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ABSTRACT

Multi-graph learning is crucial for extracting meaningful signals from collections
of heterogeneous graphs. However, effectively integrating information across
graphs with differing topologies, scales, and semantics, often in the absence of
shared node identities, remains a significant challenge. We present the Multi-Graph
Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for
cross-graph learning. MGMT first applies Graph Transformer encoders to each
graph, mapping structure and attributes into a shared latent space. It then se-
lects task-relevant supernodes via attention and builds a meta-graph that connects
functionally aligned supernodes across graphs using similarity in the latent space.
Additional Graph Transformer layers on this meta-graph enable joint reasoning
over intra- and inter-graph structure. The meta-graph provides built-in interpretabil-
ity: supernodes and superedges highlight influential substructures and cross-graph
alignments. Evaluating MGMT on both synthetic datasets and real-world neu-
roscience applications, we show that MGMT consistently outperforms existing
state-of-the-art models in graph-level prediction tasks while offering interpretable
representations that facilitate scientific discoveries. Our work establishes MGMT as
a unified framework for structured multi-graph learning, advancing representation
techniques in domains where graph-based data plays a central role.

1 INTRODUCTION

Graphs are fundamental data structures in many domains including neuroscience (Shahbaba et al.|
2022}, [Zhou et al., |2024), social networks (Fan et al., 2019; [Zhang et al.l [2022) and molecular
biology (Wieder et al., 2020; | Xu et al., [2022; L1 et al., |2022). While powerful models like Graph
Neural Networks (GNNs) (Scarselli et al., 2008 |[Kipf & Welling}, 2016} [Yu et al., [2023)) and the
more recent Graph Transformers (GTs) (Wu et al., 2021} Kreuzer et al. 2021} [Rampasek et al.,
2022; Kim et al.| |2022) excel at learning from single graphs, many real-world problems require
integrating information across multiple heterogeneous graphs, where the heterogeneity may stem
from differences in modalities, views, or population characteristics. For instance, neuroscience
experiments studying brain dynamics often generate graphs from multiple subjects, each with distinct
connectivities and node sets (Shahbaba et al.,|2022). Enhancing prediction performance or extracting
common neural patterns in such settings requires a framework capable of effectively integrating
information across structurally heterogeneous graphs. Nonetheless, the question of how to optimally
adapt powerful architectures such as the GT to the multi-graph integration problem remains an active
area of research, particularly with heterogeneous structures, unaligned node sets, and a need for
fine-grained cross-graph reasoning, conditions that arise in many scientific domains.

Recent work on multi-graph learning partially addresses this challenge by either operating on a single
unified heterogeneous graph with aligned nodes (He et al., 2025} [Zhang et al.,|[2019; Zheng et al.,
2022) or by learning graph-level embeddings from multiple modality-specific graphs and combining
them via shared contexts, adaptive weights, or correlation-based objectives (Hayat et al.| 2022} Xu
et al., [2024; Xing et al., 2024} |D’Souza et al., 2023} [Nakhli et al., [2023]; [Fu et al.). However, these
methods model cross-graph interactions only through pooled graph embeddings or shared tokens,
without explicit fine-grained message passing between structurally similar subgraphs across unaligned
graphs, which limits interpretability and makes it challenging to identify which substructures across
graphs interact and contribute to the model’s predictions.

To address these limitations, we propose the Multi-Graph Meta-Transformer (MGMT), a flexible
framework for integrating information across collections of heterogeneous graphs. Under the umbrella
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term “multi-graph,” our unified approach accommodates common scenarios, including: multimodal
(graphs from different measurement channels), multi-view (different structural views of the same
data), and multi-subject (graphs from heterogeneous subjects in the same experiment). MGMT first
processes each input graph using a graph-transformer encoder and aggregates intermediate layer
outputs through a depth-aware mixing scheme. This yields node embeddings that adaptively integrate
information across multiple receptive-field sizes. The framework is backbone-agnostic and can be
implemented with either localized or global GT layers, depending on the task and computational
budget. It then selects a small set of informative supernodes from each graph using attention scores
and constructs an explicit meta-graph over these task-relevant substructures, preserving within-graph
connectivity while selectively introducing cross-graph (inter-graph) edges between functionally
aligned regions. Additional Transformer layers on the resulting meta-graph perform fine-grained
cross-graph message passing and generate the final prediction.

This design directly addresses the key limitations of existing multi-graph approaches. Instead of
representing each graph solely through global graph-level or context-level embeddings at fusion
time, MGMT preserves structure at the node and subgraph levels and performs fusion by attending
over an explicit meta-graph of supernodes, encoding both intra-graph and inter-graph structure.
More specifically, supernodes summarize local patterns within each graph, while superedges align
substructures across graphs and capture their interactions. The resulting meta-graph also provides
insights into task-relevant subgraphs and their relationships, which can help with interpreting the
results. Taken together, MGMT utilizes depth-aware, structure-preserving GT encoders within each
graph, identifies supernodes, and uses them to build an explicit meta-graph that supports cross-graph
message passing and provides a principled and scalable approach to aggregating information across a
collection of heterogeneous graphs with unaligned node sets.

Our main contributions are as follows: (1) For heterogeneous graphs (multimodal, multi-view,
or multi-subject), we formalize a data-fusion framework, MGMT, which provides a backbone-
agnostic, depth-aware, and structure-preserving architecture with interpretable outputs through an
explicitly constructed meta-graph over attention-selected supernodes; (2) we provide theoretical
results demonstrating that MGMT’s depth-aware aggregation can recover general L-hop neighborhood
mixing and characterize conditions under which the induced meta-graph function class offers strictly
improved approximation capacity relative to late-fusion strategies that operate only on pooled graph
embeddings; (3) using synthetic benchmarks and real-world applications, we show that MGMT
outperforms state-of-the-art multimodal and graph-based methods, including recent multi-graph and
transformer architectures; and (4) we demonstrate that MGMT can detect meaningful neurobiological
patterns, thereby offering insights for scientific investigations, particularly for understanding neural
mechanisms underlying memory and factors contributing to Alzheimer’s disease.

2 RELATED WORK

Graph Representation Learning. GNN is the cornerstone of modern graph machine learning,
which learns node embeddings via local message passing (Scarselli et al., 2008}, [Kipf & Welling},
[2016}; [Velickovic et all [2017). Attention-based models such as GAT (Velickovic et al.,[2017) learn
neighbor-specific attention weights instead of using fixed aggregation rules, allowing them to priori-
tize more informative neighbors. Nevertheless, because they still aggregate information only from
local neighborhoods, their ability to distinguish graph structures remains fundamentally limited by the
expressive power of the 1-Weisfeiler—Lehman (1-WL) test. More recent GT architectures with struc-
tured self-attention have outperformed message-passing GNNs on a variety of benchmarks
I& Bresson, [2020; [Vaswani, 2017). Global-attention models such as EGT (Hussain et al.}, 2022) replace
or complement convolution with fully-connected self-attention augmented with structural encodings,
thereby extending expressivity. Sparse and structure-aware GTs, including Exphormer (Shirzad et al.|
[2023) and GRIT [2023), introduce scalable attention patterns and graph inductive biases
that retain or approximate the expressivity of dense Transformers while reducing computational cost.
Hierarchical and distance-structured GT variants, such as HDSE [2024), further refine
how multi-scale structural information is injected into attention. All these existing methods, however,
lack a principled and interpretable mechanism for fusing multiple heterogeneous graphs, which are
common in many scientific applications. MGMT addresses this gap by providing a flexible and
general framework; in Appendix [AT2] we additionally implement MGMT with several of these GT
backbones and compare their performance in both single-graph and multi-graph settings.
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Heterogeneous Unified-Graph Representation Learning. A related line of research is multimodal
or heterogeneous graph learning, which may appear similar to our multi-graph fusion task but is
fundamentally different, as it operates on a single unified graph that integrates diverse data types. For
example, frameworks like UniGraph2 2025) and HetGNN (Zhang et al.,[2019) assume a
single graph where nodes possess multiple feature types from different modalities, such as text or
images. The common approach is to collapse multiple data sources into one large graph. Other works
like MMGL (Zheng et al.} 2022)) construct a single population-level graph where nodes represent
subjects, and features from all modalities are concatenated before graph construction. While effective
for their intended purpose, they are not applicable to the more challenging problem of fusing a
collection of graphs with distinct, unaligned node sets, which is the focus of our work.

General-Purpose Multimodal Fusion. Models such as MultiMoDN (Swamy et al.} 2023)), Flex-
Care [2024), MedFuse (Hayat et al.l [2022), and Meta-Transformer (MT) (Ma et al.|
aim to integrate multiple modalities, including graphs or images. In principle, these frameworks
could be applied to multi-graph fusion by treating each graph as a separate modality. Typically,
they use modality-specific encoders to transform each input into a single latent vector. For a graph,
this amounts to collapsing its entire topological structure into one embedding. These vectors are
then fused, for example via concatenation, for downstream tasks. While highly effective in many
multimodal settings, such vector-level fusion largely ignores graph topology and subgraph-level
relationships across multiple graphs, which limits interpretability.

Multi-graph learning. Another class of models focuses on settings where each entity is associated
with multiple graphs. Recent multi-graph models such as AMIGO (Nakhli et al. [2023), EMO-
GCN 2024), and MaxCorrMGNN (D’Souza et al| 2023) take multiple graph-structured
inputs but ultimately fuse information only at the level of pooled graph embeddings or shared context
tokens, so cross-graph interaction is mediated through global representations instead of local structural
alignment. MGLAM (Fu et al.), on the other hand, treats each entity as a bag of graphs and learns
permutation-invariant bag-level predictors via kernel-based graph representations and multi-graph
pooling, providing a principled baseline for the multi-graph-to-label setting considered in this work.
However, all of these models still perform fusion at the graph/bag level, as opposed to using explicit
node-level cross-graph message passing. This limits their ability to explain how specific nodes or
substructures interact across graphs and how particular cross-graph patterns influence predictions.

Beyond the above per-entity multi-graph models, another class of multi-graph and multi-view GTs,
such as MGT and MVGT/MVGTrans (Cui et al.,[2024}; [Zhou et al.,[2025)), assumes multiple edge
views over a shared node set but is not directly applicable to heterogeneous graph collections
with disjoint node sets across modalities or subjects. An alternative approach involves learning
consensus graphs or dataset-level representations rather than per-entity meta-graphs. This includes

AMGL [2016), GraphFM and GraphAlign (Lachi et al., 2024; [Hou et al.| 2024), which

aggregate information across graphs at the population level, while graph-of-graphs models such as
SamGoG propagate information solely at the graph-instance level. In contrast to
both graph-level fusion and population-level aggregation, MGMT constructs a meta-graph whose
nodes are attention-selected supernodes drawn from all graphs of an entity, preserving intra-graph
connectivity while enabling fine-grained, node-level cross-graph message passing. This approach
leads to more interpretable results, as it reveals how different graphs interact to drive final prediction.

3 METHODOLOGY

In this section, we present MGMT, detailing its prediction pipeline based on GT encoders and
meta-graph construction, followed by describing how to interpret MGMT by identifying significant
nodes and edges in Section[3.2] An overview of the entire framework is provided in Fig. [T}

3.1 MULTI-GRAPH META-TRANSFORMER (MGMT)
MGMT fuses multi-graph data using several steps, as described below.

3.1.1 GRAPH-SPECIFIC TRANSFORMER ENCODERS

For each instance, we observe a collection of n graphs. For i = 1,...,n, we denote the graph as
G; = (V;, &;) with node set V; of size N; = |V;|, and edge set &;. Each graph G; is characterized by
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a node feature matrix X; € R™:*? and an adjacency matrix A; € {0,1}":*Ni_ Graphs per each
instance may differ in size and structure (for presentation purposes only, we assume feature size
is d across all graphs), yet the collection {Gy, ..., G, } share a common label Y € ). The task is
graph-level classification of the shared label Y using evidence aggregated across graphs. Throughout
this paper, we use bold uppercase letters (e.g., X) for matrices and bold lowercase letter (e.g., x) for
vectors, and [n] denoting the set {1,...,n}.

We formalize the core graph-specific Transformer mechanics used in MGMT, building upon the
localized graph-aware attention principles detailed in Appendix For each i € [n], the graph G;
with node features X; € RY:*? undergoes L GT layers with multi-head self-attention. Starting with

H Z.(O) = X, as initial features, we define the extended neighborhood N (u) = A (u) U {u} to ensure
nodes attend to themselves during message passing.

For layer ¢ € [L], attention head m € [M], and edge (u,v) € & U {(u,u)}, we compute:
_ ,m)T g-(€,m)
QUM =W E wog e (QUTRE V)
KO - Wi HD 4 pl, Soexi e (QUMTKLNVT) )
,m l,m -1 l,m (. m /. m (,m
VA < WO i, AT ot v

1, UV

7,U 7, UV 7,V ’
where H Z(éu_ ' € RY is the feature of node u at layer £ —1, d’ = d/M denotes the per-head dimension.
Projection matrices W(E”im), WI((Z m), W‘(f;m) € R?*4 and biases bg:im), b%:;n), b%fzm ) e RY are
learnable parameters. The query vector Qgﬁm) represents information node u seeks from neighbors,

key vector K (“m) encodes neighbor v’s relevance, and value vector V.“™ contains content to be

7,0 7,0
aggregated. Attention score a%ﬁ) determines how much node u attends to node v.
The outputs of all heads are concatenated (|| denotes the concatenation) and transformed via:

200 = e [257--

zM | w8l v,

where Wg)l € Rdxd, bg?i € R?. Stacking these vectors across all nodes yields Z(*) € RN:*d,

Zl-(é) is processed by an FFN with activation, then combined via residual and LayerNorm to yield:
H") = LayerNorm (2" + ¢(FFN(2"))) @)

After L layers, we obtain final output and attentions by dynamically aggregating across all depths:

7

_ _ E (0) 1 § 1,m)
o = § Oy = r; a; ’
{ ’ eelL] "’ <M me[M]  HWY )}(u,v)egiu{(u,u)}

{FEZ) }7—, are confidence scores measuring quality of each Transformer layer (Sectionfor details).

- (&) £y (€) N;xd
H; = E reln] L H”eR ,
3)

3.1.2 SUPERNODE EXTRACTION

To identify the most informative nodes in each graph ¢, we extract supernodes based on the learned
attention scores o; in equation [3] Given a predefined threshold 7, we form the set of supernodes as

Si= {u eV | Z(u e, Qi > T}. 4)

Intuitively, > (uv)e€; Qiuv quantifies the total attention distributed by node « to its neighbors.

We then induce a subgraph over these nodes:

G, = (5:,€)). & = {(w,v) € & | u,v € 5} ©
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We conduct a sensitivity study in Section[AT0|to examine how
choices of 7 influence performance. Our analysis reveals that

Graph Level Prediction

Layers

Final Using Shared
—

T controls a trade-off: a higher 7 creates a sparser meta-graph,
which risks information loss, while a lower 7 retains more
nodes, risking overfitting. By guiding the selection of 7 via

" Gar = (S, Enr)

cross-validation, we identified a robust range of values that P
. Meta-Graph Construction
yields stable performance. i
6 =(818) = G =(S0E) 10, = (Su€D)

3.1.3 META-GRAPH CONSTRUCTION % il N

( Node and
To model both intra- and cross-graph interactions, we construct ol ‘ /
an instance-level meta-graph Gy; = (S, Ear), where Sy = LA Lo e
U?=1 S; contains all graph-level supernodes. Each v € §; L% 3 ; N
is associated with a latent embedding H;,, € R? as defined [m-yorom?
in equation [3] The edge set £y, of the meta-graph includes L‘D Hfj"’”"“’“;n""";ﬁf_"'""°"

, P H|

two components. First, we retain all intra-graph edges from - -
the pruned graphs G = (S;,£]), preserving graph-specific
relationships. Second, we introduce inter-graph edges between
cross-graph supernodes using their feature similarity. For any
node pair (u,v) withu € S;, v € S;, and 7 # j, we compute
the cosine similarity:

| (L)
o u]

Figure 1: Architecture of Multi-
Graph Meta-Transformer (MGMT).
Depth-Aware GT layers process in-
dividual graphs, extracting supern-
odes to form a meta-graph. Addi-
tional GT layers model both intra-
and inter-graph interactions.

H'H
Cuv = 4 (6)
||| H |
If the similarity score e,,,, exceeds a predefined threshold ~, the

edge (u, v) is added to Epy.

The resulting adjacency matrix Ay, € RISMIXISml encodes
both intra- and inter-graph relationships among supernodes. We connect supernodes across graphs
only when their latent embeddings are similar, mirroring observations that learning or selecting
edges to reduce Dirichlet energy improves downstream accuracy [Chen et al (2020); see Section [A3]
for the formal smoothness justification. Appendix [AT0] shows accuracy is non-monotone in -,
reflecting the trade-off between dense connectivity and sparsity. Appendix [ATT|shows comparable
performance with cosine, Pearson, Euclidean, and dot-product similarities, indicating robustness
to the similarity choice. In AppendifAT3] we replace the validation-tuned thresholds 7 and ~ with
dynamic, distribution-based quantile thresholds and show that this data-driven variant achieves
comparable accuracy with the best validation-tuned threshold configuration on all datasets, indicating
that MGMT is robust to threshold selection and does not hinge on delicate manual tuning.

3.1.4 FEATURE LEARNING AND PREDICTION

After constructing G, we apply additional GT layers to the stacked supernode embeddings H ](\2) €
RIS |xd Multi-head self-attention and feedforward updates are applied to capture global contextual
dependencies, resulting in updated supernode embeddings H; € RIS 1X4_ For classification, we
apply permutation-invariant pooling followed by a fully connected network: § = f(Pool(Hy)).
Pool(-) is pooling/aggregation operator, and f(-) maps pooled vector to class probabilities § € RIVI.

3.2 INTERPRETATION OF MGMT

The identified meta-graph is analyzed via Node-level analysis, highlighting influential nodes and their
contributions, and Edge-level analysis, uncovering critical relationships among these nodes. This
framework enhances interpretability, as illustrated in neuroscience application results in Section[5.3]

4 THEORETICAL PROPERTIES

In this section, we establish MGMT’s theoretical foundations through: (1) intra-graph analysis,
demonstrating superior feature representation within individual graphs; and (2) inter-graph analysis,
showing enhanced predictive power through meta-graph construction. Complete proofs are provided
in Section[A3] with additional theoretical results in Section [Ad]
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Figure 2: Ablations on five datasets. Dropping adaptive depth, supernode selection, or inter-modality
edges lowers accuracy, confirming each component’s importance for cross-graph learning.

4.1 INTRA-GRAPH ANALYSIS

We analyze the depth-aware mixing strategy in equation [3] which enables MGMT to aggregate
information across different depths of message passing. First, we establish some formal definitions.

Let M(A) € RV*N be a message-passing operator (e.g., augmented adjacency matrix, M(A) =
A + I). Given M(A) and an activation function o, denote the 1-hop feature aggregation as

UX;M(A),0) = o(M(A)X),
and the ¢-hop aggregation is the ¢-fold composition of I/, namely,
U (X; M(A),0) = 0(M(A) - 0(M(A) X)).

£ times

Building on these, we introduce L-hop mixing, characterizing a model’s ability to represent multi-
depth information. While originally studied for Graph Convolutional Networks with graph Lapla-
cians (Abu-El-Haija et al.,|2019)), we extend this concept to general message passing operators.

Definition 4.1 (L-hop mixing with general message passing). Given M(-), a model is capable of
representing L-hop mixing if for any 1, ...,nr € R, there exists a setting of its parameter and an
injective (one-to-one) mapping f(-), such that the output of the model is equivalent as

L

D e U (X;M(A),0) |, @)

=1
for any adjacency matrix A, activation function o, and node features X.
Remark 4.2. If M(A) = D 2(A + I\D™2, where D is the diagonal degree matrix with

D;; = Z;VZI Aij + 1, Definition recovers the L-hop mixing with Graph Laplacian in the
GCN literature (Abu-El-Haija et al| 12019} [Zhou et al.| 2024)).

First theorem demonstrates that MGMT’s depth-aware GTs represent L-hop mixing for each graph.

Theorem 4.3. With message passing operator M(A) = softmax(A + I), where softmax is applied
row-wise. MGMT’s depth-aware GTs in equation [Il-equation 3| can represent L-hop mixing.

The proof appears in Section[A3] Notably, we also demonstrate in Section[A4.T|that vanilla Graph
Transformers cannot learn L-hop neighborhood mixing. We further clarify the relationship between
L-hop mixing and Weisfeiler-Leman expressivity in Section[A4.3] showing that these characterize
distinct but complementary aspects of model power.

4.2 INTER-GRAPH ANALYSIS

This section analyzes how MGMT’s meta-graph construction boosts prediction power compared to

late fusion approaches (Zhang et al.| [2023).

Recall from Section 3.1.3] the meta-graph Gp; = (Sar, Ear) combines supernodes Sy = Ui S
Its initial embedding H 1(\2) € RISwmIxd stacks supernode embeddings where Vu € S;, H J(\B)u =H;,.
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Figure 3: Average test accuracy and standard error bars (computed over 50 repetitions) on three
synthetic datasets. In all experiments, each sample consists of five synthetic graphs, which we refer to
as Modalities 1-5. Experiment 1 (Setting 1) uses 100 samples, with 5 nodes per graph, all of which
are informative. Experiments 2 and 3 (Setting 2) both involve structured noise: Experiment 2 uses
100 samples and Experiment 3 uses 2,000 samples; in both, each graph has 50 nodes, of which 40 are
informative. Across all configurations, the proposed MGMT model achieves the best performance.

MGMT applies additional Lgt Graph Transformer layers followed by a global pooling to obtain the
final graph-level embedding. Lastly, we apply Lyrp MLP layers for class probabilities. Assume

without loss of generality that Lgy = 1 and Ly p = 2, the function class of MGMT given H ](\9[) is

Fur = {1 RISV RV = Wil o (WipPoolGT(HLY)) ) b, @®)

where GT(-) : RISwIxd y RISmIxd g the Graph Transformer, Pool(-) : RISmI*d —y R is a graph

pooling, and WI\SEL)P e RV XM Wl\(i)P € RIYI¥M" are MLP weight matrices, with 1/, h” € N*. All
subsequent analysis could be easily extended to any number of Lyyp and Lgr.

The late fusion strategy that employs weighted averaging of class probabilities from graph-specific
models can be represented as

Flate = {f : RISM'Xd = Rlyl ‘ f = Zwl ! WRSIQBP,iJ(WRSI?P,iPOOISi (Hj(\g))) }7
=1

where {thl?p7i}le[2],ie[n] is the set of graph-specific MLP parameter, and the set of late fusion
weights is {w; € R};ep,) such that 37" | w; = 1. Given the joint distribution of a feature-label pair
(X,Y) ~ P and aloss function £, denote the generalization error of a function f as

R(f;P,L) =Ex yypr[L(f(X),Y)]

Following [Shalev-Shwartz & Ben-David| (2014), we define the approximation error of a function
class F as the minimum generalization error achievable by a function in F, namely,

e(F;P, L) = }ngTR(f;P,ﬁ). Q)

Assume latent representations of the meta graph follow (H ](\9[), Y) ~ Pps. The next theorem shows

MGMT is a more powerful graph fusion framework compared to late fusion in the sense that it
achieves a smaller approximation error.

Theorem 4.4. Denote approximation error of MGMT on the meta-graph as e(Fur; P, L), and the
approximation error of late fusion of graph-specific classifiers €(Fiae; Par, L), then

e(Far; Pars L) < €(Frae; Par, L£).See Section [Ad] for the proof.

5 NUMERICAL EXPERIMENTS

We evaluate the effectiveness of MGMT on three synthetic datasets in Section [5.2]and two real-world
neuroscience applications in Section[5.3](memory experiment and Alzheimer’s disease detection). The
synthetic and Alzheimer’s datasets are multi-modal, whereas the memory experiment is multi-subject
(graphs from different animals treated as distinct modalities).
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Figure 4: Test accuracies of baseline models on the LFP and Alzheimer’s disease datasets. Each bar
represents the average test accuracy across 5 folds, along with the corresponding standard error. In
both applications, MGMT consistently outperforms all other models.

Baseline comparisons. We compare against four families of baselines: (1) single-source models

(i.e., trained on each source) such as DNNs (LeCun et al.| 2015), GNN, DiffPool 2018),
Transformers, and Graph Transformers (GAT backbone); (2) early fusion models: Concatenated
Features using DNN/GNN/DiffPool feature extractors (Ngiam et al.,[201T} Baltrusaitis et al., 2018},
Lau et al.l 2019); (3) general-purpose multimodal fusion frameworks such as MMGL (Zheng et al.,
2022)), MultiMoDN (Swamy et al.,[2023), FlexCare 2024), MedFuse (Hayat et al., 2022),

and Meta-Transformer (Ma et al., [2022), and (4) recent multi-graph learning methods tailored to
the multi-graph-to-label setting, including AMIGO (Nakhli et al} 2023), MaxCorrMGNN (D’Souza

2023)), and MGLAM (Fu et al.), which operate on multiple graphs per entity via shared contexts,
correlation-based objectives, or bag-of-graphs pooling (see Appendix [A6]for implementation details).

Ablation studies. We quantify the contribution of each component by (1) removing adaptive depth
selection (i.e., using the final Transformer layer); (2) removing supernode selection (i.e., including
all nodes in the meta-graph); (3) removing inter-graph edges; (4) removing intra-graph edges; and
(5) disabling both the meta-graph and adaptive depth (i.e., late fusion of fixed-depth Transformer
outputs). Results are presented in Tables[A2] [A3]and Figures 3] @ 2}

5.1 EXPERIMENTAL SETUP

Architecture and training. Across datasets, MGMT uses TransformerConv layers with global
max or mean pooling to form graph-level embeddings. Models are trained on 80% of the data, with
10% for validation and 10% for testing, using Adam and early stopping on validation loss. For real
datasets, we use 5-fold cross-validation. Hyperparameters, including number of layers, dropout,
learning rate, epochs, and node-importance thresholds, are tuned with Optuna (100 trials), selecting
the best configuration by validation performance. For simulation studies, we run 50 independent
trials and report mean test accuracy with standard errors.

Runtime and scalability. Appendix[A9|provides component-wise time complexity, empirical runtime
profiling (average per-epoch and stage-wise breakdowns), and controlled scalability experiments over
graph size, number of graphs per sample count, sample size, and feature dimensionality, showing
practical efficiency and predictable scaling comparable to Transformer-based graph architectures.

5.2 SYNTHETIC EXPERIMENTS

We simulate five graphs per sample under varying feature mechanisms, number of nodes, sample
size, and noise. Each node has a p-dimensional feature; a subset of nodes is informative (their
features influence the graph-level binary target), and the rest are non-informative noise. We create
an intermediate binary label for each modality, then aggregate them into an entity-level label by
applying a threshold to a weighted sum of these modality-specific labels. Experiment 1 (Setting 1;
Appendix [A8): informative-node features are drawn from modality-specific multivariate Gaussians;
labels use a linear thresholding rule; n = 100. Experiment 2 (Setting 2; Appendix [A8): features
for informative nodes are generated using a Gaussian Process to induce temporal structure across
features; labels use a nonlinear function (sinusoidal and quadratic); n = 100. Experiment 3: follows
the same setting as Experiment 2 but increases the graph size and sample size. Each graph has 50
nodes, with 40 designated as important. The sample size is increased to 2,000, allowing us to assess
MGMT’s performance at scale under complex, multimodal conditions.
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Figure 5: (a) Neural recordings from CA1 during a sequence memory task. Rats performed a
self-paced odor sequence task, judging each odor in a five-item sequence (A-E) as “in sequence”
(InSeq) or “out of sequence” (OutSeq) while odors were delivered through a single port. (b) Cross-
animal supernode and edge frequency map from MGMT. Each dashed box corresponds to one rat;
node size and color indicate supernode selection frequency, and line color reflects edge occurrence
frequency. High-frequency supernodes and edges cluster in distal CA1 (right side), with cross-rat
superedges primarily linking distal regions across animals. Mitt exhibits weaker connectivity.

Across all experiments, MGMT outperforms baseline models (Fig.[3). Ablations show accuracy drops
when removing adaptive depth, or inter-graph edges, and degrade most when both meta-graph and
adaptive depth are disabled, supporting importance of hierarchical reasoning (Table[A3|and Fig. ).

5.3 NEUROSCIENCE APPLICATIONS

5.3.1 LOCAL FIELD POTENTIAL (LFP) ACTIVITY IN A SEQUENTIAL MEMORY TASK

We apply MGMT to a challenging problem: predicting the stimulus presented on a given trial using
LFP activity from hippocampus (Fig.[5). In this experiment, 5 subjects (rats named SuperChris, Barat,
Stella, Mitt, and Buchanan) received repeated presentations of a sequence of stimuli (odors A, B, C,
D, or E) at a single odor port and were required to identify whether each stimulus was presented in
correct or incorrect sequence position to receive reward. Neural LFP activity was recorded from the
dorsal CA1 subregion of the hippocampus as they performed the task (Allen et al., 2016 [Shahbaba
et al.| [2022)). Treating each rat as a distinct graph, MGMT borrows power across subjects and fuses
subject-specific representations to decode stimulus identity on each trial from LFP.

Each trial is associated with one shared stimulus label (A,B,C,D or E). We construct a separate graph
for each rat per trial using its own electrode-level LFP signals. Nodes represent electrodes (vary
in number and identity across subjects), and edges capture intra-subject correlations. We then link
“supernodes” across rats when their latent embeddings are similar under MGMT’s localized attention.
Superedges are aligning comparable brain dynamics across animals, effectively “borrowing statistical
strength” across rats to reduce noise and stabilize the trial-level representation used for decoding.
This is not meant to just simply connect various brain regions across rats, rather alignment of their
brain dynamics to strengthen the overall signals by properly borrowing power across rats.

As shown in Table MGMT achieves the highest accuracy (42.13% + 2.52) predicting which
odor (A-E) was presented on each trial using the LFP dataset, outperforming all baseline and fusion
models. The best competing method, MMGL, reaches 39.28%, with other recent approaches such
as MGLAM (38.93%), AMIGO (38.92%), MT (39.20%), MultiMoDN (37.82%), and FlexCare
(36.42%) trailing behind. Traditional concatenation-based approaches like DNN and GNN yield
substantially lower performance, highlighting the difficulty of this cross-rat decoding task. To our
knowledge, these results provide the first direct evidence that the stimulus presented on a given trial
can be accurately predicted based on hippocampal LFP activity alone, which highlights the potential
of graph data integration approaches in general and the potential of the MGMT model specifically.

Ablation results (Fig. 2) confirm that each architectural component contributes meaningfully to
MGMT’s performance, with the full model achieving the highest accuracy across all datasets.

Results of interpretation component. From a neuroscience perspective, first, we found that
informative electrodes clustered on the right side of the electrode array (Fig.[5p). Specifically, highest-
frequency supernodes and strongest within-subject connections were consistently concentrated on the
right side, and pattern was consistent across subjects. This specific clustering makes sense given that
the two electrode arrays targeted different segments of CA1 region: electrodes on the right targeted the
distal segment, electrodes on the left the proximal region. The distal segment, where most informative
electrodes are located, is more strongly associated with non-spatial inputs (e.g., odors in our case)
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Figure 6: Layer-wise attention patterns for the LFP data (SuperChris). Each panel shows the
same subject-level LFP connectivity graph, along with the learned depth-confidence scores I'; for
each Transformer layer ¢, as well as the corresponding edge-level attention scores and node-wise
summed attention weights (with warmer colors indicating higher attention or summed weights).

and the proximal segment with visuospatial inputs. Such clustering of informative electrodes in
distal CAl is also consistent with previous work focusing on a different type of non-spatial trial
classification (InSeq vs OutSeq 2024)). Second, there were interesting variations in the
pattern of informative edges across subjects. Although they showed a similar pattern of informative
nodes, some subjects showed weaker relationships in edges. For example, subject Mitt showed fewer
strong within-subject edges and lower-frequency superedges. In summary, the interpretation module
highlights subject-level connectivity differences as the key LFP factors driving performance.

Depth-aware layers and CA1 circuitry. The depth-aware component provides a complementary
view of these patterns. For each rat, we compute layer-wise depth-confidence scores 7, and visualize,
on the subject-level LFP connectivity graph, the corresponding edge attention and node-summed
attention weights. Fig. [f]shows the layers for SuperChris. Layers with the largest I'; values focus
attention on edges linking distal CA1 electrodes, and nodes in this region receive the highest summed
attention. In contrast, low-confidence layers distribute attention more diffusely. Thus, the model
up-weights layers whose connectivity patterns highlight the distal CA1 subnetwork identified as
behaviorally informative in Fig. ] indicating that depth-aware aggregation selectively amplifies
meaningful hippocampal circuitry rather than simply averaging multi-layer embeddings.

5.3.2 ALZHEIMER’S DISEASE DETECTION

As an example of broader biomedical applications, we used MGMT for Alzheimer’s disease (AD)
detection using the data obtained from the National Alzheimer’s Coordinating Center (NACC), which
standardizes data collected across 46 Alzheimer’s Disease Research Centers (ADRCs) in the United
States (Beekly et al.| 2004} Weintraub et al.} [2009). The cohort comprises 1,237 subjects (61.5% HC
and 38.5% MCI/AD) with both clinical assessments from the Uniform Data Set (UDS) and structural
MRI available. Our goal is to separate subjects with mild cognitive impairment (MCI) or dementia
due to Alzheimer’s disease from healthy controls (HC).

Following our terminology, this setting is multi-modal since each subject is measured via distinct data
sources (e.g., MRI vs. clinical assessments) that inhabit different feature spaces and sensing processes.
As shown in Fig. ] the MGMT model consistently outperformed both single-source and baseline
fusion models. Moreover, ablations in Fig. [2] show that intra-graph structure and the meta-graph
are critical: removing intra-graph edges collapses performance (62.4% vs. 83.1%), removing the
meta-graph lowers accuracy to 70.1%, while dropping inter-graph edges (76.5%), supernode selection
(78.2%), or adaptive depth (81.2%) yields progressively smaller but consistent declines.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We proposed MGMT, a multi-graph learning framework that integrates graph-specific GT encoders
with a meta-graph constructed over learned supernodes and superedges, supported by an adaptive
depth-aware mechanism for aggregating hierarchical representations. Using both synthetic and real
datasets, we showed that MGMT improves accuracy and interpretability over state-of-the-art fusion
methods. The framework could be further extended to support node classification and link prediction,
incorporate causal masking and counterfactual attribution for genuinely causal importance estimates
(see Appendix [AT4)), and improve computational efficiency (see Appendix [ATS).
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A1l GRAPH TRANSFORMER WITH LOCALIZED GRAPH-AWARE ATTENTION

The standard Transformer architecture employs a global self-attention mechanism in which every
token attends to all others. This is computationally inefficient and often inappropriate in the context
of graph-structured data, where meaningful interactions are localized to a node’s immediate neighbor-
hood. To bridge this gap, we adopt the localized graph-aware attention formulation proposed by [Shi
et al.| (2020), which restricts attention to a node’s 1-hop neighbors.

To preserve self-information, we extend the neighborhood to include the node itself. Specifically, we
define N'(u) = N (u) U {u}, ensuring each node can incorporate its own features during attention-
based message passing.

Let H-D = {H 1(471), o H %71)} denote the set of node features from the previous layer. Each
node u aggregates information from its extended neighborhood v € N(u) using the following
multi-head self-attention mechanism.

For each attention head m = 1,..., M and layer ¢ = 1,..., L:

1. Linear Projections (queries, keys, values):

Qgé,m) _ Wé&m)hg_l) + bg’m)’ (A10)
Kf}é,m) _ W}(f»m)hg)e—l) + b%’m)’ (A11)
‘/U(g’m) _ W‘(f””)hﬁf’l) + bgvm). (A12)

The learnable matrices Wg’m), W}({e ’m), and W‘(f’m) are referred to as the Query, Key, and Value

projection matrices, respectively. These matrices project each node’s feature vector into three distinct
spaces:

* The Query vector ng’m) represents the type of information that node u seeks from its neighbors.

* The Key vector K Se’m) encodes what information neighbor node v can provide.
* The Value vector Vv(e’m) contains the actual content to be aggregated.

This separation allows the model to compute a relevance score between nodes before deciding how
much information to share.

2. Attention Score Calculation: The attention coefficient from node u to neighbor v € A (u) is
computed as:
QLL"L)TKE)@,WL)
alm) — eXp ( Vidn )
uv -

(l,nL)TK(L'm) ’ (Al3)
e o (E )
where dj, is the dimensionality of each head.
3. Neighborhood Aggregation:
ZEm =y algmviem. (Al4)

vEN (u)

4. Multi-Head Output and Update: The outputs from all heads are concatenated and linearly
transformed:

O =W [200) - ZE] + b8, (A15)

where || denotes concatenation across heads, and Wg) € Rdxd, bg) € R? are learnable projections.

This formulation allows each node to dynamically attend to its extended local neighborhood, learning
rich contextual representations while respecting the sparse structure of the input graph. The learned
attention scores can also be used for interpretability and identifying important nodes and edges, as
discussed in subsection[3.21
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A2 DEPTH-AWARE AGGREGATION IN MGMT

To enhance the robustness of graph-specific representation learning and mitigate sensitivity to the
choice of Transformer depth, we introduce an adaptive depth-aware fusion strategy inspired by recent
developments in graph learning Zhou et al.|(2024). Rather than relying on a fixed-depth stack, we
aggregate node embeddings across multiple Transformer layers, weighted by their contribution to
graph-level prediction performance.

Let H i(]f) € RMixd denote the node embeddings of graph i in samples (instances) k after the ¢-th
Graph Transformer layer, for ¢ = 1,...,L,i=1,...,nand k = 1,..., K. Here, K is the total
number of samples, and 7 is the number of graphs per sample. To evaluate the representational
quality of each layer, we compute a graph-level representation by applying mean pooling over the
node embeddings:

— 1
H = ﬁilﬁjHi(,f) € R1x4. (A16)

Each pooled graph embedding H i(e) is passed through a lightweight classifier to obtain predictions,
and its predictive quality is evaluated using the graph-level label. Let Y, € {1,...,|Y|} be the true
label for sample k. The classification error for graph ¢ at depth ¢ is computed as:

© _ Yo ﬁf;? ¥ {Yk # arg max, softmax (ﬁf,?) }

€; (A17)
i K 500
2 k=1 B
where Bi(,? is the weight assigned to graph 4 in sample k at depth /.
The confidence score for the /-th layer of graph i is defined as:
©
0 _1 1—¢
I —210g< N0 ) (A18)
To emphasize misclassified samples, sample weights are updated between depths using:
B o B exp (W { Vi # arg max sofumax (H') |- 1(). (A19)

The confidence scores FEZ) are used to weight both the depth-wise fused node embeddings and the
attention scores across Transformer layers, ensuring that layers contributing most to prediction are
emphasized during supernode extraction and representation learning.

A3 MATHEMATICAL PROOFS

Proof of Theorem[.3] For simplicity, we omit graph-specific subscripts throughout the proof (e.g.
X instead of X) as the arguments apply universally for all graphs. Consider the Graph Transformer

(GT) structure with a single head m = 1. For each layer ¢ = 1,... L, let Wg) = WI({Z) =0,

W‘(,e) =1, and bg) =0in equation Here I is the identity matrix and O denotes matrix/vector of
all zeros. For the feedforward layer in equation set weights as I, bias as 0, and remove the residual
connection and normalization layer. Then for each edge (u,v) € € U {(u, u)}, the updating rules in
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equation [I]and equation [2] simplifies to

® _ 1,0
Qu, - bQ )

0 [
Kf)/) — bg()7
VO = HY,

QYTK®
0 eXp( Vd )

0 _
o = QKDY
ZUIEN(U) exp <\/E v )

uv

uv v

veEN (u)

HY =0 3 al)v®

It is clear that the attention matrix c(*) reduces to M(A) = softmax(A + I). Recall that the initial

embedding H(®) = X, we can explicitly expand the recursive updating rule above, and write the
embeddings for each layer £ in the following compact form:

HY =y*(X; M(A),0).

LetI'® =y, for¢ =1,...,Lin equation the graph-specific fused embeddings can be represented
as

S e U'(X3 M(A), o),

(=1

which satisfies Definition [4.1] with identity mapping f(-). O

Remark Al. While the depth-aware fusion step in equation[3is highly flexible and can accommodate
any set of weights {Fg},%zl, we employ the confidence score weights defined in Section to
adaptively aggregate the latent representations that yield the highest classification accuracy.

Proof of Theorem Similar to the proof of Theorem[AZ] we will show Fiye € Fas and the desired
results follow directly from the definition of approximation error in equation [9]

Consider a class of pooling functions that concatenates the graph-specific pooled embeddings,
formally,

ConcatPool(H ](\2) )=

n (0)
Pools, (H\V), (A20)
=1

i
where || denotes the concatenation operation, Pools, (-) : RISmI*d s R} as defined in equation|A24]

is the global pooling function restricted to S;. Hence ConcatPool(H](v(})) : RISmlxd y Rot’
represents the concatenation of graph-specific embeddings.

Further, let D({Wl\(,[i)[,’i ™ ;) be the diagonal block matrix with diagonal elements {Wl\(,[i)[,’i o,
then one can easily check that equation can be rewritten as
Fiae = { RISV BRIV f = WD (WAL Pool (GT(HY)) ),
v>1, Wy =1,by =0,
Pool(-) = ConcatPool(-), (A21)
1 D n
Wl\(/lL)P = D({Wl\(/IL)P,i 1)

2 2 2
Wl\(/[L)P = leI\(/IL)P,l |- ||wnW1\5[L)P,n}a

where v, Wy, by are parameters of the Graph Transformer layer as defined in equation Finally,
from equation [8and equation it is clear that F,e € Fas, which concludes the proof. O
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A4 ADDITIONAL THEORETICAL RESULTS

A4.1 ADDITIONAL INTRA-GRAPH RESULTS

Theorem Al. Let M(A) = softmax(A + I) as in Theorem[4.3) the vanilla Graph Transformer is
not capable of representing L-hop neighborhood mixing.

Proof. Following a similar strategy in Abu-El-Haija et al. Abu-El-Haija et al.|(2019), it suffices to
show that the vanilla Graph Transformer (GT) fails to represent 2-hop mixing, which in turn implies
the inability to represent the general L-hop mixing. Consider the particular case, where m = 1,
o(x) = . As reviewed in Section the final graph embedding of a vanilla GT with depth L can
be represented as

L
x [[w,

L
HD = [H softmax((A +I)o a(f))
=1

{=1

for attention matrices {a() }£_ and weights {W ")} . Here ® denote the Hadamard product. Let

W* = HLI W‘(/Z), and consider the case where 77; = 1 and 772 = —1. If the vanilla GT is able to
represent 2-hop mixing, there exists an injective mapping f and a configuration of the parameters
such that

L
[H softmax((A +1) o a“ﬂ XW* = f(M(A)X — M*(A)X) (A22)
(=1

holds for any adjacency matrices A and node features X.

Consider a fully disconnected graph with A = 0 and X, then M(A) = softmax(I) = I, and
softmax((A+I) ® a¥)) = I for ¢ = 1,..., L, which implies W* = f(0). On the other hand,
consider a graph with a single edge between node 1 and 2, namely, A1 = A2; = 1 and 0 otherwise.
Then

05 05 0 0
05 05 0 0
May= |0 0 1 0
0 0 0 1

=A*
Let X = A*, then f(M(A)X — M?(A)X) = f(0). Furthermore, it is easy to check that

L
H softmax((A +I)oe a“)) = A",
=1
since features of node 1 and 2 are identical. It follows that A*W™* = f(0).
Combining the two scenarios, we must have (I — A*)W* = 0, which implies that W}* = Wy,
where W is the ¢-th row of W*. Since the choice of node 1 and 2 was arbitrary, all rows of W*

should be identical, hence rank(W*) < 1 and rank([HL,L:1 softmax((A + I) ©® a!9)| XW*) < 1,
which means the output of f should be at most rank 1 matrices by the equivalence assumption in
equation Hence, f cannot be injective, which concludes the proof by contradiction. [

A4.2 ADDITIONAL INTER-GRAPH RESULTS

Let Hs, = {H,; y}ues, be the embeddings for supernodes in S;. Single-graph classifiers that
operates on Hg, can be expressed as

Fo={f RIS RV f = Wilko (Wi pPool(Hs,) ) |- (A23)

Assume latent representations of the meta graph follow (H J(V(}) ,Y) ~ Pp,and (Hs,,Y) ~ P; where
‘P; is the marginal distribution of Py, restricted to S;. The next result shows MGMT achieves smaller
approximation error by leveraging information across all graphs.
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Proposition A2. Denote the approximation error of MGMT on the meta-graph as €(Far; P, L),
and the approximation error of graph-specific classifiers on the sub-graph as €(F;; P;, L), then

e(Far; Pu, L) < e(Fis Py L).

Proof of Proposition[A2] Without loss of generality, we focus on the cases where both MGMT and
graph-specific classifiers has Ly p = 2 layers of MLP and MGMT has Lgr = 1 layer of Graph
Transformer as specified in equation [§and equation[A23] The same argument below applies to any
number of Ly p and Lgr.

First, consider the function class that operates on the meta-graph but only utilizes the nodes from
graph 7, namely,

Fo= { RS RV f = Wil (WiPools, (H)) }. (A24)
where Pools, denote the global pooling operation that restricts on the nodes in S;. Since
Poolsg, (Hl(\g)) = Pool(Hs,),
We have that
R (Wl\(/IQL)PU (WI\EIIL)PPOOI& (HJ(\S) )) s P, E) =R (Wl\(/IQL)PU (Wl\(,llL)PPool(Hgi )) i Pi, E) .
It follows that
e(Fi; Py L) = €(Fi; Py, L).
We claim that F; C F)y, and by definition of approximation error in equation@
e(Far; Par, L) < e(Fis Pas, L) = e(Fi; Piy £).
It remains to show the function class inclusion. Note that we can rewrite F; as

Fo= { £ RSV R — Wi (Wil Pools, (GT(HLY)) ),
(A25)
7>LW®:IJV:O}

where  is the threshold defined in Section[3.1.3|that determines the connectivity between nodes in the
meta-graph, Wy, by are parameters for values in the Graph Transformer layer. Setting v > 1 results
in a fully disconnected meta-graph and together with Wy, = I, by = 0, the Graph Transformer layer
GT(-) reduces to an identity mapping, which establishes the equivalence in equation

Finally, from equation [§|and equation [A23] it is clear that F; C Fys, which concludes the proof. [

A4.3 L-HOP MIXING VERSUS WEISFEILER-LEMAN

A natural question arises regarding the relationship between L-hop mixing (Theorem [f3) and
Weisfeiler-Leman (WL) expressivity: does the ability to represent L-hop mixing translate into
enhanced distinguishing power in the Weisfeiler-Leman test. In this section, we clarify that these are
distinct characterizations of model power and provide a formal analysis of MGMT’s WL expressivity.

L-hop mixing and WL expressivity measure different aspects of model capability. WL expressivity
characterizes distinguishing power: whether a model can distinguish non-isomorphic graphs. The
1-dimensional WL test (1-WL) iteratively refines node colorings based on local neighborhood struc-
tures, and it is well-established that standard message-passing GNNs are at most as powerful as
1-WL Morris et al.| (2019)); Jegelkal (2022). In contrast, L-hop mixing characterizes approximation
quality: whether a model can exactly recover target functions that depend on mixed-depth neighbor-
hood information (Theorem [£.I). MGMT'’s capability of representing L-hop mixing comes from the
depth-aware aggregation in equation [[l-equation 3] independent of the GT backbone, while MGMT’s
WL expressivity depends on the GT backbone choice. The empirical results in Table [A6]demonstrate
that depth-aware aggregation enhances performance regardless of the GT backbone, confirming that
L-hop mixing and WL expressivity are complementary properties that jointly contribute to model
capability.
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MGMT with Graph Attention Networks (GAT) backbone is 1-WL bounded. We now formally
analyze MGMT’s distinguishing power. We adopt notation from [Morris et al.| (2019); Jegelka (2022).
A node coloring [ : V(G) +— X maps node v € V(G) to color [(v) € X. A labeled graph (G, 1) is
graph G with node coloring [ : V(G) — %. Node coloring c refines coloring d, written ¢ C d, if
¢(v) = ¢(w) implies d(v) = d(w) for every v,w € V(G). Two colorings are equivalent, written
¢=d,if cC dand d C ¢. The notation {{. .. }} denotes a multiset.

For labeled graph (G, ), I-WL computes node coloring cl(t) : V(G) — X iteratively for t > 0. Let
cl(o) =l and for each v € V(G) and ¢t > 0:

f"(0) = Hasi (e V), el (w) [ v € M)}, e

where HASH is an injective mapping assigning unique colors to distinct input pairs.

The key difference between 1-WL and MGMT'’s depth-aware GT (Section[3.1.1)) is that the former
updates based on colorings of {v} U AN (v) from the previous iteration, while the latter aggregates
outputs across all depths/iterations. However, depth aggregation does not make MGMT more powerful
than 1-WL in distinguishing power. To see this, we define a 1-WL variation, 1-WL™, that utilizes all
depth information. Let El(t) : V(G) + X be the 1-WL™ coloring with El(o) =land él(l) = cl(l). For
t>1:

& (v) = Hasu® (clﬁ)(v), e Cz(t)(”))’ (2D

where HasH") is an injective map assigning colors based on 1-WL outputs across all iterations.
Despite this additional step beyond vanilla 1-WL, 1-WL™ provides no additional distinguishing
power, as established by the following Lemma.

Lemma A3. Ler (G,1) be a labeled graph. Then for all t > 0, cl(t) = él(t).

Proof. For any v,w € V(G), if 5l(t)(v) = El(t)(w), we must have cl(k)(v) = cl(k)(w), for all k =
1,...,tby injectivity of HASH®), hence 6l(t) C cl(t). On the other hand, if cl(t) (v) = cl(t) (w), we have
AP (v) = ¥ (w) forall k = 1,..., ¢ — 1 by injectivity of HASH. It follows that & (v) = & (w)

since all inputs are equivalent. Hence, we have cl(t) C él(t), which concludes the proof. O

Following similar arguments as inMorris et al.|(2019); Jegelkal (2022), the distinguishing power of
MGMT’s depth-aware GT is upper-bounded by 1-WL™ (hence 1-WL) and reaches maximal capacity
when the attention layers in Equations (1)-(2) (corresponding to HASH) and the depth aggregation in

Equation (3) (corresponding to HasH®) are injective functions.

Going beyond 1-WL. However, it is possible to extend MGMT beyond 1-WL expressivity. As
detailed in Section[AT2] MGMT’s main contribution is delineating a flexible framework for multi-
graph fusion where practitioners can freely replace the GAT backbone with other GT variants suitable
for the task, such as Graphormer [Ying et al.| (2021). As shown in (2021), incorporating
structural encodings and global attention leads to strictly more expressive power than the 1-WL test.
Therefore, MGMT with Graphormer backbone can technically break the 1-WL limitation discussed
in the Lemma above.

A5 THEORETICAL FOUNDATIONS OF EMBEDDING-SIMILARITY SUPEREDGES

Graph learning typically assumes that connected nodes have similar features or labels; a smooth-
ness (homophily) prior grounded in the observation that many real-world networks connect like
entitiesZhou et al| (2003); [Rossi et al.| (2022). This assumption is often enforced by minimizing
the graph Dirichlet energy (GDE, see Definition 2.1), which is the sum of squared feature differ-
ences across edges, thereby yielding smooth node embeddings that are harmonic functions on the
graph |[Rossi et al.[(2022). A function f is defined as "harmonic" if it satisfies the discrete Laplace
equation L f = 0, where L := D — A is the combinatorial graph Laplacian (with A as the adjacency
matrix and D as the diagonal degree matrix). This condition is equivalent to the averaging rule
flu) = ﬁ(u) > oou f (v) for every unlabeled node u. Minimizing the GDE enforces this harmonic
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Table Al: Model Category Summary with Fusion Strategy, Graph Modeling, and Attention Usage

Category Model Type Fusion Method Novel Model Graph Structured Modeling Attention-Based
Single- Simple DNN X X X X
Source Simple GNN X X Vv X
(No Simple DiffPool X X VA X
Fu- Simple Transformer X X X v
sion) Simple Graph Transformer X X VA vV
Concatenation Concatenated Features (DNN) va X X X
Fu- Concatenated Features (GNN) VA X v X
sion Concatenated Features (DiffPool) Vv X VA X
Multimodal MMGL|Zheng et al. (2022 VA X v vV
Fu- MultiMoDN|Swamy et al. {2023 VA X X X
sion MedFuse Hayat et al. (2022) v X X X
Base- FlexCare|Xu et al. [2024] va X X VA
lines Meta-Transformer (MT)|Ma et al. 2022 Vv X X v
MGMT MGMT w/o Adaptive Depth Selection v V4 vV vV
Ab- MGMT w/o Supernode Selection va va va VA
la- MGMT w/o Inter-graph Edges Vv A vV VA
tion MGMT w/o Intra-graph Edges va va Vv Vv
Vari- MGMT w/o Meta-Graph and Adaptive Depth Vv 4 V4 vV
amts

Proposed Model ~ MGMT Vv v v v

property, a classical result in graph-based semi-supervised learning [Zhu et al.| (2003)); |[Zhou et al.
(2003). Such smoothness-based regularization has proven beneficial in both classical label prop-
agation and modern GNNs when the assumption holds, as it suppresses noise and aligns learned
representations with network structure.

From a spectral viewpoint, GDE minimization penalizes “high-frequency” components (rapid changes
across adjacent nodes), and standard message passing performs neighborhood averaging (a low-pass
operation), which denoises features while preserving cluster-level structure; this explains the strong
empirical performance of label propagation and Graph Convolutional Network (GCN)-style models
on homophilous benchmarksShuman et al.| (2013); Jiang et al.| (2019); Wu et al.| (2019); |Oono &
Suzukil (2019). If the smoothness prior is violated (heterophilic graphs where adjacent nodes differ),
aggressive smoothing can blur distinctions and degrade performance Zhu et al.|(2020). This “feature
mixing” is well documented: on heterophilous graphs, even shallow neighbor-averaging can wash out
class signal, and deeper stacks exacerbate over-smoothing, where node embeddings become nearly
indistinguishable and both effects harm separabilityWu et al.| (2019); L1 et al.| (2018). MGMT’s
design explicitly leverages these principles: it links nodes across graphs only when their latent
representations are similar, extending the homophily prior to inter-graph connections. Concretely,
by thresholding latent similarity, MGMT restricts message passing to approximately homophilous
(low-GDE) superedges, mitigating heterophily-induced feature mixing; this mirrors observations
that learning/selecting edges to reduce Dirichlet energy improves downstream accuracy [Chen et al.
(2020). By keeping cross-graph GDE low, this construction ensures information is shared along
feature-consistent (smooth) superedges, thereby bolstering MGMT’s empirical performance.

Definition 2.1 (Graph Dirichlet Energy). For a graph with adjacency matrix A and node feature
matrix X, the Dirichlet energy (graph signal smoothness) is defined as

1 1
QA X) = 2 > Al — aj)* = ﬁtr(XTLX),
4,J

where L = D — A is the graph Laplacian and D;; = ) j A;; |Chen et al.| (2020). This quantity
measures how smoothly the features X vary across the edges. A smaller (A, X)) indicates that
connected nodes have more similar features.

A trivial minimizer of (A, X) is the disconnected graph with no edges (A = 0), yielding the
minimum GDE of 0 |Chen et al.|(2020). However, in practice, one often imposes constraints
such as a fixed number of edges, a connectivity requirement, or regularization terms to avoid this
degenerate solution. The objective thus becomes to add only the most "homophilous" edges that
connect similar nodes, thereby keeping the GDE low. Under this motivation, minimizing Q(A, X)
reduces to selecting the most “homophilous” edges. MGMT implements this principle directly. It
computes all pairwise similarities between supernode embeddings and forms superedges only if the
similarity surpasses a data-driven threshold automatically selected via cross-validation (detailed in
Section . Finally, we note that while the GDE in Definition 2.1 is based on squared feature
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Table A2: Accuracy (+ standard error) for different models across datasets, grouped by model family.

Category Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3
DNN 62.13£091  30.62+£228 61.87+£227 56.10£1.13 63.74 £0.56
Feature-Concatenation GNN 70.17 £0.93  27.80 £234 55.64 £236 6420+ 120 67.17 £ 0.60
DiffPool 6940 £0.70  31.53£1.76 5378 £1.75 65.80£089 64.81 £0.44
MMGL 7938 £0.52 3928 £193 5920+ 1.04 62.80£084 68.75=£0.12
MultiMoDN 7644 £0.75 37.82+£182 6040+£1.67 61.50+£ 1.01 65.10 £ 0.50
General-purpose Multimodal ~ MedFuse 7527 +£0.84 3517+ 171 5970 £ 152 6435+ 096  63.84 + 0.53
FlexCare 76.14 £0.79  3642+£188 61.10£ 1.39  69.82 £ 091 64.03 £ 0.56
MT 8129 +092 3920+296 6231+124 6630+ 1.12 69.24 +0.34
AMIGO 79.23 £1.04 3892+132 58.68+£212 65.73+£089 7042 +£0.79
SOTA Multi-graph MaxCorrMGNN 7743 £ 1.35 3597 £2.73 56.23 £+ 1.32 63.72 + 1.64 71.46 £ 1.01
MGLAM 8129 +£096 3893+1.02 61.96+1.04 6229+129 69.52+0.39
Proposed model MGMT 83.11 £ 0.84 4213 +2.52 6547 +239 6990+ 119 73.21 + 0.59

differences, we observed in practice that MGMT’s performance is not sensitive to the specific choice
of similarity metric used for this filtering step (Section[A11).

A6 DETAILED DESCRIPTIONS OF BASELINE MODELS

This appendix details the baselines used to evaluate our method. Table [AT] provides a summary
comparison of the baseline models.

A6.1 SINGLE-SOURCE MODELS (NO FUSION)

We assess per-source predictive signal with five baselines: (i) DNN on flattened node features (edges
ignored); (i) a message-passing GNN with graph-convolution layers over the given topology; (iii)
DiffPool for hierarchical pooling into coarser clusters |Ying et al.| (2018)); (iv) Transformer over
node-feature sequences (no structural encoding); and (v) Graph Transformer that attends over 1-hop
neighborhoods to incorporate local structure.

A6.2 FEATURE-CONCATENATION FUSION MODELS

These models use early fusion: each source is encoded by a source-specific extractor, the resulting
embeddings are concatenated, and a shared DNN classifier is applied. Concretely, we consider (i)
DNN-fusion with per-source DNN encoders; (ii) GNN-fusion with per-source GCN layers and graph-
level pooling prior to concatenation; and (iii) DiffPool-fusion using per-source DiffPool encoders to
produce graph-level embeddings that are concatenated and classified by a DNN.

A6.3 GENERAL-PURPOSE MULTIMODAL FUSION

We benchmark against recent multimodal frameworks with distinct fusion strategies: (i)
MMGL [Zheng et al.| (2022), which learns shared/specific embeddings via modality-aware rep-
resentation learning and models subject-level similarity with a GNN; (ii) MultiMoDN [Swamy
et al.[(2023)), a modular design with independent encoders and late fusion, without structural rea-
soning; (iii)) MedFuse Hayat et al.|(2022), which aligns modalities in a shared latent space using
contrastive/reconstruction losses, without explicit intra- or inter-modality structure; (iv) FlexCare |Xu
et al.|(2024), which uses modality-specific encoders and a Transformer fusion layer for heterogeneous
clinical data, but no graph-based reasoning; and (v) Meta-Transformer (MT) |[Ma et al.| (2022)), which
uses modality prompts with a shared Transformer over unstructured inputs, without topological
modeling. MGMT differs by jointly capturing both intra- and inter-graph relations through an
attention-based meta-graph.

Most of these benchmark models were not originally designed for graph-structured inputs (they
expect tabular, imaging, or clinical features). To compare fairly, we first converted each graph into a
fixed-length vector by running the same graph-specific encoder used in MGMT (TransformerConv
with global pooling and adaptive-depth aggregation) and using the resulting graph-level embedding
as a “tabular” feature vector. For methods with multi-stream inputs (e.g., MultiMoDN, FlexCare,
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MedFuse), we fed one embedding per graph; for single-stream methods (e.g., Meta-Transformer),
we concatenated the graph embeddings. All baselines used identical train/val/test splits, per-graph
standardization, a learned linear projection to align embedding dimensions when required, and the
same Optuna budget for hyperparameter tuning.

A6.4 MULTI-GRAPH LEARNING MODELS

Finally, we include three recent multi-graph learning methods as baselines that explicitly operate
on multiple graphs per entity: (i) AMIGO (Nakhli et al.,2023) is a sparse multi-graph transformer
model that processes multiple modality-specific graphs for each subject and uses a shared context
mechanism to exchange information across graphs. Each graph is first encoded by a graph transformer
to obtain a graph-level representation; AMIGO then employs cross-graph attention between these
representations and a shared context token to produce a fused embedding used for prediction;
(ii) MaxCorrMGNN (D’Souza et al}, [2023)) is a multi-graph neural network that encourages the
embeddings of different graphs from the same subject to be maximally correlated. It learns graph-
level embeddings for each graph and optimizes a correlation-based objective across graphs, followed
by a classifier on the fused embedding. This explicitly aligns graph-specific representations while
retaining graph-specific encoders; MGLAM treats each subject as a "bag of graphs", and
learns adaptive weights over graphs within the bag. It first computes graph-level embeddings for each
graph, then aggregates them via an attention-like mechanism that learns per-graph importance scores,
yielding a subject-level representation for downstream prediction.

In our experiments, all three methods are instantiated on the same graph-specific design as MGMT,
using the same per-graph encoders (where applicable), train/validation/test splits, and comparable
hyperparameter tuning budgets. Unlike MGML-style multimodal fusion, these methods are designed
to handle multiple graphs per subject, but they fuse graphs at the level of graph embeddings or bags
of graphs. In contrast, MGMT constructs an explicit meta-graph over supernodes, enabling fine-
grained cross-graph message passing that preserves intra-graph topology while modeling inter-graph
structure.

A7 ABLATION STUDY

We assess the contribution of each MGMT component through a series of ablations where one or
several modules are removed while the rest of the architecture is kept fixed: (i) w/o Adaptive Depth
Selection: replace confidence-weighted layer aggregation with final-layer-only features, disabling
depth-wise ensembling; (ii) w/o Supernode Selection: bypass attention-based node filtering so that all
nodes enter the meta-graph; (iii) w/o Inter-graph Edges: keep only within-graph edges, removing
cross-graph interactions in the meta-graph; (iv) w/o Intra-graph Edges: keep only cross-graph edges,
discarding within-graph structure for the supernodes; (v) w/o Meta-Graph and Adaptive Depth: omit
the meta-graph entirely, fix encoder depth, and perform early fusion via concatenated pooled graph
outputs.

Numerical results for each ablation across datasets are reported in Table [A3] with corresponding
accuracy plots in Fig. 2] Several consistent patterns emerge.

First, removing the meta-graph and adaptive depth leads to the largest degradation on all tasks (e.g.,
from 83.11% to 70.12% on Alzheimer and from 42.13% to 27.80% on LFP). This variant reduces
MGMT to an early-fusion model over pooled graph embeddings, eliminating both subgraph-level
cross-graph message passing and the ability to combine information across depths. The sharp drop
indicates that the meta-graph is not a cosmetic addition: explicitly modeling interactions between
a small set of informative supernodes drawn from the multiple graphs of each entity is crucial for
integrating heterogeneous graphs and stabilizing predictions in multi-graph settings.

Second, disabling adaptive depth (“w/o Adaptive Depth Selection”) consistently hurts performance
(e.g., from 83.11% to 81.20% on Alzheimer, and from 42.13 to 40.64% on LFP). Together with
the depth-confidence and attention visualizations in the main paper (Fig. [6), this supports our
interpretation of the depth-aware module as more than a simple multi-layer average: layers with
high confidence scores focus their attention on behaviorally relevant substructures (e.g., distal CA1
in the LFP dataset), whereas low-confidence layers exhibit more diffuse patterns. When we force
the model to use only the final layer, it can no longer adaptively emphasize those depths whose
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Table A3: Accuracy (+ standard error) for different ablation models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3
MGMT w/o Adaptive Depth Selection 81.20+0.85  40.64£2.23 64.20 +2.40 68.80 + 1.17 71.45+0.57
MGMT w/o Supernode Selection 7825+0.87 41.07+£2.19 62.11£2.16 67.30 £ 1.07 69.31 £0.53
MGMT w/o Inter-graph Edges 76.59+0.88  3891+2.14 61.72+2.25 66.90 + 1.21 68.35+0.51
MGMT w/o Intra-graph Edges 62.40+2.43  39.08 £0.97 63.09 +2.42 66.62 +1.23 66.75 + 0.62
MGMT w/o Meta-Graph and Adaptive Depth ~ 70.12+0.93  27.80+2.34 55.64 +2.36 64.20 + 1.20 67.17 + 0.60
MGMT 83.11+0.84 42.13+2.52 65.47 +2.39 69.90 +1.19 73.21 +0.59

connectivity patterns are most aligned with the task, leading to more misclassifications in cases that
require multi-scale aggregation.

Third, removing supernode selection (“w/o Supernode Selection”) yields a moderate but consistent
drop relative to full MGMT across all datasets. This is consistent with the threshold-sensitivity
analysis (Section [AT0) for the supernode importance score: very low thresholds allow keeping many
weakly informative nodes in the meta-graph, making it denser and noisier. In contrast, moderate
thresholds strike a balance between retaining salient subgraphs and suppressing noise. The ablation
corresponds to the extreme case where all nodes are kept (effectively 7 — 0), and the resulting
performance degradation indicates that the sparsity-inducing bottleneck provided by supernode
selection is important for denoising and interpretability.

Finally, the inter- and intra-graph edge ablations clarifty how MGMT exploits structure at two
complementary levels. Removing inter-graph edges (“w/o Inter-graph Edges”) prevents information
from flowing across graphs of the same entity; accuracy drops are noticeable (e.g., from 83.11% to
76.59% on Alzheimer), indicating that cross-graph alignment provides a clear gain on top of strong
graph-specific encoders. In contrast, removing intra-graph edges (“w/o Intra-graph Edges”) discards
the original within-graph topology and forces the model to rely solely on similarity-based links
between supernodes from different graphs; this leads to a much larger degradation on real datasets
(e.g., Alzheimer accuracy falls to 62.40%). This pattern is consistent with our similarity-threshold
study in Section[AT0} when the inter-graph similarity threshold + is too low, the meta-graph becomes
overly dense and spurious cross-graph edges blur informative graph-specific structure, whereas very
high v removes many genuinely aligned supernodes and under-utilizes cross-graph information.
The best performance arises at intermediate « values, where inter-graph edges selectively connect
strongly aligned supernodes and, as formalized by our smoothness analysis in Section[A3] tend to
reduce the Dirichlet energy of the label function on the meta-graph. Taken together, the ablations
support the view that MGMT needs both well-structured intra-graph connectivity to encode subject-
or modality-specific patterns, and a sparse, similarity-driven set of inter-graph edges to tie together
truly corresponding regions across graphs; removing either source of structure degrades performance,
with the largest failures occurring when the more informative structure for a given task (typically the
intra-graph topology) is removed.

Software implementing the algorithms and data experiments is available online at:
https://anonymous.4open.science/r/new_submission-33A6

A8 DETAILS ON SIMULATION SETTINGS

This section provides detailed descriptions of the synthetic data generation processes used in our
simulation studies. We consider two controlled settings designed to evaluate the performance of
MGMT under varying conditions of noise, feature dependency, and label complexity. Below, we
describe the procedures for Setting 1, which uses modality-specific noise and a linear classification
rule, and Setting 2, which introduces temporal dependencies and nonlinear label generation.

SETTING 1: FEATURE GENERATION WITH MODALITY-SPECIFIC NOISE AND LINEAR
CLASSIFICATION RULE

Let each graph (modality in this case) consist of N nodes and d features per node. Define a subset of

informative nodes Vy C {1,..., N} with |[Vp| = Ny < N, and let V; = {1,..., N} \ 1} denote the
non-informative nodes.
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For each graph ¢ = 1,...,n within each sample £ = 1, ..., K, with graph-specific noise level o;,
node features are generated as follows:

« informative nodes j € Vj have features 3351”) ~ N(0,%;), where ; € R?*9 has ones on the
diagonal and off-diagonal entries sampled uniformly from [—o;, 0;].
* Non-informative nodes j € V; have features w§-k’i) ~ Unif(0, 0.5)%.

The graph-specific graph-level binary label yik) € {0, 1} is determined by the features of informative
nodes:

d
1 i
o =T g 2 el e >0 ) B~ N0,
ol
JjeEVH r=1

To enable multimodal fusion, a shared target variable is defined by aggregating graph-specific labels:

k k
ys(ha)red =1 (Z wiyz( ) 2 T) ’
i=1
where w; € [0, 1] are graph-specific weights summing to one, and 7 € [0, 1] is a threshold parameter.

SETTING 2: TEMPORAL FEATURE DEPENDENCY VIA GAUSSIAN PROCESS

In this setting, features of informative nodes are generated using a Gaussian Process (GP) to introduce
temporal dependency across the d features. Fort = 1,...,d, let z; ~ Unif(0, 1), and define the GP
with zero mean and a squared exponential kernel:

2
2 (z¢ — )
k(zy,xp) = 0 exp <_12 )
with length-scale | = 1 and variance % = 1.
For non-informative nodes, features are also sampled from a GP with the same mean function, but

with increased kernel variance o2 = 2.5, thereby injecting greater noise and reducing relevance for
the target prediction.

The binary target label is defined using a nonlinear and complex function of the averaged features
across informative nodes. Let )
Tr=— x; € R?
Vol Z J ’

j€Vo
and define three projection vectors eq, es, €3 € R<, each selecting a distinct third of the features:

e; =1[1,...,1,0,...,0],
—— ——
d/3 2d/3
e =10,...,0,1,...,1,0,...,0],
——— N——
d/3 d/3 d/3

2d/3 d/3
The graph-level label is then computed as:
y=1(sin(z 1) cos(z"es) + (x°) ez +e >0), &~ N(0,0.1),
where x°2 denotes the element-wise square of z, i.e., the Hadamard power.

A9 EXPERIMENTAL SETTING AND EFFICIENCY ANALYSIS

We evaluate the computational complexity and efficiency of MGMT through both theoretical and
empirical analysis. This section is structured as follows: Section[A9.1]presents a theoretical runtime
complexity analysis of MGMT’s core components; Section[A9.2]provides empirical scalability results
across four key input dimensions; Section[A9.3]offers runtime profiling and efficiency comparisons,
including infrastructure details and training costs.
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Figure A7: Scalability analysis of MGMT with respect to key input parameters. We evaluate the
empirical runtime of MGMT under controlled variations of (i) number of nodes per graph (), (ii)
number of graphs per sample (n), (iii) number of samples (log scale), and (iv) feature dimensionality
(d).Runtime scales quadratically with N due to the dense self-attention in the graph-specific Graph
Transformers (O(N? - d)), and linearly with n, confirming the modular and scalable design of MGMT.
Sample size and feature dimension contribute to runtime growth in accordance with expectations, with
minor deviations at small scales. Linear and quadratic regression fits are shown for interpretability,
along with corresponding R? values.

A9.1 THEORETICAL COMPLEXITY ANALYSIS.

The total computational complexity of MGMT is governed by three main components: (1) graph-
specific Transformer encoders, (2) meta-graph construction, and (3) the final meta-graph Transformer.

Graph-specific Transformer encoders The computational complexity depends on the GT back-
bone choice. For a graph G; with N; nodes and d-dimensional features, the GAT backbone in
Section 3.1.1, attention is restricted to local neighborhoods, yielding O(|€;|d) per graph G; with |&;|
edges and d-dimensional features, totaling O(n|€|d) across n graphs. For dense attention (e.g.,
Graphormer |Ying et al.| (2021), every node attends to all others, resulting in O(N?d) per graph with
N; nodes, or O(nN“d) total. For sparse attention (e.g., top-K [Zhao et al.| (2019)), where each
node attends to K < N; neighbors, the complexity is O(NV; K d) per graph, or O(nN K d) total.

Meta-graph construction Two steps: (a) supernode extraction by scoring and thresholding nodes
is O(N;) per graph, totaling O(nNN); (b) superedge creation computes pairwise similarities among
selected supernodes. Let S; be supernodes in graph ¢ and Sior = ), S;. This step costs (’)(SfOml ),
i.e., O(n?S52%d) for roughly S per graph, with S; < N;.

Meta-graph Transformer Applied over Sy supernodes, yielding O(SZ2,,
0O (n2S5%d)).

The dominant term is the per-graph encoder, >, O(N?d). Meta-graph construction and inference
operate on a much smaller set of supernodes (Siora1 < > , Vi) and thus are comparatively lightweight.
Quadratic factors at the meta-graph level are in Sy (and n), which remains moderate by design.

d) (approximately

A9.2 SCALABILITY ANALYSIS

To validate the theoretical complexity discussed in Section[A9.1] we empirically evaluated the runtime
behavior of MGMT with respect to four key input parameters: number of nodes per graph (NV),
number of graphs per sample (n), number of samples, and node feature dimensionality (d). In each
experiment, we fixed the model architecture, training epochs (100), and batch size to enable consistent
runtime comparisons, and reported runtimes averaged over 10 independent runs. Results in Figure [A7]
align with theory and show efficient scaling.

Runtime vs. Nodes per Graph (N). As predicted by the O(N? - d) complexity of Transformer-
based attention, the observed runtime increases superlinearly with V. The curve aligns closely with a
quadratic fit (R? = 0.999), reflecting the cost of dense all-pairs attention in graph-specific encoders.

Runtime vs. Number of Graphs per Sample (7). The runtime grows approximately linearly with
n, validating the modular structure of MGMT where graph-specific encoders operate in parallel and
the size of the meta-graph remains bounded. This confirms that MGMT scales well with respect to
the number of graphs in practical regimes and supports our theoretical analysis in Section[A9.1]
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Runtime vs. Number of Samples. We observe a near-quadratic growth in runtime (on a log scale)
as the number of samples increases, consistent with expectations. This is attributed to repeated
forward passes and meta-graph construction across samples, particularly in mini-batch training
settings.

Runtime vs. Feature Dimensionality (d). Despite the theoretical linear dependence on d in
attention layers, the empirical curve remains nearly flat. This is due to early feature compression in
MGMT’s architecture, which transforms high-dimensional node features into a lower-dimensional
latent space prior to attention and reasoning steps.

A9.3 RUNTIME PROFILING AND MODEL EFFICIENCY

Building on the complexity analysis and scalability trends in Section[A9.2] we profile per-epoch
runtime to isolate the cost of each architectural component. Table [A4]reports average epoch times for
MGMT and graph-attention baselines (those that perform graph reasoning and/or meta-graph fusion).

Baselines MGMT’s meta-graph reasoning adds minimal overhead: it is faster than MMGL on
all datasets except LFP, despite including supernode detection and adaptive depth. Ablations that
remove intra-graph edges or the meta-graph yield small speedups but reduce accuracy (see Table[A2)),
illustrating a speed—accuracy trade-off.

MultiMoDN, MedFuse, and FlexCare are omitted from Table [A4] because they do not use graph
representations or attention; direct runtime comparison to graph-based models would be misleading.
These methods operate on tabular inputs with shallow fusion, yielding lower computational cost by
design but consistently lower accuracy than MGMT (Table [AZ)).

Table [A5] decomposes MGMT’s epoch time into data preparation, graph encoders, supern-
ode/superedge construction, meta-graph formation, and the final classifier. The dominant cost
is the graph Transformer encoder, consistent with the O(N?2d) complexity; meta-graph construction
and reasoning are comparatively lightweight due to the compact meta-graph.

Overall, MGMT balances expressivity and efficiency: it achieves higher accuracy than non-graph and
shallow fusion baselines while maintaining practical per-epoch runtimes.

Compute Infrastructure and Training Cost. All experiments were conducted on a shared CPU-
based server provided by our lab. Each training job utilized 4 parallel CPU workers and approximately
4 GB of RAM. No GPU resources were used.

For baseline experiments, we trained a total of 250 models. Each model took on average 5.5 hours to
train, amounting to approximately 1,375 CPU hours.

For MGMT model training and hyperparameter tuning, the total compute time was as follows:

* LFP dataset: 100 Optuna trials, each taking 71 minutes on average, resulting in approximately
118.3 CPU hours

* Alzheimer dataset: 100 Optuna trials, each taking 5 hours and 18 minutes on average, resulting in
approximately 530 CPU hours

 Simulation Setting 1: 50 iterations, each taking 29 minutes on average, resulting in approximately
24.2 CPU hours

* Simulation Setting 2: 50 iterations, each taking 31 minutes on average, resulting in approximately
25.8 CPU hours

 Simulation Setting 3: 50 iterations, each taking 49 minutes on average, resulting in approximately
40.8 CPU hours

In total, MGMT-related training required approximately 739 CPU hours. Additional compute time
spent on development, debugging, and model refinement was not recorded.
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Table A4: Comparison of average epoch runtime (in seconds) between various meta-graph configura-
tions and baseline models across each dataset.

Model Variant Alzheimer  LFP Data  Experiment 1 Experiment 2 Experiment 3
MMGL 174.23 63.12 21.85 29.02 33.98
MGMT w/o Meta-Graph and Adaptive Depth 174.10 64.33 15.10 17.20 32.60
MGMT w/o Intra-graph Edges 156.77 63.69 15.72 18.83 32.71
MGMT w/o Supernode Selection 215.46 59.61 19.91 19.31 35.61
MGMT 162.93 67.33 16.67 17.59 33.01

Table A5: Detailed epoch running time (in seconds) for the MGMT model across different datasets.

Dataset Total DataPrep  Graph-specific encoding ~ SuperEdge & Node Extraction =~ Meta-Graph  Final Model
Alzheimer 162.93 1.81 119.24 28.64 1.56 13.18
LFP Data 67.33 0.88 59.74 1.38 1.19 1.25
Experiment 1 16.67 0.23 16.26 0.07 0.06 0.05
Experiment 2 17.59 0.44 16.40 0.26 0.25 0.24
Experiment 3 33.01 0.51 3225 0.09 0.08 0.08

A10 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

The MGMT framework includes several hyperparameters that influence model performance and
computational efficiency. In this section, we investigate the sensitivity of two key hyperparameters:
the attention score threshold (7) used for supernode selection, and the cosine similarity threshold ()
used in inter-graph edge construction.

A10.1 ATTENTION SCORE THRESHOLD (SUPERNODE SELECTION)

To assess the impact of 7, we conducted a controlled experiment on synthetic data generated under
Setting 1 (see Appendix [AS). We have a total of 100 samples and 5 graphs per each sample, where
each graph consists of 10 nodes, with 30 features per node. We trained all models for 100 epochs and
averaged accuracy and runtime over 50 repetitions.

Intuitively, decreasing 7 results in more nodes being selected as supernodes, increasing computational
cost and potentially introducing noisy or redundant information. In contrast, higher thresholds select
fewer supernodes, reducing runtime but possibly discarding useful information. As shown in Fig-
ure[A8]left panel, the runtime decreases steadily as 7 increases, which aligns with the reduced number
of supernodes and associated computations. However, model accuracy shows a non-monotonic
trend: it peaks at 7 = 0.3 (64.5%) and declines on either side. This behavior illustrates a tradeoff
between overfitting (when too many nodes are included) and information loss (when too few nodes
are retained).

A10.2 COSINE SIMILARITY THRESHOLD (INTER-GRAPH EDGE CONSTRUCTION)

Moreover, to assess the effect of the cosine similarity threshold « used for inter-graph edge construc-
tion, we performed a controlled sensitivity analysis using synthetic data generated under Setting 1
(see Appendix[A8). We have a total of 100 samples and 5 graphs per each sample, where each graph
consists of 100 nodes, with 30 features per node. All models were trained for 100 epochs, and both
accuracy and runtime were averaged over 50 repetitions.

As shown in Figure[Ag]|right panel, runtime remains largely stable across different +y values, indicating
that inter-graph edge density has minimal impact on computational overhead since meta-graph
construction occurs post graph-specific encoding and operates over a reduced number of supernodes.

Accuracy, however, demonstrates a non-monotonic trend. When + is very small, the meta-graph
becomes fully connected, enabling the model to consider all potential inter-graph interactions.
Although this theoretically maximizes expressiveness (since attention-based transformers can learn
to prioritize relevant connections), it increases the risk of overfitting due to the inclusion of noisy
or spurious edges. On the other hand, when -y is close to 1, the meta-graph becomes sparse or even
disconnected, leading to an underutilization of cross-graph dependencies.
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Figure A8: Sensitivity analysis of two key hyperparameters in the MGMT framework. (a) Left two
plots: The attention score threshold 7 controls supernode selection. Lower thresholds include more
nodes, increasing runtime and potentially introducing noise, while higher thresholds risk discarding
informative nodes. Accuracy peaks at 7 = 0.3, suggesting a balance between expressiveness and
overfitting. (b) Right two plots: The cosine similarity threshold « governs inter-graph edge construc-
tion in the meta-graph. Accuracy peaks at moderate values of v, reflecting a trade-off between dense
connectivity (risking overfitting) and sparsity (losing cross-graph interactions). Runtime remains
largely stable across v, as meta-graph construction operates over a small number of supernodes.

The highest accuracy occurs at intermediate values (e.g., v = 0.4), suggesting that retaining only
the most semantically meaningful inter-graph links allows the model to balance expressiveness with
robustness. These findings reinforce the results from our ablation studies (Figure [2), which demon-
strate that incorporating carefully selected inter-graph edges substantially improves downstream
performance.

A1l IMPACT OF SIMILARITY METRICS IN META-GRAPH CONSTRUCTION

The construction of inter-graph edges in the meta-graph relies on computing pairwise similarities
between node embeddings extracted from different graphs. While cosine similarity is commonly
adopted due to its scale-invariant properties, other alternatives such as Pearson correlation, Euclidean
distance, and dot product, may also be used to define similarity across nodes. This section evaluates
the extent to which the choice of similarity metric affects downstream performance.

To investigate this, we conducted a controlled experiment on a synthetic dataset generated under
Setting 1 (see Appendix [A8)). For each similarity function, we compute full cross-graph similarity
matrices between node embeddings and apply a fixed top-k rule with £ = 10 to select inter-graph
edges, ensuring identical sparsity across metrics. Each configuration is run 50 times; we report the
mean accuracy.

We compare cosine similarity, Pearson correlation, negative Euclidean distance converted to similarity
via 1/(1 + d;;), and dot product. Results show modest but consistent differences: dot product attains
the highest accuracy (0.661), followed by cosine (0.654), Pearson(0.648), and Euclidean (0.642). The
spread is small (1.9 percentage points), indicating limited sensitivity to the similarity choice under
this setup.

A12 SINGLE-GRAPH AND MULTI-GRAPH RESULTS WITH ALTERNATIVE GT
BACKBONES

In the main text, we implement MGMT with a localized GAT-style GT backbone. To verify that
MGMT is not tied to this particular choice and to better understand the role of local versus global
attention, we conducted two sets of complementary experiments. First, we replaced GAT with several
state-of-the-art GT variants in a single-graph setting on the LFP neuroscience dataset, with and
without our depth-aware aggregation. Second, we implemented MGMT with different depth-aware
GT backbones used both as per-graph feature encoders and as the final feature learning and prediction
module on the meta-graph. This section reports and analyzes these results.
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Table A6: Comparison of test accuracy between GT variations (GraphGPS, GRIT, Exphormer, EGT,
GAT) and their depth-aware counterparts on the LFP dataset (single-graph setting).

Models SuperChris Barat Stella Mitt Buchanan

GraphGPS 3858 £0.09 3145+£139 3742+£1.01 31.10+1.66 3532+ 1.81
Depth-aware GraphGPS aggregation ~ 39.03 & 1.76 3097 & 1.17 3645+ 131  30.65£ 1.57 37.74 £2.07
GRIT 3576 £1.71 3177 £ 185 40.61 £043 3058 +1.96 32.64 +2.04
Depth-aware GRIT aggregation 38.40£250 31.63£198 40.18 £1.09 3212+ 139 3416 +2.29
Exphormer 4023 £ 145 3226+ 1.77 3565+ 1.67 29.84 +158  35.65+2.08
Depth-aware Exphormer aggregation ~ 42.04 + 1.65  38.54 + 142  39.17 +£2.16  34.024+ 1.71  39.50 & 1.98
EGT 4023 +1.95 33234+136 3677 £2.19 2871 £152 38.06 £ 1.60
Depth-aware EGT aggregation 40.06 +1.36 3274 +1.88 3887 £ 156 33.71 £2.10  40.97 + 1.03
GAT 33.16 £ 1.08 3246+ 134 3557 +1.42 3052+1.42 3142+ 1.96
Depth-aware GAT aggregation 36.42 £ 1.71 4043 £1.09 4031 +£1.52 3479+141 3417+ 191

A12.1 SINGLE-GRAPH LFP EXPERIMENTS WITH DIFFERENT GT BACKBONES

Table [A6| compares test accuracy on the LFP dataset when training single-graph models separately
on each animal using different GT backbones, either in their vanilla form or augmented with our
depth-aware aggregation mechanism. Across all GT backbones tested (local, global, and sparse), the
depth-aware version consistently improves performance over the corresponding vanilla backbone.
The relative gains are largest for backbones whose effective receptive field is more local (GAT) or
sparsified (Exphormer, GRIT, EGT), where depth-aware aggregation compensates for limited single-
layer reach by mixing information across multiple depths. In contrast, GraphGPS, which already
combines local message passing and global attention with strong residual connections, benefits only
marginally from our depth-aware aggregation. These results support the claim that depth-aware
aggregation is a generic, backbone-agnostic enhancement and not specific to GAT.

Replacing GAT with more advanced GT backbones (GraphGPS, GRIT, Exphormer, EGT) yields
modest but consistent gains at the single-graph level, confirming that the LFP task does benefit from
long-range or sparse global attention when graphs are treated independently. However, depth-aware
aggregation narrows this gap substantially: depth-aware GAT becomes competitive with depth-aware
Exphormer and depth-aware EGT, showing that our proposed L-hop mixing mechanism is often as
important as the specific GT backbone.

A12.2 MGMT WITH DIFFERENT GT BACKBONES

We next plug these depth-aware GT backbones into MGMT and evaluate in the multi-graph regime.
Here, each depth-aware GT backbone has been used both as a per-graph encoder and as the final
feature learning and prediction module on the meta-graph. Table [A7|reports the results on the LFP,
Alzheimer, and simulation datasets.

On the LFP dataset, all depth-aware MGMT variants based on GAT, GraphGPS, GRIT, and Exphormer
attain very close accuracies (41.86-42.24%), with absolute differences below 0.4 points. A similar
pattern holds for the Alzheimer dataset, where the best-performing variants (depth-aware GAT and
depth-aware Exphormer) achieve nearly indistinguishable accuracies within their reported uncertainty.
Thus, once we move to the multi-graph regime and apply MGMT’s meta-graph fusion, the specific
choice of GT backbone becomes substantially less critical than in the single-graph setting.

These experiments clarify the relationship between GT expressivity and MGMT’s meta-graph mecha-
nism. In MGMT, the core object is the meta-graph built from supernodes and superedges. Supernodes
are defined via depth-aggregated attention on edges: for each node u we use the score

where the «,,, are learned and updated at every layer but are always computed with respect to the
underlying edge set . With localized GAT-style attention, £ consists only of the true graph edges
(plus self-loops), so a high supernode score has a clear meaning: node u sends strong attention
along its real anatomical or structural connections. This is exactly the semantics MGMT needs when
it selects supernodes, defines superedges, and constructs a meta-graph that is intended to reflect
task-relevant structure in the original LFP/MRI networks.
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Table A7: Comparison of test accuracy between MGMT variants created using different GT variants
for feature encoding and Final Feature Learning and Prediction (Depth-aware GAT aggregation,
Depth-aware GraphGPS, Depth-aware GRIT, Depth-aware Exphormer, and Depth-aware EGT aggre-
gation)

Models LFP Dataset Alzheimer Experiment 1 Experiment 2 Experiment 3
GAT 40.64+0223  81.20+0.85 64.20 +2.40 68.80 + 1.17 71.45+0.57
Depth-aware GAT aggregation 4213+0.252 83.11+0.84 65.47 +2.39 69.90 +1.19 73.21+0.59
Depth-aware GraphGPS aggregation 41.94+0.162  80.12+0.67 62.37 + 1.56 67.49 +0.98 72.38 +0.83
Depth-aware GRIT aggregation 4224 +0345 8259+1.03 61.06 +2.31 69.23 +1.01 72.98 +0.61
Depth-aware Exphormer aggregation ~ 41.86 + 0.427 83.29 £ 0.58 62.93 £1.92 67.46 £ 1.32 7246 £0.49
Depth-aware EGT aggregation 40.08+0.162  81.79+1.26 60.52 + 1.86 68.96 + 0.94 71.30 £ 0.49

Several SOTA GT backbones, however, substantially modify this edge set. EGT and Graphormer-
style models effectively allow attention between all node pairs, and Exphormer adds expander edges
and virtual node connections. In these cases, E contains a mix of true and artificial edges, so
>~ (u,v)e B Quv blends attention along physical connections and model-constructed links. This is
often beneficial for single-graph prediction (hence the stronger vanilla GT backbones in Table[A6),
but it dilutes the structural meaning of supernodes and superedges and can “contaminate” the meta-
graph by injecting artificial connectivities, which is undesirable in MGMT’s interpretability-driven
setting. GRIT, on the other hand, provides an instructive intermediate case. Its design combines
global, kernelized attention with a sparsified connectivity pattern that is optimized for single-graph
prediction, and in the vanilla setting, this yields clear gains over GAT (Table [A6). In MGMT,
however, GRIT’s sparsified but topology-modified attention pattern slightly alters the edge set used
for supernode scoring and superedge construction, so the resulting meta-graph is not systematically
better aligned with the underlying anatomical or structural connectivity than the one induced by
localized GAT attention. As a result, GRIT achieves similar but not consistently superior performance
to depth-aware GAT within the MGMT framework, despite its advantage in the single-graph regime.

We therefore observe a trade-off. Global/sparse GT backbones can be slightly stronger in single-
graph tasks, whereas topology-preserving localized attention is better aligned with MGMT’s goal of
building an interpretable meta-graph from true edges. Empirically, once depth-aware aggregation and
meta-graph fusion are enabled, MGMT with depth-aware GAT, GraphGPS, GRIT, and Exphormer
all achieve very similar performance (Table[A7), and accuracy is stable across a range of supernode
thresholds 7 (Appendix [AT0). This indicates that the main gains in MGMT come from depth-aware
multi-scale mixing, and more importantly the supernode/meta-graph construction that explicitly
encodes and interprets cross-graph connections, rather than from a particular GT variant.

Overall, Tables[A6and [A7]highlight that (i) MGMT is backbone-agnostic; stronger GT backbones
do yield better single-graph performance, and (ii) With the help of meta-graph construction, MGMT
is relatively robust to the choice of backbone in the multi-graph fusion setting.

In terms of efficiency, we also measured average epoch runtime (in seconds) for MGMT implemented
with each backbone on the Alzheimer dataset (Table [A8). Depth-aware GAT remains among the
most efficient MGMT variants overall. GRIT attains the lowest total per-epoch time (158.2s vs.
162.9s for GAT) by substantially reducing the cost of the graph-specific encoder (102.8s vs. 119.2s),
but this saving is largely offset by a more expensive SuperEdge & Node Extraction stage (40.4s
vs. 28.6s). This increase is consistent with GRIT’s design: its edge-aware, relation-augmented
attention produces denser and more heterogeneous attention patterns than localized GAT, so MGMT
must process more non-negligible attention coefficients when aggregating edge weights, selecting
supernodes, and constructing superedges across layers. GraphGPS, Exphormer, and EGT all lead to
higher average per-epoch runtimes than GAT (171.5-187.3s per epoch), because their more global
or hybrid attention mechanisms generate richer attention maps that MGMT must export, aggregate,
and threshold at every layer, increasing the cost of both the encoder and the SuperEdge & Node
Extraction block (41.9-46.0s vs. 28.6s for GAT). Overall, these results indicate that while advanced
GT backbones modestly change the balance between encoder and meta-graph construction costs,
they do not usually yield faster end-to-end MGMT training than the depth-aware GAT variant. For
these reasons, we present MGMT with a GAT backbone in the main paper as a balanced choice in
terms of simplicity, interpretability, runtime, and performance.
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Table A8: Per-epoch runtime breakdown (in seconds) for MGMT with different depth-aware GT
backbones on the Alzheimer dataset.

Backbone (MGMT variant) Total Data Prep Graph-specific encoding SuperEdge & Node Extraction Meta-Graph Final Model
Depth-aware GAT aggregation 162.93 1.81 119.24 28.64 1.56 11.68
Depth-aware GraphGPS aggregation 171.50 1.85 114.10 41.85 1.64 12.06
Depth-aware GRIT aggregation 158.20 1.82 102.75 40.43 1.60 11.60
Depth-aware Exphormer aggregation 180.70 1.90 118.75 45.95 1.70 12.40
Depth-aware EGT aggregation 187.30 1.88 126.30 44.55 1.68 12.89

A13 DyYNAMIC, DISTRIBUTION-BASED THRESHOLDING FOR SUPERNODES
AND META-GRAPH EDGES

In the main text, MGMT uses two scalar thresholds: (i) 7 for supernode extraction based on attention
scores, and (ii) «y for sparsifying inter-graph edges in the meta-graph using cosine similarity. These
thresholds are tuned on validation data together with standard hyperparameters (learning rate, depth,
dropout, etc.). Section[3.1.2]and Appendix [AT0]already show that MGMT is stable across a wide
range of 7 and +y values.

Here, we additionally implemented and evaluated a dynamic, distribution-based thresholding variant
of MGMT, in which the effective thresholds are determined from the empirical distributions of scores
rather than being validation-tuned scalars.

Dynamic supernode selection (data-driven 7). Let a, denote the aggregated attention score for
node v in a given graph (obtained from the TransformerConv layers as in Section [3.1.1)). We first
normalize the node-level attention scores within each graph:

Ay — Ming, @y,

Gy = e [0,1].

max, a, — min, a, + 10=°

Instead of specifying a validation-tuned 7, we choose a retention rate pg,, € (0,1) (e.g., psup = 0.3)
and keep only the top pgyp fraction of nodes according to a,,. Concretely, for each graph g we compute
the (1 — pyp)-quantile gy ¢ Of its normalized scores and define the supernode set as

Sy = {v : ay > cap,g}-

Equivalently, this induces a graph-specific, data-driven threshold

Tg = Csup,g»

which depends on the empirical distribution of attention scores in graph g. If the attention scores in a
new dataset are more concentrated or more diffuse, the resulting 7, automatically adjusts.

Dynamic meta-graph edge construction (data-driven ). Given the set of supernodes across all
graphs, we compute the cosine similarity matrix over their embeddings:
H'H,
Cuv = (AZS)
[|EL I |

In the original MGMT formulation, inter-graph edges are obtained by applying a validation-tuned
parameter . In the dynamic variant, we specify a retention rate Kegge € (0,1) (e.g., Kedge = 0.05)
and keep the top Kedge fraction of all off-diagonal similarities by defining threshold as the (1 — Kegge )-
quantile of the entries of the cosine similarity matrix. Now + is not validation-tuned: it is induced by
the empirical distribution of similarities in the current dataset.

Experimental comparison and discussion. Table [A9] compares the original validation-tuned
threshold MGMT (with 7 and ~ selected via validation) to the dynamic quantile-based variant
described above. We observe that the dynamic variant attains performance that is close to the best
validation-tuned threshold configuration across all datasets, with a small decrease in accuracy in some
cases.

This behavior is natural: Previously 7, v were tuned specifically to maximize validation performance
on each dataset, while the dynamic variant applies a generic, model-agnostic rule that does not
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Table A9: Comparison of MGMT with validation-tuned thresholds vs. dynamic, distribution-based
thresholds for supernode selection and meta-graph edge construction. Values are mean + standard
deviation over 5 folds.

Dataset MGMT (validation-tuned 7,y) MGMT (dynamic, quantile-based)
LFP dataset 42.13 £0.25 41.26 £0.73
Alzheimer 83.11 £0.84 81.96 £0.76
Experiment 1 65.47 £2.39 63.35 £ 1.64
Experiment 2 69.90 = 1.19 67.72 +1.24
Experiment 3 73.21 £0.59 71.96 + 1.23

exploit dataset-specific optimal sparsity levels. Consequently, a minor loss in accuracy is a reasonable
trade-off for eliminating validation-tuned thresholds and making sparsification fully data-driven.
Importantly, both the sensitivity analysis in Appendix and the results in Table[A9]indicate that
MGMT does not hinge on finely tuned thresholds: it remains robust under both validation-tuned and
distribution-based thresholding schemes.

A14 CAUSAL EXTENSIONS OF MGMT via CAL

Recent advances in causal graph learning offer promising directions for identifying causally important
nodes. Causal masking approaches such as CAL learn to disentangle causal from
spurious features through an intervention-based training scheme. Counterfactual methods reviewed in
[Guo et al.| (2025) identify critical graph components by measuring prediction changes under minimal
graph edits. Next we present one concrete potential design, while future work can explore additional
promising directions for causal learning in multi-graph settings.

CAL (Causal Attention Learning) offers a natural integration with our framework.
CAL introduces a disentanglement module to separate causal features that reflect intrinsic graph
properties from shortcut features arising from data biases or trivial patterns. Specifically, given a graph
G = (V,&) with N = |V| nodes, feature matrix X € R¥*9 and adjacency matrix A € RV*N,
CAL learns two masks M® € RV*N (for edges) and M* € RY*! (for node features) via causal
intervention (see for details). Each element of the masks, with value in (0, 1),
indicates the causal relevance to the label. Applying CAL to each graph ¢ € [n] yields causal masks
M and M. We can re-weight the edge attention scores in (3), section 3.1.1 by M{*:

caus a
o™ = oy © MY,

where ® denotes the Hadamard product. Similarly, we can adjust the supernode selection rule in (4)
by

S; = {u eV | Mg, Z(u wee, Y 2 T}.

where M", denotes the causal score for node u. This ensures selected supernodes maintain strong
causal relationships with the label.

A15 SPARSE TOP-k£ ATTENTION MECHANISM APPLIED TO THE
GRAPH-SPECIFIC ENCODERS

As discussed in Appendix [A9.1] the dominant computational cost in MGMT comes from the graph-
specific encoder, whose complexity scales with the number of attended neighbors per node. To further
investigate the potential of sparse attention in our framework, we perform a preliminary experiment
where we replace the localized GAT-style attention in the graph-specific encoder with top-k attention,
while leaving the rest of MGMT unchanged.

Concretely, at each GAT layer and for each node u in graph G;, we compute the standard attention
scores {Quyw fuenr(u) OVer its 1-hop neighbors. We then keep only the & largest-magnitude scores
and set the remaining attention weights to zero before normalization. This yields a sparse attention
pattern with effective cost O(N;kd) per layer (for N; nodes and d-dimensional features), instead of
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O(|&;|d). Importantly, we apply this sparsification only in the graph-specific encoder; the meta-graph
construction and final predictor remain unchanged, but their runtimes are indirectly affected through
the change in attention patterns and degrees used for supernode/superedge extraction.

For each configuration, we re-run MGMT end-to-end with the same hyperparameters as in the dense
setting and measure per-epoch runtime as well as test accuracy. Figures|A9HA 10[ summarize the total
time and accuracy trends as a function of k. In each panel, the dashed horizontal line denotes the
dense GAT-based MGMT baseline.

Azheimer LFP Data Experiment 1 Experiment 2 Experiment 3

Per-epoch total time (.
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5
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Figure A9: Effect of top-£ attention on MGMT runtime. Per-epoch total time versus k for each
dataset. The dashed line indicates the dense GAT-based MGMT runtime; annotations report the
speedup at k = 5 relative to this baseline.

Effect of top-k attention on MGMT accuracy
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Figure A10: Effect of top-k attention on MGMT accuracy. Test accuracy versus k for each dataset.

The dashed line indicates the dense MGMT accuracy; annotations report the accuracy change at
k=5.

Two patterns emerge from these preliminary results. First, for the Alzheimer and LFP datasets, top-5
attention reduces the per-epoch runtime approximately 2.6 and 2.7 times, respectively, relative to
dense MGMT. On the synthetic datasets, speedups at k& = 5 range from about 1.1 (Experiment 1, with
only 5 nodes) to 3.8 (Experiment 3, with 50 nodes) times relative to dense MGMT. As k increases,
each node attends to more neighbors, so the encoder cost grows roughly linearly in & (from O(Nkd)
toward the dense limit), and the total runtime curves in Figure [A9] smoothly approach the dense
baseline.

Second, as shown in Figure [AT0] these runtime gains come with mild accuracy changes. Very small
k values can drop some informative neighbors and under-connect the graphs, leading to an accuracy
loss; increasing k restores more of the original neighborhood structure, allowing the encoder to
capture richer local context and thus produces a gentle increase in accuracy.

Overall, these experiments support the feasibility of integrating sparse top-k attention into MGMT: by
sparsifying only the graph-specific encoder, we obtain speedups on larger graphs while losing some
predictive performance. This provides a concrete path toward scaling MGMT to settings with many
modalities and/or larger per-graph node sets, complementing the theoretical complexity discussion in

Appendix [A9.T]
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