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ABSTRACT

Federated Learning (FL) has emerged as a privacy-preserving approach for col-
laboratively training models without sharing raw data, while a key challenge is
that the data across the clients may not be identically distributed. The nom-
inal distribution that the model truly learns is commonly assumed as the Eu-
clidean barycenter. In this paper, we propose Federated Distributionally Robust
Optimization (FedDRO) that constructs the Wasserstein barycenter among all
distributions with a Wasserstein ball as an ambiguity set. We reformulate this
paradigm as a min-max optimization problem that trains a robust FL. model in an
adversarial way and analyze its generalization and optimization properties.

1 PROBLEM FORMULATION

In this paper, we consider a learning scenario where N local clients are connected to a single pa-
rameter server. Each client i € [1, N] observes m; training samples {x; j, v ;}7~, which are in-
dependently sampled from distribution P;. The centralized model is trained to minimize the loss

w.r.t. the uniform mixture distribution &/ = vazl > ﬁ"’m P; as FedAvg McMahan et al. (2017).

Furthermore, Mohri et al. (2019) proposes AFL to optimize the worst-case w.r.t.the different weight
A; to construct the weighted average distribution such that the Empirical Risk Problem (ERP) is

N
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The mixture distribution is actually the Euclidean barycenter among all /N empirical distributions
P;,i € [1, N] such that iy = argminp Zivzl \i||P; — P||3. However, for high-dimensional com-
plex data structures and heterogeneous distributions, thpe Euclidean distance is sensitive to shifted
distributions and could not potentially capture the complicated information Cuturi & Doucet (2014).

Considering the limitations of Euclidean barycenter, we choose the Wasserstein distance as a robust
measure to quantify the divergence of the distributions Zhu et al. (2023). Following this assump-
tion, the nominal distribution is replaced with the Wasserstein barycenter. Considering the potential
mismatch between the nominal distribution and the true distribution, we utilize the distribution-
ally robust optimization (DRO) by introducing an ambiguity set B(Q) ,, €). Therefore, the ERP is
formulated as

min sup Ex ,yup | (Aw(X),
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N
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where W, is the p-Wasserstein distance. To solve this optimization problem, the first step is to
approximate the Wasserstein barycenter Q) , among multiple distributions Py, - - - , Py within the
federated context. Recently Rakotomamonjy et al. (2023) proposes the interpolating measure to
calculate the Wasserstein distance in a Federated scenario and Li et al. (2023) extends this work
to approximate the Wasserstein barycenter with the augmentated matrix proposed in Alvarez-Melis
& Fusi (2020). However, the augmented matrix is constructed by the features x and the statistic
information of conditional feature distribution P(x|Y" = ) which is assumed to follow the Gaussian
distribution A/ (m,,, X,). In our paper, we need to construct the data clouds {xp,ys} following
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Test Accuracy
[IA]] 0.5 2 3 5
FedAvg | 87.4 | 559 | 48.6 | 8.3
Ours | 909 | 75.1 | 66.2 | 18.5

Table 1: Test Accuracy on balanced test dataset.

the distributions in B(Q) p,€). Therefore, we consider two different applications: (1) Class-wise
interpolating measures of feature space X', which is applied for the heterogeneous feature space;
(2) Data-wise interpolating measure (X', )) inspired by the dictionary learning with one-hot encoded
labels Fernandes Montesuma et al. (2023). Inspired by Li et al. (2023), Wasserstein distance between

P; and the approximated Wasserstein barycenter O with uniform ); is iteratively optimized by
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where 7p, is the interpolating measure between P; and v; computed by i-th chent, 1, is the in-

terpolating measure between ~y; and o) computed by the server. Only 7, and -; are shared for

(0)

approximations. The server initializes -, and sends it to i-th client. At each round k, i-th client

computes W, (P, “%(k 1)) and constructs 771(0) The server computes W, (7y; (k=) (k- 1)) and shares

(k) (k)

N0, with i-th client. Then 7, is updated by i-th client via Rakotomamonjy et al. (2023)

’yf ) € arg min W, (n}),wfk b )+W (v (k= 1)’77&))]_ 4)

Simultaneously, the server updates Q) utilizing all ’yi( *) based on Cuturi & Doucet (2014). Based

on the optimal transport theory, suppose T7¢ is the transportation map between Q) and vi, then

di S - . .
we have T”‘P = T’Y7 P;,Vi # j. For distributed training, the server could either share the trans-

portation map T to z th client or the mapped samples at the last round of Wasserstein barycenter

approximation procedure, in which the constructed samples are simply denoted as QEK) = Ty(xy).
Then with Lagrange multiplier A > 0, the ERM objective in equation 2 is reformulated as follows
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The reformulation details for the above objective are shown in Appendix B. We summarize our algo-
rithm in Algorithm 1, in which lines 1-7 are approximations of Q) ,, and lines 8-15 are adversarial
training in FL.

2 Toy EXPERIMENTS

In this section, we will show our exploration of the Federated labeled Wasserstein barycenter. Then
we conduct a simple comparison to show the validation performance based on the Wasserstein
barycenter and Eucludiean barycenter. The technique to solve WDRO is our future exploration.

We simulate the affine transformation Ax + § on the MNIST dataset with 5 clients. For each client,
the 0 noise is within the range {5, 15, 25, 35,45}%, and the A is also random. We calculate the
class-wise interpolating measures of feature space X’ and approximate the Wasserstein barycener Q
for each class, denoted as Q = {Q(v)}2_,. We compare the training loss on the Q with the training
loss on the original data via the CNN model in Figure 1 in Appendix. The testing accuracy on the
clean MNIST dataset is shown in Table 1.

3 CONCLUSIONS

Our paper explores the applications of Wasserstein barycenter to enhance the robustness of Feder-
ated Learning (FL) in heterogeneous scenarios. We present FedDRO, a framework that leverages
the efficient approximation of Wasserstein barycenter within a Federated context based on the ad-
vantageous properties of Geodesics in Optimal Transport theory, and adversarial training to solve
the WDRO problem during the training procedure.



