual content to be aggregated.

834 This separation allows the model to compute a relevance score between nodes before deciding how
835 much information to share.

836 2. **Attention Score Calculation:** The attention coefficient from node u to neighbor $v \in \bar{\mathcal{N}}(u)$ is
837 computed as:

838
$$\alpha_{uv}^{(\ell,m)} = \frac{\exp\left(\frac{\mathbf{Q}_u^{(\ell,m)\top} \mathbf{K}_v^{(\ell,m)}}{\sqrt{d_h}}\right)}{\sum_{r \in \bar{\mathcal{N}}(u)} \exp\left(\frac{\mathbf{Q}_u^{(\ell,m)\top} \mathbf{K}_r^{(\ell,m)}}{\sqrt{d_h}}\right)}, \quad (\text{A13})$$

839 where d_h is the dimensionality of each head.

840 3. **Neighborhood Aggregation:**

841
$$\mathbf{Z}_u^{(\ell,m)} = \sum_{v \in \bar{\mathcal{N}}(u)} \alpha_{uv}^{(\ell,m)} \mathbf{V}_v^{(\ell,m)}. \quad (\text{A14})$$

842 4. **Multi-Head Output and Update:** The outputs from all heads are concatenated and linearly
843 transformed:

844
$$\hat{\mathbf{H}}_u^{(\ell)} = \mathbf{W}_O^{(\ell)} \left[\mathbf{Z}_u^{(\ell,1)} \| \dots \| \mathbf{Z}_u^{(\ell,M)} \right] + \mathbf{b}_O^{(\ell)}, \quad (\text{A15})$$

845 where $\|$ denotes concatenation across heads, and $\mathbf{W}_O^{(\ell)} \in \mathbb{R}^{d \times d}$, $\mathbf{b}_O^{(\ell)} \in \mathbb{R}^d$ are learnable projections.

846 This formulation allows each node to dynamically attend to its extended local neighborhood, learning
847 rich contextual representations while respecting the sparse structure of the input graph. The learned
848 attention scores can also be used for interpretability and identifying important nodes and edges, as
849 discussed in subsection 3.2.

864 A2 DEPTH-AWARE AGGREGATION IN MGMT
865
866

867 To enhance the robustness of graph-specific representation learning and mitigate sensitivity to the
868 choice of Transformer depth, we introduce an adaptive depth-aware fusion strategy inspired by recent
869 developments in graph learning Zhou et al. (2024). Rather than relying on a fixed-depth stack, we
870 aggregate node embeddings across multiple Transformer layers, weighted by their contribution to
871 graph-level prediction performance.

872 Let $\bar{\mathbf{H}}_{ik}^{(\ell)} \in \mathbb{R}^{N_i \times d}$ denote the node embeddings of graph i in samples (instances) k after the ℓ -th
873 Graph Transformer layer, for $\ell = 1, \dots, L$, $i = 1, \dots, n$ and $k = 1, \dots, K$. Here, K is the total
874 number of samples, and n is the number of graphs per sample. To evaluate the representational
875 quality of each layer, we compute a graph-level representation by applying mean pooling over the
876 node embeddings:

$$877 \bar{\mathbf{H}}_{ik}^{(\ell)} = \frac{1}{N_i} \mathbf{1}_{N_i}^\top \mathbf{H}_{ik}^{(\ell)} \in \mathbb{R}^{1 \times d}. \quad (A16)$$

882 Each pooled graph embedding $\bar{\mathbf{H}}_{ik}^{(\ell)}$ is passed through a lightweight classifier to obtain predictions,
883 and its predictive quality is evaluated using the graph-level label. Let $Y_k \in \{1, \dots, |\mathcal{Y}|\}$ be the true
884 label for sample k . The classification error for graph i at depth ℓ is computed as:

$$886 \epsilon_i^{(\ell)} = \frac{\sum_{k=1}^K \beta_{ik}^{(\ell)} \mathbb{1}_{\{Y_k \neq \arg \max_y \text{softmax}(\bar{\mathbf{H}}_{ik}^{(\ell)})\}}}{\sum_{k=1}^K \beta_{ik}^{(\ell)}} \quad (A17)$$

890 where $\beta_{ik}^{(\ell)}$ is the weight assigned to graph i in sample k at depth ℓ .
891

892 The confidence score for the ℓ -th layer of graph i is defined as:
893

$$894 \Gamma_i^{(\ell)} = \frac{1}{2} \log \left(\frac{1 - \epsilon_i^{(\ell)}}{\epsilon_i^{(\ell)}} \right). \quad (A18)$$

898 To emphasize misclassified samples, sample weights are updated between depths using:
899

$$901 \beta_{ik}^{(\ell+1)} \propto \beta_{ik}^{(\ell)} \exp \left(\mathbb{1}_{\{Y_k \neq \arg \max_Y \text{softmax}(\bar{\mathbf{H}}_{ik}^{(\ell)})\}} \cdot \Gamma_i^{(\ell)} \right). \quad (A19)$$

904 The confidence scores $\Gamma_i^{(\ell)}$ are used to weight both the depth-wise fused node embeddings and the
905 attention scores across Transformer layers, ensuring that layers contributing most to prediction are
906 emphasized during supernode extraction and representation learning.
907

910 A3 MATHEMATICAL PROOFS
911

912 *Proof of Theorem 4.3.* For simplicity, we omit graph-specific subscripts throughout the proof (e.g.
913 \mathbf{X} instead of \mathbf{X}_i) as the arguments apply universally for all graphs. Consider the Graph Transformer
914 (GT) structure with a single head $m = 1$. For each layer $\ell = 1, \dots, L$, let $\mathbf{W}_Q^{(\ell)} = \mathbf{W}_K^{(\ell)} = \mathbf{0}$,
915 $\mathbf{W}_V^{(\ell)} = \mathbf{I}$, and $\mathbf{b}_V^{(\ell)} = \mathbf{0}$ in equation 1. Here \mathbf{I} is the identity matrix and $\mathbf{0}$ denotes matrix/vector of
916 all zeros. For the feedforward layer in equation 2, set weights as \mathbf{I} , bias as $\mathbf{0}$, and remove the residual
917 connection and normalization layer. Then for each edge $(u, v) \in \mathcal{E} \cup \{(u, u)\}$, the updating rules in

918 equation 1 and equation 2 simplifies to
 919

$$\begin{aligned}
 \mathbf{Q}_u^{(\ell)} &= \mathbf{b}_Q^{(\ell)}, \\
 \mathbf{K}_v^{(\ell)} &= \mathbf{b}_K^{(\ell)}, \\
 \mathbf{V}_v^{(\ell)} &= \mathbf{H}_v^{(\ell-1)}, \\
 \alpha_{uv}^{(\ell)} &= \frac{\exp\left(\frac{\mathbf{Q}_u^{(\ell)\top} \mathbf{K}_v^{(\ell)}}{\sqrt{d}}\right)}{\sum_{v' \in \mathcal{N}(u)} \exp\left(\frac{\mathbf{Q}_u^{(\ell)\top} \mathbf{K}_{v'}^{(\ell)}}{\sqrt{d}}\right)}, \\
 \mathbf{H}_u^{(\ell)} &= \sigma\left(\sum_{v \in \mathcal{N}(u)} \alpha_{uv}^{(\ell)} \mathbf{V}_v^{(\ell)}\right).
 \end{aligned}$$

920 It is clear that the attention matrix $\alpha^{(\ell)}$ reduces to $\mathcal{M}(\mathbf{A}) = \text{softmax}(\mathbf{A} + \mathbf{I})$. Recall that the initial
 921 embedding $\mathbf{H}^{(0)} = \mathbf{X}$, we can explicitly expand the recursive updating rule above, and write the
 922 embeddings for each layer ℓ in the following compact form:
 923

$$\mathbf{H}^{(\ell)} = \mathcal{U}^\ell(\mathbf{X}; \mathcal{M}(\mathbf{A}), \sigma).$$

924 Let $\Gamma^{(\ell)} = \eta_\ell$, for $\ell = 1, \dots, L$ in equation 3, the graph-specific fused embeddings can be represented
 925 as
 926

$$\sum_{\ell=1}^L \eta_\ell \cdot \mathcal{U}^\ell(\mathbf{X}; \mathcal{M}(\mathbf{A}), \sigma),$$

927 which satisfies Definition 4.1 with identity mapping $f(\cdot)$. □
 928

929 **Remark A1.** While the depth-aware fusion step in equation 3 is highly flexible and can accommodate
 930 any set of weights $\{\Gamma_\ell\}_{\ell=1}^L$, we employ the confidence score weights defined in Section A2 to
 931 adaptively aggregate the latent representations that yield the highest classification accuracy.
 932

933 *Proof of Theorem 4.4.* Similar to the proof of Theorem A2, we will show $\mathcal{F}_{\text{late}} \subseteq \mathcal{F}_M$ and the desired
 934 results follow directly from the definition of approximation error in equation 9.

935 Consider a class of pooling functions that concatenates the graph-specific pooled embeddings,
 936 formally,
 937

$$\text{ConcatPool}(\mathbf{H}_M^{(0)}) = \left\| \text{Pool}_{\mathcal{S}_i}(\mathbf{H}_M^{(0)}) \right\|_{i=1}^n, \quad (\text{A20})$$

938 where $\|$ denotes the concatenation operation, $\text{Pool}_{\mathcal{S}_i}(\cdot) : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{h'}$, as defined in equation A24,
 939 is the global pooling function restricted to \mathcal{S}_i . Hence $\text{ConcatPool}(\mathbf{H}_M^{(0)}) : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{nh'}$
 940 represents the concatenation of graph-specific embeddings.

941 Further, let $D(\{\mathbf{W}_{\text{MLP},i}^{(1)}\}_{i=1}^n)$ be the diagonal block matrix with diagonal elements $\{\mathbf{W}_{\text{MLP},i}^{(1)}\}_{i=1}^n$,
 942 then one can easily check that equation A20 can be rewritten as
 943

$$\begin{aligned}
 \mathcal{F}_{\text{late}} &= \left\{ f : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}(\text{GT}(\mathbf{H}_M^{(0)})) \right), \right. \\
 &\quad \left. \gamma > 1, \mathbf{W}_V = \mathbf{I}, \mathbf{b}_V = \mathbf{0}, \right. \\
 &\quad \text{Pool}(\cdot) = \text{ConcatPool}(\cdot), \\
 \mathbf{W}_{\text{MLP}}^{(1)} &= D(\{\mathbf{W}_{\text{MLP},i}^{(1)}\}_{i=1}^n), \\
 \mathbf{W}_{\text{MLP}}^{(2)} &= w_1 \mathbf{W}_{\text{MLP},1}^{(2)} \| \cdots \| w_n \mathbf{W}_{\text{MLP},n}^{(2)} \right\}, \quad (\text{A21})
 \end{aligned}$$

944 where $\gamma, \mathbf{W}_V, \mathbf{b}_V$ are parameters of the Graph Transformer layer as defined in equation A25. Finally,
 945 from equation 8 and equation A21, it is clear that $\mathcal{F}_{\text{late}} \subseteq \mathcal{F}_M$, which concludes the proof. □
 946

972 **A4 ADDITIONAL THEORETICAL RESULTS**
973974 **A4.1 ADDITIONAL INTRA-GRAPH RESULTS**
975976 **Theorem A1.** *Let $\mathcal{M}(\mathbf{A}) = \text{softmax}(\mathbf{A} + \mathbf{I})$ as in Theorem 4.3, the vanilla Graph Transformer is
977 not capable of representing L -hop neighborhood mixing.*978 *Proof.* Following a similar strategy in Abu-El-Haija et al. Abu-El-Haija et al. (2019), it suffices to
979 show that the vanilla Graph Transformer (GT) fails to represent 2-hop mixing, which in turn implies
980 the inability to represent the general L -hop mixing. Consider the particular case, where $m = 1$,
981 $\sigma(x) = x$. As reviewed in Section A1, the final graph embedding of a vanilla GT with depth L can
982 be represented as
983

984
$$\mathbf{H}^{(L)} = \left[\prod_{\ell=1}^L \text{softmax}((\mathbf{A} + \mathbf{I}) \odot \boldsymbol{\alpha}^{(\ell)}) \right] \mathbf{X} \prod_{\ell=1}^L \mathbf{W}_V^{(\ell)},$$

985
986

987 for attention matrices $\{\boldsymbol{\alpha}^{(\ell)}\}_{\ell=1}^L$ and weights $\{\mathbf{W}_V^{(\ell)}\}_{\ell=1}^L$. Here \odot denote the Hadamard product. Let
988 $\mathbf{W}^* = \prod_{\ell=1}^L \mathbf{W}_V^{(\ell)}$, and consider the case where $\eta_1 = 1$ and $\eta_2 = -1$. If the vanilla GT is able to
989 represent 2-hop mixing, there exists an injective mapping f and a configuration of the parameters
990 such that

991
$$\left[\prod_{\ell=1}^L \text{softmax}((\mathbf{A} + \mathbf{I}) \odot \boldsymbol{\alpha}^{(\ell)}) \right] \mathbf{X} \mathbf{W}^* = f(\mathcal{M}(\mathbf{A}) \mathbf{X} - \mathcal{M}^2(\mathbf{A}) \mathbf{X}) \quad (\text{A22})$$

992
993

994 holds for any adjacency matrices \mathbf{A} and node features \mathbf{X} .995 Consider a fully disconnected graph with $\mathbf{A} = \mathbf{0}$ and \mathbf{X} , then $\mathcal{M}(\mathbf{A}) = \text{softmax}(\mathbf{I}) = \mathbf{I}$, and
996 $\text{softmax}((\mathbf{A} + \mathbf{I}) \odot \boldsymbol{\alpha}^{(\ell)}) = \mathbf{I}$ for $\ell = 1, \dots, L$, which implies $\mathbf{W}^* = f(\mathbf{0})$. On the other hand,
997 consider a graph with a single edge between node 1 and 2, namely, $A_{12} = A_{21} = 1$ and 0 otherwise.
998 Then

999
1000
1001
$$\mathcal{M}(\mathbf{A}) = \underbrace{\begin{bmatrix} 0.5 & 0.5 & 0 & \cdots & 0 \\ 0.5 & 0.5 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}}_{:= \mathbf{A}^*}$$

1002
1003
1004
1005

1006 Let $\mathbf{X} = \mathbf{A}^*$, then $f(\mathcal{M}(\mathbf{A}) \mathbf{X} - \mathcal{M}^2(\mathbf{A}) \mathbf{X}) = f(\mathbf{0})$. Furthermore, it is easy to check that

1007
$$\prod_{\ell=1}^L \text{softmax}((\mathbf{A} + \mathbf{I}) \odot \boldsymbol{\alpha}^{(\ell)}) = \mathbf{A}^*,$$

1008
1009

1010 since features of node 1 and 2 are identical. It follows that $\mathbf{A}^* \mathbf{W}^* = f(\mathbf{0})$.1011 Combining the two scenarios, we must have $(\mathbf{I} - \mathbf{A}^*) \mathbf{W}^* = \mathbf{0}$, which implies that $\mathbf{W}_1^* = \mathbf{W}_2^*$,
1012 where \mathbf{W}_i^* is the i -th row of \mathbf{W}^* . Since the choice of node 1 and 2 was arbitrary, all rows of \mathbf{W}^*
1013 should be identical, hence $\text{rank}(\mathbf{W}^*) \leq 1$ and $\text{rank}([\prod_{\ell=1}^L \text{softmax}((\mathbf{A} + \mathbf{I}) \odot \boldsymbol{\alpha}^{(\ell)})] \mathbf{X} \mathbf{W}^*) \leq 1$,
1014 which means the output of f should be at most rank 1 matrices by the equivalence assumption in
1015 equation A22. Hence, f cannot be injective, which concludes the proof by contradiction. \square
10161017 **A4.2 ADDITIONAL INTER-GRAPH RESULTS**
10181019 Let $\mathbf{H}_{\mathcal{S}_i} = \{\mathbf{H}_{i,u}\}_{u \in \mathcal{S}_i}$ be the embeddings for supernodes in \mathcal{S}_i . Single-graph classifiers that
1020 operates on $\mathbf{H}_{\mathcal{S}_i}$ can be expressed as

1021
$$\mathcal{F}_i = \left\{ f : \mathbb{R}^{|\mathcal{S}_i| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}(\mathbf{H}_{\mathcal{S}_i}) \right) \right\}. \quad (\text{A23})$$

1022
1023

1024 Assume latent representations of the meta graph follow $(\mathbf{H}_M^{(0)}, Y) \sim \mathcal{P}_M$, and $(\mathbf{H}_{\mathcal{S}_i}, Y) \sim \mathcal{P}_i$ where
1025 \mathcal{P}_i is the marginal distribution of \mathcal{P}_M restricted to \mathcal{S}_i . The next result shows MGMT achieves smaller
approximation error by leveraging information across all graphs.

1026 **Proposition A2.** Denote the approximation error of MGMT on the meta-graph as $\epsilon(\mathcal{F}_M; \mathcal{P}_M, \mathcal{L})$,
 1027 and the approximation error of graph-specific classifiers on the sub-graph as $\epsilon(\mathcal{F}_i; \mathcal{P}_i, \mathcal{L})$, then
 1028

$$1029 \quad \epsilon(\mathcal{F}_M; \mathcal{P}_M, \mathcal{L}) \leq \epsilon(\mathcal{F}_i; \mathcal{P}_i, \mathcal{L}).$$

1030 *Proof of Proposition A2.* Without loss of generality, we focus on the cases where both MGMT and
 1031 graph-specific classifiers has $L_{\text{MLP}} = 2$ layers of MLP and MGMT has $L_{\text{GT}} = 1$ layer of Graph
 1032 Transformer as specified in equation 8 and equation A23. The same argument below applies to any
 1033 number of L_{MLP} and L_{GT} .
 1034

1035 First, consider the function class that operates on the meta-graph but only utilizes the nodes from
 1036 graph i , namely,

$$1037 \quad \bar{\mathcal{F}}_i = \left\{ f : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}_{\mathcal{S}_i}(\mathbf{H}_M^{(0)}) \right) \right\}, \quad (\text{A24})$$

1039 where $\text{Pool}_{\mathcal{S}_i}$ denote the global pooling operation that restricts on the nodes in \mathcal{S}_i . Since
 1040

$$1041 \quad \text{Pool}_{\mathcal{S}_i}(\mathbf{H}_M^{(0)}) = \text{Pool}(\mathbf{H}_{\mathcal{S}_i}),$$

1042 We have that

$$1043 \quad R \left(\mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}_{\mathcal{S}_i}(\mathbf{H}_M^{(0)}) \right); \mathcal{P}_M, \mathcal{L} \right) = R \left(\mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}(\mathbf{H}_{\mathcal{S}_i}) \right); \mathcal{P}_i, \mathcal{L} \right).$$

1044 It follows that

$$1045 \quad \epsilon(\bar{\mathcal{F}}_i; \mathcal{P}_M, \mathcal{L}) = \epsilon(\mathcal{F}_i; \mathcal{P}_i, \mathcal{L}).$$

1046 We claim that $\bar{\mathcal{F}}_i \subseteq \mathcal{F}_M$, and by definition of approximation error in equation 9,
 1047

$$1048 \quad \epsilon(\mathcal{F}_M; \mathcal{P}_M, \mathcal{L}) \leq \epsilon(\bar{\mathcal{F}}_i; \mathcal{P}_M, \mathcal{L}) = \epsilon(\mathcal{F}_i; \mathcal{P}_i, \mathcal{L}).$$

1049 It remains to show the function class inclusion. Note that we can rewrite $\bar{\mathcal{F}}_i$ as
 1050

$$1051 \quad \bar{\mathcal{F}}_i = \left\{ f : \mathbb{R}^{|\mathcal{S}_M| \times d} \mapsto \mathbb{R}^{|\mathcal{Y}|} \mid f = \mathbf{W}_{\text{MLP}}^{(2)} \sigma \left(\mathbf{W}_{\text{MLP}}^{(1)} \text{Pool}_{\mathcal{S}_i}(\text{GT}(\mathbf{H}_M^{(0)})) \right), \right. \\ 1052 \quad \left. \gamma > 1, \mathbf{W}_V = \mathbf{I}, \mathbf{b}_V = \mathbf{0} \right\}, \quad (\text{A25})$$

1053 where γ is the threshold defined in Section 3.1.3 that determines the connectivity between nodes in the
 1054 meta-graph, \mathbf{W}_V , \mathbf{b}_V are parameters for values in the Graph Transformer layer. Setting $\gamma > 1$ results
 1055 in a fully disconnected meta-graph and together with $\mathbf{W}_V = \mathbf{I}$, $\mathbf{b}_V = \mathbf{0}$, the Graph Transformer layer
 1056 $\text{GT}(\cdot)$ reduces to an identity mapping, which establishes the equivalence in equation A25.
 1057

1058 Finally, from equation 8 and equation A25, it is clear that $\bar{\mathcal{F}}_i \subseteq \mathcal{F}_M$, which concludes the proof. \square
 1059

A4.3 L-HOP MIXING VERSUS WEISFEILER-LEMAN

1060 A natural question arises regarding the relationship between L-hop mixing (Theorem 4.3) and
 1061 Weisfeiler-Leman (WL) expressivity: does the ability to represent L-hop mixing translate into
 1062 enhanced distinguishing power in the Weisfeiler-Leman test. In this section, we clarify that these are
 1063 distinct characterizations of model power and provide a formal analysis of MGMT’s WL expressivity.
 1064

1065 L-hop mixing and WL expressivity measure different aspects of model capability. WL expressivity
 1066 characterizes *distinguishing power*: whether a model can distinguish non-isomorphic graphs. The
 1067 1-dimensional WL test (1-WL) iteratively refines node colorings based on local neighborhood struc-
 1068 tures, and it is well-established that standard message-passing GNNs are at most as powerful as
 1069 1-WL Morris et al. (2019); Jegelka (2022). In contrast, L-hop mixing characterizes *approximation
 1070 quality*: whether a model can exactly recover target functions that depend on mixed-depth neighbor-
 1071 hood information (Theorem 4.1). MGMT’s capability of representing L-hop mixing comes from the
 1072 depth-aware aggregation in equation 1–equation 3, independent of the GT backbone, while MGMT’s
 1073 WL expressivity depends on the GT backbone choice. The empirical results in Table A6 demonstrate
 1074 that depth-aware aggregation enhances performance regardless of the GT backbone, confirming that
 1075 L-hop mixing and WL expressivity are complementary properties that jointly contribute to model
 1076 capability.
 1077

1080
 1081 **MGMT with Graph Attention Networks (GAT) backbone is 1-WL bounded.** We now formally
 1082 analyze MGMT’s distinguishing power. We adopt notation from Morris et al. (2019); Jegelka (2022).
 1083 A node coloring $l : \mathcal{V}(\mathcal{G}) \mapsto \Sigma$ maps node $v \in \mathcal{V}(\mathcal{G})$ to color $l(v) \in \Sigma$. A labeled graph (\mathcal{G}, l) is
 1084 graph \mathcal{G} with node coloring $l : \mathcal{V}(\mathcal{G}) \mapsto \Sigma$. Node coloring c refines coloring d , written $c \sqsubseteq d$, if
 1085 $c(v) = c(w)$ implies $d(v) = d(w)$ for every $v, w \in \mathcal{V}(\mathcal{G})$. Two colorings are equivalent, written
 1086 $c \equiv d$, if $c \sqsubseteq d$ and $d \sqsubseteq c$. The notation $\{\{\dots\}\}$ denotes a multiset.

1087 For labeled graph (\mathcal{G}, l) , 1-WL computes node coloring $c_l^{(t)} : \mathcal{V}(\mathcal{G}) \mapsto \Sigma$ iteratively for $t \geq 0$. Let
 1088 $c_l^{(0)} = l$ and for each $u \in \mathcal{V}(\mathcal{G})$ and $t \geq 0$:

$$c_l^{(t)}(v) = \text{HASH}\left(c_l^{(t-1)}(v), \{\{c_l^{(t-1)}(u) \mid u \in \mathcal{N}(v)\}\}\right), \quad (\text{A26})$$

1091 where HASH is an injective mapping assigning unique colors to distinct input pairs.
 1092

1093 The key difference between 1-WL and MGMT’s depth-aware GT (Section 3.1.1) is that the former
 1094 updates based on colorings of $\{v\} \cup \mathcal{N}(v)$ from the previous iteration, while the latter aggregates
 1095 outputs across all depths/iterations. However, depth aggregation does not make MGMT more powerful
 1096 than 1-WL in distinguishing power. To see this, we define a 1-WL variation, 1-WL^+ , that utilizes all
 1097 depth information. Let $\tilde{c}_l^{(t)} : \mathcal{V}(\mathcal{G}) \mapsto \Sigma$ be the 1-WL^+ coloring with $\tilde{c}_l^{(0)} = l$ and $\tilde{c}_l^{(1)} = c_l^{(1)}$. For
 1098 $t \geq 1$:

$$\tilde{c}_l^{(t)}(v) = \text{HASH}^{(t)}\left(c_l^{(1)}(v), \dots, c_l^{(t)}(v)\right), \quad (\text{A27})$$

1101 where $\text{HASH}^{(t)}$ is an injective map assigning colors based on 1-WL outputs across all iterations.
 1102 Despite this additional step beyond vanilla 1-WL, 1-WL^+ provides no additional distinguishing
 1103 power, as established by the following Lemma.

1104 **Lemma A3.** *Let (\mathcal{G}, l) be a labeled graph. Then for all $t \geq 0$, $c_l^{(t)} \equiv \tilde{c}_l^{(t)}$.*

1106 *Proof.* For any $v, w \in \mathcal{V}(\mathcal{G})$, if $\tilde{c}_l^{(t)}(v) = \tilde{c}_l^{(t)}(w)$, we must have $c_l^{(k)}(v) = c_l^{(k)}(w)$, for all $k =$
 1107 $1, \dots, t$ by injectivity of $\text{HASH}^{(t)}$, hence $\tilde{c}_l^{(t)} \sqsubseteq c_l^{(t)}$. On the other hand, if $c_l^{(t)}(v) = c_l^{(t)}(w)$, we have
 1108 $c_l^{(k)}(v) = c_l^{(k)}(w)$ for all $k = 1, \dots, t-1$ by injectivity of HASH . It follows that $\tilde{c}_l^{(t)}(v) = \tilde{c}_l^{(t)}(w)$
 1109 since all inputs are equivalent. Hence, we have $c_l^{(t)} \sqsubseteq \tilde{c}_l^{(t)}$, which concludes the proof. \square
 1110

1112 Following similar arguments as in Morris et al. (2019); Jegelka (2022), the distinguishing power of
 1113 MGMT’s depth-aware GT is upper-bounded by 1-WL^+ (hence 1-WL) and reaches maximal capacity
 1114 when the attention layers in Equations (1)-(2) (corresponding to HASH) and the depth aggregation in
 1115 Equation (3) (corresponding to $\text{HASH}^{(t)}$) are injective functions.

1116 **Going beyond 1-WL.** However, it is possible to extend MGMT beyond 1-WL expressivity. As
 1117 detailed in Section A12, MGMT’s main contribution is delineating a flexible framework for multi-
 1118 graph fusion where practitioners can freely replace the GAT backbone with other GT variants suitable
 1119 for the task, such as Graphomer Ying et al. (2021). As shown in Ying et al. (2021), incorporating
 1120 structural encodings and global attention leads to strictly more expressive power than the 1-WL test.
 1121 Therefore, MGMT with Graphomer backbone can technically break the 1-WL limitation discussed
 1122 in the Lemma above.

1124 A5 THEORETICAL FOUNDATIONS OF EMBEDDING-SIMILARITY SUPEREDGES

1126 Graph learning typically assumes that connected nodes have similar features or labels; a smooth-
 1127 ness (homophily) prior grounded in the observation that many real-world networks connect like
 1128 entities Zhou et al. (2003); Rossi et al. (2022). This assumption is often enforced by minimizing
 1129 the graph Dirichlet energy (GDE, see Definition 2.1), which is the sum of squared feature differ-
 1130 ences across edges, thereby yielding smooth node embeddings that are harmonic functions on the
 1131 graph Rossi et al. (2022). A function f is defined as “harmonic” if it satisfies the discrete Laplace
 1132 equation $\mathbf{L}f = 0$, where $\mathbf{L} := \mathbf{D} - \mathbf{A}$ is the combinatorial graph Laplacian (with \mathbf{A} as the adjacency
 1133 matrix and \mathbf{D} as the diagonal degree matrix). This condition is *equivalent* to the averaging rule
 $f(u) = \frac{1}{\deg(u)} \sum_{v \sim u} f(v)$ for every unlabeled node u . Minimizing the GDE enforces this harmonic

1134 Table A1: Model Category Summary with Fusion Strategy, Graph Modeling, and Attention Usage
1135

Category	Model Type	Fusion Method	Novel Model	Graph Structured Modeling	Attention-Based
Single- Source (No Fu- sion)	Simple DNN	×	×	✗	✗
	Simple GNN	✗	✗	✓	✗
	Simple DiffPool	✗	✗	✓	✗
	Simple Transformer	✗	✗	✗	✓
Concatenation Fu- sion	Simple Graph Transformer	✗	✗	✓	✓
	Concatenated Features (DNN)	✓	✗	✗	✗
	Concatenated Features (GNN)	✓	✗	✓	✗
Concatenation Fu- sion	Concatenated Features (DiffPool)	✓	✗	✓	✗
	Multimodal	MMGL Zheng et al. (2022)	✓	✗	✓
	Fu- sion	MultiMoDN Swamy et al. (2023)	✓	✗	✗
Base- lines	MedFuse Hayat et al. (2022)	✓	✗	✗	✗
	FlexCare Xu et al. (2024)	✓	✗	✗	✓
	Meta-Transformer (MT) Ma et al. (2022)	✓	✗	✗	✓
MGMT Ab- la- tion Vari- ants	MGMT	MGMT w/o Adaptive Depth Selection	✓	✓	✓
	MGMT	MGMT w/o Supernode Selection	✓	✓	✓
	MGMT	MGMT w/o Inter-graph Edges	✓	✓	✓
	MGMT	MGMT w/o Intra-graph Edges	✓	✓	✓
	MGMT	MGMT w/o Meta-Graph and Adaptive Depth	✓	✓	✓
Proposed Model	MGMT		✓	✓	✓

1151 property, a classical result in graph-based semi-supervised learning Zhu et al. (2003); Zhou et al.
1152 (2003). Such smoothness-based regularization has proven beneficial in both classical label prop-
1153 agation and modern GNNs when the assumption holds, as it suppresses noise and aligns learned
1154 representations with network structure.

1155 From a spectral viewpoint, GDE minimization penalizes “high-frequency” components (rapid changes
1156 across adjacent nodes), and standard message passing performs neighborhood averaging (a low-pass
1157 operation), which denoises features while preserving cluster-level structure; this explains the strong
1158 empirical performance of label propagation and Graph Convolutional Network (GCN)-style models
1159 on homophilous benchmarks Shuman et al. (2013); Jiang et al. (2019); Wu et al. (2019); Oono &
1160 Suzuki (2019). If the smoothness prior is violated (heterophilic graphs where adjacent nodes differ),
1161 aggressive smoothing can blur distinctions and degrade performance Zhu et al. (2020). This “feature
1162 mixing” is well documented: on heterophilous graphs, even shallow neighbor-averaging can wash out
1163 class signal, and deeper stacks exacerbate *over-smoothing*, where node embeddings become nearly
1164 indistinguishable and both effects harm separability Wu et al. (2019); Li et al. (2018). MGMT’s
1165 design explicitly leverages these principles: it links nodes across graphs only when their latent
1166 representations are similar, extending the homophily prior to inter-graph connections. Concretely,
1167 by thresholding latent similarity, MGMT restricts message passing to approximately homophilous
1168 (low-GDE) superedges, mitigating heterophily-induced feature mixing; this mirrors observations
1169 that learning/selecting edges to reduce Dirichlet energy improves downstream accuracy Chen et al.
1170 (2020). By keeping cross-graph GDE low, this construction ensures information is shared along
1171 feature-consistent (smooth) superedges, thereby bolstering MGMT’s empirical performance.

1172 **Definition 2.1 (Graph Dirichlet Energy).** For a graph with adjacency matrix \mathbf{A} and node feature
1173 matrix \mathbf{X} , the Dirichlet energy (graph signal smoothness) is defined as

$$1174 \Omega(\mathbf{A}, \mathbf{X}) = \frac{1}{2n^2} \sum_{i,j} A_{ij} \|x_i - x_j\|^2 = \frac{1}{n^2} \text{tr}(\mathbf{X}^\top \mathbf{L} \mathbf{X}),$$

1177 where $\mathbf{L} = \mathbf{D} - \mathbf{A}$ is the graph Laplacian and $D_{ii} = \sum_j A_{ij}$ Chen et al. (2020). This quantity
1178 measures how smoothly the features \mathbf{X} vary across the edges. A smaller $\Omega(\mathbf{A}, \mathbf{X})$ indicates that
1179 connected nodes have more similar features.

1180 A trivial minimizer of $\Omega(\mathbf{A}, \mathbf{X})$ is the disconnected graph with no edges ($\mathbf{A} = 0$), yielding the
1181 minimum GDE of 0 Chen et al. (2020). However, in practice, one often imposes constraints
1182 such as a fixed number of edges, a connectivity requirement, or regularization terms to avoid this
1183 degenerate solution. The objective thus becomes to add only the most “homophilous” edges that
1184 connect similar nodes, thereby keeping the GDE low. Under this motivation, minimizing $\Omega(\mathbf{A}, \mathbf{X})$
1185 reduces to selecting the most “homophilous” edges. MGMT implements this principle directly. It
1186 computes all pairwise similarities between supernode embeddings and forms superedges only if the
1187 similarity surpasses a data-driven threshold automatically selected via cross-validation (detailed in
1188 Section 3.1.3). Finally, we note that while the GDE in Definition 2.1 is based on squared feature

1188 Table A2: Accuracy (\pm standard error) for different models across datasets, grouped by model family.
1189

Category	Model	Alzheimer	LFP Data	Experiment 1	Experiment 2	Experiment 3
Feature-Concatenation	DNN	62.13 \pm 0.91	30.62 \pm 2.28	61.87 \pm 2.27	56.10 \pm 1.13	63.74 \pm 0.56
	GNN	70.17 \pm 0.93	27.80 \pm 2.34	55.64 \pm 2.36	64.20 \pm 1.20	67.17 \pm 0.60
	DiffPool	69.40 \pm 0.70	31.53 \pm 1.76	53.78 \pm 1.75	65.80 \pm 0.89	64.81 \pm 0.44
General-purpose Multimodal	MMGL	79.38 \pm 0.52	39.28 \pm 1.93	59.20 \pm 1.04	62.80 \pm 0.84	68.75 \pm 0.12
	MultiMoDN	76.44 \pm 0.75	37.82 \pm 1.82	60.40 \pm 1.67	61.50 \pm 1.01	65.10 \pm 0.50
	MedFuse	75.27 \pm 0.84	35.17 \pm 1.71	59.70 \pm 1.52	64.35 \pm 0.96	63.84 \pm 0.53
	FlexCare	76.14 \pm 0.79	36.42 \pm 1.88	61.10 \pm 1.39	69.82 \pm 0.91	64.03 \pm 0.56
	MT	81.29 \pm 0.92	39.20 \pm 2.96	62.31 \pm 1.24	66.30 \pm 1.12	69.24 \pm 0.34
SOTA Multi-graph	AMIGO	79.23 \pm 1.04	38.92 \pm 1.32	58.68 \pm 2.12	65.73 \pm 0.89	70.42 \pm 0.79
	MaxCorrMGNN	77.43 \pm 1.35	35.97 \pm 2.73	56.23 \pm 1.32	63.72 \pm 1.64	71.46 \pm 1.01
	MGLAM	81.29 \pm 0.96	38.93 \pm 1.02	61.96 \pm 1.04	62.29 \pm 1.29	69.52 \pm 0.39
Proposed model	MGMT	83.11 \pm 0.84	42.13 \pm 2.52	65.47 \pm 2.39	69.90 \pm 1.19	73.21 \pm 0.59

1202 differences, we observed in practice that MGMT’s performance is not sensitive to the specific choice
1203 of similarity metric used for this filtering step (Section A11).
1204

1205 A6 DETAILED DESCRIPTIONS OF BASELINE MODELS

1208 This appendix details the baselines used to evaluate our method. Table A1 provides a summary
1209 comparison of the baseline models.
1210

1211 A6.1 SINGLE-SOURCE MODELS (NO FUSION)

1212 We assess per-source predictive signal with five baselines: (i) DNN on flattened node features (edges
1213 ignored); (ii) a message-passing GNN with graph-convolution layers over the given topology; (iii)
1214 DiffPool for hierarchical pooling into coarser clusters Ying et al. (2018); (iv) Transformer over
1215 node-feature sequences (no structural encoding); and (v) Graph Transformer that attends over 1-hop
1216 neighborhoods to incorporate local structure.
1217

1218 A6.2 FEATURE-CONCATENATION FUSION MODELS

1219 These models use early fusion: each source is encoded by a source-specific extractor, the resulting
1220 embeddings are concatenated, and a shared DNN classifier is applied. Concretely, we consider (i)
1221 DNN-fusion with per-source DNN encoders; (ii) GNN-fusion with per-source GCN layers and graph-
1222 level pooling prior to concatenation; and (iii) DiffPool-fusion using per-source DiffPool encoders to
1223 produce graph-level embeddings that are concatenated and classified by a DNN.
1224

1225 A6.3 GENERAL-PURPOSE MULTIMODAL FUSION

1226 We benchmark against recent multimodal frameworks with distinct fusion strategies: (i)
1227 MMGL Zheng et al. (2022), which learns shared/specific embeddings via modality-aware rep-
1228 resentation learning and models subject-level similarity with a GNN; (ii) MultiMoDN Swamy
1229 et al. (2023), a modular design with independent encoders and late fusion, without structural rea-
1230 soning; (iii) MedFuse Hayat et al. (2022), which aligns modalities in a shared latent space using
1231 contrastive/reconstruction losses, without explicit intra- or inter-modality structure; (iv) FlexCare Xu
1232 et al. (2024), which uses modality-specific encoders and a Transformer fusion layer for heterogeneous
1233 clinical data, but no graph-based reasoning; and (v) Meta-Transformer (MT) Ma et al. (2022), which
1234 uses modality prompts with a shared Transformer over unstructured inputs, without topological
1235 modeling. MGMT differs by jointly capturing both intra- and inter-graph relations through an
1236 attention-based meta-graph.
1237

1238 Most of these benchmark models were not originally designed for graph-structured inputs (they
1239 expect tabular, imaging, or clinical features). To compare fairly, we first converted each graph into a
1240 fixed-length vector by running the same graph-specific encoder used in MGMT (TransformerConv
1241 with global pooling and adaptive-depth aggregation) and using the resulting graph-level embedding
as a “tabular” feature vector. For methods with multi-stream inputs (e.g., MultiMoDN, FlexCare,

1242 MedFuse), we fed one embedding per graph; for single-stream methods (e.g., Meta-Transformer),
 1243 we concatenated the graph embeddings. All baselines used identical train/val/test splits, per-graph
 1244 standardization, a learned linear projection to align embedding dimensions when required, and the
 1245 same Optuna budget for hyperparameter tuning.
 1246

1247 A6.4 MULTI-GRAF LEARNING MODELS

1248
 1249 Finally, we include three recent multi-graph learning methods as baselines that explicitly operate
 1250 on multiple graphs per entity: (i) AMIGO (Nakhli et al., 2023) is a sparse multi-graph transformer
 1251 model that processes multiple modality-specific graphs for each subject and uses a shared context
 1252 mechanism to exchange information across graphs. Each graph is first encoded by a graph transformer
 1253 to obtain a graph-level representation; AMIGO then employs cross-graph attention between these
 1254 representations and a shared context token to produce a fused embedding used for prediction;
 1255 (ii) MaxCorrMGN (D’Souza et al., 2023) is a multi-graph neural network that encourages the
 1256 embeddings of different graphs from the same subject to be maximally correlated. It learns graph-
 1257 level embeddings for each graph and optimizes a correlation-based objective across graphs, followed
 1258 by a classifier on the fused embedding. This explicitly aligns graph-specific representations while
 1259 retaining graph-specific encoders; MGLAM (Fu et al.) treats each subject as a "bag of graphs", and
 1260 learns adaptive weights over graphs within the bag. It first computes graph-level embeddings for each
 1261 graph, then aggregates them via an attention-like mechanism that learns per-graph importance scores,
 1262 yielding a subject-level representation for downstream prediction.
 1263

1264 In our experiments, all three methods are instantiated on the same graph-specific design as MGMT,
 1265 using the same per-graph encoders (where applicable), train/validation/test splits, and comparable
 1266 hyperparameter tuning budgets. Unlike MGML-style multimodal fusion, these methods are designed
 1267 to handle multiple graphs per subject, but they fuse graphs at the level of graph embeddings or bags
 1268 of graphs. In contrast, MGMT constructs an explicit meta-graph over *supernodes*, enabling fine-
 1269 grained cross-graph message passing that preserves intra-graph topology while modeling inter-graph
 1270 structure.
 1271

1270 A7 ABLATION STUDY

1271 We assess the contribution of each MGMT component through a series of ablations where one or
 1272 several modules are removed while the rest of the architecture is kept fixed: (i) *w/o Adaptive Depth*
 1273 *Selection*: replace confidence-weighted layer aggregation with final-layer-only features, disabling
 1274 depth-wise ensembling; (ii) *w/o Supernode Selection*: bypass attention-based node filtering so that all
 1275 nodes enter the meta-graph; (iii) *w/o Inter-graph Edges*: keep only within-graph edges, removing
 1276 cross-graph interactions in the meta-graph; (iv) *w/o Intra-graph Edges*: keep only cross-graph edges,
 1277 discarding within-graph structure for the supernodes; (v) *w/o Meta-Graph and Adaptive Depth*: omit
 1278 the meta-graph entirely, fix encoder depth, and perform early fusion via concatenated pooled graph
 1279 outputs.
 1280

1281 Numerical results for each ablation across datasets are reported in Table A3, with corresponding
 1282 accuracy plots in Fig. 2. Several consistent patterns emerge.
 1283

1284 First, **removing the meta-graph and adaptive depth** leads to the largest degradation on all tasks (e.g.,
 1285 from 83.11% to 70.12% on Alzheimer and from 42.13% to 27.80% on LFP). This variant reduces
 1286 MGMT to an early-fusion model over pooled graph embeddings, eliminating both subgraph-level
 1287 cross-graph message passing and the ability to combine information across depths. The sharp drop
 1288 indicates that the meta-graph is not a cosmetic addition: explicitly modeling interactions between
 1289 a small set of informative supernodes drawn from the multiple graphs of each entity is crucial for
 1290 integrating heterogeneous graphs and stabilizing predictions in multi-graph settings.
 1291

1292 Second, **disabling adaptive depth** ("w/o Adaptive Depth Selection") consistently hurts performance
 1293 (e.g., from 83.11% to 81.20% on Alzheimer, and from 42.13 to 40.64% on LFP). Together with
 1294 the depth-confidence and attention visualizations in the main paper (Fig. 6), this supports our
 1295 interpretation of the depth-aware module as more than a simple multi-layer average: layers with
 1296 high confidence scores focus their attention on behaviorally relevant substructures (e.g., distal CA1
 1297 in the LFP dataset), whereas low-confidence layers exhibit more diffuse patterns. When we force
 1298 the model to use only the final layer, it can no longer adaptively emphasize those depths whose
 1299

1296 Table A3: Accuracy (\pm standard error) for different ablation models across datasets.
1297

1298 Model	1299 Alzheimer	1300 LFP Data	1301 Experiment 1	1302 Experiment 2	1303 Experiment 3
1304 MGMT w/o Adaptive Depth Selection	1305 81.20 ± 0.85	1306 40.64 ± 2.23	1307 64.20 ± 2.40	1308 68.80 ± 1.17	1309 71.45 ± 0.57
1310 MGMT w/o Supernode Selection	1311 78.25 ± 0.87	1312 41.07 ± 2.19	1313 62.11 ± 2.16	1314 67.30 ± 1.07	1315 69.31 ± 0.53
1316 MGMT w/o Inter-graph Edges	1317 76.59 ± 0.88	1318 38.91 ± 2.14	1319 61.72 ± 2.25	1320 66.90 ± 1.21	1321 68.35 ± 0.51
1322 MGMT w/o Intra-graph Edges	1323 62.40 ± 2.43	1324 39.08 ± 0.97	1325 63.09 ± 2.42	1326 66.62 ± 1.23	1327 66.75 ± 0.62
1328 MGMT w/o Meta-Graph and Adaptive Depth	1329 70.12 ± 0.93	1330 27.80 ± 2.34	1331 55.64 ± 2.36	1332 64.20 ± 1.20	1333 67.17 ± 0.60
1334 MGMT	1335 83.11 ± 0.84	1336 42.13 ± 2.52	1337 65.47 ± 2.39	1338 69.90 ± 1.19	1339 73.21 ± 0.59

1304
1305 connectivity patterns are most aligned with the task, leading to more misclassifications in cases that
1306 require multi-scale aggregation.
1307

1308 Third, **removing supernode selection** (“w/o Supernode Selection”) yields a moderate but consistent
1309 drop relative to full MGMT across all datasets. This is consistent with the threshold-sensitivity
1310 analysis (Section A10) for the supernode importance score: very low thresholds allow keeping many
1311 weakly informative nodes in the meta-graph, making it denser and noisier. In contrast, moderate
1312 thresholds strike a balance between retaining salient subgraphs and suppressing noise. The ablation
1313 corresponds to the extreme case where all nodes are kept (effectively $\tau \rightarrow 0$), and the resulting
1314 performance degradation indicates that the sparsity-inducing bottleneck provided by supernode
1315 selection is important for denoising and interpretability.
1316

1317 Finally, the **inter- and intra-graph edge ablations** clarify how MGMT exploits structure at two
1318 complementary levels. Removing inter-graph edges (“w/o Inter-graph Edges”) prevents information
1319 from flowing across graphs of the same entity; accuracy drops are noticeable (e.g., from 83.11% to
1320 76.59% on Alzheimer), indicating that cross-graph alignment provides a clear gain on top of strong
1321 graph-specific encoders. In contrast, removing intra-graph edges (“w/o Intra-graph Edges”) discards
1322 the original within-graph topology and forces the model to rely solely on similarity-based links
1323 between supernodes from different graphs; this leads to a much larger degradation on real datasets
1324 (e.g., Alzheimer accuracy falls to 62.40%). This pattern is consistent with our similarity-threshold
1325 study in Section A10: when the inter-graph similarity threshold γ is too low, the meta-graph becomes
1326 overly dense and spurious cross-graph edges blur informative graph-specific structure, whereas very
1327 high γ removes many genuinely aligned supernodes and under-utilizes cross-graph information.
1328 The best performance arises at intermediate γ values, where inter-graph edges selectively connect
1329 strongly aligned supernodes and, as formalized by our smoothness analysis in Section A5, tend to
1330 reduce the Dirichlet energy of the label function on the meta-graph. Taken together, the ablations
1331 support the view that MGMT needs both well-structured intra-graph connectivity to encode subject-
1332 or modality-specific patterns, and a sparse, similarity-driven set of inter-graph edges to tie together
1333 truly corresponding regions across graphs; removing either source of structure degrades performance,
1334 with the largest failures occurring when the more informative structure for a given task (typically the
1335 intra-graph topology) is removed.
1336

1337 Software implementing the algorithms and data experiments is available online at:
1338 https://anonymous.4open.science/r/new_submission-33A6
1339

1340 A8 DETAILS ON SIMULATION SETTINGS

1341 This section provides detailed descriptions of the synthetic data generation processes used in our
1342 simulation studies. We consider two controlled settings designed to evaluate the performance of
1343 MGMT under varying conditions of noise, feature dependency, and label complexity. Below, we
1344 describe the procedures for *Setting 1*, which uses modality-specific noise and a linear classification
1345 rule, and *Setting 2*, which introduces temporal dependencies and nonlinear label generation.
1346

1347 SETTING 1: FEATURE GENERATION WITH MODALITY-SPECIFIC NOISE AND LINEAR 1348 CLASSIFICATION RULE

1349 Let each graph (modality in this case) consist of N nodes and d features per node. Define a subset of
1350 informative nodes $V_0 \subset \{1, \dots, N\}$ with $|V_0| = N_0 < N$, and let $V_1 = \{1, \dots, N\} \setminus V_0$ denote the
1351 non-informative nodes.
1352

1350 For each graph $i = 1, \dots, n$ within each sample $k = 1, \dots, K$, with graph-specific noise level σ_i ,
 1351 node features are generated as follows:
 1352

- 1353 • informative nodes $j \in V_0$ have features $\mathbf{x}_j^{(k,i)} \sim \mathcal{N}(\mathbf{0}, \Sigma_i)$, where $\Sigma_i \in \mathbb{R}^{d \times d}$ has ones on the
 1354 diagonal and off-diagonal entries sampled uniformly from $[-\sigma_i, \sigma_i]$.
- 1355 • Non-informative nodes $j \in V_1$ have features $\mathbf{x}_j^{(k,i)} \sim \text{Unif}(0, 0.5)^d$.
 1356

1357 The graph-specific graph-level binary label $y_i^{(k)} \in \{0, 1\}$ is determined by the features of informative
 1358 nodes:
 1359

$$1360 y_i^{(k)} = \mathbb{I} \left(\frac{1}{|V_0|} \sum_{j \in V_0} \sum_{r=1}^d x_{j,r}^{(k,i)} + \varepsilon^{(k)} > 0 \right), \quad \varepsilon^{(k)} \sim \mathcal{N}(0, 0.1).$$

1362 To enable multimodal fusion, a shared target variable is defined by aggregating graph-specific labels:
 1363

$$1364 y_{\text{shared}}^{(k)} = \mathbb{I} \left(\sum_{i=1}^n w_i y_i^{(k)} \geq \tau \right),$$

1366 where $w_i \in [0, 1]$ are graph-specific weights summing to one, and $\tau \in [0, 1]$ is a threshold parameter.
 1367

1368 SETTING 2: TEMPORAL FEATURE DEPENDENCY VIA GAUSSIAN PROCESS

1370 In this setting, features of informative nodes are generated using a Gaussian Process (GP) to introduce
 1371 temporal dependency across the d features. For $t = 1, \dots, d$, let $x_t \sim \text{Unif}(0, 1)$, and define the GP
 1372 with zero mean and a squared exponential kernel:
 1373

$$1374 k(x_t, x_{t'}) = \sigma^2 \exp \left(-\frac{(x_t - x_{t'})^2}{l^2} \right),$$

1376 with length-scale $l = 1$ and variance $\sigma^2 = 1$.
 1377

1378 For non-informative nodes, features are also sampled from a GP with the same mean function, but
 1379 with increased kernel variance $\sigma^2 = 2.5$, thereby injecting greater noise and reducing relevance for
 1380 the target prediction.
 1381

1380 The binary target label is defined using a nonlinear and complex function of the averaged features
 1381 across informative nodes. Let

$$1382 \mathbf{x} = \frac{1}{|V_0|} \sum_{j \in V_0} \mathbf{x}_j \in \mathbb{R}^d,$$

1384 and define three projection vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \in \mathbb{R}^d$, each selecting a distinct third of the features:
 1385

$$1386 \mathbf{e}_1 = [\underbrace{1, \dots, 1}_{d/3}, \underbrace{0, \dots, 0}_{2d/3}],$$

$$1387 \mathbf{e}_2 = [\underbrace{0, \dots, 0}_{d/3}, \underbrace{1, \dots, 1}_{d/3}, \underbrace{0, \dots, 0}_{d/3}],$$

$$1388 \mathbf{e}_3 = [\underbrace{0, \dots, 0}_{2d/3}, \underbrace{1, \dots, 1}_{d/3}].$$

1393 The graph-level label is then computed as:
 1394

$$y = \mathbb{I} (\sin(\mathbf{x}^\top \mathbf{e}_1) \cdot \cos(\mathbf{x}^\top \mathbf{e}_2) + (\mathbf{x}^{\circ 2})^\top \mathbf{e}_3 + \varepsilon > 0), \quad \varepsilon \sim \mathcal{N}(0, 0.1),$$

1395 where $\mathbf{x}^{\circ 2}$ denotes the element-wise square of \mathbf{x} , i.e., the Hadamard power.
 1396

1397 A9 EXPERIMENTAL SETTING AND EFFICIENCY ANALYSIS

1400 We evaluate the computational complexity and efficiency of MGMT through both theoretical and
 1401 empirical analysis. This section is structured as follows: Section A9.1 presents a theoretical runtime
 1402 complexity analysis of MGMT's core components; Section A9.2 provides empirical scalability results
 1403 across four key input dimensions; Section A9.3 offers runtime profiling and efficiency comparisons,
 including infrastructure details and training costs.

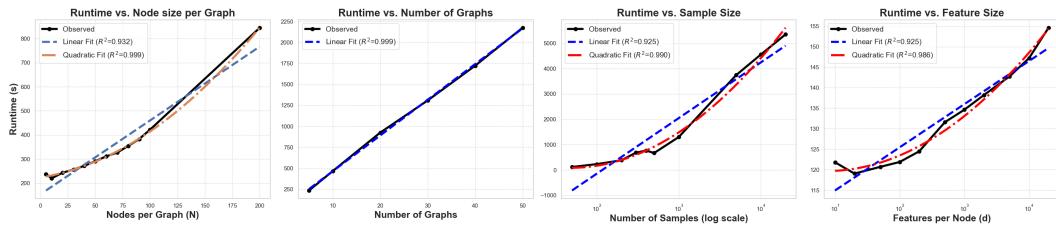


Figure A7: Scalability analysis of MGMT with respect to key input parameters. We evaluate the empirical runtime of MGMT under controlled variations of (i) number of nodes per graph (N), (ii) number of graphs per sample (n), (iii) number of samples (log scale), and (iv) feature dimensionality (d). Runtime scales quadratically with N due to the dense self-attention in the graph-specific Graph Transformers ($\mathcal{O}(N^2 \cdot d)$), and linearly with n , confirming the modular and scalable design of MGMT. Sample size and feature dimension contribute to runtime growth in accordance with expectations, with minor deviations at small scales. Linear and quadratic regression fits are shown for interpretability, along with corresponding R^2 values.

A9.1 THEORETICAL COMPLEXITY ANALYSIS.

The total computational complexity of MGMT is governed by three main components: (1) graph-specific Transformer encoders, (2) meta-graph construction, and (3) the final meta-graph Transformer.

Graph-specific Transformer encoders The computational complexity depends on the GT backbone choice. For a graph \mathcal{G}_i with N_i nodes and d -dimensional features, the **GAT backbone** in Section 3.1.1, attention is restricted to local neighborhoods, yielding $\mathcal{O}(|\mathcal{E}_i|d)$ per graph \mathcal{G}_i with $|\mathcal{E}_i|$ edges and d -dimensional features, totaling $\mathcal{O}(n|\mathcal{E}|d)$ across n graphs. For **dense attention** (e.g., Graphomer Ying et al. (2021)), every node attends to all others, resulting in $\mathcal{O}(N_i^2 d)$ per graph with N_i nodes, or $\mathcal{O}(nN^2 d)$ total. For **sparse attention** (e.g., top- K Zhao et al. (2019)), where each node attends to $K \ll N_i$ neighbors, the complexity is $\mathcal{O}(N_i K d)$ per graph, or $\mathcal{O}(nN K d)$ total.

Meta-graph construction Two steps: (a) supernode extraction by scoring and thresholding nodes is $\mathcal{O}(N_i)$ per graph, totaling $\mathcal{O}(nN)$; (b) superedge creation computes pairwise similarities among selected supernodes. Let S_i be supernodes in graph i and $S_{\text{total}} = \sum_i S_i$. This step costs $\mathcal{O}(S_{\text{total}}^2 d)$, i.e., $\mathcal{O}(n^2 S^2 d)$ for roughly S per graph, with $S_i \ll N_i$.

Meta-graph Transformer Applied over S_{total} supernodes, yielding $\mathcal{O}(S_{\text{total}}^2 d)$ (approximately $\mathcal{O}(n^2 S^2 d)$).

The dominant term is the per-graph encoder, $\sum_i \mathcal{O}(N_i^2 d)$. Meta-graph construction and inference operate on a much smaller set of supernodes ($S_{\text{total}} \ll \sum_i N_i$) and thus are comparatively lightweight. Quadratic factors at the meta-graph level are in S_{total} (and n), which remains moderate by design.

A9.2 SCALABILITY ANALYSIS

To validate the theoretical complexity discussed in Section A9.1, we empirically evaluated the runtime behavior of MGMT with respect to four key input parameters: number of nodes per graph (N), number of graphs per sample (n), number of samples, and node feature dimensionality (d). In each experiment, we fixed the model architecture, training epochs (100), and batch size to enable consistent runtime comparisons, and reported runtimes averaged over 10 independent runs. Results in Figure A7 align with theory and show efficient scaling.

Runtime vs. Nodes per Graph (N). As predicted by the $\mathcal{O}(N^2 \cdot d)$ complexity of Transformer-based attention, the observed runtime increases superlinearly with N . The curve aligns closely with a quadratic fit ($R^2 = 0.999$), reflecting the cost of dense all-pairs attention in graph-specific encoders.

Runtime vs. Number of Graphs per Sample (n). The runtime grows approximately linearly with n , validating the modular structure of MGMT where graph-specific encoders operate in parallel and the size of the meta-graph remains bounded. This confirms that MGMT scales well with respect to the number of graphs in practical regimes and supports our theoretical analysis in Section A9.1.

1458 **Runtime vs. Number of Samples.** We observe a near-quadratic growth in runtime (on a log scale)
 1459 as the number of samples increases, consistent with expectations. This is attributed to repeated
 1460 forward passes and meta-graph construction across samples, particularly in mini-batch training
 1461 settings.
 1462

1463 **Runtime vs. Feature Dimensionality (d).** Despite the theoretical linear dependence on d in
 1464 attention layers, the empirical curve remains nearly flat. This is due to early feature compression in
 1465 MGMT’s architecture, which transforms high-dimensional node features into a lower-dimensional
 1466 latent space prior to attention and reasoning steps.
 1467

1468 A9.3 RUNTIME PROFILING AND MODEL EFFICIENCY

1469 Building on the complexity analysis and scalability trends in Section A9.2, we profile per-epoch
 1470 runtime to isolate the cost of each architectural component. Table A4 reports average epoch times for
 1471 MGMT and graph-attention baselines (those that perform graph reasoning and/or meta-graph fusion).
 1472

1473 **Baselines** MGMT’s meta-graph reasoning adds minimal overhead: it is faster than MMGL on
 1474 all datasets except LFP, despite including supernode detection and adaptive depth. Ablations that
 1475 remove intra-graph edges or the meta-graph yield small speedups but reduce accuracy (see Table A2),
 1476 illustrating a speed–accuracy trade-off.
 1477

1478 MultiMoDN, MedFuse, and FlexCare are omitted from Table A4 because they do not use graph
 1479 representations or attention; direct runtime comparison to graph-based models would be misleading.
 1480 These methods operate on tabular inputs with shallow fusion, yielding lower computational cost by
 1481 design but consistently lower accuracy than MGMT (Table A2).

1482 Table A5 decomposes MGMT’s epoch time into data preparation, graph encoders, supernode/superedge
 1483 construction, meta-graph formation, and the final classifier. The dominant cost
 1484 is the graph Transformer encoder, consistent with the $\mathcal{O}(N^2d)$ complexity; meta-graph construction
 1485 and reasoning are comparatively lightweight due to the compact meta-graph.

1486 Overall, MGMT balances expressivity and efficiency: it achieves higher accuracy than non-graph and
 1487 shallow fusion baselines while maintaining practical per-epoch runtimes.
 1488

1489 **Compute Infrastructure and Training Cost.** All experiments were conducted on a shared CPU-
 1490 based server provided by our lab. Each training job utilized 4 parallel CPU workers and approximately
 1491 4 GB of RAM. No GPU resources were used.

1492 For baseline experiments, we trained a total of 250 models. Each model took on average 5.5 hours to
 1493 train, amounting to approximately **1,375 CPU hours**.

1494 For MGMT model training and hyperparameter tuning, the total compute time was as follows:
 1495

- 1496 • **LFP dataset:** 100 Optuna trials, each taking 71 minutes on average, resulting in approximately
 1497 **118.3 CPU hours**
- 1498 • **Alzheimer dataset:** 100 Optuna trials, each taking 5 hours and 18 minutes on average, resulting in
 1499 approximately **530 CPU hours**
- 1500 • **Simulation Setting 1:** 50 iterations, each taking 29 minutes on average, resulting in approximately
 1501 **24.2 CPU hours**
- 1502 • **Simulation Setting 2:** 50 iterations, each taking 31 minutes on average, resulting in approximately
 1503 **25.8 CPU hours**
- 1504 • **Simulation Setting 3:** 50 iterations, each taking 49 minutes on average, resulting in approximately
 1505 **40.8 CPU hours**

1507 In total, MGMT-related training required approximately **739 CPU hours**. Additional compute time
 1508 spent on development, debugging, and model refinement was not recorded.
 1509

1510
 1511

1512 Table A4: Comparison of average epoch runtime (in seconds) between various meta-graph configura-
 1513 tions and baseline models across each dataset.

1515	Model Variant	Alzheimer	LFP Data	Experiment 1	Experiment 2	Experiment 3
1516	MMGL	174.23	63.12	21.85	29.02	33.98
1517	MGMT w/o Meta-Graph and Adaptive Depth	174.10	64.33	15.10	17.20	32.60
1518	MGMT w/o Intra-graph Edges	156.77	63.69	15.72	18.83	32.71
1519	MGMT w/o Supernode Selection	215.46	59.61	19.91	19.31	35.61
	MGMT	162.93	67.33	16.67	17.59	33.01

1520 Table A5: Detailed epoch running time (in seconds) for the MGMT model across different datasets.

1523	Dataset	Total	Data Prep	Graph-specific encoding	SuperEdge & Node Extraction	Meta-Graph	Final Model
1524	Alzheimer	162.93	1.81	119.24	28.64	1.56	13.18
1525	LFP Data	67.33	0.88	59.74	1.38	1.19	1.25
1526	Experiment 1	16.67	0.23	16.26	0.07	0.06	0.05
1527	Experiment 2	17.59	0.44	16.40	0.26	0.25	0.24
	Experiment 3	33.01	0.51	32.25	0.09	0.08	0.08

1529 A10 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

1531 The MGMT framework includes several hyperparameters that influence model performance and
 1532 computational efficiency. In this section, we investigate the sensitivity of two key hyperparameters:
 1533 the attention score threshold (τ) used for supernode selection, and the cosine similarity threshold (γ)
 1534 used in inter-graph edge construction.

1536 A10.1 ATTENTION SCORE THRESHOLD (SUPERNODE SELECTION)

1538 To assess the impact of τ , we conducted a controlled experiment on synthetic data generated under
 1539 Setting 1 (see Appendix A8). We have a total of 100 samples and 5 graphs per each sample, where
 1540 each graph consists of 10 nodes, with 30 features per node. We trained all models for 100 epochs and
 1541 averaged accuracy and runtime over **50 repetitions**.

1542 Intuitively, decreasing τ results in more nodes being selected as supernodes, increasing computational
 1543 cost and potentially introducing noisy or redundant information. In contrast, higher thresholds select
 1544 fewer supernodes, reducing runtime but possibly discarding useful information. As shown in Figure
 1545 A8 left panel, the runtime decreases steadily as τ increases, which aligns with the reduced number
 1546 of supernodes and associated computations. However, model accuracy shows a non-monotonic
 1547 trend: it peaks at $\tau = 0.3$ (64.5%) and declines on either side. This behavior illustrates a tradeoff
 1548 between overfitting (when too many nodes are included) and information loss (when too few nodes
 1549 are retained).

1551 A10.2 COSINE SIMILARITY THRESHOLD (INTER-GRAPH EDGE CONSTRUCTION)

1553 Moreover, to assess the effect of the cosine similarity threshold γ used for inter-graph edge construc-
 1554 tion, we performed a controlled sensitivity analysis using synthetic data generated under Setting 1
 1555 (see Appendix A8). We have a total of 100 samples and 5 graphs per each sample, where each graph
 1556 consists of 100 nodes, with 30 features per node. All models were trained for 100 epochs, and both
 1557 accuracy and runtime were averaged over **50 repetitions**.

1558 As shown in Figure A8 right panel, runtime remains largely stable across different γ values, indicating
 1559 that inter-graph edge density has minimal impact on computational overhead since meta-graph
 1560 construction occurs post graph-specific encoding and operates over a reduced number of supernodes.

1561 Accuracy, however, demonstrates a non-monotonic trend. When γ is very small, the meta-graph
 1562 becomes fully connected, enabling the model to consider all potential inter-graph interactions.
 1563 Although this theoretically maximizes expressiveness (since attention-based transformers can learn
 1564 to prioritize relevant connections), it increases the risk of overfitting due to the inclusion of noisy
 1565 or spurious edges. On the other hand, when γ is close to 1, the meta-graph becomes sparse or even
 1566 disconnected, leading to an underutilization of cross-graph dependencies.

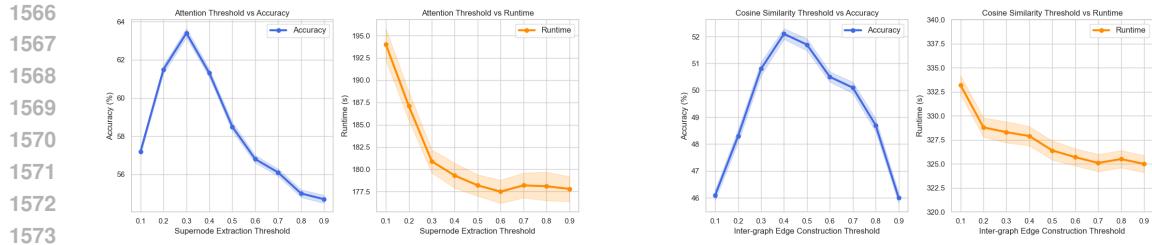


Figure A8: Sensitivity analysis of two key hyperparameters in the MGMT framework. **(a) Left two plots:** The attention score threshold τ controls supernode selection. Lower thresholds include more nodes, increasing runtime and potentially introducing noise, while higher thresholds risk discarding informative nodes. Accuracy peaks at $\tau = 0.3$, suggesting a balance between expressiveness and overfitting. **(b) Right two plots:** The cosine similarity threshold γ governs inter-graph edge construction in the meta-graph. Accuracy peaks at moderate values of γ , reflecting a trade-off between dense connectivity (risking overfitting) and sparsity (losing cross-graph interactions). Runtime remains largely stable across γ , as meta-graph construction operates over a small number of supernodes.

The highest accuracy occurs at intermediate values (e.g., $\gamma = 0.4$), suggesting that retaining only the most semantically meaningful inter-graph links allows the model to balance expressiveness with robustness. These findings reinforce the results from our ablation studies (Figure 2), which demonstrate that incorporating carefully selected inter-graph edges substantially improves downstream performance.

A11 IMPACT OF SIMILARITY METRICS IN META-GRAPH CONSTRUCTION

The construction of inter-graph edges in the meta-graph relies on computing pairwise similarities between node embeddings extracted from different graphs. While cosine similarity is commonly adopted due to its scale-invariant properties, other alternatives such as Pearson correlation, Euclidean distance, and dot product, may also be used to define similarity across nodes. This section evaluates the extent to which the choice of similarity metric affects downstream performance.

To investigate this, we conducted a controlled experiment on a synthetic dataset generated under Setting 1 (see Appendix A8). For each similarity function, we compute full cross-graph similarity matrices between node embeddings and apply a fixed top- k rule with $k = 10$ to select inter-graph edges, ensuring identical sparsity across metrics. Each configuration is run 50 times; we report the mean accuracy.

We compare cosine similarity, Pearson correlation, negative Euclidean distance converted to similarity via $1/(1 + d_{ij})$, and dot product. Results show modest but consistent differences: dot product attains the highest accuracy (0.661), followed by cosine (0.654), Pearson(0.648), and Euclidean (0.642). The spread is small (1.9 percentage points), indicating limited sensitivity to the similarity choice under this setup.

A12 SINGLE-GRAPH AND MULTI-GRAPH RESULTS WITH ALTERNATIVE GT BACKBONES

In the main text, we implement MGMT with a localized GAT-style GT backbone. To verify that MGMT is not tied to this particular choice and to better understand the role of local versus global attention, we conducted two sets of complementary experiments. First, we replaced GAT with several state-of-the-art GT variants in a *single-graph* setting on the LFP neuroscience dataset, with and without our depth-aware aggregation. Second, we implemented MGMT with different depth-aware GT backbones used both as per-graph feature encoders and as the final feature learning and prediction module on the meta-graph. This section reports and analyzes these results.

1620 Table A6: Comparison of test accuracy between GT variations (GraphGPS, GRIT, Exphormer, EGT,
 1621 GAT) and their depth-aware counterparts on the LFP dataset (single-graph setting).

Models	SuperChris	Barat	Stella	Mitt	Buchanan
GraphGPS	38.58 \pm 0.09	31.45 \pm 1.39	37.42 \pm 1.01	31.10 \pm 1.66	35.32 \pm 1.81
Depth-aware GraphGPS aggregation	39.03 \pm 1.76	30.97 \pm 1.17	36.45 \pm 1.31	30.65 \pm 1.57	37.74 \pm 2.07
GRIT	35.76 \pm 1.71	31.77 \pm 1.85	40.61 \pm 0.43	30.58 \pm 1.96	32.64 \pm 2.04
Depth-aware GRIT aggregation	38.40 \pm 2.50	31.63 \pm 1.98	40.18 \pm 1.09	32.12 \pm 1.39	34.16 \pm 2.29
Exphormer	40.23 \pm 1.45	32.26 \pm 1.77	35.65 \pm 1.67	29.84 \pm 1.58	35.65 \pm 2.08
Depth-aware Exphormer aggregation	42.04 \pm 1.65	38.54 \pm 1.42	39.17 \pm 2.16	34.02 \pm 1.71	39.50 \pm 1.98
EGT	40.23 \pm 1.95	33.23 \pm 1.36	36.77 \pm 2.19	28.71 \pm 1.52	38.06 \pm 1.60
Depth-aware EGT aggregation	40.06 \pm 1.36	32.74 \pm 1.88	38.87 \pm 1.56	33.71 \pm 2.10	40.97 \pm 1.03
GAT	33.16 \pm 1.08	32.46 \pm 1.34	35.57 \pm 1.42	30.52 \pm 1.42	31.42 \pm 1.96
Depth-aware GAT aggregation	36.42 \pm 1.71	40.43 \pm 1.09	40.31 \pm 1.52	34.79 \pm 1.41	34.17 \pm 1.91

A12.1 SINGLE-GRAPH LFP EXPERIMENTS WITH DIFFERENT GT BACKBONES

Table A6 compares test accuracy on the LFP dataset when training single-graph models separately on each animal using different GT backbones, either in their vanilla form or augmented with our depth-aware aggregation mechanism. Across all GT backbones tested (local, global, and sparse), the depth-aware version consistently improves performance over the corresponding vanilla backbone. The relative gains are largest for backbones whose effective receptive field is more local (GAT) or sparsified (Exphormer, GRIT, EGT), where depth-aware aggregation compensates for limited single-layer reach by mixing information across multiple depths. In contrast, GraphGPS, which already combines local message passing and global attention with strong residual connections, benefits only marginally from our depth-aware aggregation. These results support the claim that depth-aware aggregation is a generic, backbone-agnostic enhancement and not specific to GAT.

Replacing GAT with more advanced GT backbones (GraphGPS, GRIT, Exphormer, EGT) yields modest but consistent gains at the single-graph level, confirming that the LFP task does benefit from long-range or sparse global attention when graphs are treated independently. However, depth-aware aggregation narrows this gap substantially: depth-aware GAT becomes competitive with depth-aware Exphormer and depth-aware EGT, showing that our proposed L -hop mixing mechanism is often as important as the specific GT backbone.

A12.2 MGMT WITH DIFFERENT GT BACKBONES

We next plug these depth-aware GT backbones into MGMT and evaluate in the multi-graph regime. Here, each depth-aware GT backbone has been used both as a per-graph encoder and as the final feature learning and prediction module on the meta-graph. Table A7 reports the results on the LFP, Alzheimer, and simulation datasets.

On the LFP dataset, all depth-aware MGMT variants based on GAT, GraphGPS, GRIT, and Exphormer attain very close accuracies (41.86–42.24%), with absolute differences below 0.4 points. A similar pattern holds for the Alzheimer dataset, where the best-performing variants (depth-aware GAT and depth-aware Exphormer) achieve nearly indistinguishable accuracies within their reported uncertainty. Thus, once we move to the multi-graph regime and apply MGMT’s meta-graph fusion, the specific choice of GT backbone becomes substantially less critical than in the single-graph setting.

These experiments clarify the relationship between GT expressivity and MGMT’s meta-graph mechanism. In MGMT, the core object is the meta-graph built from supernodes and superedges. Supernodes are defined via depth-aggregated attention on edges: for each node u we use the score

$$\sum_{(u,v) \in E} \alpha_{uv},$$

where the α_{uv} are learned and updated at every layer but are always computed with respect to the underlying edge set E . With localized GAT-style attention, E consists only of the true graph edges (plus self-loops), so a high supernode score has a clear meaning: node u sends strong attention along its *real* anatomical or structural connections. This is exactly the semantics MGMT needs when it selects supernodes, defines superedges, and constructs a meta-graph that is intended to reflect task-relevant structure in the original LFP/MRI networks.

1674
 1675
 1676
 1677
 Table A7: Comparison of test accuracy between MGMT variants created using different GT variants
 for feature encoding and Final Feature Learning and Prediction (Depth-aware GAT aggregation,
 Depth-aware GraphGPS, Depth-aware GRIT, Depth-aware Exphormer, and Depth-aware EGT aggre-
 gation)

1678

Models	LFP Dataset	Alzheimer	Experiment 1	Experiment 2	Experiment 3
GAT	40.64 ± 0.223	81.20 ± 0.85	64.20 ± 2.40	68.80 ± 1.17	71.45 ± 0.57
Depth-aware GAT aggregation	42.13 ± 0.252	83.11 ± 0.84	65.47 ± 2.39	69.90 ± 1.19	73.21 ± 0.59
Depth-aware GraphGPS aggregation	41.94 ± 0.162	80.12 ± 0.67	62.37 ± 1.56	67.49 ± 0.98	72.38 ± 0.83
Depth-aware GRIT aggregation	42.24 ± 0.345	82.59 ± 1.03	61.06 ± 2.31	69.23 ± 1.01	72.98 ± 0.61
Depth-aware Exphormer aggregation	41.86 ± 0.427	83.29 ± 0.58	62.93 ± 1.92	67.46 ± 1.32	72.46 ± 0.49
Depth-aware EGT aggregation	40.08 ± 0.162	81.79 ± 1.26	60.52 ± 1.86	68.96 ± 0.94	71.30 ± 0.49

1684

1685

1686

1687

Several SOTA GT backbones, however, substantially modify this edge set. EGT and Graphormer-style models effectively allow attention between all node pairs, and Exphormer adds expander edges and virtual node connections. In these cases, E contains a mix of true and artificial edges, so $\sum_{(u,v) \in E} \alpha_{uv}$ blends attention along physical connections and model-constructed links. This is often beneficial for single-graph prediction (hence the stronger vanilla GT backbones in Table A6), but it dilutes the structural meaning of supernodes and superedges and can “contaminate” the meta-graph by injecting artificial connectivities, which is undesirable in MGMT’s interpretability-driven setting. GRIT, on the other hand, provides an instructive intermediate case. Its design combines global, kernelized attention with a sparsified connectivity pattern that is optimized for single-graph prediction, and in the vanilla setting, this yields clear gains over GAT (Table A6). In MGMT, however, GRIT’s sparsified but topology-modified attention pattern slightly alters the edge set used for supernode scoring and superedge construction, so the resulting meta-graph is not systematically better aligned with the underlying anatomical or structural connectivity than the one induced by localized GAT attention. As a result, GRIT achieves similar but not consistently superior performance to depth-aware GAT within the MGMT framework, despite its advantage in the single-graph regime.

1702

We therefore observe a trade-off. Global/sparse GT backbones can be slightly stronger in single-graph tasks, whereas topology-preserving localized attention is better aligned with MGMT’s goal of building an interpretable meta-graph from true edges. Empirically, once depth-aware aggregation and meta-graph fusion are enabled, MGMT with depth-aware GAT, GraphGPS, GRIT, and Exphormer all achieve very similar performance (Table A7), and accuracy is stable across a range of supernode thresholds τ (Appendix A10). This indicates that the main gains in MGMT come from depth-aware multi-scale mixing, and more importantly the supernode/meta-graph construction that explicitly encodes and interprets cross-graph connections, rather than from a particular GT variant.

1709

Overall, Tables A6 and A7 highlight that (i) MGMT is backbone-agnostic; stronger GT backbones do yield better single-graph performance, and (ii) With the help of meta-graph construction, MGMT is relatively robust to the choice of backbone in the multi-graph fusion setting.

1713

In terms of efficiency, we also measured average epoch runtime (in seconds) for MGMT implemented with each backbone on the Alzheimer dataset (Table A8). Depth-aware GAT remains among the most efficient MGMT variants overall. GRIT attains the lowest total per-epoch time (158.2s vs. 162.9s for GAT) by substantially reducing the cost of the graph-specific encoder (102.8s vs. 119.2s), but this saving is largely offset by a more expensive SuperEdge & Node Extraction stage (40.4s vs. 28.6s). This increase is consistent with GRIT’s design: its edge-aware, relation-augmented attention produces denser and more heterogeneous attention patterns than localized GAT, so MGMT must process more non-negligible attention coefficients when aggregating edge weights, selecting supernodes, and constructing superedges across layers. GraphGPS, Exphormer, and EGT all lead to higher average per-epoch runtimes than GAT (171.5–187.3s per epoch), because their more global or hybrid attention mechanisms generate richer attention maps that MGMT must export, aggregate, and threshold at every layer, increasing the cost of both the encoder and the SuperEdge & Node Extraction block (41.9–46.0s vs. 28.6s for GAT). Overall, these results indicate that while advanced GT backbones modestly change the balance between encoder and meta-graph construction costs, they do not usually yield faster end-to-end MGMT training than the depth-aware GAT variant. For these reasons, we present MGMT with a GAT backbone in the main paper as a balanced choice in terms of simplicity, interpretability, runtime, and performance.

1728
1729 Table A8: Per-epoch runtime breakdown (in seconds) for MGMT with different depth-aware GT
1730 backbones on the Alzheimer dataset.

1731 Backbone (MGMT variant)	1732 Total	1733 Data Prep	1734 Graph-specific encoding	1735 SuperEdge & Node Extraction	1736 Meta-Graph	1737 Final Model
1732 Depth-aware GAT aggregation	162.93	1.81	119.24	28.64	1.56	11.68
1733 Depth-aware GraphGPS aggregation	171.50	1.85	114.10	41.85	1.64	12.06
1734 Depth-aware GRIT aggregation	158.20	1.82	102.75	40.43	1.60	11.60
1735 Depth-aware Exphormer aggregation	180.70	1.90	118.75	45.95	1.70	12.40
1736 Depth-aware EGT aggregation	187.30	1.88	126.30	44.55	1.68	12.89

1738
1739 A13 DYNAMIC, DISTRIBUTION-BASED THRESHOLDING FOR SUPERNODES
1740 AND META-GRAPH EDGES1741 In the main text, MGMT uses two scalar thresholds: (i) τ for supernode extraction based on attention
1742 scores, and (ii) γ for sparsifying inter-graph edges in the meta-graph using cosine similarity. These
1743 thresholds are tuned on validation data together with standard hyperparameters (learning rate, depth,
1744 dropout, etc.). Section 3.1.2 and Appendix A10 already show that MGMT is stable across a wide
1745 range of τ and γ values.1746 Here, we additionally implemented and evaluated a *dynamic, distribution-based thresholding* variant
1747 of MGMT, in which the effective thresholds are determined from the empirical distributions of scores
1748 rather than being validation-tuned scalars.1749 **Dynamic supernode selection (data-driven τ).** Let a_v denote the aggregated attention score for
1750 node v in a given graph (obtained from the TransformerConv layers as in Section 3.1.1). We first
1751 normalize the node-level attention scores *within each graph*:

1752
1753
$$\tilde{a}_v = \frac{a_v - \min_u a_u}{\max_u a_u - \min_u a_u + 10^{-5}} \in [0, 1].$$

1754 Instead of specifying a validation-tuned τ , we choose a retention rate $\rho_{\text{sup}} \in (0, 1)$ (e.g., $\rho_{\text{sup}} = 0.3$)
1755 and keep only the top ρ_{sup} fraction of nodes according to \tilde{a}_v . Concretely, for each graph g we compute
1756 the $(1 - \rho_{\text{sup}})$ -quantile $c_{\text{sup},g}$ of its normalized scores and define the supernode set as
1757

1758
1759
$$\mathcal{S}_g = \{v : \tilde{a}_v \geq c_{\text{sup},g}\}.$$

1760 Equivalently, this induces a *graph-specific, data-driven threshold*

1761
1762
$$\tau_g = c_{\text{sup},g},$$

1763 which depends on the empirical distribution of attention scores in graph g . If the attention scores in a
1764 new dataset are more concentrated or more diffuse, the resulting τ_g automatically adjusts.1765 **Dynamic meta-graph edge construction (data-driven γ).** Given the set of supernodes across all
1766 graphs, we compute the cosine similarity matrix over their embeddings:

1767
1768
$$e_{uv} = \frac{\mathbf{H}_u^\top \mathbf{H}_v}{\|\mathbf{H}_u\| \|\mathbf{H}_v\|} \tag{A28}$$

1769 In the original MGMT formulation, inter-graph edges are obtained by applying a validation-tuned
1770 parameter γ . In the dynamic variant, we specify a retention rate $\kappa_{\text{edge}} \in (0, 1)$ (e.g., $\kappa_{\text{edge}} = 0.05$)
1771 and keep the top κ_{edge} fraction of all off-diagonal similarities by defining threshold as the $(1 - \kappa_{\text{edge}})$ -
1772 quantile of the entries of the cosine similarity matrix. Now γ is *not validation-tuned*: it is induced by
1773 the empirical distribution of similarities in the current dataset.1774
1775 **Experimental comparison and discussion.** Table A9 compares the original validation-tuned
1776 threshold MGMT (with τ and γ selected via validation) to the dynamic quantile-based variant
1777 described above. We observe that the dynamic variant attains performance that is close to the best
1778 validation-tuned threshold configuration across all datasets, with a small decrease in accuracy in some
1779 cases.1780 This behavior is natural: Previously τ, γ were tuned specifically to maximize validation performance
1781 on each dataset, while the dynamic variant applies a generic, model-agnostic rule that does not

1782 Table A9: Comparison of MGMT with validation-tuned thresholds vs. dynamic, distribution-based
 1783 thresholds for supernode selection and meta-graph edge construction. Values are mean \pm standard
 1784 deviation over 5 folds.

Dataset	MGMT (validation-tuned τ, γ)	MGMT (dynamic, quantile-based)
LFP dataset	42.13 ± 0.25	41.26 ± 0.73
Alzheimer	83.11 ± 0.84	81.96 ± 0.76
Experiment 1	65.47 ± 2.39	63.35 ± 1.64
Experiment 2	69.90 ± 1.19	67.72 ± 1.24
Experiment 3	73.21 ± 0.59	71.96 ± 1.23

1794 exploit dataset-specific optimal sparsity levels. Consequently, a minor loss in accuracy is a reasonable
 1795 trade-off for eliminating validation-tuned thresholds and making sparsification fully data-driven.
 1796 Importantly, both the sensitivity analysis in Appendix A10 and the results in Table A9 indicate that
 1797 MGMT does *not* hinge on finely tuned thresholds: it remains robust under both validation-tuned and
 1798 distribution-based thresholding schemes.

1800 A14 CAUSAL EXTENSIONS OF MGMT VIA CAL

1802 Recent advances in causal graph learning offer promising directions for identifying causally important
 1803 nodes. Causal masking approaches such as CAL (Sui et al., 2022) learn to disentangle causal from
 1804 spurious features through an intervention-based training scheme. Counterfactual methods reviewed in
 1805 Guo et al. (2025) identify critical graph components by measuring prediction changes under minimal
 1806 graph edits. Next we present one concrete potential design, while future work can explore additional
 1807 promising directions for causal learning in multi-graph settings.

1808 **CAL (Causal Attention Learning)** Sui et al. (2022) offers a natural integration with our framework.
 1809 CAL introduces a disentanglement module to separate causal features that reflect intrinsic graph
 1810 properties from shortcut features arising from data biases or trivial patterns. Specifically, given a graph
 1811 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $N = |\mathcal{V}|$ nodes, feature matrix $\mathbf{X} \in \mathbb{R}^{N \times d}$, and adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$,
 1812 CAL learns two masks $\mathbf{M}^a \in \mathbb{R}^{N \times N}$ (for edges) and $\mathbf{M}^x \in \mathbb{R}^{N \times 1}$ (for node features) via causal
 1813 intervention (see Sui et al. (2022) for details). Each element of the masks, with value in $(0, 1)$,
 1814 indicates the causal relevance to the label. Applying CAL to each graph $i \in [n]$ yields causal masks
 1815 \mathbf{M}_i^a and \mathbf{M}_i^x . We can re-weight the edge attention scores in (3), section 3.1.1 by \mathbf{M}_i^a :

$$\alpha_i^{\text{caus}} = \alpha_i \odot \mathbf{M}_i^a,$$

1816 where \odot denotes the Hadamard product. Similarly, we can adjust the supernode selection rule in (4)
 1817 by

$$\mathcal{S}_i = \left\{ u \in \mathcal{V}_i \mid M_{i,u}^x \sum_{(u,v) \in \mathcal{E}_i} \alpha_{i,uv}^{\text{caus}} \geq \tau \right\}.$$

1818 where $M_{i,u}^x$ denotes the causal score for node u . This ensures selected supernodes maintain strong
 1819 causal relationships with the label.

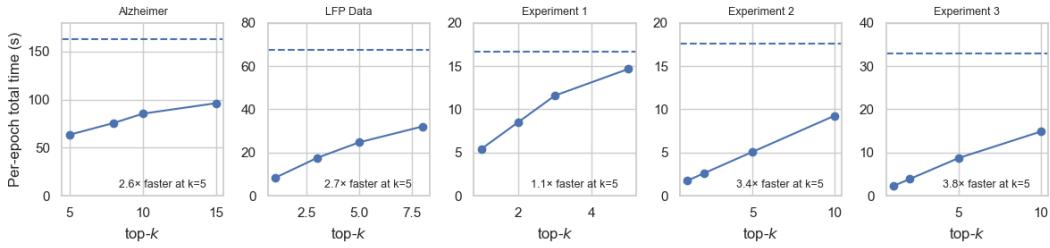
1824 A15 SPARSE TOP- k ATTENTION MECHANISM APPLIED TO THE 1825 GRAPH-SPECIFIC ENCODERS

1828 As discussed in Appendix A9.1, the dominant computational cost in MGMT comes from the graph-
 1829 specific encoder, whose complexity scales with the number of attended neighbors per node. To further
 1830 investigate the potential of sparse attention in our framework, we perform a preliminary experiment
 1831 where we replace the localized GAT-style attention in the graph-specific encoder with *top- k attention*,
 1832 while leaving the rest of MGMT unchanged.

1833 Concretely, at each GAT layer and for each node u in graph \mathcal{G}_i , we compute the standard attention
 1834 scores $\{\alpha_{uv}\}_{v \in \mathcal{N}(u)}$ over its 1-hop neighbors. We then keep only the k largest-magnitude scores
 1835 and set the remaining attention weights to zero before normalization. This yields a sparse attention
 pattern with effective cost $\mathcal{O}(N_i k d)$ per layer (for N_i nodes and d -dimensional features), instead of

1836 $\mathcal{O}(|\mathcal{E}_i|d)$. Importantly, we apply this sparsification *only* in the graph-specific encoder; the meta-graph
 1837 construction and final predictor remain unchanged, but their runtimes are indirectly affected through
 1838 the change in attention patterns and degrees used for supernode/supereedge extraction.

1839 For each configuration, we re-run MGMT end-to-end with the same hyperparameters as in the dense
 1840 setting and measure per-epoch runtime as well as test accuracy. Figures A9–A10 summarize the total
 1841 time and accuracy trends as a function of k . In each panel, the dashed horizontal line denotes the
 1842 dense GAT-based MGMT baseline.



1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

Figure A9: **Effect of top- k attention on MGMT runtime.** Per-epoch total time versus k for each dataset. The dashed line indicates the dense GAT-based MGMT runtime; annotations report the speedup at $k = 5$ relative to this baseline.

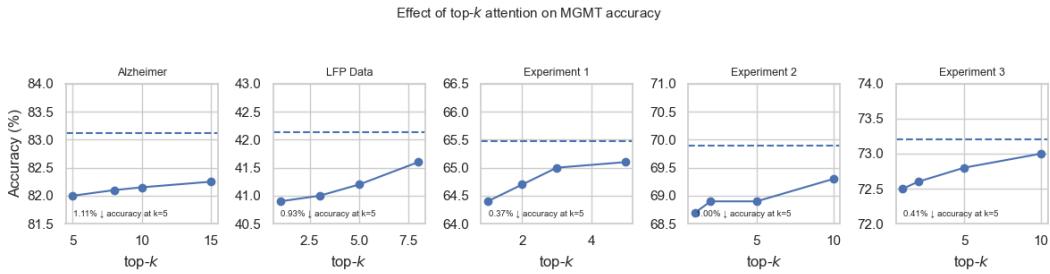


Figure A10: **Effect of top- k attention on MGMT accuracy.** Test accuracy versus k for each dataset. The dashed line indicates the dense MGMT accuracy; annotations report the accuracy change at $k = 5$.

1871 Two patterns emerge from these preliminary results. First, for the Alzheimer and LFP datasets, top-5
 1872 attention reduces the per-epoch runtime approximately 2.6 and 2.7 times, respectively, relative to
 1873 dense MGMT. On the synthetic datasets, speedups at $k = 5$ range from about 1.1 (Experiment 1, with
 1874 only 5 nodes) to 3.8 (Experiment 3, with 50 nodes) times relative to dense MGMT. As k increases,
 1875 each node attends to more neighbors, so the encoder cost grows roughly linearly in k (from $\mathcal{O}(Nkd)$
 1876 toward the dense limit), and the total runtime curves in Figure A9 smoothly approach the dense
 1877 baseline.

1878 Second, as shown in Figure A10, these runtime gains come with mild accuracy changes. Very small
 1879 k values can drop some informative neighbors and under-connect the graphs, leading to an accuracy
 1880 loss; increasing k restores more of the original neighborhood structure, allowing the encoder to
 1881 capture richer local context and thus produces a gentle increase in accuracy.

1882 Overall, these experiments support the feasibility of integrating sparse top- k attention into MGMT: by
 1883 sparsifying only the graph-specific encoder, we obtain speedups on larger graphs while losing some
 1884 predictive performance. This provides a concrete path toward scaling MGMT to settings with many
 1885 modalities and/or larger per-graph node sets, complementing the theoretical complexity discussion in
 1886 Appendix A9.1.