
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-GRAPH META-TRANSFORMER (MGMT)

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-graph learning is crucial for extracting meaningful signals from collections
of heterogeneous graphs. However, effectively integrating information across
graphs with differing topologies, scales, and semantics, often in the absence of
shared node identities, remains a significant challenge. We present the Multi-Graph
Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for
cross-graph learning. MGMT first applies Graph Transformer encoders to each
graph, mapping structure and attributes into a shared latent space. It then se-
lects task-relevant supernodes via attention and builds a meta-graph that connects
functionally aligned supernodes across graphs using similarity in the latent space.
Additional Graph Transformer layers on this meta-graph enable joint reasoning
over intra- and inter-graph structure. The meta-graph provides built-in interpretabil-
ity: supernodes and superedges highlight influential substructures and cross-graph
alignments. Evaluating MGMT on both synthetic datasets and real-world neu-
roscience applications, we show that MGMT consistently outperforms existing
state-of-the-art models in graph-level prediction tasks while offering interpretable
representations that facilitate scientific discoveries. Our work establishes MGMT as
a unified framework for structured multi-graph learning, advancing representation
techniques in domains where graph-based data plays a central role.

1 INTRODUCTION

Graphs are fundamental data structures in many domains including neuroscience (Shahbaba et al.,
2022; Zhou et al., 2024), social networks (Fan et al., 2019; Zhang et al., 2022) and molecular
biology (Wieder et al., 2020; Xu et al., 2022; Li et al., 2022). While powerful models like Graph
Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2016; Yu et al., 2023) and the
more recent Graph Transformers (GTs) (Wu et al., 2021; Kreuzer et al., 2021; Rampášek et al.,
2022; Kim et al., 2022) excel at learning from single graphs, many real-world problems require
integrating information across multiple heterogeneous graphs, where the heterogeneity may stem
from differences in modalities, views, or population characteristics. For instance, neuroscience
experiments studying brain dynamics often generate graphs from multiple subjects, each with distinct
connectivities and node sets (Shahbaba et al., 2022). Enhancing prediction performance or extracting
common neural patterns in such settings requires a framework capable of effectively integrating
information across structurally heterogeneous graphs. Nonetheless, the question of how to optimally
adapt powerful architectures such as the GT to the multi-graph integration problem remains an active
area of research, particularly with heterogeneous structures, unaligned node sets, and a need for
fine-grained cross-graph reasoning, conditions that arise in many scientific domains.

Recent work on multi-graph learning partially addresses this challenge by either operating on a single
unified heterogeneous graph with aligned nodes (He et al., 2025; Zhang et al., 2019; Zheng et al.,
2022) or by learning graph-level embeddings from multiple modality-specific graphs and combining
them via shared contexts, adaptive weights, or correlation-based objectives (Hayat et al., 2022; Xu
et al., 2024; Xing et al., 2024; D’Souza et al., 2023; Nakhli et al., 2023; Fu et al.). However, these
methods model cross-graph interactions only through pooled graph embeddings or shared tokens,
without explicit fine-grained message passing between structurally similar subgraphs across unaligned
graphs, which limits interpretability and makes it challenging to identify which substructures across
graphs interact and contribute to the model’s predictions.

To address these limitations, we propose the Multi-Graph Meta-Transformer (MGMT), a flexible
framework for integrating information across collections of heterogeneous graphs. Under the umbrella

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

term “multi-graph,” our unified approach accommodates common scenarios, including: multimodal
(graphs from different measurement channels), multi-view (different structural views of the same
data), and multi-subject (graphs from heterogeneous subjects in the same experiment). MGMT first
processes each input graph using a graph-transformer encoder and aggregates intermediate layer
outputs through a depth-aware mixing scheme. This yields node embeddings that adaptively integrate
information across multiple receptive-field sizes. The framework is backbone-agnostic and can be
implemented with either localized or global GT layers, depending on the task and computational
budget. It then selects a small set of informative supernodes from each graph using attention scores
and constructs an explicit meta-graph over these task-relevant substructures, preserving within-graph
connectivity while selectively introducing cross-graph (inter-graph) edges between functionally
aligned regions. Additional Transformer layers on the resulting meta-graph perform fine-grained
cross-graph message passing and generate the final prediction.

This design directly addresses the key limitations of existing multi-graph approaches. Instead of
representing each graph solely through global graph-level or context-level embeddings at fusion
time, MGMT preserves structure at the node and subgraph levels and performs fusion by attending
over an explicit meta-graph of supernodes, encoding both intra-graph and inter-graph structure.
More specifically, supernodes summarize local patterns within each graph, while superedges align
substructures across graphs and capture their interactions. The resulting meta-graph also provides
insights into task-relevant subgraphs and their relationships, which can help with interpreting the
results. Taken together, MGMT utilizes depth-aware, structure-preserving GT encoders within each
graph, identifies supernodes, and uses them to build an explicit meta-graph that supports cross-graph
message passing and provides a principled and scalable approach to aggregating information across a
collection of heterogeneous graphs with unaligned node sets.

Our main contributions are as follows: (1) For heterogeneous graphs (multimodal, multi-view,
or multi-subject), we formalize a data-fusion framework, MGMT, which provides a backbone-
agnostic, depth-aware, and structure-preserving architecture with interpretable outputs through an
explicitly constructed meta-graph over attention-selected supernodes; (2) we provide theoretical
results demonstrating that MGMT’s depth-aware aggregation can recover general L-hop neighborhood
mixing and characterize conditions under which the induced meta-graph function class offers strictly
improved approximation capacity relative to late-fusion strategies that operate only on pooled graph
embeddings; (3) using synthetic benchmarks and real-world applications, we show that MGMT
outperforms state-of-the-art multimodal and graph-based methods, including recent multi-graph and
transformer architectures; and (4) we demonstrate that MGMT can detect meaningful neurobiological
patterns, thereby offering insights for scientific investigations, particularly for understanding neural
mechanisms underlying memory and factors contributing to Alzheimer’s disease.

2 RELATED WORK

Graph Representation Learning. GNN is the cornerstone of modern graph machine learning,
which learns node embeddings via local message passing (Scarselli et al., 2008; Kipf & Welling,
2016; Velickovic et al., 2017). Attention-based models such as GAT (Velickovic et al., 2017) learn
neighbor-specific attention weights instead of using fixed aggregation rules, allowing them to priori-
tize more informative neighbors. Nevertheless, because they still aggregate information only from
local neighborhoods, their ability to distinguish graph structures remains fundamentally limited by the
expressive power of the 1-Weisfeiler–Lehman (1-WL) test. More recent GT architectures with struc-
tured self-attention have outperformed message-passing GNNs on a variety of benchmarks (Dwivedi
& Bresson, 2020; Vaswani, 2017). Global-attention models such as EGT (Hussain et al., 2022) replace
or complement convolution with fully-connected self-attention augmented with structural encodings,
thereby extending expressivity. Sparse and structure-aware GTs, including Exphormer (Shirzad et al.,
2023) and GRIT (Ma et al., 2023), introduce scalable attention patterns and graph inductive biases
that retain or approximate the expressivity of dense Transformers while reducing computational cost.
Hierarchical and distance-structured GT variants, such as HDSE (Luo et al., 2024), further refine
how multi-scale structural information is injected into attention. All these existing methods, however,
lack a principled and interpretable mechanism for fusing multiple heterogeneous graphs, which are
common in many scientific applications. MGMT addresses this gap by providing a flexible and
general framework; in Appendix A12, we additionally implement MGMT with several of these GT
backbones and compare their performance in both single-graph and multi-graph settings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Heterogeneous Unified-Graph Representation Learning. A related line of research is multimodal
or heterogeneous graph learning, which may appear similar to our multi-graph fusion task but is
fundamentally different, as it operates on a single unified graph that integrates diverse data types. For
example, frameworks like UniGraph2 (He et al., 2025) and HetGNN (Zhang et al., 2019) assume a
single graph where nodes possess multiple feature types from different modalities, such as text or
images. The common approach is to collapse multiple data sources into one large graph. Other works
like MMGL (Zheng et al., 2022) construct a single population-level graph where nodes represent
subjects, and features from all modalities are concatenated before graph construction. While effective
for their intended purpose, they are not applicable to the more challenging problem of fusing a
collection of graphs with distinct, unaligned node sets, which is the focus of our work.

General-Purpose Multimodal Fusion. Models such as MultiMoDN (Swamy et al., 2023), Flex-
Care (Xu et al., 2024), MedFuse (Hayat et al., 2022), and Meta-Transformer (MT) (Ma et al., 2022)
aim to integrate multiple modalities, including graphs or images. In principle, these frameworks
could be applied to multi-graph fusion by treating each graph as a separate modality. Typically,
they use modality-specific encoders to transform each input into a single latent vector. For a graph,
this amounts to collapsing its entire topological structure into one embedding. These vectors are
then fused, for example via concatenation, for downstream tasks. While highly effective in many
multimodal settings, such vector-level fusion largely ignores graph topology and subgraph-level
relationships across multiple graphs, which limits interpretability.

Multi-graph learning. Another class of models focuses on settings where each entity is associated
with multiple graphs. Recent multi-graph models such as AMIGO (Nakhli et al., 2023), EMO-
GCN (Xing et al., 2024), and MaxCorrMGNN (D’Souza et al., 2023) take multiple graph-structured
inputs but ultimately fuse information only at the level of pooled graph embeddings or shared context
tokens, so cross-graph interaction is mediated through global representations instead of local structural
alignment. MGLAM (Fu et al.), on the other hand, treats each entity as a bag of graphs and learns
permutation-invariant bag-level predictors via kernel-based graph representations and multi-graph
pooling, providing a principled baseline for the multi-graph-to-label setting considered in this work.
However, all of these models still perform fusion at the graph/bag level, as opposed to using explicit
node-level cross-graph message passing. This limits their ability to explain how specific nodes or
substructures interact across graphs and how particular cross-graph patterns influence predictions.

Beyond the above per-entity multi-graph models, another class of multi-graph and multi-view GTs,
such as MGT and MVGT/MVGTrans (Cui et al., 2024; Zhou et al., 2025), assumes multiple edge
views over a shared node set but is not directly applicable to heterogeneous graph collections
with disjoint node sets across modalities or subjects. An alternative approach involves learning
consensus graphs or dataset-level representations rather than per-entity meta-graphs. This includes
AMGL (Nie et al., 2016), GraphFM and GraphAlign (Lachi et al., 2024; Hou et al., 2024), which
aggregate information across graphs at the population level, while graph-of-graphs models such as
SamGoG (Wang et al., 2025) propagate information solely at the graph-instance level. In contrast to
both graph-level fusion and population-level aggregation, MGMT constructs a meta-graph whose
nodes are attention-selected supernodes drawn from all graphs of an entity, preserving intra-graph
connectivity while enabling fine-grained, node-level cross-graph message passing. This approach
leads to more interpretable results, as it reveals how different graphs interact to drive final prediction.

3 METHODOLOGY

In this section, we present MGMT, detailing its prediction pipeline based on GT encoders and
meta-graph construction, followed by describing how to interpret MGMT by identifying significant
nodes and edges in Section 3.2. An overview of the entire framework is provided in Fig. 1.

3.1 MULTI-GRAPH META-TRANSFORMER (MGMT)

MGMT fuses multi-graph data using several steps, as described below.

3.1.1 GRAPH-SPECIFIC TRANSFORMER ENCODERS

For each instance, we observe a collection of n graphs. For i = 1, . . . , n, we denote the graph as
Gi = (Vi, Ei) with node set Vi of size Ni = |Vi|, and edge set Ei. Each graph Gi is characterized by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a node feature matrix Xi ∈ RNi×d and an adjacency matrix Ai ∈ {0, 1}Ni×Ni . Graphs per each
instance may differ in size and structure (for presentation purposes only, we assume feature size
is d across all graphs), yet the collection {G1, . . . ,Gn} share a common label Y ∈ Y . The task is
graph-level classification of the shared label Y using evidence aggregated across graphs. Throughout
this paper, we use bold uppercase letters (e.g., X) for matrices and bold lowercase letter (e.g., x) for
vectors, and [n] denoting the set {1, . . . , n}.

We formalize the core graph-specific Transformer mechanics used in MGMT, building upon the
localized graph-aware attention principles detailed in Appendix A1. For each i ∈ [n], the graph Gi

with node features Xi ∈ RNi×d undergoes L GT layers with multi-head self-attention. Starting with
H

(0)
i = Xi as initial features, we define the extended neighborhood N̄ (u) = N (u) ∪ {u} to ensure

nodes attend to themselves during message passing.

For layer ℓ ∈ [L], attention head m ∈ [M], and edge (u, v) ∈ Ei ∪ {(u, u)}, we compute:

Q
(ℓ,m)
i,u = W

(ℓ,m)
Q,i H

(ℓ−1)
i,u + b

(ℓ,m)
Q,i ,

K
(ℓ,m)
i,v = W

(ℓ,m)
K,i H

(ℓ−1)
i,v + b

(ℓ,m)
K,i ,

V
(ℓ,m)
i,v = W

(ℓ,m)
V,i H

(ℓ−1)
i,v + b

(ℓ,m)
V,i ,

α
(ℓ,m)
i,uv =

exp
(
Q

(ℓ,m)⊤
i,u K

(ℓ,m)
i,v /

√
d′
)

∑
v′∈N̄ (u) exp

(
Q

(ℓ,m)⊤
i,u K

(ℓ,m)
i,v′ /

√
d′
) ,

Z
(ℓ,m)
i,u =

∑
v∈N̄ (u)

α
(ℓ,m)
i,uv V

(ℓ,m)
i,v ,

(1)

where H(ℓ−1)
i,u ∈ Rd is the feature of node u at layer ℓ−1, d′ = d/M denotes the per-head dimension.

Projection matrices W (ℓ,m)
Q,i ,W

(ℓ,m)
K,i ,W

(ℓ,m)
V,i ∈ Rd′×d and biases b(ℓ,m)

Q,i , b
(ℓ,m)
K,i , b

(ℓ,m)
V,i ∈ Rd′

are

learnable parameters. The query vector Q(ℓ,m)
i,u represents information node u seeks from neighbors,

key vector K(ℓ,m)
i,v encodes neighbor v’s relevance, and value vector V (ℓ,m)

i,v contains content to be

aggregated. Attention score α
(ℓ,m)
i,uv determines how much node u attends to node v.

The outputs of all heads are concatenated (∥ denotes the concatenation) and transformed via:

Z
(ℓ)
i,u =

∥∥
m∈[M]

[
Z

(ℓ,1)
i,u , . . . ,Z

(ℓ,M)
i,u

]
W

(ℓ)
O,i + b

(ℓ)
O,i,

where W
(ℓ)
O,i ∈ Rd×d, b(ℓ)O,i ∈ Rd. Stacking these vectors across all nodes yields Z(ℓ)

i ∈ RNi×d.

Z
(ℓ)
i is processed by an FFN with activation, then combined via residual and LayerNorm to yield:

H
(ℓ)
i = LayerNorm(Z

(ℓ)
i + σ(FFN(Z

(ℓ)
i))) (2)

After L layers, we obtain final output and attentions by dynamically aggregating across all depths:

Hi =
∑

ℓ∈[L]
Γ
(ℓ)
i H

(ℓ)
i ∈ RNi×d,

αi =

{
αi,uv =

∑
ℓ∈[L]

Γ
(ℓ)
i

(
1

M

∑
m∈[M]

α
(l,m)
i,uv

)}
(u,v)∈Ei∪{(u,u)}

,
(3)

{Γ(ℓ)
i }nℓ=1 are confidence scores measuring quality of each Transformer layer (Section A2 for details).

3.1.2 SUPERNODE EXTRACTION

To identify the most informative nodes in each graph i, we extract supernodes based on the learned
attention scores αi in equation 3. Given a predefined threshold τ , we form the set of supernodes as

Si =

{
u ∈ Vi

∣∣∑
(u,v)∈Ei

αi,uv ≥ τ

}
. (4)

Intuitively,
∑

(u,v)∈Ei
αi,uv quantifies the total attention distributed by node u to its neighbors.

We then induce a subgraph over these nodes:

G′
i = (Si, E ′

i), E ′
i = {(u, v) ∈ Ei | u, v ∈ Si} (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Architecture of Multi-
Graph Meta-Transformer (MGMT).
Depth-Aware GT layers process in-
dividual graphs, extracting supern-
odes to form a meta-graph. Addi-
tional GT layers model both intra-
and inter-graph interactions.

We conduct a sensitivity study in Section A10 to examine how
choices of τ influence performance. Our analysis reveals that
τ controls a trade-off: a higher τ creates a sparser meta-graph,
which risks information loss, while a lower τ retains more
nodes, risking overfitting. By guiding the selection of τ via
cross-validation, we identified a robust range of values that
yields stable performance.

3.1.3 META-GRAPH CONSTRUCTION

To model both intra- and cross-graph interactions, we construct
an instance-level meta-graph GM = (SM , EM), where SM =⋃n

i=1 Si contains all graph-level supernodes. Each u ∈ Si

is associated with a latent embedding Hi,u ∈ Rd as defined
in equation 3. The edge set EM of the meta-graph includes
two components. First, we retain all intra-graph edges from
the pruned graphs G′

i = (Si, E ′
i), preserving graph-specific

relationships. Second, we introduce inter-graph edges between
cross-graph supernodes using their feature similarity. For any
node pair (u, v) with u ∈ Si, v ∈ Sj , and i ̸= j, we compute
the cosine similarity:

euv =
H⊤

u Hv

∥Hu∥∥Hv∥
(6)

If the similarity score euv exceeds a predefined threshold γ, the
edge (u, v) is added to EM .

The resulting adjacency matrix AM ∈ R|SM |×|SM | encodes
both intra- and inter-graph relationships among supernodes. We connect supernodes across graphs
only when their latent embeddings are similar, mirroring observations that learning or selecting
edges to reduce Dirichlet energy improves downstream accuracy Chen et al. (2020); see Section A5
for the formal smoothness justification. Appendix A10 shows accuracy is non-monotone in γ,
reflecting the trade-off between dense connectivity and sparsity. Appendix A11 shows comparable
performance with cosine, Pearson, Euclidean, and dot-product similarities, indicating robustness
to the similarity choice. In AppendixA13, we replace the validation-tuned thresholds τ and γ with
dynamic, distribution-based quantile thresholds and show that this data-driven variant achieves
comparable accuracy with the best validation-tuned threshold configuration on all datasets, indicating
that MGMT is robust to threshold selection and does not hinge on delicate manual tuning.

3.1.4 FEATURE LEARNING AND PREDICTION

After constructing GM , we apply additional GT layers to the stacked supernode embeddings H(0)
M ∈

R|SM |×d. Multi-head self-attention and feedforward updates are applied to capture global contextual
dependencies, resulting in updated supernode embeddings HM ∈ R|SM |×d. For classification, we
apply permutation-invariant pooling followed by a fully connected network: ŷ = f(Pool(HM)).
Pool(·) is pooling/aggregation operator, and f(·) maps pooled vector to class probabilities ŷ ∈ R|Y|.

3.2 INTERPRETATION OF MGMT

The identified meta-graph is analyzed via Node-level analysis, highlighting influential nodes and their
contributions, and Edge-level analysis, uncovering critical relationships among these nodes. This
framework enhances interpretability, as illustrated in neuroscience application results in Section 5.3.

4 THEORETICAL PROPERTIES

In this section, we establish MGMT’s theoretical foundations through: (1) intra-graph analysis,
demonstrating superior feature representation within individual graphs; and (2) inter-graph analysis,
showing enhanced predictive power through meta-graph construction. Complete proofs are provided
in Section A3, with additional theoretical results in Section A4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Ablations on five datasets. Dropping adaptive depth, supernode selection, or inter-modality
edges lowers accuracy, confirming each component’s importance for cross-graph learning.

4.1 INTRA-GRAPH ANALYSIS

We analyze the depth-aware mixing strategy in equation 3 which enables MGMT to aggregate
information across different depths of message passing. First, we establish some formal definitions.

Let M(A) ∈ RN×N be a message-passing operator (e.g., augmented adjacency matrix, M(A) =
A+ I). Given M(A) and an activation function σ, denote the 1-hop feature aggregation as

U(X;M(A), σ) := σ(M(A)X),

and the ℓ-hop aggregation is the ℓ-fold composition of U , namely,

Uℓ(X;M(A), σ) := σ(M(A) · · ·σ(M(A)︸ ︷︷ ︸
ℓ times

X)).

Building on these, we introduce L-hop mixing, characterizing a model’s ability to represent multi-
depth information. While originally studied for Graph Convolutional Networks with graph Lapla-
cians (Abu-El-Haija et al., 2019), we extend this concept to general message passing operators.
Definition 4.1 (L-hop mixing with general message passing). Given M(·), a model is capable of
representing L-hop mixing if for any η1, . . . , ηL ∈ R, there exists a setting of its parameter and an
injective (one-to-one) mapping f(·), such that the output of the model is equivalent as

f

(
L∑

ℓ=1

ηℓ · Uℓ(X;M(A), σ)

)
, (7)

for any adjacency matrix A, activation function σ, and node features X .

Remark 4.2. If M(A) = D− 1
2 (A + I)D− 1

2 , where D is the diagonal degree matrix with
Dii =

∑N
j=1 Aij + 1, Definition 4.1 recovers the L-hop mixing with Graph Laplacian in the

GCN literature (Abu-El-Haija et al., 2019; Zhou et al., 2024).

First theorem demonstrates that MGMT’s depth-aware GTs represent L-hop mixing for each graph.
Theorem 4.3. With message passing operator M(A) = softmax(A+ I), where softmax is applied
row-wise. MGMT’s depth-aware GTs in equation 1–equation 3 can represent L-hop mixing.

The proof appears in Section A3. Notably, we also demonstrate in Section A4.1 that vanilla Graph
Transformers cannot learn L-hop neighborhood mixing. We further clarify the relationship between
L-hop mixing and Weisfeiler-Leman expressivity in Section A4.3, showing that these characterize
distinct but complementary aspects of model power.

4.2 INTER-GRAPH ANALYSIS

This section analyzes how MGMT’s meta-graph construction boosts prediction power compared to
late fusion approaches (Zhang et al., 2023).

Recall from Section 3.1.3, the meta-graph GM = (SM , EM) combines supernodes SM =
⋃n

i=1 Si.
Its initial embedding H

(0)
M ∈ R|SM |×d stacks supernode embeddings where ∀u ∈ Si, H

(0)
M,u = Hi,u.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Average test accuracy and standard error bars (computed over 50 repetitions) on three
synthetic datasets. In all experiments, each sample consists of five synthetic graphs, which we refer to
as Modalities 1–5. Experiment 1 (Setting 1) uses 100 samples, with 5 nodes per graph, all of which
are informative. Experiments 2 and 3 (Setting 2) both involve structured noise: Experiment 2 uses
100 samples and Experiment 3 uses 2,000 samples; in both, each graph has 50 nodes, of which 40 are
informative. Across all configurations, the proposed MGMT model achieves the best performance.

MGMT applies additional LGT Graph Transformer layers followed by a global pooling to obtain the
final graph-level embedding. Lastly, we apply LMLP MLP layers for class probabilities. Assume
without loss of generality that LGT = 1 and LMLP = 2, the function class of MGMT given H

(0)
M is

FM =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(GT(H(0)

M))
)}

, (8)

where GT(·) : R|SM |×d 7→ R|SM |×d is the Graph Transformer, Pool(·) : R|SM |×d 7→ Rh′
is a graph

pooling, and W
(1)
MLP ∈ Rh′×h′′

, W (2)
MLP ∈ R|Y|×h′′

are MLP weight matrices, with h′, h′′ ∈ N+. All
subsequent analysis could be easily extended to any number of LMLP and LGT.

The late fusion strategy that employs weighted averaging of class probabilities from graph-specific
models can be represented as

Flate =

{
f : R|SM |×d 7→ R|Y|

∣∣∣ f =

n∑
i=1

wi ·W (2)
MLP,iσ

(
W

(1)
MLP,iPoolSi(H

(0)
M)
)}

,

where {W (ℓ)
MLP,i}l∈[2],i∈[n] is the set of graph-specific MLP parameter, and the set of late fusion

weights is {wi ∈ R}i∈[n] such that
∑n

i=1 wi = 1. Given the joint distribution of a feature-label pair
(X, Y) ∼ P and a loss function L, denote the generalization error of a function f as

R(f ;P,L) := E(X,Y)∼P [L(f(X), Y)]

Following Shalev-Shwartz & Ben-David (2014), we define the approximation error of a function
class F as the minimum generalization error achievable by a function in F , namely,

ϵ(F ;P,L) := inf
f∈F

R(f ;P,L). (9)

Assume latent representations of the meta graph follow (H
(0)
M , Y) ∼ PM . The next theorem shows

MGMT is a more powerful graph fusion framework compared to late fusion in the sense that it
achieves a smaller approximation error.
Theorem 4.4. Denote approximation error of MGMT on the meta-graph as ϵ(FM ;PM ,L), and the
approximation error of late fusion of graph-specific classifiers ϵ(Flate;PM ,L), then

ϵ(FM ;PM ,L) ≤ ϵ(Flate;PM ,L).See Section A4 for the proof.

5 NUMERICAL EXPERIMENTS

We evaluate the effectiveness of MGMT on three synthetic datasets in Section 5.2 and two real-world
neuroscience applications in Section 5.3 (memory experiment and Alzheimer’s disease detection). The
synthetic and Alzheimer’s datasets are multi-modal, whereas the memory experiment is multi-subject
(graphs from different animals treated as distinct modalities).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Test accuracies of baseline models on the LFP and Alzheimer’s disease datasets. Each bar
represents the average test accuracy across 5 folds, along with the corresponding standard error. In
both applications, MGMT consistently outperforms all other models.

Baseline comparisons. We compare against four families of baselines: (1) single-source models
(i.e., trained on each source) such as DNNs (LeCun et al., 2015), GNNs, DiffPool (Ying et al., 2018),
Transformers, and Graph Transformers (GAT backbone); (2) early fusion models: Concatenated
Features using DNN/GNN/DiffPool feature extractors (Ngiam et al., 2011; Baltrušaitis et al., 2018;
Lau et al., 2019); (3) general-purpose multimodal fusion frameworks such as MMGL (Zheng et al.,
2022), MultiMoDN (Swamy et al., 2023), FlexCare (Xu et al., 2024), MedFuse (Hayat et al., 2022),
and Meta-Transformer (Ma et al., 2022), and (4) recent multi-graph learning methods tailored to
the multi-graph-to-label setting, including AMIGO (Nakhli et al., 2023), MaxCorrMGNN (D’Souza
et al., 2023), and MGLAM (Fu et al.), which operate on multiple graphs per entity via shared contexts,
correlation-based objectives, or bag-of-graphs pooling (see Appendix A6 for implementation details).

Ablation studies. We quantify the contribution of each component by (1) removing adaptive depth
selection (i.e., using the final Transformer layer); (2) removing supernode selection (i.e., including
all nodes in the meta-graph); (3) removing inter-graph edges; (4) removing intra-graph edges; and
(5) disabling both the meta-graph and adaptive depth (i.e., late fusion of fixed-depth Transformer
outputs). Results are presented in Tables A2, A3 and Figures 3, 4, 2.

5.1 EXPERIMENTAL SETUP

Architecture and training. Across datasets, MGMT uses TransformerConv layers with global
max or mean pooling to form graph-level embeddings. Models are trained on 80% of the data, with
10% for validation and 10% for testing, using Adam and early stopping on validation loss. For real
datasets, we use 5-fold cross-validation. Hyperparameters, including number of layers, dropout,
learning rate, epochs, and node-importance thresholds, are tuned with Optuna (100 trials), selecting
the best configuration by validation performance. For simulation studies, we run 50 independent
trials and report mean test accuracy with standard errors.

Runtime and scalability. Appendix A9 provides component-wise time complexity, empirical runtime
profiling (average per-epoch and stage-wise breakdowns), and controlled scalability experiments over
graph size, number of graphs per sample count, sample size, and feature dimensionality, showing
practical efficiency and predictable scaling comparable to Transformer-based graph architectures.

5.2 SYNTHETIC EXPERIMENTS

We simulate five graphs per sample under varying feature mechanisms, number of nodes, sample
size, and noise. Each node has a p-dimensional feature; a subset of nodes is informative (their
features influence the graph-level binary target), and the rest are non-informative noise. We create
an intermediate binary label for each modality, then aggregate them into an entity-level label by
applying a threshold to a weighted sum of these modality-specific labels. Experiment 1 (Setting 1;
Appendix A8): informative-node features are drawn from modality-specific multivariate Gaussians;
labels use a linear thresholding rule; n = 100. Experiment 2 (Setting 2; Appendix A8): features
for informative nodes are generated using a Gaussian Process to induce temporal structure across
features; labels use a nonlinear function (sinusoidal and quadratic); n = 100. Experiment 3: follows
the same setting as Experiment 2 but increases the graph size and sample size. Each graph has 50
nodes, with 40 designated as important. The sample size is increased to 2,000, allowing us to assess
MGMT’s performance at scale under complex, multimodal conditions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: (a) Neural recordings from CA1 during a sequence memory task. Rats performed a
self-paced odor sequence task, judging each odor in a five-item sequence (A–E) as “in sequence”
(InSeq) or “out of sequence” (OutSeq) while odors were delivered through a single port. (b) Cross-
animal supernode and edge frequency map from MGMT. Each dashed box corresponds to one rat;
node size and color indicate supernode selection frequency, and line color reflects edge occurrence
frequency. High-frequency supernodes and edges cluster in distal CA1 (right side), with cross-rat
superedges primarily linking distal regions across animals. Mitt exhibits weaker connectivity.

Across all experiments, MGMT outperforms baseline models (Fig. 3). Ablations show accuracy drops
when removing adaptive depth, or inter-graph edges, and degrade most when both meta-graph and
adaptive depth are disabled, supporting importance of hierarchical reasoning (Table A3 and Fig. 2).

5.3 NEUROSCIENCE APPLICATIONS

5.3.1 LOCAL FIELD POTENTIAL (LFP) ACTIVITY IN A SEQUENTIAL MEMORY TASK

We apply MGMT to a challenging problem: predicting the stimulus presented on a given trial using
LFP activity from hippocampus (Fig. 5). In this experiment, 5 subjects (rats named SuperChris, Barat,
Stella, Mitt, and Buchanan) received repeated presentations of a sequence of stimuli (odors A, B, C,
D, or E) at a single odor port and were required to identify whether each stimulus was presented in
correct or incorrect sequence position to receive reward. Neural LFP activity was recorded from the
dorsal CA1 subregion of the hippocampus as they performed the task (Allen et al., 2016; Shahbaba
et al., 2022). Treating each rat as a distinct graph, MGMT borrows power across subjects and fuses
subject-specific representations to decode stimulus identity on each trial from LFP.

Each trial is associated with one shared stimulus label (A,B,C,D or E). We construct a separate graph
for each rat per trial using its own electrode-level LFP signals. Nodes represent electrodes (vary
in number and identity across subjects), and edges capture intra-subject correlations. We then link
“supernodes” across rats when their latent embeddings are similar under MGMT’s localized attention.
Superedges are aligning comparable brain dynamics across animals, effectively “borrowing statistical
strength” across rats to reduce noise and stabilize the trial-level representation used for decoding.
This is not meant to just simply connect various brain regions across rats, rather alignment of their
brain dynamics to strengthen the overall signals by properly borrowing power across rats.

As shown in Table A2, MGMT achieves the highest accuracy (42.13% ± 2.52) predicting which
odor (A–E) was presented on each trial using the LFP dataset, outperforming all baseline and fusion
models. The best competing method, MMGL, reaches 39.28%, with other recent approaches such
as MGLAM (38.93%), AMIGO (38.92%), MT (39.20%), MultiMoDN (37.82%), and FlexCare
(36.42%) trailing behind. Traditional concatenation-based approaches like DNN and GNN yield
substantially lower performance, highlighting the difficulty of this cross-rat decoding task. To our
knowledge, these results provide the first direct evidence that the stimulus presented on a given trial
can be accurately predicted based on hippocampal LFP activity alone, which highlights the potential
of graph data integration approaches in general and the potential of the MGMT model specifically.

Ablation results (Fig. 2) confirm that each architectural component contributes meaningfully to
MGMT’s performance, with the full model achieving the highest accuracy across all datasets.

Results of interpretation component. From a neuroscience perspective, first, we found that
informative electrodes clustered on the right side of the electrode array (Fig. 5b). Specifically, highest-
frequency supernodes and strongest within-subject connections were consistently concentrated on the
right side, and pattern was consistent across subjects. This specific clustering makes sense given that
the two electrode arrays targeted different segments of CA1 region: electrodes on the right targeted the
distal segment, electrodes on the left the proximal region. The distal segment, where most informative
electrodes are located, is more strongly associated with non-spatial inputs (e.g., odors in our case)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 6: Layer-wise attention patterns for the LFP data (SuperChris). Each panel shows the
same subject-level LFP connectivity graph, along with the learned depth-confidence scores Γℓ for
each Transformer layer ℓ, as well as the corresponding edge-level attention scores and node-wise
summed attention weights (with warmer colors indicating higher attention or summed weights).

and the proximal segment with visuospatial inputs. Such clustering of informative electrodes in
distal CA1 is also consistent with previous work focusing on a different type of non-spatial trial
classification (InSeq vs OutSeq (Zhou et al., 2024)). Second, there were interesting variations in the
pattern of informative edges across subjects. Although they showed a similar pattern of informative
nodes, some subjects showed weaker relationships in edges. For example, subject Mitt showed fewer
strong within-subject edges and lower-frequency superedges. In summary, the interpretation module
highlights subject-level connectivity differences as the key LFP factors driving performance.

Depth-aware layers and CA1 circuitry. The depth-aware component provides a complementary
view of these patterns. For each rat, we compute layer-wise depth-confidence scores γℓ and visualize,
on the subject-level LFP connectivity graph, the corresponding edge attention and node-summed
attention weights. Fig. 6 shows the layers for SuperChris. Layers with the largest Γℓ values focus
attention on edges linking distal CA1 electrodes, and nodes in this region receive the highest summed
attention. In contrast, low-confidence layers distribute attention more diffusely. Thus, the model
up-weights layers whose connectivity patterns highlight the distal CA1 subnetwork identified as
behaviorally informative in Fig. 5, indicating that depth-aware aggregation selectively amplifies
meaningful hippocampal circuitry rather than simply averaging multi-layer embeddings.

5.3.2 ALZHEIMER’S DISEASE DETECTION

As an example of broader biomedical applications, we used MGMT for Alzheimer’s disease (AD)
detection using the data obtained from the National Alzheimer’s Coordinating Center (NACC), which
standardizes data collected across 46 Alzheimer’s Disease Research Centers (ADRCs) in the United
States (Beekly et al., 2004; Weintraub et al., 2009). The cohort comprises 1,237 subjects (61.5% HC
and 38.5% MCI/AD) with both clinical assessments from the Uniform Data Set (UDS) and structural
MRI available. Our goal is to separate subjects with mild cognitive impairment (MCI) or dementia
due to Alzheimer’s disease from healthy controls (HC).

Following our terminology, this setting is multi-modal since each subject is measured via distinct data
sources (e.g., MRI vs. clinical assessments) that inhabit different feature spaces and sensing processes.
As shown in Fig. 4, the MGMT model consistently outperformed both single-source and baseline
fusion models. Moreover, ablations in Fig. 2 show that intra-graph structure and the meta-graph
are critical: removing intra-graph edges collapses performance (62.4% vs. 83.1%), removing the
meta-graph lowers accuracy to 70.1%, while dropping inter-graph edges (76.5%), supernode selection
(78.2%), or adaptive depth (81.2%) yields progressively smaller but consistent declines.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We proposed MGMT, a multi-graph learning framework that integrates graph-specific GT encoders
with a meta-graph constructed over learned supernodes and superedges, supported by an adaptive
depth-aware mechanism for aggregating hierarchical representations. Using both synthetic and real
datasets, we showed that MGMT improves accuracy and interpretability over state-of-the-art fusion
methods. The framework could be further extended to support node classification and link prediction,
incorporate causal masking and counterfactual attribution for genuinely causal importance estimates
(see Appendix A14), and improve computational efficiency (see Appendix A15).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina
Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In The Thirty-sixth International Conference
on Machine Learning (ICML), 2019. URL http://proceedings.mlr.press/v97/
abu-el-haija19a/abu-el-haija19a.pdf.

Timothy A Allen, Daniel M Salz, Sam McKenzie, and Norbert J Fortin. Nonspatial sequence coding
in ca1 neurons. Journal of Neuroscience, 36(5):1547–1563, 2016.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):
423–443, 2018.

Duane L. Beekly, Erin M. Ramos, Gerald van Belle, Woodrow Deitrich, Amber D. Clark, Mary E.
Jacka, and Walter A. Kukull. The National Alzheimer’s Coordinating Center (NACC) Database:
an Alzheimer disease database. Alzheimer Disease and Associated Disorders, 18(4):270–277,
December 2004. ISSN 0893-0341.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in neural information processing systems, 33:
19314–19326, 2020.

Yanjie Cui, Xiaohong Liu, Jing Liang, and Yamin Fu. Mvgt: A multi-view graph transformer based
on spatial relations for eeg emotion recognition. arXiv preprint arXiv:2407.03131, 2024.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Niharika S D’Souza, Hongzhi Wang, Andrea Giovannini, Antonio Foncubierta-Rodriguez, Kristen L
Beck, Orest Boyko, and Tanveer Syeda-Mahmood. Maxcorrmgnn: A multi-graph neural network
framework for generalized multimodal fusion of medical data for outcome prediction. In Workshop
on Machine Learning for Multimodal Healthcare Data, pp. 141–154. Springer, 2023.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Donglai Fu, Tiantian Lu, and Junyang Wang. Multi-graph learning with adaptive graph-bag mapping.
Available at SSRN 5100893.

Zhimeng Guo, Zongyu Wu, Teng Xiao, Charu Aggarwal, Hui Liu, and Suhang Wang. Counterfactual
learning on graphs: A survey. Machine Intelligence Research, 22(1):17–59, 2025.

Nasir Hayat, Krzysztof J Geras, and Farah E Shamout. Medfuse: Multi-modal fusion with clinical
time-series data and chest x-ray images. In Machine Learning for Healthcare Conference, pp.
479–503. PMLR, 2022.

Yufei He, Yuan Sui, Xiaoxin He, Yue Liu, Yifei Sun, and Bryan Hooi. Unigraph2: Learning a unified
embedding space to bind multimodal graphs. In Proceedings of the ACM on Web Conference 2025,
pp. 1759–1770, 2025.

Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, and Yuxiao Dong. Graphalign: Pretraining one
graph neural network on multiple graphs via feature alignment. arXiv preprint arXiv:2406.02953,
2024.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning, 2022. URL
https://arxiv.org/abs/2204.07697.

11

http://proceedings.mlr.press/v97/abu-el-haija19a/abu-el-haija19a.pdf
http://proceedings.mlr.press/v97/abu-el-haija19a/abu-el-haija19a.pdf
https://arxiv.org/abs/2204.07697

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
learning-convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11313–11320, 2019.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

Billy Pik Lik Lau, Sumudu Hasala Marakkalage, Yuren Zhou, Naveed Ul Hassan, Chau Yuen, Meng
Zhang, and U-Xuan Tan. A survey of data fusion in smart city applications. Information Fusion,
52:357–374, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Zhixun Li, Dingshuo Chen, Qiang Liu, and Shu Wu. The devil is in the conflict: Disentangled
information graph neural networks for fraud detection. In 2022 IEEE International Conference on
Data Mining (ICDM), pp. 1059–1064. IEEE, 2022.

Yuankai Luo, Hongkang Li, Lei Shi, and Xiao-Ming Wu. Enhancing graph transformers with
hierarchical distance structural encoding. Advances in Neural Information Processing Systems, 37:
57150–57182, 2024.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal transformers
robust to missing modality? In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 18177–18186, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.
ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014602. URL https://doi.org/10.
1609/aaai.v33i01.33014602.

Ramin Nakhli, Puria Azadi Moghadam, Haoyang Mi, Hossein Farahani, Alexander Baras, Blake
Gilks, and Ali Bashashati. Sparse multi-modal graph transformer with shared-context processing
for representation learning of giga-pixel images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11547–11557, 2023.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y Ng, et al. Multi-
modal deep learning. In ICML, volume 11, pp. 689–696, 2011.

Feiping Nie, Jing Li, Xuelong Li, et al. Parameter-free auto-weighted multiple graph learning: A
framework for multiview clustering and semi-supervised classification. In IJCAI, volume 9, pp.
1881–1887, 2016.

12

https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. In Learning on graphs conference, pp. 11–1. PMLR, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Babak Shahbaba, Lingge Li, Forest Agostinelli, Mansi Saraf, Keiland W Cooper, Derenik Haghver-
dian, Gabriel A Elias, Pierre Baldi, and Norbert J Fortin. Hippocampal ensembles represent
sequential relationships among an extended sequence of nonspatial events. Nature communica-
tions, 13(1):787, 2022.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014. ISBN 1107057132.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal attention
for interpretable and generalizable graph classification. In Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining, pp. 1696–1705, 2022.

Vinitra Swamy, Malika Satayeva, Jibril Frej, Thierry Bossy, Thijs Vogels, Martin Jaggi, Tanja Käser,
and Mary-Anne Hartley. Multimodn—multimodal, multi-task, interpretable modular networks.
Advances in neural information processing systems, 36:28115–28138, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Shangyou Wang, Zezhong Ding, and Xike Xie. Samgog: A sampling-based graph-of-graphs
framework for imbalanced graph classification. arXiv preprint arXiv:2507.13741, 2025.

Sandra Weintraub, David P. Salmon, N. Mercaldo, Steven Ferris, Neill R. Graff-Radford, Helena Chui,
Jeffrey L. Cummings, Charles, Decarli, Norman L. Foster, Douglas R. Galasko, Elaine R. Peskind,
Woodrow Dietrich, Duane L. Beekly, Walter A. Kukull, C. John, and Morris. The Alzheimer’s
Disease Centers’ Uniform Data Set (UDS): The Neuropsychological Test Battery. Alzheimer
Disease and Associated Disorders, 23(2):91–101, 2009.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. Pmlr, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Tao Xing, Yutao Dou, Xianliang Chen, Jiansong Zhou, Xiaolan Xie, and Shaoliang Peng. An adaptive
multi-graph neural network with multimodal feature fusion learning for mdd detection. Scientific
Reports, 14(1):28400, 2024.

Muhao Xu, Zhenfeng Zhu, Youru Li, Shuai Zheng, Yawei Zhao, Kunlun He, and Yao Zhao. Flexcare:
Leveraging cross-task synergy for flexible multimodal healthcare prediction. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3610–3620, 2024.

Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, and Liang Wang. Evidence-aware fake news detection
with graph neural networks. In Proceedings of the ACM web conference 2022, pp. 2501–2510,
2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Xingtong Yu, Zemin Liu, Yuan Fang, and Xinming Zhang. Learning to count isomorphisms with
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 4845–4853, 2023.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous
graph neural network. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 793–803, 2019.

Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. Robust self-supervised structural graph
neural network for social network prediction. In Proceedings of the ACM Web Conference 2022,
pp. 1352–1361, 2022.

Yanteng Zhang, Xiaohai He, Yi Hao Chan, Qizhi Teng, and Jagath C. Rajapakse. Multi-
modal graph neural network for early diagnosis of alzheimer’s disease from smri and pet
scans. Computers in Biology and Medicine, 164:107328, 2023. ISSN 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.2023.107328. URL https://www.sciencedirect.
com/science/article/pii/S001048252300793X.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, and Xu Sun. Sparse transformer:
Concentrated attention through explicit selection. 2019.

Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yuchen Yang, and Yao Zhao.
Multi-modal graph learning for disease prediction. IEEE Transactions on Medical Imaging, 41(9):
2207–2216, 2022.

Chuangchuang Zhou, Yifan Wu, Wouter Sterkens, Patrick Vandewalle, Jianwei Zhang, and Jef R
Peeters. Multi-view graph transformer for waste of electric and electronic equipment classification
and retrieval. Resources, Conservation and Recycling, 215:108112, 2025.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Wenzhuo Zhou, Annie Qu, Keiland W Cooper, Norbert Fortin, and Babak Shahbaba. A model-
agnostic graph neural network for integrating local and global information. Journal of the American
Statistical Association, pp. 1–14, 2024.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

14

https://www.sciencedirect.com/science/article/pii/S001048252300793X
https://www.sciencedirect.com/science/article/pii/S001048252300793X

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A1 GRAPH TRANSFORMER WITH LOCALIZED GRAPH-AWARE ATTENTION

The standard Transformer architecture employs a global self-attention mechanism in which every
token attends to all others. This is computationally inefficient and often inappropriate in the context
of graph-structured data, where meaningful interactions are localized to a node’s immediate neighbor-
hood. To bridge this gap, we adopt the localized graph-aware attention formulation proposed by Shi
et al. (2020), which restricts attention to a node’s 1-hop neighbors.

To preserve self-information, we extend the neighborhood to include the node itself. Specifically, we
define N̄ (u) = N (u) ∪ {u}, ensuring each node can incorporate its own features during attention-
based message passing.

Let H(ℓ−1) = {H(ℓ−1)
1 , . . . ,H

(ℓ−1)
N } denote the set of node features from the previous layer. Each

node u aggregates information from its extended neighborhood v ∈ N̄ (u) using the following
multi-head self-attention mechanism.

For each attention head m = 1, . . . ,M and layer ℓ = 1, . . . , L:

1. Linear Projections (queries, keys, values):

Q(ℓ,m)
u = W

(ℓ,m)
Q h(ℓ−1)

u + b
(ℓ,m)
Q , (A10)

K(ℓ,m)
v = W

(ℓ,m)
K h(ℓ−1)

v + b
(ℓ,m)
K , (A11)

V (ℓ,m)
v = W

(ℓ,m)
V h(ℓ−1)

v + b
(ℓ,m)
V . (A12)

The learnable matrices W (ℓ,m)
Q , W (ℓ,m)

K , and W
(ℓ,m)
V are referred to as the Query, Key, and Value

projection matrices, respectively. These matrices project each node’s feature vector into three distinct
spaces:

• The Query vector Q(ℓ,m)
u represents the type of information that node u seeks from its neighbors.

• The Key vector K(ℓ,m)
v encodes what information neighbor node v can provide.

• The Value vector V (ℓ,m)
v contains the actual content to be aggregated.

This separation allows the model to compute a relevance score between nodes before deciding how
much information to share.

2. Attention Score Calculation: The attention coefficient from node u to neighbor v ∈ N̄ (u) is
computed as:

α(ℓ,m)
uv =

exp
(

Q(ℓ,m)⊤
u K(ℓ,m)

v√
dh

)
∑

r∈N̄ (u) exp
(

Q
(ℓ,m)⊤
u K

(ℓ,m)
r√

dh

) , (A13)

where dh is the dimensionality of each head.

3. Neighborhood Aggregation:

Z(ℓ,m)
u =

∑
v∈N̄ (u)

α(ℓ,m)
uv V (ℓ,m)

v . (A14)

4. Multi-Head Output and Update: The outputs from all heads are concatenated and linearly
transformed:

Ĥ(ℓ)
u = W

(ℓ)
O

[
Z(ℓ,1)

u ∥ · · · ∥Z(ℓ,M)
u

]
+ b

(ℓ)
O , (A15)

where ∥ denotes concatenation across heads, and W
(ℓ)
O ∈ Rd×d, b(ℓ)O ∈ Rd are learnable projections.

This formulation allows each node to dynamically attend to its extended local neighborhood, learning
rich contextual representations while respecting the sparse structure of the input graph. The learned
attention scores can also be used for interpretability and identifying important nodes and edges, as
discussed in subsection 3.2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A2 DEPTH-AWARE AGGREGATION IN MGMT

To enhance the robustness of graph-specific representation learning and mitigate sensitivity to the
choice of Transformer depth, we introduce an adaptive depth-aware fusion strategy inspired by recent
developments in graph learning Zhou et al. (2024). Rather than relying on a fixed-depth stack, we
aggregate node embeddings across multiple Transformer layers, weighted by their contribution to
graph-level prediction performance.

Let H(ℓ)
ik ∈ RNi×d denote the node embeddings of graph i in samples (instances) k after the ℓ-th

Graph Transformer layer, for ℓ = 1, . . . , L, i = 1, . . . , n and k = 1, . . . ,K. Here, K is the total
number of samples, and n is the number of graphs per sample. To evaluate the representational
quality of each layer, we compute a graph-level representation by applying mean pooling over the
node embeddings:

H̄
(ℓ)
ik =

1

Ni
1⊤
Ni

H
(ℓ)
ik ∈ R1×d. (A16)

Each pooled graph embedding H̄
(ℓ)
ik is passed through a lightweight classifier to obtain predictions,

and its predictive quality is evaluated using the graph-level label. Let Yk ∈ {1, . . . , |Y|} be the true
label for sample k. The classification error for graph i at depth ℓ is computed as:

ϵ
(ℓ)
i =

∑K
k=1 β

(ℓ)
ik ⊮

{
Yk ̸= argmaxy softmax

(
H̄

(ℓ)
ik

)}
∑K

k=1 β
(ℓ)
ik

(A17)

where β
(ℓ)
ik is the weight assigned to graph i in sample k at depth ℓ.

The confidence score for the ℓ-th layer of graph i is defined as:

Γ
(ℓ)
i =

1

2
log

(
1− ϵ

(ℓ)
i

ϵ
(ℓ)
i

)
. (A18)

To emphasize misclassified samples, sample weights are updated between depths using:

β
(ℓ+1)
ik ∝ β

(ℓ)
ik exp

(
⊮
{
Yk ̸= argmax

Y
softmax

(
H̄

(ℓ)
ik

)}
· Γ(ℓ)

i

)
. (A19)

The confidence scores Γ(ℓ)
i are used to weight both the depth-wise fused node embeddings and the

attention scores across Transformer layers, ensuring that layers contributing most to prediction are
emphasized during supernode extraction and representation learning.

A3 MATHEMATICAL PROOFS

Proof of Theorem 4.3. For simplicity, we omit graph-specific subscripts throughout the proof (e.g.
X instead of Xi) as the arguments apply universally for all graphs. Consider the Graph Transformer
(GT) structure with a single head m = 1. For each layer ℓ = 1, . . . , L, let W (ℓ)

Q = W
(ℓ)
K = 0,

W
(ℓ)
V = I , and b

(ℓ)
V = 0 in equation 1. Here I is the identity matrix and 0 denotes matrix/vector of

all zeros. For the feedforward layer in equation 2, set weights as I , bias as 0, and remove the residual
connection and normalization layer. Then for each edge (u, v) ∈ E ∪ {(u, u)}, the updating rules in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

equation 1 and equation 2 simplifies to

Q(ℓ)
u = b

(ℓ)
Q ,

K(ℓ)
v = b

(ℓ)
K ,

V (ℓ)
v = H(ℓ−1)

v ,

α(ℓ)
uv =

exp
(

Q(ℓ)⊤
u K(ℓ)

v√
d

)
∑

v′∈N̄ (u) exp

(
Q

(ℓ)⊤
u K

(ℓ)

v′√
d

) ,

H(ℓ)
u = σ

 ∑
v∈N̄ (u)

α(ℓ)
uv V

(ℓ)
v

.

It is clear that the attention matrix α(ℓ) reduces to M(A) = softmax(A+ I). Recall that the initial
embedding H(0) = X , we can explicitly expand the recursive updating rule above, and write the
embeddings for each layer ℓ in the following compact form:

H(ℓ) = Uℓ(X;M(A), σ).

Let Γ(ℓ) = ηℓ, for ℓ = 1, . . . , L in equation 3, the graph-specific fused embeddings can be represented
as

L∑
ℓ=1

ηℓ · Uℓ(X;M(A), σ),

which satisfies Definition 4.1 with identity mapping f(·).

Remark A1. While the depth-aware fusion step in equation 3 is highly flexible and can accommodate
any set of weights {Γℓ}Lℓ=1, we employ the confidence score weights defined in Section A2 to
adaptively aggregate the latent representations that yield the highest classification accuracy.

Proof of Theorem 4.4. Similar to the proof of Theorem A2, we will show Flate ⊆ FM and the desired
results follow directly from the definition of approximation error in equation 9.

Consider a class of pooling functions that concatenates the graph-specific pooled embeddings,
formally,

ConcatPool(H(0)
M) =

∥∥∥n
i=1

PoolSi
(H

(0)
M), (A20)

where ∥ denotes the concatenation operation, PoolSi
(·) : R|SM |×d 7→ Rh′

, as defined in equation A24,
is the global pooling function restricted to Si. Hence ConcatPool(H(0)

M) : R|SM |×d 7→ Rnh′

represents the concatenation of graph-specific embeddings.

Further, let D({W (1)
MLP,i}ni=1) be the diagonal block matrix with diagonal elements {W (1)

MLP,i}ni=1,
then one can easily check that equation A20 can be rewritten as

Flate =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(GT(H(0)

M))
)
,

γ > 1,WV = I, bV = 0,

Pool(·) = ConcatPool(·),

W
(1)
MLP = D({W (1)

MLP,i}
n
i=1),

W
(2)
MLP = w1W

(2)
MLP,1∥ · · · ∥wnW

(2)
MLP,n

}
,

(A21)

where γ,WV , bV are parameters of the Graph Transformer layer as defined in equation A25. Finally,
from equation 8 and equation A21, it is clear that Flate ⊆ FM , which concludes the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A4 ADDITIONAL THEORETICAL RESULTS

A4.1 ADDITIONAL INTRA-GRAPH RESULTS

Theorem A1. Let M(A) = softmax(A+ I) as in Theorem 4.3, the vanilla Graph Transformer is
not capable of representing L-hop neighborhood mixing.

Proof. Following a similar strategy in Abu-El-Haija et al. Abu-El-Haija et al. (2019), it suffices to
show that the vanilla Graph Transformer (GT) fails to represent 2-hop mixing, which in turn implies
the inability to represent the general L-hop mixing. Consider the particular case, where m = 1,
σ(x) = x. As reviewed in Section A1, the final graph embedding of a vanilla GT with depth L can
be represented as

H(L) =

[
L∏

ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)]
X

L∏
ℓ=1

W
(ℓ)
V ,

for attention matrices {α(ℓ)}Lℓ=1 and weights {W (ℓ)
V }Lℓ=1. Here ⊙ denote the Hadamard product. Let

W ∗ =
∏L

ℓ=1 W
(ℓ)
V , and consider the case where η1 = 1 and η2 = −1. If the vanilla GT is able to

represent 2-hop mixing, there exists an injective mapping f and a configuration of the parameters
such that [

L∏
ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)]
XW ∗ = f(M(A)X −M2(A)X) (A22)

holds for any adjacency matrices A and node features X .

Consider a fully disconnected graph with A = 0 and X , then M(A) = softmax(I) = I , and
softmax

(
(A+ I)⊙α(ℓ)

)
= I for ℓ = 1, . . . , L, which implies W ∗ = f(0). On the other hand,

consider a graph with a single edge between node 1 and 2, namely, A12 = A21 = 1 and 0 otherwise.
Then

M(A) =


0.5 0.5 0 · · · 0
0.5 0.5 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


︸ ︷︷ ︸

:=A∗

Let X = A∗, then f(M(A)X −M2(A)X) = f(0). Furthermore, it is easy to check that
L∏

ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)
= A∗,

since features of node 1 and 2 are identical. It follows that A∗W ∗ = f(0).

Combining the two scenarios, we must have (I − A∗)W ∗ = 0, which implies that W ∗
1 = W ∗

2 ,
where W ∗

i is the i-th row of W ∗. Since the choice of node 1 and 2 was arbitrary, all rows of W ∗

should be identical, hence rank(W ∗) ≤ 1 and rank([
∏L

ℓ=1 softmax
(
(A+ I)⊙α(ℓ)

)
]XW ∗) ≤ 1,

which means the output of f should be at most rank 1 matrices by the equivalence assumption in
equation A22. Hence, f cannot be injective, which concludes the proof by contradiction.

A4.2 ADDITIONAL INTER-GRAPH RESULTS

Let HSi = {Hi,u}u∈Si be the embeddings for supernodes in Si. Single-graph classifiers that
operates on HSi

can be expressed as

Fi =
{
f : R|Si|×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(HSi

)
)}

. (A23)

Assume latent representations of the meta graph follow (H
(0)
M , Y) ∼ PM , and (HSi

, Y) ∼ Pi where
Pi is the marginal distribution of PM restricted to Si. The next result shows MGMT achieves smaller
approximation error by leveraging information across all graphs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proposition A2. Denote the approximation error of MGMT on the meta-graph as ϵ(FM ;PM ,L),
and the approximation error of graph-specific classifiers on the sub-graph as ϵ(Fi;Pi,L), then

ϵ(FM ;PM ,L) ≤ ϵ(Fi;Pi,L).

Proof of Proposition A2. Without loss of generality, we focus on the cases where both MGMT and
graph-specific classifiers has LMLP = 2 layers of MLP and MGMT has LGT = 1 layer of Graph
Transformer as specified in equation 8 and equation A23. The same argument below applies to any
number of LMLP and LGT.

First, consider the function class that operates on the meta-graph but only utilizes the nodes from
graph i, namely,

F̄i =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPoolSi

(H
(0)
M)
)}

, (A24)

where PoolSi denote the global pooling operation that restricts on the nodes in Si. Since

PoolSi(H
(0)
M) = Pool(HSi),

We have that

R
(
W

(2)
MLPσ

(
W

(1)
MLPPoolSi

(H
(0)
M)
)
;PM ,L

)
= R

(
W

(2)
MLPσ

(
W

(1)
MLPPool(HSi

)
)
;Pi,L

)
.

It follows that

ϵ(F̄i;PM ,L) = ϵ(Fi;Pi,L).

We claim that F̄i ⊆ FM , and by definition of approximation error in equation 9,

ϵ(FM ;PM ,L) ≤ ϵ(F̄i;PM ,L) = ϵ(Fi;Pi,L).

It remains to show the function class inclusion. Note that we can rewrite F̄i as

F̄i =
{
f : R|SM |×d 7→ R|Y|

∣∣∣f = W
(2)
MLPσ

(
W

(1)
MLPPoolSi

(GT(H(0)
M))

)
,

γ > 1,WV = I, bV = 0
}
,

(A25)

where γ is the threshold defined in Section 3.1.3 that determines the connectivity between nodes in the
meta-graph, WV , bV are parameters for values in the Graph Transformer layer. Setting γ > 1 results
in a fully disconnected meta-graph and together with WV = I, bV = 0, the Graph Transformer layer
GT(·) reduces to an identity mapping, which establishes the equivalence in equation A25.

Finally, from equation 8 and equation A25, it is clear that F̄i ⊆ FM , which concludes the proof.

A4.3 L-HOP MIXING VERSUS WEISFEILER-LEMAN

A natural question arises regarding the relationship between L-hop mixing (Theorem 4.3) and
Weisfeiler-Leman (WL) expressivity: does the ability to represent L-hop mixing translate into
enhanced distinguishing power in the Weisfeiler-Leman test. In this section, we clarify that these are
distinct characterizations of model power and provide a formal analysis of MGMT’s WL expressivity.

L-hop mixing and WL expressivity measure different aspects of model capability. WL expressivity
characterizes distinguishing power: whether a model can distinguish non-isomorphic graphs. The
1-dimensional WL test (1-WL) iteratively refines node colorings based on local neighborhood struc-
tures, and it is well-established that standard message-passing GNNs are at most as powerful as
1-WL Morris et al. (2019); Jegelka (2022). In contrast, L-hop mixing characterizes approximation
quality: whether a model can exactly recover target functions that depend on mixed-depth neighbor-
hood information (Theorem 4.1). MGMT’s capability of representing L-hop mixing comes from the
depth-aware aggregation in equation 1–equation 3, independent of the GT backbone, while MGMT’s
WL expressivity depends on the GT backbone choice. The empirical results in Table A6 demonstrate
that depth-aware aggregation enhances performance regardless of the GT backbone, confirming that
L-hop mixing and WL expressivity are complementary properties that jointly contribute to model
capability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

MGMT with Graph Attention Networks (GAT) backbone is 1-WL bounded. We now formally
analyze MGMT’s distinguishing power. We adopt notation from Morris et al. (2019); Jegelka (2022).
A node coloring l : V(G) 7→ Σ maps node v ∈ V(G) to color l(v) ∈ Σ. A labeled graph (G, l) is
graph G with node coloring l : V(G) 7→ Σ. Node coloring c refines coloring d, written c ⊑ d, if
c(v) = c(w) implies d(v) = d(w) for every v, w ∈ V(G). Two colorings are equivalent, written
c ≡ d, if c ⊑ d and d ⊑ c. The notation {{. . . }} denotes a multiset.

For labeled graph (G, l), 1-WL computes node coloring c
(t)
l : V(G) 7→ Σ iteratively for t ≥ 0. Let

c
(0)
l = l and for each u ∈ V(G) and t ≥ 0:

c
(t)
l (v) = HASH

(
c
(t−1)
l (v), {{c(t−1)

l (u) | u ∈ N (v)}}
)
, (A26)

where HASH is an injective mapping assigning unique colors to distinct input pairs.

The key difference between 1-WL and MGMT’s depth-aware GT (Section 3.1.1) is that the former
updates based on colorings of {v} ∪ N (v) from the previous iteration, while the latter aggregates
outputs across all depths/iterations. However, depth aggregation does not make MGMT more powerful
than 1-WL in distinguishing power. To see this, we define a 1-WL variation, 1-WL+, that utilizes all
depth information. Let c̃(t)l : V(G) 7→ Σ be the 1-WL+ coloring with c̃

(0)
l = l and c̃

(1)
l = c

(1)
l . For

t ≥ 1:

c̃
(t)
l (v) = HASH(t)

(
c
(1)
l (v), . . . , c

(t)
l (v)

)
, (A27)

where HASH(t) is an injective map assigning colors based on 1-WL outputs across all iterations.
Despite this additional step beyond vanilla 1-WL, 1-WL+ provides no additional distinguishing
power, as established by the following Lemma.

Lemma A3. Let (G, l) be a labeled graph. Then for all t ≥ 0, c(t)l ≡ c̃
(t)
l .

Proof. For any v, w ∈ V(G), if c̃(t)l (v) = c̃
(t)
l (w), we must have c

(k)
l (v) = c

(k)
l (w), for all k =

1, . . . , t by injectivity of HASH(t), hence c̃(t)l ⊑ c
(t)
l . On the other hand, if c(t)l (v) = c

(t)
l (w), we have

c
(k)
l (v) = c

(k)
l (w) for all k = 1, . . . , t− 1 by injectivity of HASH. It follows that c̃(t)l (v) = c̃

(t)
l (w)

since all inputs are equivalent. Hence, we have c
(t)
l ⊑ c̃

(t)
l , which concludes the proof.

Following similar arguments as in Morris et al. (2019); Jegelka (2022), the distinguishing power of
MGMT’s depth-aware GT is upper-bounded by 1-WL+ (hence 1-WL) and reaches maximal capacity
when the attention layers in Equations (1)-(2) (corresponding to HASH) and the depth aggregation in
Equation (3) (corresponding to HASH(t)) are injective functions.

Going beyond 1-WL. However, it is possible to extend MGMT beyond 1-WL expressivity. As
detailed in Section A12, MGMT’s main contribution is delineating a flexible framework for multi-
graph fusion where practitioners can freely replace the GAT backbone with other GT variants suitable
for the task, such as Graphormer Ying et al. (2021). As shown in Ying et al. (2021), incorporating
structural encodings and global attention leads to strictly more expressive power than the 1-WL test.
Therefore, MGMT with Graphormer backbone can technically break the 1-WL limitation discussed
in the Lemma above.

A5 THEORETICAL FOUNDATIONS OF EMBEDDING-SIMILARITY SUPEREDGES

Graph learning typically assumes that connected nodes have similar features or labels; a smooth-
ness (homophily) prior grounded in the observation that many real-world networks connect like
entitiesZhou et al. (2003); Rossi et al. (2022). This assumption is often enforced by minimizing
the graph Dirichlet energy (GDE, see Definition 2.1), which is the sum of squared feature differ-
ences across edges, thereby yielding smooth node embeddings that are harmonic functions on the
graph Rossi et al. (2022). A function f is defined as "harmonic" if it satisfies the discrete Laplace
equation Lf = 0, where L := D−A is the combinatorial graph Laplacian (with A as the adjacency
matrix and D as the diagonal degree matrix). This condition is equivalent to the averaging rule
f(u) = 1

deg(u)

∑
v∼u f(v) for every unlabeled node u. Minimizing the GDE enforces this harmonic

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table A1: Model Category Summary with Fusion Strategy, Graph Modeling, and Attention Usage

Category Model Type Fusion Method Novel Model Graph Structured Modeling Attention-Based

Single-
Source
(No
Fu-
sion)

Simple DNN × × × ×
Simple GNN × ×

√
×

Simple DiffPool × ×
√

×
Simple Transformer × × ×

√

Simple Graph Transformer × ×
√ √

Concatenation
Fu-
sion

Concatenated Features (DNN)
√

× × ×
Concatenated Features (GNN)

√
×

√
×

Concatenated Features (DiffPool)
√

×
√

×

Multimodal
Fu-
sion
Base-
lines

MMGL Zheng et al. (2022)
√

×
√ √

MultiMoDN Swamy et al. (2023)
√

× × ×
MedFuse Hayat et al. (2022)

√
× × ×

FlexCare Xu et al. (2024)
√

× ×
√

Meta-Transformer (MT) Ma et al. (2022)
√

× ×
√

MGMT
Ab-
la-
tion
Vari-
ants

MGMT w/o Adaptive Depth Selection
√ √ √ √

MGMT w/o Supernode Selection
√ √ √ √

MGMT w/o Inter-graph Edges
√ √ √ √

MGMT w/o Intra-graph Edges
√ √ √ √

MGMT w/o Meta-Graph and Adaptive Depth
√ √ √ √

Proposed Model MGMT
√ √ √ √

property, a classical result in graph-based semi-supervised learning Zhu et al. (2003); Zhou et al.
(2003). Such smoothness-based regularization has proven beneficial in both classical label prop-
agation and modern GNNs when the assumption holds, as it suppresses noise and aligns learned
representations with network structure.

From a spectral viewpoint, GDE minimization penalizes “high-frequency” components (rapid changes
across adjacent nodes), and standard message passing performs neighborhood averaging (a low-pass
operation), which denoises features while preserving cluster-level structure; this explains the strong
empirical performance of label propagation and Graph Convolutional Network (GCN)-style models
on homophilous benchmarksShuman et al. (2013); Jiang et al. (2019); Wu et al. (2019); Oono &
Suzuki (2019). If the smoothness prior is violated (heterophilic graphs where adjacent nodes differ),
aggressive smoothing can blur distinctions and degrade performance Zhu et al. (2020). This “feature
mixing” is well documented: on heterophilous graphs, even shallow neighbor-averaging can wash out
class signal, and deeper stacks exacerbate over-smoothing, where node embeddings become nearly
indistinguishable and both effects harm separabilityWu et al. (2019); Li et al. (2018). MGMT’s
design explicitly leverages these principles: it links nodes across graphs only when their latent
representations are similar, extending the homophily prior to inter-graph connections. Concretely,
by thresholding latent similarity, MGMT restricts message passing to approximately homophilous
(low-GDE) superedges, mitigating heterophily-induced feature mixing; this mirrors observations
that learning/selecting edges to reduce Dirichlet energy improves downstream accuracy Chen et al.
(2020). By keeping cross-graph GDE low, this construction ensures information is shared along
feature-consistent (smooth) superedges, thereby bolstering MGMT’s empirical performance.

Definition 2.1 (Graph Dirichlet Energy). For a graph with adjacency matrix A and node feature
matrix X , the Dirichlet energy (graph signal smoothness) is defined as

Ω(A,X) =
1

2n2

∑
i,j

Aij ∥xi − xj∥2 =
1

n2
tr(X⊤LX) ,

where L = D − A is the graph Laplacian and Dii =
∑

j Aij Chen et al. (2020). This quantity
measures how smoothly the features X vary across the edges. A smaller Ω(A,X) indicates that
connected nodes have more similar features.

A trivial minimizer of Ω(A,X) is the disconnected graph with no edges (A = 0), yielding the
minimum GDE of 0 Chen et al. (2020). However, in practice, one often imposes constraints
such as a fixed number of edges, a connectivity requirement, or regularization terms to avoid this
degenerate solution. The objective thus becomes to add only the most "homophilous" edges that
connect similar nodes, thereby keeping the GDE low. Under this motivation, minimizing Ω(A,X)
reduces to selecting the most “homophilous” edges. MGMT implements this principle directly. It
computes all pairwise similarities between supernode embeddings and forms superedges only if the
similarity surpasses a data-driven threshold automatically selected via cross-validation (detailed in
Section 3.1.3). Finally, we note that while the GDE in Definition 2.1 is based on squared feature

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table A2: Accuracy (± standard error) for different models across datasets, grouped by model family.

Category Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

Feature-Concatenation
DNN 62.13 ± 0.91 30.62 ± 2.28 61.87 ± 2.27 56.10 ± 1.13 63.74 ± 0.56
GNN 70.17 ± 0.93 27.80 ± 2.34 55.64 ± 2.36 64.20 ± 1.20 67.17 ± 0.60
DiffPool 69.40 ± 0.70 31.53 ± 1.76 53.78 ± 1.75 65.80 ± 0.89 64.81 ± 0.44

General-purpose Multimodal

MMGL 79.38 ± 0.52 39.28 ± 1.93 59.20 ± 1.04 62.80 ± 0.84 68.75 ± 0.12
MultiMoDN 76.44 ± 0.75 37.82 ± 1.82 60.40 ± 1.67 61.50 ± 1.01 65.10 ± 0.50
MedFuse 75.27 ± 0.84 35.17 ± 1.71 59.70 ± 1.52 64.35 ± 0.96 63.84 ± 0.53
FlexCare 76.14 ± 0.79 36.42 ± 1.88 61.10 ± 1.39 69.82 ± 0.91 64.03 ± 0.56
MT 81.29 ± 0.92 39.20 ± 2.96 62.31 ± 1.24 66.30 ± 1.12 69.24 ± 0.34

SOTA Multi-graph
AMIGO 79.23 ± 1.04 38.92 ± 1.32 58.68 ± 2.12 65.73 ± 0.89 70.42 ± 0.79
MaxCorrMGNN 77.43 ± 1.35 35.97 ± 2.73 56.23 ± 1.32 63.72 ± 1.64 71.46 ± 1.01
MGLAM 81.29 ± 0.96 38.93 ± 1.02 61.96 ± 1.04 62.29 ± 1.29 69.52 ± 0.39

Proposed model MGMT 83.11 ± 0.84 42.13 ± 2.52 65.47 ± 2.39 69.90 ± 1.19 73.21 ± 0.59

differences, we observed in practice that MGMT’s performance is not sensitive to the specific choice
of similarity metric used for this filtering step (Section A11).

A6 DETAILED DESCRIPTIONS OF BASELINE MODELS

This appendix details the baselines used to evaluate our method. Table A1 provides a summary
comparison of the baseline models.

A6.1 SINGLE-SOURCE MODELS (NO FUSION)

We assess per-source predictive signal with five baselines: (i) DNN on flattened node features (edges
ignored); (ii) a message-passing GNN with graph-convolution layers over the given topology; (iii)
DiffPool for hierarchical pooling into coarser clusters Ying et al. (2018); (iv) Transformer over
node-feature sequences (no structural encoding); and (v) Graph Transformer that attends over 1-hop
neighborhoods to incorporate local structure.

A6.2 FEATURE-CONCATENATION FUSION MODELS

These models use early fusion: each source is encoded by a source-specific extractor, the resulting
embeddings are concatenated, and a shared DNN classifier is applied. Concretely, we consider (i)
DNN-fusion with per-source DNN encoders; (ii) GNN-fusion with per-source GCN layers and graph-
level pooling prior to concatenation; and (iii) DiffPool-fusion using per-source DiffPool encoders to
produce graph-level embeddings that are concatenated and classified by a DNN.

A6.3 GENERAL-PURPOSE MULTIMODAL FUSION

We benchmark against recent multimodal frameworks with distinct fusion strategies: (i)
MMGL Zheng et al. (2022), which learns shared/specific embeddings via modality-aware rep-
resentation learning and models subject-level similarity with a GNN; (ii) MultiMoDN Swamy
et al. (2023), a modular design with independent encoders and late fusion, without structural rea-
soning; (iii) MedFuse Hayat et al. (2022), which aligns modalities in a shared latent space using
contrastive/reconstruction losses, without explicit intra- or inter-modality structure; (iv) FlexCare Xu
et al. (2024), which uses modality-specific encoders and a Transformer fusion layer for heterogeneous
clinical data, but no graph-based reasoning; and (v) Meta-Transformer (MT) Ma et al. (2022), which
uses modality prompts with a shared Transformer over unstructured inputs, without topological
modeling. MGMT differs by jointly capturing both intra- and inter-graph relations through an
attention-based meta-graph.

Most of these benchmark models were not originally designed for graph-structured inputs (they
expect tabular, imaging, or clinical features). To compare fairly, we first converted each graph into a
fixed-length vector by running the same graph-specific encoder used in MGMT (TransformerConv
with global pooling and adaptive-depth aggregation) and using the resulting graph-level embedding
as a “tabular” feature vector. For methods with multi-stream inputs (e.g., MultiMoDN, FlexCare,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

MedFuse), we fed one embedding per graph; for single-stream methods (e.g., Meta-Transformer),
we concatenated the graph embeddings. All baselines used identical train/val/test splits, per-graph
standardization, a learned linear projection to align embedding dimensions when required, and the
same Optuna budget for hyperparameter tuning.

A6.4 MULTI-GRAPH LEARNING MODELS

Finally, we include three recent multi-graph learning methods as baselines that explicitly operate
on multiple graphs per entity: (i) AMIGO (Nakhli et al., 2023) is a sparse multi-graph transformer
model that processes multiple modality-specific graphs for each subject and uses a shared context
mechanism to exchange information across graphs. Each graph is first encoded by a graph transformer
to obtain a graph-level representation; AMIGO then employs cross-graph attention between these
representations and a shared context token to produce a fused embedding used for prediction;
(ii) MaxCorrMGNN (D’Souza et al., 2023) is a multi-graph neural network that encourages the
embeddings of different graphs from the same subject to be maximally correlated. It learns graph-
level embeddings for each graph and optimizes a correlation-based objective across graphs, followed
by a classifier on the fused embedding. This explicitly aligns graph-specific representations while
retaining graph-specific encoders; MGLAM (Fu et al.) treats each subject as a "bag of graphs", and
learns adaptive weights over graphs within the bag. It first computes graph-level embeddings for each
graph, then aggregates them via an attention-like mechanism that learns per-graph importance scores,
yielding a subject-level representation for downstream prediction.

In our experiments, all three methods are instantiated on the same graph-specific design as MGMT,
using the same per-graph encoders (where applicable), train/validation/test splits, and comparable
hyperparameter tuning budgets. Unlike MGML-style multimodal fusion, these methods are designed
to handle multiple graphs per subject, but they fuse graphs at the level of graph embeddings or bags
of graphs. In contrast, MGMT constructs an explicit meta-graph over supernodes, enabling fine-
grained cross-graph message passing that preserves intra-graph topology while modeling inter-graph
structure.

A7 ABLATION STUDY

We assess the contribution of each MGMT component through a series of ablations where one or
several modules are removed while the rest of the architecture is kept fixed: (i) w/o Adaptive Depth
Selection: replace confidence-weighted layer aggregation with final-layer-only features, disabling
depth-wise ensembling; (ii) w/o Supernode Selection: bypass attention-based node filtering so that all
nodes enter the meta-graph; (iii) w/o Inter-graph Edges: keep only within-graph edges, removing
cross-graph interactions in the meta-graph; (iv) w/o Intra-graph Edges: keep only cross-graph edges,
discarding within-graph structure for the supernodes; (v) w/o Meta-Graph and Adaptive Depth: omit
the meta-graph entirely, fix encoder depth, and perform early fusion via concatenated pooled graph
outputs.

Numerical results for each ablation across datasets are reported in Table A3, with corresponding
accuracy plots in Fig. 2. Several consistent patterns emerge.

First, removing the meta-graph and adaptive depth leads to the largest degradation on all tasks (e.g.,
from 83.11% to 70.12% on Alzheimer and from 42.13% to 27.80% on LFP). This variant reduces
MGMT to an early-fusion model over pooled graph embeddings, eliminating both subgraph-level
cross-graph message passing and the ability to combine information across depths. The sharp drop
indicates that the meta-graph is not a cosmetic addition: explicitly modeling interactions between
a small set of informative supernodes drawn from the multiple graphs of each entity is crucial for
integrating heterogeneous graphs and stabilizing predictions in multi-graph settings.

Second, disabling adaptive depth (“w/o Adaptive Depth Selection”) consistently hurts performance
(e.g., from 83.11% to 81.20% on Alzheimer, and from 42.13 to 40.64% on LFP). Together with
the depth-confidence and attention visualizations in the main paper (Fig. 6), this supports our
interpretation of the depth-aware module as more than a simple multi-layer average: layers with
high confidence scores focus their attention on behaviorally relevant substructures (e.g., distal CA1
in the LFP dataset), whereas low-confidence layers exhibit more diffuse patterns. When we force
the model to use only the final layer, it can no longer adaptively emphasize those depths whose

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A3: Accuracy (± standard error) for different ablation models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

MGMT w/o Adaptive Depth Selection 81.20 ± 0.85 40.64 ± 2.23 64.20 ± 2.40 68.80 ± 1.17 71.45 ± 0.57
MGMT w/o Supernode Selection 78.25 ± 0.87 41.07 ± 2.19 62.11 ± 2.16 67.30 ± 1.07 69.31 ± 0.53
MGMT w/o Inter-graph Edges 76.59 ± 0.88 38.91 ± 2.14 61.72 ± 2.25 66.90 ± 1.21 68.35 ± 0.51
MGMT w/o Intra-graph Edges 62.40 ± 2.43 39.08 ± 0.97 63.09 ± 2.42 66.62 ± 1.23 66.75 ± 0.62
MGMT w/o Meta-Graph and Adaptive Depth 70.12 ± 0.93 27.80 ± 2.34 55.64 ± 2.36 64.20 ± 1.20 67.17 ± 0.60
MGMT 83.11 ± 0.84 42.13 ± 2.52 65.47 ± 2.39 69.90 ± 1.19 73.21 ± 0.59

connectivity patterns are most aligned with the task, leading to more misclassifications in cases that
require multi-scale aggregation.

Third, removing supernode selection (“w/o Supernode Selection”) yields a moderate but consistent
drop relative to full MGMT across all datasets. This is consistent with the threshold-sensitivity
analysis (Section A10) for the supernode importance score: very low thresholds allow keeping many
weakly informative nodes in the meta-graph, making it denser and noisier. In contrast, moderate
thresholds strike a balance between retaining salient subgraphs and suppressing noise. The ablation
corresponds to the extreme case where all nodes are kept (effectively τ → 0), and the resulting
performance degradation indicates that the sparsity-inducing bottleneck provided by supernode
selection is important for denoising and interpretability.

Finally, the inter- and intra-graph edge ablations clarify how MGMT exploits structure at two
complementary levels. Removing inter-graph edges (“w/o Inter-graph Edges”) prevents information
from flowing across graphs of the same entity; accuracy drops are noticeable (e.g., from 83.11% to
76.59% on Alzheimer), indicating that cross-graph alignment provides a clear gain on top of strong
graph-specific encoders. In contrast, removing intra-graph edges (“w/o Intra-graph Edges”) discards
the original within-graph topology and forces the model to rely solely on similarity-based links
between supernodes from different graphs; this leads to a much larger degradation on real datasets
(e.g., Alzheimer accuracy falls to 62.40%). This pattern is consistent with our similarity-threshold
study in Section A10: when the inter-graph similarity threshold γ is too low, the meta-graph becomes
overly dense and spurious cross-graph edges blur informative graph-specific structure, whereas very
high γ removes many genuinely aligned supernodes and under-utilizes cross-graph information.
The best performance arises at intermediate γ values, where inter-graph edges selectively connect
strongly aligned supernodes and, as formalized by our smoothness analysis in Section A5, tend to
reduce the Dirichlet energy of the label function on the meta-graph. Taken together, the ablations
support the view that MGMT needs both well-structured intra-graph connectivity to encode subject-
or modality-specific patterns, and a sparse, similarity-driven set of inter-graph edges to tie together
truly corresponding regions across graphs; removing either source of structure degrades performance,
with the largest failures occurring when the more informative structure for a given task (typically the
intra-graph topology) is removed.

Software implementing the algorithms and data experiments is available online at:
https://anonymous.4open.science/r/new_submission-33A6

A8 DETAILS ON SIMULATION SETTINGS

This section provides detailed descriptions of the synthetic data generation processes used in our
simulation studies. We consider two controlled settings designed to evaluate the performance of
MGMT under varying conditions of noise, feature dependency, and label complexity. Below, we
describe the procedures for Setting 1, which uses modality-specific noise and a linear classification
rule, and Setting 2, which introduces temporal dependencies and nonlinear label generation.

SETTING 1: FEATURE GENERATION WITH MODALITY-SPECIFIC NOISE AND LINEAR
CLASSIFICATION RULE

Let each graph (modality in this case) consist of N nodes and d features per node. Define a subset of
informative nodes V0 ⊂ {1, . . . , N} with |V0| = N0 < N , and let V1 = {1, . . . , N} \ V0 denote the
non-informative nodes.

25

https://anonymous.4open.science/r/new_submission-33A6

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For each graph i = 1, . . . , n within each sample k = 1, . . . ,K, with graph-specific noise level σi,
node features are generated as follows:

• informative nodes j ∈ V0 have features x(k,i)
j ∼ N (0,Σi), where Σi ∈ Rd×d has ones on the

diagonal and off-diagonal entries sampled uniformly from [−σi, σi].

• Non-informative nodes j ∈ V1 have features x(k,i)
j ∼ Unif(0, 0.5)d.

The graph-specific graph-level binary label y(k)i ∈ {0, 1} is determined by the features of informative
nodes:

y
(k)
i = I

 1

|V0|
∑
j∈V0

d∑
r=1

x
(k,i)
j,r + ε(k) > 0

 , ε(k) ∼ N (0, 0.1).

To enable multimodal fusion, a shared target variable is defined by aggregating graph-specific labels:

y
(k)
shared = I

(
n∑

i=1

wiy
(k)
i ≥ τ

)
,

where wi ∈ [0, 1] are graph-specific weights summing to one, and τ ∈ [0, 1] is a threshold parameter.

SETTING 2: TEMPORAL FEATURE DEPENDENCY VIA GAUSSIAN PROCESS

In this setting, features of informative nodes are generated using a Gaussian Process (GP) to introduce
temporal dependency across the d features. For t = 1, . . . , d, let xt ∼ Unif(0, 1), and define the GP
with zero mean and a squared exponential kernel:

k(xt, xt′) = σ2 exp

(
− (xt − xt′)

2

l2

)
,

with length-scale l = 1 and variance σ2 = 1.

For non-informative nodes, features are also sampled from a GP with the same mean function, but
with increased kernel variance σ2 = 2.5, thereby injecting greater noise and reducing relevance for
the target prediction.

The binary target label is defined using a nonlinear and complex function of the averaged features
across informative nodes. Let

x =
1

|V0|
∑
j∈V0

xj ∈ Rd,

and define three projection vectors e1, e2, e3 ∈ Rd, each selecting a distinct third of the features:
e1 = [1, . . . , 1︸ ︷︷ ︸

d/3

, 0, . . . , 0︸ ︷︷ ︸
2d/3

],

e2 = [0, . . . , 0︸ ︷︷ ︸
d/3

, 1, . . . , 1︸ ︷︷ ︸
d/3

, 0, . . . , 0︸ ︷︷ ︸
d/3

],

e3 = [0, . . . , 0︸ ︷︷ ︸
2d/3

, 1, . . . , 1︸ ︷︷ ︸
d/3

].

The graph-level label is then computed as:
y = I

(
sin(x⊤e1) · cos(x⊤e2) + (x◦2)⊤e3 + ε > 0

)
, ε ∼ N (0, 0.1),

where x◦2 denotes the element-wise square of x, i.e., the Hadamard power.

A9 EXPERIMENTAL SETTING AND EFFICIENCY ANALYSIS

We evaluate the computational complexity and efficiency of MGMT through both theoretical and
empirical analysis. This section is structured as follows: Section A9.1 presents a theoretical runtime
complexity analysis of MGMT’s core components; Section A9.2 provides empirical scalability results
across four key input dimensions; Section A9.3 offers runtime profiling and efficiency comparisons,
including infrastructure details and training costs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure A7: Scalability analysis of MGMT with respect to key input parameters. We evaluate the
empirical runtime of MGMT under controlled variations of (i) number of nodes per graph (N), (ii)
number of graphs per sample (n), (iii) number of samples (log scale), and (iv) feature dimensionality
(d).Runtime scales quadratically with N due to the dense self-attention in the graph-specific Graph
Transformers (O(N2 ·d)), and linearly with n, confirming the modular and scalable design of MGMT.
Sample size and feature dimension contribute to runtime growth in accordance with expectations, with
minor deviations at small scales. Linear and quadratic regression fits are shown for interpretability,
along with corresponding R2 values.

A9.1 THEORETICAL COMPLEXITY ANALYSIS.

The total computational complexity of MGMT is governed by three main components: (1) graph-
specific Transformer encoders, (2) meta-graph construction, and (3) the final meta-graph Transformer.

Graph-specific Transformer encoders The computational complexity depends on the GT back-
bone choice. For a graph Gi with Ni nodes and d-dimensional features, the GAT backbone in
Section 3.1.1, attention is restricted to local neighborhoods, yielding O(|Ei|d) per graph Gi with |Ei|
edges and d-dimensional features, totaling O(n|E|d) across n graphs. For dense attention (e.g.,
Graphormer Ying et al. (2021), every node attends to all others, resulting in O(N2

i d) per graph with
Ni nodes, or O(nN2d) total. For sparse attention (e.g., top-K Zhao et al. (2019)), where each
node attends to K ≪ Ni neighbors, the complexity is O(NiKd) per graph, or O(nNKd) total.

Meta-graph construction Two steps: (a) supernode extraction by scoring and thresholding nodes
is O(Ni) per graph, totaling O(nN); (b) superedge creation computes pairwise similarities among
selected supernodes. Let Si be supernodes in graph i and Stotal =

∑
i Si. This step costs O(S2

totald),
i.e., O(n2S2d) for roughly S per graph, with Si ≪ Ni.

Meta-graph Transformer Applied over Stotal supernodes, yielding O(S2
totald) (approximately

O(n2S2d)).

The dominant term is the per-graph encoder,
∑

i O(N2
i d). Meta-graph construction and inference

operate on a much smaller set of supernodes (Stotal ≪
∑

i Ni) and thus are comparatively lightweight.
Quadratic factors at the meta-graph level are in Stotal (and n), which remains moderate by design.

A9.2 SCALABILITY ANALYSIS

To validate the theoretical complexity discussed in Section A9.1, we empirically evaluated the runtime
behavior of MGMT with respect to four key input parameters: number of nodes per graph (N),
number of graphs per sample (n), number of samples, and node feature dimensionality (d). In each
experiment, we fixed the model architecture, training epochs (100), and batch size to enable consistent
runtime comparisons, and reported runtimes averaged over 10 independent runs. Results in Figure A7
align with theory and show efficient scaling.

Runtime vs. Nodes per Graph (N). As predicted by the O(N2 · d) complexity of Transformer-
based attention, the observed runtime increases superlinearly with N . The curve aligns closely with a
quadratic fit (R2 = 0.999), reflecting the cost of dense all-pairs attention in graph-specific encoders.

Runtime vs. Number of Graphs per Sample (n). The runtime grows approximately linearly with
n, validating the modular structure of MGMT where graph-specific encoders operate in parallel and
the size of the meta-graph remains bounded. This confirms that MGMT scales well with respect to
the number of graphs in practical regimes and supports our theoretical analysis in Section A9.1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Runtime vs. Number of Samples. We observe a near-quadratic growth in runtime (on a log scale)
as the number of samples increases, consistent with expectations. This is attributed to repeated
forward passes and meta-graph construction across samples, particularly in mini-batch training
settings.

Runtime vs. Feature Dimensionality (d). Despite the theoretical linear dependence on d in
attention layers, the empirical curve remains nearly flat. This is due to early feature compression in
MGMT’s architecture, which transforms high-dimensional node features into a lower-dimensional
latent space prior to attention and reasoning steps.

A9.3 RUNTIME PROFILING AND MODEL EFFICIENCY

Building on the complexity analysis and scalability trends in Section A9.2, we profile per-epoch
runtime to isolate the cost of each architectural component. Table A4 reports average epoch times for
MGMT and graph-attention baselines (those that perform graph reasoning and/or meta-graph fusion).

Baselines MGMT’s meta-graph reasoning adds minimal overhead: it is faster than MMGL on
all datasets except LFP, despite including supernode detection and adaptive depth. Ablations that
remove intra-graph edges or the meta-graph yield small speedups but reduce accuracy (see Table A2),
illustrating a speed–accuracy trade-off.

MultiMoDN, MedFuse, and FlexCare are omitted from Table A4 because they do not use graph
representations or attention; direct runtime comparison to graph-based models would be misleading.
These methods operate on tabular inputs with shallow fusion, yielding lower computational cost by
design but consistently lower accuracy than MGMT (Table A2).

Table A5 decomposes MGMT’s epoch time into data preparation, graph encoders, supern-
ode/superedge construction, meta-graph formation, and the final classifier. The dominant cost
is the graph Transformer encoder, consistent with the O(N2d) complexity; meta-graph construction
and reasoning are comparatively lightweight due to the compact meta-graph.

Overall, MGMT balances expressivity and efficiency: it achieves higher accuracy than non-graph and
shallow fusion baselines while maintaining practical per-epoch runtimes.

Compute Infrastructure and Training Cost. All experiments were conducted on a shared CPU-
based server provided by our lab. Each training job utilized 4 parallel CPU workers and approximately
4 GB of RAM. No GPU resources were used.

For baseline experiments, we trained a total of 250 models. Each model took on average 5.5 hours to
train, amounting to approximately 1,375 CPU hours.

For MGMT model training and hyperparameter tuning, the total compute time was as follows:

• LFP dataset: 100 Optuna trials, each taking 71 minutes on average, resulting in approximately
118.3 CPU hours

• Alzheimer dataset: 100 Optuna trials, each taking 5 hours and 18 minutes on average, resulting in
approximately 530 CPU hours

• Simulation Setting 1: 50 iterations, each taking 29 minutes on average, resulting in approximately
24.2 CPU hours

• Simulation Setting 2: 50 iterations, each taking 31 minutes on average, resulting in approximately
25.8 CPU hours

• Simulation Setting 3: 50 iterations, each taking 49 minutes on average, resulting in approximately
40.8 CPU hours

In total, MGMT-related training required approximately 739 CPU hours. Additional compute time
spent on development, debugging, and model refinement was not recorded.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table A4: Comparison of average epoch runtime (in seconds) between various meta-graph configura-
tions and baseline models across each dataset.

Model Variant Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

MMGL 174.23 63.12 21.85 29.02 33.98
MGMT w/o Meta-Graph and Adaptive Depth 174.10 64.33 15.10 17.20 32.60
MGMT w/o Intra-graph Edges 156.77 63.69 15.72 18.83 32.71
MGMT w/o Supernode Selection 215.46 59.61 19.91 19.31 35.61
MGMT 162.93 67.33 16.67 17.59 33.01

Table A5: Detailed epoch running time (in seconds) for the MGMT model across different datasets.

Dataset Total Data Prep Graph-specific encoding SuperEdge & Node Extraction Meta-Graph Final Model

Alzheimer 162.93 1.81 119.24 28.64 1.56 13.18
LFP Data 67.33 0.88 59.74 1.38 1.19 1.25
Experiment 1 16.67 0.23 16.26 0.07 0.06 0.05
Experiment 2 17.59 0.44 16.40 0.26 0.25 0.24
Experiment 3 33.01 0.51 32.25 0.09 0.08 0.08

A10 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

The MGMT framework includes several hyperparameters that influence model performance and
computational efficiency. In this section, we investigate the sensitivity of two key hyperparameters:
the attention score threshold (τ) used for supernode selection, and the cosine similarity threshold (γ)
used in inter-graph edge construction.

A10.1 ATTENTION SCORE THRESHOLD (SUPERNODE SELECTION)

To assess the impact of τ , we conducted a controlled experiment on synthetic data generated under
Setting 1 (see Appendix A8). We have a total of 100 samples and 5 graphs per each sample, where
each graph consists of 10 nodes, with 30 features per node. We trained all models for 100 epochs and
averaged accuracy and runtime over 50 repetitions.

Intuitively, decreasing τ results in more nodes being selected as supernodes, increasing computational
cost and potentially introducing noisy or redundant information. In contrast, higher thresholds select
fewer supernodes, reducing runtime but possibly discarding useful information. As shown in Fig-
ure A8 left panel, the runtime decreases steadily as τ increases, which aligns with the reduced number
of supernodes and associated computations. However, model accuracy shows a non-monotonic
trend: it peaks at τ = 0.3 (64.5%) and declines on either side. This behavior illustrates a tradeoff
between overfitting (when too many nodes are included) and information loss (when too few nodes
are retained).

A10.2 COSINE SIMILARITY THRESHOLD (INTER-GRAPH EDGE CONSTRUCTION)

Moreover, to assess the effect of the cosine similarity threshold γ used for inter-graph edge construc-
tion, we performed a controlled sensitivity analysis using synthetic data generated under Setting 1
(see Appendix A8). We have a total of 100 samples and 5 graphs per each sample, where each graph
consists of 100 nodes, with 30 features per node. All models were trained for 100 epochs, and both
accuracy and runtime were averaged over 50 repetitions.

As shown in Figure A8 right panel, runtime remains largely stable across different γ values, indicating
that inter-graph edge density has minimal impact on computational overhead since meta-graph
construction occurs post graph-specific encoding and operates over a reduced number of supernodes.

Accuracy, however, demonstrates a non-monotonic trend. When γ is very small, the meta-graph
becomes fully connected, enabling the model to consider all potential inter-graph interactions.
Although this theoretically maximizes expressiveness (since attention-based transformers can learn
to prioritize relevant connections), it increases the risk of overfitting due to the inclusion of noisy
or spurious edges. On the other hand, when γ is close to 1, the meta-graph becomes sparse or even
disconnected, leading to an underutilization of cross-graph dependencies.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure A8: Sensitivity analysis of two key hyperparameters in the MGMT framework. (a) Left two
plots: The attention score threshold τ controls supernode selection. Lower thresholds include more
nodes, increasing runtime and potentially introducing noise, while higher thresholds risk discarding
informative nodes. Accuracy peaks at τ = 0.3, suggesting a balance between expressiveness and
overfitting. (b) Right two plots: The cosine similarity threshold γ governs inter-graph edge construc-
tion in the meta-graph. Accuracy peaks at moderate values of γ, reflecting a trade-off between dense
connectivity (risking overfitting) and sparsity (losing cross-graph interactions). Runtime remains
largely stable across γ, as meta-graph construction operates over a small number of supernodes.

The highest accuracy occurs at intermediate values (e.g., γ = 0.4), suggesting that retaining only
the most semantically meaningful inter-graph links allows the model to balance expressiveness with
robustness. These findings reinforce the results from our ablation studies (Figure 2), which demon-
strate that incorporating carefully selected inter-graph edges substantially improves downstream
performance.

A11 IMPACT OF SIMILARITY METRICS IN META-GRAPH CONSTRUCTION

The construction of inter-graph edges in the meta-graph relies on computing pairwise similarities
between node embeddings extracted from different graphs. While cosine similarity is commonly
adopted due to its scale-invariant properties, other alternatives such as Pearson correlation, Euclidean
distance, and dot product, may also be used to define similarity across nodes. This section evaluates
the extent to which the choice of similarity metric affects downstream performance.

To investigate this, we conducted a controlled experiment on a synthetic dataset generated under
Setting 1 (see Appendix A8). For each similarity function, we compute full cross-graph similarity
matrices between node embeddings and apply a fixed top-k rule with k = 10 to select inter-graph
edges, ensuring identical sparsity across metrics. Each configuration is run 50 times; we report the
mean accuracy.

We compare cosine similarity, Pearson correlation, negative Euclidean distance converted to similarity
via 1/(1 + dij), and dot product. Results show modest but consistent differences: dot product attains
the highest accuracy (0.661), followed by cosine (0.654), Pearson(0.648), and Euclidean (0.642). The
spread is small (1.9 percentage points), indicating limited sensitivity to the similarity choice under
this setup.

A12 SINGLE-GRAPH AND MULTI-GRAPH RESULTS WITH ALTERNATIVE GT
BACKBONES

In the main text, we implement MGMT with a localized GAT-style GT backbone. To verify that
MGMT is not tied to this particular choice and to better understand the role of local versus global
attention, we conducted two sets of complementary experiments. First, we replaced GAT with several
state-of-the-art GT variants in a single-graph setting on the LFP neuroscience dataset, with and
without our depth-aware aggregation. Second, we implemented MGMT with different depth-aware
GT backbones used both as per-graph feature encoders and as the final feature learning and prediction
module on the meta-graph. This section reports and analyzes these results.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table A6: Comparison of test accuracy between GT variations (GraphGPS, GRIT, Exphormer, EGT,
GAT) and their depth-aware counterparts on the LFP dataset (single-graph setting).

Models SuperChris Barat Stella Mitt Buchanan

GraphGPS 38.58 ± 0.09 31.45 ± 1.39 37.42 ± 1.01 31.10 ± 1.66 35.32 ± 1.81
Depth-aware GraphGPS aggregation 39.03 ± 1.76 30.97 ± 1.17 36.45 ± 1.31 30.65 ± 1.57 37.74 ± 2.07
GRIT 35.76 ± 1.71 31.77 ± 1.85 40.61 ± 0.43 30.58 ± 1.96 32.64 ± 2.04
Depth-aware GRIT aggregation 38.40 ± 2.50 31.63 ± 1.98 40.18 ± 1.09 32.12 ± 1.39 34.16 ± 2.29
Exphormer 40.23 ± 1.45 32.26 ± 1.77 35.65 ± 1.67 29.84 ± 1.58 35.65 ± 2.08
Depth-aware Exphormer aggregation 42.04 ± 1.65 38.54 ± 1.42 39.17 ± 2.16 34.02 ± 1.71 39.50 ± 1.98
EGT 40.23 ± 1.95 33.23 ± 1.36 36.77 ± 2.19 28.71 ± 1.52 38.06 ± 1.60
Depth-aware EGT aggregation 40.06 ± 1.36 32.74 ± 1.88 38.87 ± 1.56 33.71 ± 2.10 40.97 ± 1.03
GAT 33.16 ± 1.08 32.46 ± 1.34 35.57 ± 1.42 30.52 ± 1.42 31.42 ± 1.96
Depth-aware GAT aggregation 36.42 ± 1.71 40.43 ± 1.09 40.31 ± 1.52 34.79 ± 1.41 34.17 ± 1.91

A12.1 SINGLE-GRAPH LFP EXPERIMENTS WITH DIFFERENT GT BACKBONES

Table A6 compares test accuracy on the LFP dataset when training single-graph models separately
on each animal using different GT backbones, either in their vanilla form or augmented with our
depth-aware aggregation mechanism. Across all GT backbones tested (local, global, and sparse), the
depth-aware version consistently improves performance over the corresponding vanilla backbone.
The relative gains are largest for backbones whose effective receptive field is more local (GAT) or
sparsified (Exphormer, GRIT, EGT), where depth-aware aggregation compensates for limited single-
layer reach by mixing information across multiple depths. In contrast, GraphGPS, which already
combines local message passing and global attention with strong residual connections, benefits only
marginally from our depth-aware aggregation. These results support the claim that depth-aware
aggregation is a generic, backbone-agnostic enhancement and not specific to GAT.

Replacing GAT with more advanced GT backbones (GraphGPS, GRIT, Exphormer, EGT) yields
modest but consistent gains at the single-graph level, confirming that the LFP task does benefit from
long-range or sparse global attention when graphs are treated independently. However, depth-aware
aggregation narrows this gap substantially: depth-aware GAT becomes competitive with depth-aware
Exphormer and depth-aware EGT, showing that our proposed L-hop mixing mechanism is often as
important as the specific GT backbone.

A12.2 MGMT WITH DIFFERENT GT BACKBONES

We next plug these depth-aware GT backbones into MGMT and evaluate in the multi-graph regime.
Here, each depth-aware GT backbone has been used both as a per-graph encoder and as the final
feature learning and prediction module on the meta-graph. Table A7 reports the results on the LFP,
Alzheimer, and simulation datasets.

On the LFP dataset, all depth-aware MGMT variants based on GAT, GraphGPS, GRIT, and Exphormer
attain very close accuracies (41.86–42.24%), with absolute differences below 0.4 points. A similar
pattern holds for the Alzheimer dataset, where the best-performing variants (depth-aware GAT and
depth-aware Exphormer) achieve nearly indistinguishable accuracies within their reported uncertainty.
Thus, once we move to the multi-graph regime and apply MGMT’s meta-graph fusion, the specific
choice of GT backbone becomes substantially less critical than in the single-graph setting.

These experiments clarify the relationship between GT expressivity and MGMT’s meta-graph mecha-
nism. In MGMT, the core object is the meta-graph built from supernodes and superedges. Supernodes
are defined via depth-aggregated attention on edges: for each node u we use the score∑

(u,v)∈E

αuv,

where the αuv are learned and updated at every layer but are always computed with respect to the
underlying edge set E. With localized GAT-style attention, E consists only of the true graph edges
(plus self-loops), so a high supernode score has a clear meaning: node u sends strong attention
along its real anatomical or structural connections. This is exactly the semantics MGMT needs when
it selects supernodes, defines superedges, and constructs a meta-graph that is intended to reflect
task-relevant structure in the original LFP/MRI networks.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table A7: Comparison of test accuracy between MGMT variants created using different GT variants
for feature encoding and Final Feature Learning and Prediction (Depth-aware GAT aggregation,
Depth-aware GraphGPS, Depth-aware GRIT, Depth-aware Exphormer, and Depth-aware EGT aggre-
gation)

Models LFP Dataset Alzheimer Experiment 1 Experiment 2 Experiment 3

GAT 40.64 ± 0.223 81.20 ± 0.85 64.20 ± 2.40 68.80 ± 1.17 71.45 ± 0.57
Depth-aware GAT aggregation 42.13 ± 0.252 83.11 ± 0.84 65.47 ± 2.39 69.90 ± 1.19 73.21 ± 0.59
Depth-aware GraphGPS aggregation 41.94 ± 0.162 80.12 ± 0.67 62.37 ± 1.56 67.49 ± 0.98 72.38 ± 0.83
Depth-aware GRIT aggregation 42.24 ± 0.345 82.59 ± 1.03 61.06 ± 2.31 69.23 ± 1.01 72.98 ± 0.61
Depth-aware Exphormer aggregation 41.86 ± 0.427 83.29 ± 0.58 62.93 ± 1.92 67.46 ± 1.32 72.46 ± 0.49
Depth-aware EGT aggregation 40.08 ± 0.162 81.79 ± 1.26 60.52 ± 1.86 68.96 ± 0.94 71.30 ± 0.49

Several SOTA GT backbones, however, substantially modify this edge set. EGT and Graphormer-
style models effectively allow attention between all node pairs, and Exphormer adds expander edges
and virtual node connections. In these cases, E contains a mix of true and artificial edges, so∑

(u,v)∈E αuv blends attention along physical connections and model-constructed links. This is
often beneficial for single-graph prediction (hence the stronger vanilla GT backbones in Table A6),
but it dilutes the structural meaning of supernodes and superedges and can “contaminate” the meta-
graph by injecting artificial connectivities, which is undesirable in MGMT’s interpretability-driven
setting. GRIT, on the other hand, provides an instructive intermediate case. Its design combines
global, kernelized attention with a sparsified connectivity pattern that is optimized for single-graph
prediction, and in the vanilla setting, this yields clear gains over GAT (Table A6). In MGMT,
however, GRIT’s sparsified but topology-modified attention pattern slightly alters the edge set used
for supernode scoring and superedge construction, so the resulting meta-graph is not systematically
better aligned with the underlying anatomical or structural connectivity than the one induced by
localized GAT attention. As a result, GRIT achieves similar but not consistently superior performance
to depth-aware GAT within the MGMT framework, despite its advantage in the single-graph regime.

We therefore observe a trade-off. Global/sparse GT backbones can be slightly stronger in single-
graph tasks, whereas topology-preserving localized attention is better aligned with MGMT’s goal of
building an interpretable meta-graph from true edges. Empirically, once depth-aware aggregation and
meta-graph fusion are enabled, MGMT with depth-aware GAT, GraphGPS, GRIT, and Exphormer
all achieve very similar performance (Table A7), and accuracy is stable across a range of supernode
thresholds τ (Appendix A10). This indicates that the main gains in MGMT come from depth-aware
multi-scale mixing, and more importantly the supernode/meta-graph construction that explicitly
encodes and interprets cross-graph connections, rather than from a particular GT variant.

Overall, Tables A6 and A7 highlight that (i) MGMT is backbone-agnostic; stronger GT backbones
do yield better single-graph performance, and (ii) With the help of meta-graph construction, MGMT
is relatively robust to the choice of backbone in the multi-graph fusion setting.

In terms of efficiency, we also measured average epoch runtime (in seconds) for MGMT implemented
with each backbone on the Alzheimer dataset (Table A8). Depth-aware GAT remains among the
most efficient MGMT variants overall. GRIT attains the lowest total per-epoch time (158.2s vs.
162.9s for GAT) by substantially reducing the cost of the graph-specific encoder (102.8s vs. 119.2s),
but this saving is largely offset by a more expensive SuperEdge & Node Extraction stage (40.4s
vs. 28.6s). This increase is consistent with GRIT’s design: its edge-aware, relation-augmented
attention produces denser and more heterogeneous attention patterns than localized GAT, so MGMT
must process more non-negligible attention coefficients when aggregating edge weights, selecting
supernodes, and constructing superedges across layers. GraphGPS, Exphormer, and EGT all lead to
higher average per-epoch runtimes than GAT (171.5–187.3s per epoch), because their more global
or hybrid attention mechanisms generate richer attention maps that MGMT must export, aggregate,
and threshold at every layer, increasing the cost of both the encoder and the SuperEdge & Node
Extraction block (41.9–46.0s vs. 28.6s for GAT). Overall, these results indicate that while advanced
GT backbones modestly change the balance between encoder and meta-graph construction costs,
they do not usually yield faster end-to-end MGMT training than the depth-aware GAT variant. For
these reasons, we present MGMT with a GAT backbone in the main paper as a balanced choice in
terms of simplicity, interpretability, runtime, and performance.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table A8: Per-epoch runtime breakdown (in seconds) for MGMT with different depth-aware GT
backbones on the Alzheimer dataset.

Backbone (MGMT variant) Total Data Prep Graph-specific encoding SuperEdge & Node Extraction Meta-Graph Final Model

Depth-aware GAT aggregation 162.93 1.81 119.24 28.64 1.56 11.68
Depth-aware GraphGPS aggregation 171.50 1.85 114.10 41.85 1.64 12.06
Depth-aware GRIT aggregation 158.20 1.82 102.75 40.43 1.60 11.60
Depth-aware Exphormer aggregation 180.70 1.90 118.75 45.95 1.70 12.40
Depth-aware EGT aggregation 187.30 1.88 126.30 44.55 1.68 12.89

A13 DYNAMIC, DISTRIBUTION-BASED THRESHOLDING FOR SUPERNODES
AND META-GRAPH EDGES

In the main text, MGMT uses two scalar thresholds: (i) τ for supernode extraction based on attention
scores, and (ii) γ for sparsifying inter-graph edges in the meta-graph using cosine similarity. These
thresholds are tuned on validation data together with standard hyperparameters (learning rate, depth,
dropout, etc.). Section 3.1.2 and Appendix A10 already show that MGMT is stable across a wide
range of τ and γ values.

Here, we additionally implemented and evaluated a dynamic, distribution-based thresholding variant
of MGMT, in which the effective thresholds are determined from the empirical distributions of scores
rather than being validation-tuned scalars.

Dynamic supernode selection (data-driven τ). Let av denote the aggregated attention score for
node v in a given graph (obtained from the TransformerConv layers as in Section 3.1.1). We first
normalize the node-level attention scores within each graph:

ãv =
av −minu au

maxu au −minu au + 10−5
∈ [0, 1].

Instead of specifying a validation-tuned τ , we choose a retention rate ρsup ∈ (0, 1) (e.g., ρsup = 0.3)
and keep only the top ρsup fraction of nodes according to ãv . Concretely, for each graph g we compute
the (1− ρsup)-quantile csup,g of its normalized scores and define the supernode set as

Sg = {v : ãv ≥ csup,g}.

Equivalently, this induces a graph-specific, data-driven threshold

τg = csup,g,

which depends on the empirical distribution of attention scores in graph g. If the attention scores in a
new dataset are more concentrated or more diffuse, the resulting τg automatically adjusts.

Dynamic meta-graph edge construction (data-driven γ). Given the set of supernodes across all
graphs, we compute the cosine similarity matrix over their embeddings:

euv =
H⊤

u Hv

∥Hu∥∥Hv∥
(A28)

In the original MGMT formulation, inter-graph edges are obtained by applying a validation-tuned
parameter γ. In the dynamic variant, we specify a retention rate κedge ∈ (0, 1) (e.g., κedge = 0.05)
and keep the top κedge fraction of all off-diagonal similarities by defining threshold as the (1− κedge)-
quantile of the entries of the cosine similarity matrix. Now γ is not validation-tuned: it is induced by
the empirical distribution of similarities in the current dataset.

Experimental comparison and discussion. Table A9 compares the original validation-tuned
threshold MGMT (with τ and γ selected via validation) to the dynamic quantile-based variant
described above. We observe that the dynamic variant attains performance that is close to the best
validation-tuned threshold configuration across all datasets, with a small decrease in accuracy in some
cases.

This behavior is natural: Previously τ, γ were tuned specifically to maximize validation performance
on each dataset, while the dynamic variant applies a generic, model-agnostic rule that does not

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table A9: Comparison of MGMT with validation-tuned thresholds vs. dynamic, distribution-based
thresholds for supernode selection and meta-graph edge construction. Values are mean ± standard
deviation over 5 folds.

Dataset MGMT (validation-tuned τ, γ) MGMT (dynamic, quantile-based)

LFP dataset 42.13 ± 0.25 41.26 ± 0.73
Alzheimer 83.11 ± 0.84 81.96 ± 0.76
Experiment 1 65.47 ± 2.39 63.35 ± 1.64
Experiment 2 69.90 ± 1.19 67.72 ± 1.24
Experiment 3 73.21 ± 0.59 71.96 ± 1.23

exploit dataset-specific optimal sparsity levels. Consequently, a minor loss in accuracy is a reasonable
trade-off for eliminating validation-tuned thresholds and making sparsification fully data-driven.
Importantly, both the sensitivity analysis in Appendix A10 and the results in Table A9 indicate that
MGMT does not hinge on finely tuned thresholds: it remains robust under both validation-tuned and
distribution-based thresholding schemes.

A14 CAUSAL EXTENSIONS OF MGMT VIA CAL

Recent advances in causal graph learning offer promising directions for identifying causally important
nodes. Causal masking approaches such as CAL (Sui et al., 2022) learn to disentangle causal from
spurious features through an intervention-based training scheme. Counterfactual methods reviewed in
Guo et al. (2025) identify critical graph components by measuring prediction changes under minimal
graph edits. Next we present one concrete potential design, while future work can explore additional
promising directions for causal learning in multi-graph settings.

CAL (Causal Attention Learning) Sui et al. (2022) offers a natural integration with our framework.
CAL introduces a disentanglement module to separate causal features that reflect intrinsic graph
properties from shortcut features arising from data biases or trivial patterns. Specifically, given a graph
G = (V, E) with N = |V| nodes, feature matrix X ∈ RN×d, and adjacency matrix A ∈ RN×N ,
CAL learns two masks Ma ∈ RN×N (for edges) and Mx ∈ RN×1 (for node features) via causal
intervention (see Sui et al. (2022) for details). Each element of the masks, with value in (0, 1),
indicates the causal relevance to the label. Applying CAL to each graph i ∈ [n] yields causal masks
Ma

i and Mx
i . We can re-weight the edge attention scores in (3), section 3.1.1 by Ma

i :

αcaus
i = αi ⊙Ma

i ,

where ⊙ denotes the Hadamard product. Similarly, we can adjust the supernode selection rule in (4)
by

Si =

{
u ∈ Vi

∣∣Mx
i,u

∑
(u,v)∈Ei

αcaus
i,uv ≥ τ

}
.

where Mx
i,u denotes the causal score for node u. This ensures selected supernodes maintain strong

causal relationships with the label.

A15 SPARSE TOP-k ATTENTION MECHANISM APPLIED TO THE
GRAPH-SPECIFIC ENCODERS

As discussed in Appendix A9.1, the dominant computational cost in MGMT comes from the graph-
specific encoder, whose complexity scales with the number of attended neighbors per node. To further
investigate the potential of sparse attention in our framework, we perform a preliminary experiment
where we replace the localized GAT-style attention in the graph-specific encoder with top-k attention,
while leaving the rest of MGMT unchanged.

Concretely, at each GAT layer and for each node u in graph Gi, we compute the standard attention
scores {αuv}v∈N (u) over its 1-hop neighbors. We then keep only the k largest-magnitude scores
and set the remaining attention weights to zero before normalization. This yields a sparse attention
pattern with effective cost O(Nikd) per layer (for Ni nodes and d-dimensional features), instead of

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

O(|Ei|d). Importantly, we apply this sparsification only in the graph-specific encoder; the meta-graph
construction and final predictor remain unchanged, but their runtimes are indirectly affected through
the change in attention patterns and degrees used for supernode/superedge extraction.

For each configuration, we re-run MGMT end-to-end with the same hyperparameters as in the dense
setting and measure per-epoch runtime as well as test accuracy. Figures A9–A10 summarize the total
time and accuracy trends as a function of k. In each panel, the dashed horizontal line denotes the
dense GAT-based MGMT baseline.

Figure A9: Effect of top-k attention on MGMT runtime. Per-epoch total time versus k for each
dataset. The dashed line indicates the dense GAT-based MGMT runtime; annotations report the
speedup at k = 5 relative to this baseline.

Figure A10: Effect of top-k attention on MGMT accuracy. Test accuracy versus k for each dataset.
The dashed line indicates the dense MGMT accuracy; annotations report the accuracy change at
k = 5.

Two patterns emerge from these preliminary results. First, for the Alzheimer and LFP datasets, top-5
attention reduces the per-epoch runtime approximately 2.6 and 2.7 times, respectively, relative to
dense MGMT. On the synthetic datasets, speedups at k = 5 range from about 1.1 (Experiment 1, with
only 5 nodes) to 3.8 (Experiment 3, with 50 nodes) times relative to dense MGMT. As k increases,
each node attends to more neighbors, so the encoder cost grows roughly linearly in k (from O(Nkd)
toward the dense limit), and the total runtime curves in Figure A9 smoothly approach the dense
baseline.

Second, as shown in Figure A10, these runtime gains come with mild accuracy changes. Very small
k values can drop some informative neighbors and under-connect the graphs, leading to an accuracy
loss; increasing k restores more of the original neighborhood structure, allowing the encoder to
capture richer local context and thus produces a gentle increase in accuracy.

Overall, these experiments support the feasibility of integrating sparse top-k attention into MGMT: by
sparsifying only the graph-specific encoder, we obtain speedups on larger graphs while losing some
predictive performance. This provides a concrete path toward scaling MGMT to settings with many
modalities and/or larger per-graph node sets, complementing the theoretical complexity discussion in
Appendix A9.1.

35

	Introduction
	Related Work
	Methodology
	Multi-Graph Meta-Transformer (MGMT)
	Graph-Specific Transformer Encoders
	Supernode Extraction
	Meta-Graph Construction
	Feature Learning and Prediction

	Interpretation of MGMT

	Theoretical Properties
	Intra-graph analysis
	Inter-graph analysis

	Numerical Experiments
	Experimental Setup
	Synthetic Experiments
	Neuroscience Applications
	Local field potential (LFP) activity in a sequential memory task
	Alzheimer's Disease Detection

	Conclusion, Limitations, and Future Work
	Graph Transformer with Localized Graph-Aware Attention
	Depth-Aware Aggregation in MGMT
	Mathematical Proofs
	Additional Theoretical Results
	Additional Intra-graph Results
	Additional Inter-graph Results
	L-hop Mixing versus Weisfeiler-Leman

	Theoretical Foundations of Embedding-Similarity Superedges
	Detailed Descriptions of Baseline Models
	Single-Source Models (No Fusion)
	Feature-Concatenation Fusion Models
	General-purpose multimodal fusion
	Multi-Graph Learning Models

	Ablation Study
	Details on Simulation Settings
	Experimental Setting and Efficiency Analysis
	Theoretical Complexity Analysis.
	Scalability Analysis
	Runtime Profiling and Model Efficiency

	Sensitivity Analysis of Hyperparameters
	Attention Score Threshold (Supernode Selection)
	Cosine Similarity Threshold (Inter-graph Edge Construction)

	Impact of Similarity Metrics in Meta-Graph Construction
	Single-Graph and Multi-Graph Results with Alternative GT Backbones
	Single-Graph LFP Experiments with Different GT Backbones
	MGMT with Different GT Backbones

	Dynamic, Distribution-Based Thresholding for Supernodes and Meta-Graph Edges
	Causal Extensions of MGMT via CAL
	Sparse Top-k Attention Mechanism Applied to the graph-specific encoders

